	 KEYWORDS * MERGEFORMAT
	1.2 D4.2 Design Guidelines for user interfaces

eu-DOMAIN
D4.2 Design Guidelines for user interfaces

[image: image18.png][image: image19.wmf]
	
	Contract No. 004420

eu-DOMAIN - enabling users for

Distance-working & Organizational Mobility

using Ambient Intelligence Networks

	
	D4.2 Design Guidelines for User Interfaces

Specific Targeted Research or Innovation Project

Project start date 1st June 2004

 Duration 36 months

Published by the eu-DOMAIN Consortium March 2005 Version 2.0
Lead Contractor FORTH
Project co-funded by the European Commission
within the Sixth Framework Programme (2002 -2006)

Dissemination Level: PP Restricted to other programme participants
Document file:
D4.2 Design Guidelines for User Interfaces 2.0.doc
Work package:
WP4 – Server Side Architecture
Task:

T4.3 – Application intelligence, web service provisioning and user interaction
Document owner:
Manolis Tsiknakis (FORTH)

Document history:

Final version submitted to the European Commission.

Index:

51.
Executive summary

51.1
Scope and Purpose of the document

51.2
Contents of the deliverable

62.
Background

62.1
eu-DOMAIN technical requirements

62.2
eu-DOMAIN Terminals and related assumptions

72.2.1
Issues from functional requirements

92.2.2
Issues from security requirements

92.2.3
eu-DOMAIN users

123.
Design Considerations and general principles

123.1
Gathering Guidelines for User Interfaces

123.1.1
Specific methodologies and approaches

153.1.2
Heuristics

163.1.3
Existing guidelines

163.1.4
Related Standards

183.2
List of principles

183.2.1
Microsoft

193.2.2
Apple

213.2.3
IBM

233.3
Multimodal Interfaces

243.4
Design trade-offs

253.5
Conclusions

264.
User Interfaces Design Guidelines

264.1
Common Guidelines for eu-DOMAIN User Interface Design

274.2
Guidelines for User Interface Presentation

274.2.1
Language

284.2.2
Visual design

334.3
Common design mistakes to avoid

364.4
Mobile Devices VS PC User Interfaces

394.5
Conclusion

405.
Implementation Issues

405.1
Software tools

405.1.1
Content Management Systems

435.1.2
Portals and portlets

445.1.3
Interoperability Standards

475.1.4
Device Independence

495.2
The eu-DOMAIN Approach

526.
Conclusions

547.
Appendix A

547.1
Implementation examples

568.
References

List of figures:

8Figure 1: Terminal to Server Connection

13Figure 2: What makes a program usable

30Figure 3: Overusing of colour

32Figure 4: Bad Alignment Design

32Figure 5: Good Alignment Design

33Figure 6: Good Layout Design

34Figure 7: Small Thumbnails

35Figure 8: Bad search example

44Figure 9: Portal's basic architecture

45Figure 10: Presentation VS Data Oriented WS

46Figure 11: Architecture of the WSRP specification

48Figure 12: CC/PP example

50Figure 13: eu-DOMAIN Interaction Server

51Figure 14: User's Interaction Diagram

54Figure 15: Laptop Interface Screenshot

55Figure 16: PDA Interface Screenshots

List of tables:

7Table 1: ESN scenario Requirements vs. remote Terminals

15Table 2: Nielsen and Molich's Nine Heuristics

1. Executive summary

1.1 Scope and Purpose of the document

This document specifies the Guidelines for user interfaces within eu-DOMAIN.

The target audience are the eu-DOMAIN technical partners (and over all, those involved in the development of user interfaces and interaction).

1.2 Contents of the deliverable

This deliverable explains the different design principles that are used within the area of interface’s development, and tries to choose the most suitable for eu-DOMAIN purposes.

Then, it presents the guidelines and the different software tools available for the development of interfaces in eu-DOMAIN, based on the assumptions derived from the eu-DOMAIN requirements and technical meetings.

2. Background

2.1 eu-DOMAIN technical requirements

One main aim in defining eu-DOMAIN platform is to ease interaction of Content Providers and end-users with the system, in order to allow many of them to plug into it. This implies a dynamic approach that will change over time with the addition of new information and operations to adapt to the needs and the specific field of applications of end-users and Content Providers.

This kind of approach implies also user interfaces being dynamic, flexible and easily customisable, which means the least possible “manual” development.

Furthermore interesting considerations are derived from the technology and usability analysis, made in the document describing Functional user requirements.

A first consideration that has been done is that technology must be scalable and upgradeable based on open structures to ensure provision of efficient and reliable services over the years with always up to date solutions. User interfaces should satisfy these qualities also.

Another relevant issue linked with the idea of usability regards the importance of providing easy-to-install plug-and-play products together with customized user interfaces, which should be configurable both by installers and end-users or, in general sense, by any kind of actor, no matter its level of technological skill or awareness.

Finally usability analysis stresses the fact that potential improvements such as additional functionalities and technological features should be supported efficiently by the eu-DOMAIN system in a timely manner.

2.2 eu-DOMAIN Terminals and related assumptions

In documents describing software architecture for the eu-DOMAIN platform some assumptions have been made in relation to the User Terminal; these assumptions are derived from decisions taken in Stockholm meeting.

In details:
· only browser-based interaction. There will be no special eu-DOMAIN software that needs to be installed on users PDAs etc. The interaction with the eu-DOMAIN server will go through a Web browser (Stockholm minutes);

· in consequence D3.1 and 4.1 Software architecture specification state the assumption that Terminal nodes are able to host a web browser that interacts with the Interaction Server of the Server Tier which acts as a web server;

· Functional Requirements describe the Interaction Server as the entrance point for User Terminal to the Server; in practice it’s a Web Server with a Presentation Layer as an interface to communicate with Terminals.

These assumptions seem the most appropriate in relation to the overall system quality attributes derived from the work done for the creation of DOW and in the architecture workshop in Aarhus. In particular an architecture with this structure for client side allows for what has been called:

· Modifiability (The eu-DOMAIN platform should support a variety of applications through change at deployment and runtime) and
· Scalability (The eu-DOMAIN architecture should support a large number of concurrent users and applications);

Furthermore the system is more flexible and adaptive in relation to different Content Providers and fields of application because there’s no need to develop customised local software for every conceivable User.

An issue is related to qualities of Performance both in terms of support for “interactive performance when used by mobile users” (as stated in D3.1 Software architecture specification) and in terms of available wireless bandwidth and Data rates. In particular two main advantages are provided:

· Automation: this means providing some intelligence to accomplish a number of tasks automatically, some customised software can help the user and speed operations making them transparent;

· Data retrieval: A hypothetic local application could also contemplate the creation of a local Cache to store some information, which doesn’t change frequently during the time.

Anyway, given the functional requirements of eu-DOMAIN and the need for a platform in which every user can connect with a minimal set of operation, a browser-based interface is an effective way to make things easier.

Another possible need for the creation of some local application is the use of some additional component plugged into or connected to the terminal, like a GPS on a mobile user’s device that could need a specific interface to communicate Data to the Server tier such as a Location Module. Anyway from what we know so far, no final decision has been taken regarding context-awareness related to some Positioning device integrated into the terminal. For this reason options are still open but we can figure out some solution that doesn’t require development of specific modules on the client (for instance sensors inside premises …).

2.2.1 Issues from functional requirements

Regarding advantages mentioned in the previous section some considerations could be obtained from a short analysis of the D2.3 Functional user requirement specification.

Going through the task analysis for the ESN scenario and trying to summarize some main requirements related to use of remote Terminals a table could be depicted as follows:

	Requirements
	Use Case
	Comments

	Display structured Data on a remote terminal
	1.1, 2.1, 3.2, 3.3, 3.4, 3.5, 3.7, 4.1, 4.4
	In general Data are dynamic and it is not needed to implement a local storage

	Execute tasks remotely / Communicate remotely
	2.2, 2.4, 2.5, 2.6, 3.1, 3.6, 3.7, 3.8, 3.9, 4.1, 4.2, 4.3, 4.4
	Browser based interface is an efficient solution, provided the wireless network connection in case of mobile users

	Locate the user
	2.3, 3.2, 3.3
	It is not clear what kind of context awareness eu-DOMAIN should provide

	Receive alerts
	2.3, 2.5, 2.6, 3.10
	An important issue is to make sure that alarm notification are received in time

Table 1: ESN scenario Requirements vs. remote Terminals

In general the document describes requirements that can be efficiently satisfied with a Web based Terminal interface (provided a wireless network connection available when required). In fact points for consideration regarding the development of some local software are:

· the presence of dynamic data or data that are/must be frequently updated or static data such as Digital Maps that doesn’t change so frequently during time and could be stored locally. From what we know so far, anyway, a browser-based interface properly meets the requirements;

· the need to automate some boring or not so user-friendly operations, but in general operations required can be carried out with Web forms or easy-to-use Web interfaces and Menus or at least some browser plug-in;

· the need for some confirmation that alerts have been received, for instance to be sure that an SMS with some critical alarm has reached the target User Terminal. In this case, in effect, a local module must be developed in order to read some structured information from the SMS and, in case, send some notification (e.g. MIDP 2.0 Push Registry and Wireless Messaging API make SMS-based push activation possible in order to start a notification application on the Terminal);
· the need for some specific location device on the Terminal or for working on digital Maps, but this doesn’t appear to be the case of scenarios depicted;
· the need to communicate with remote peers or to interact with the system. As described in Table 1 there are many different tasks that contemplate a bi-directional communication and, in effect, a local application is a solution to work offline if there’s no wireless coverage but in any case bandwidth availability is required for communication;

Similar considerations can be provided as regards the PaC Scenario and related tasks.

Basically it is a matter of determining the most appropriate trade-off between system efficiency and flexibility/openness and a browser-based approach is the best choice taking into account that many tasks related to remote interaction and communication require an always available connection.

This is the main issue concerning what stated for terminal assumptions: how would the system cope with disconnected mode operations and, in particular, what would be the reaction of Terminals.

An answer to a lost of connection with the Server Side was found in Heraklion technical meeting:

[image: image1.jpg]
Figure 1: Terminal to Server Connection

As depicted in Figure 1, the model used to describe connections with Server contemplates two possible ways of interaction.

The first is a “direct” Terminal to (Interaction) Server connection; the second one is possible because the Gateway has a Web Server or, at least, IP routing functionalities. Therefore Terminals are able to connect to the Server through a link to Gateways installed in eu-DOMAIN client tier.

In fact it has been assumed also that Gateway-Server communication is “mostly” on. Due to potential disconnections because of power or network failure, some bundles with functionality (e.g. alarm monitoring) would be required for short-term disconnected gateways. Also synchronisation and queuing will be needed facilities in this case.

2.2.2 Issues from security requirements

Security aspects pose numerous requirements as long as it regards the whole software architecture of eu-DOMAIN. It affects not only the design and operation of the system at the server’s side, but also the interaction between the system, the eu-DOMAIN platform and its end-users. Actually, this issue was uncovered by analyzing the scenarios presented in D2.1 – User Validation Framework Plan. The results of this analysis, namely the requirements imposed by the scenarios are documented in D2.3 – Functional User Requirements, D2.4 – Trust and Security User Requirements, and D2.5 – Societal User Requirements. A number of use cases affecting the design of user interfaces were identified, of which the most fundamentals, user authentication and single sign-on were partially addressed by the software architecture document, D3.1+D4.1 – Software Architecture Specification.
User authentication and single sign-on are very important aspects regarding user interaction with the eu-DOMAIN platform. eu-DOMAIN creates a world, where plethora of devices, services, and applications cooperate between themselves and human actors to support the completion of various tasks. No one can expect a human actor to authenticate himself to every single device and service he is going to use. This would be too cumbersome compromising usability. At the same time, high security standards must be ensured, especially when dealing with sensitive medical data, etc. In fact, there is a security folklore, which says that there is a trade-off between usability and security. eu-DOMAIN should definitely find the balance between these two factors managing the many-to-many interactions between devices, services, applications and end-users, in a secure context, through usable user interfaces.
There is no silver bullet for resolving this issue. However, the technological approach, which the eu-DOMAIN consortium will follow to implement the security architecture, as long as it regards the end-users’ terminals side, is the usage of Java applets or some other kind of client-side plug-in technology since the interaction will be only browser-based as it has already been mentioned. These technologies allows proper implementation of user authentication, single-sign on, digital signing and possibly other security related properties of the system. Mechanisms like location-based authentication are an example of the approach that the eu-DOMAIN will follow to resolve these issues (see D3.1+D4.1).
2.2.3 eu-DOMAIN users

eu-DOMAIN scenarios illustrate future behaviour of the project platform involving a number of different actors.

These actors need potentially to interact with eu-DOMAIN exploiting different functionalities and using different kind of terminals. PDAs, smart phones, desktop PCs and laptops constitute typical examples of terminal devices. Additionally, it’s possible to make a distinction in relation to the way they use the system and to their “profile” (meaning their skills and their expected tasks in relation to their responsibilities).

A first type of user is a manager, a coordinator or a supervisor that could have the need to collect information or access to administrative functionalities provided from the platform.

Just to mention a few profiles, taken from the Functional user requirements:

- Maintenance company responsible, whose ultimate goal is to ensure an effective and efficient 24 hours a day maintenance service at competitive costs and 7 days a week.

His requirements identified in the document are:

· The maintenance company responsible has to be able to remotely ascertain the right performance of the installed equipments.

· The maintenance company responsible has to be able to easily and remotely access information concerning the equipments (e.g. historical data), maybe to communicate it to his own customer.

· The maintenance company responsible has to be able to remotely collect environmental data critical for the installed equipments (e.g. temperature, humidity in the buildings where the equipments have been installed).
· The maintenance company responsible has to be able to get information on performances by using several kind of devices, fixed (PCs, etc.) and mobile (PDAs, mobile phones, etc.).
- Servizio Provinzia operator, whose aim is to guarantee an effective and prompt service to be realized with an optimized resource deployment.

Related requirements are as follows:

· Servizio Provinzia operator has to be able to easily and remotely ascertain the right performance of the installed equipments.

· Servizio Provinzia operator has to be able to easily access information concerning the equipments (e.g. historical data), maybe to communicate it to his own customer.

· Servizio Provinzia operator has to be able to get information on performances by using several kind of devices, both fixed (PCs, etc.) and mobile (PDAs, mobile phones, etc.).

· Servizio Provinzia operator has to be able to remotely collect environmental data critical for the installed equipments (e.g. temperature, humidity in the buildings where the equipments have been installed).

- the Patient Advisory and Liaison Service (PALS) Coordinator: managing an outreach service, helping patients in accessing primary care services:
· The PALS coordinator has to be able to register in the eu-DOMAIN the e-mail electronically signed by the patient.

· The PALS coordinator has to be able to contact the MHDSS (Muslim Health Diabetes Support Service) informing that there is a new patient.

· The PALS coordinator has to be able to protect the private and medical data written in the e-mail, ensuring integrity and privacy of the data.
A second user is a professional worker, a technician or a specialized worker with technical competences. He could be a technical maintainer, a medical assistant or a general practitioner (GP).

An example from the Functional user requirements:

- the General Practitioner (GP), whose aim is to ensure a proper assistance and medication to the patient optimizing the resources and to help the patient to achieve its ultimate goals

Many requirements related to this user have been found, a few most important ones are as follows:

· The GP has to be able to receive this notification/alert at any time and place.

· The system must be set in order to notify the GP by several means, such as e-mail, SMS or other means, when it is operating.

· The GP has to be able to log on to the eu-DOMAIN system from his office PC.

· The GP has to be able to use his certificate to authorize the automatic uploading of the readings of the patient’s blood pressure in the patient’s PEHSCR (Personal Electronic Health and Social Care Record).

· The GP has to be able to search for the patient, select the patient and get a list of all equipment available for using with that patient (the blood pressure device).
· The GP has to be enabled to enter rules using a simple user interface such as drop down boxes and text fields or drag and drop.
· The GP has to be able to have the patient management plan automatically altered by fixing full diabetes review and blood pressure monitoring at new set time.
A third user is a general user with no particular technical skills or confidence with technology.

An example could be a patient, whose aim is to be informed and to understand the implications of its disease, to be enabled to self-monitoring its health 24 hours a day and to be provided with prompt assistance in case of emergency.
Some of his requirements are:

· The patient has to be able to send an electronically signed e-mail to the PALS coordinator authorizing the release of EPR data to the MHDSS.

· The patient has to be able to remotely communicate with the formal carers.

· The patient has to be able to choose among different means of communication.

· The patient has to be able to have text information on medical issues visualized on its PDA, both pull and push.

· The patient has to be able to see its blood pressure profile on-line, during the review with the GP.

· The patient has to be able to have also graphical information visualized on its PDA, for instance graphics and tables showing how she/he is performing compared to the established management plan and clinical path.

· The patient has to be able to register its profile to be enrolled on the “new to diabetes course”.

· The patient has to be able to log in to access the course on-line.

· The patient has to be able to exchange information and give/provide feed back during the course, which therefore has to be interactive.

In conclusion, we have seen that eu-DOMAIN users constitute a heterogeneous set of actors with different requirements in relation to functionalities needed from the system and context of use of application and services. For example, available hardware, or the inability of some types of users to handle specific kinds of input/output devices while performing specific tasks affects the design of user interfaces and must be taken under consideration. Users also, have different technical skills and an individual approach to the technology they are going to use according to their technical and cultural background too. These considerations impacts to great extend the design of interfaces resulting in the need for adopting a design approach able to cope with the complexity introduced by such a diverse users target groups.

To be more concrete, regarding the guidelines proposed for eu-DOMAIN user interfaces, particular attention will be given on stressing the need for simplicity and user feedback together with supporting personalisation and tools for managing multiple and dynamic contents and contexts (Section 3.4). The discussion begins with design considerations and general principles (Chapter 3). Additionally, an inevitable influence will be found in guidelines listed in Chapter 4, grounded on previous principles, and aiming for interfaces offering a user-centered approach with multi-language implementations (Section 4.2.1) and a visual design approach (Section 4.2.2) thought to be friendly and familiar with the broadest number of users.

3. Design Considerations and general principles

3.1 Gathering Guidelines for User Interfaces

User Interface (or UI) is a common term we hear from computer salespeople, programmers and in general very often when we are working with electronic devices. It's not a hard concept to understand intuitively, but a brief definition is anyway useful. UI is simply the parts of a computer and its software the computer user see, hear, touch, or talk to. It is the set of all the things that allow user and computer to communicate with each other.

A preliminary issue in identifying guidelines for User Interfaces is related to the way these principles could be collected. Several ways to collect guidelines could be taken into account, not necessarily choosing one of them without taking care of the others. On the contrary a relevant background and proper knowledge could reasonably suggest for a definition of eu-DOMAIN principles based on the synergy of different methods. The following section presents the major representatives.

3.1.1 Specific methodologies and approaches
3.1.1.1 Task-centered design process.

The process is structured around specific tasks that the user will want to accomplish with the system being developed. These tasks are chosen early in the design effort, then used to raise issues about the design, to aid in making design decisions, and to evaluate the design as it is developed.

A couple of rules are set as basic principles:

1) the interface should be tailored to the users and their tasks;

2) the development process should use the users’ tasks throughout design and evaluation;

The steps in the task-centered design process are as follows:

Phase 1- Identification/Definition

- figure out who's going to use the system to do what;

- choose representative tasks for task-centered design;

- “plagiarize”, finding existing interfaces that work for users and

 then build ideas from those interfaces;

Phase 2- Design

- rough out a design;

- think about it;

- create a mock-up or prototype;

Phase 3- Evaluation

- test it with users;

- iterate;

- build it;

- track it;

- change it;

3.1.1.2 User-Centered approach

The User-Centered approach has surfaced as the primary Human Computer Interface, HCI, design approach to facilitate usable interactive systems. It offers a broad collection of tools and methods for planning, iterative development and evaluation, while it fosters a tight evaluation feedback loop to assure that deficiencies are identified and corrected at an early stage of the development lifecycle, when the cost of refinement is not prohibitive.

[image: image2.png]
Figure 2: What makes a program usable

User Centred Design is a well established process that has been widely adopted by many organizations to deliver products that meet users' expectations, in fact “putting yourself in their shoes is a sure way to put your product at the front of the pack” and will be an important indication for defining a eu-DOMAIN approach for a design based on user needs (Chapter 4); it’s based on a series of principles, with the aim to involve users, to ask the right people the right questions:

Set business goals: determining the target market, intended users, and primary competition is central to all design and user participation.

Understand users (“Know the user”): a commitment to understand and involve the intended user is essential to the design process.

Assess competitiveness: superior design requires ongoing awareness of the competition and its customers.

Design the total user experience: everything a user sees and touches is designed together by a multidisciplinary team. This includes the way a product is advertised, ordered, bought, packaged, maintained, installed, administered, documented, upgraded and supported.

Evaluate designs: user feedback is gathered early and often, using prototypes of widely ranging fidelity, and this feedback drives product design and development.

Manage by continual user observation: throughout the life of the product, continue to monitor and listen to your users, and let their feedback inform your responses to market changes and competitive activity.

On the basis of the mentioned User Centred approach, IBM has developed a User Experience Design trying to encompass and extend traditional Human-Computer Interaction (HCI) design by addressing all aspects of a product or service as perceived by users. While HCI design addresses the interaction between a human and a computer, this approach addresses the user's initial awareness, discovery, ordering, fulfilment, installation, service, support, upgrades, and end-of-life activities.

The most recent influence on these principles has come from creating an Object-Oriented User Interface (OOUI).

Popular operating systems such as Windows 95, IBM OS/2 Warp, and CDE for Unix provide varying degrees of object-orientation for users. IBM, in detail, proposes a method called OVID (the acronym for Object, View, and Interaction Design alludes to the poet Ovid, whose Metamorphoses describes creation and change according to a grand design).

The OVID methodology, in details, is a set of techniques for designing object-oriented user interfaces. As the name suggests, the focus of this methodology is on three elements of user interface design: the objects that the user perceives, the views that are provided of these objects, and the interactions that the user has with these objects. The process is as follows:

· An initial set of objects is generated by examining the task analysis;

· Views are defined which allow the user to see the appropriate aspects of each object;

· Tasks are described in terms of the new objects and views;

· Interactions that the user has with the objects are described in detail

3.1.1.3 Universal design or design for all

Universal design or design for all should be interpreted as an effort to design products and services, in such a way, so that they suit the broadest possible end-user population (interchangeability), a major concern for the eu-DOMAIN project. In doing so, different solutions for different categories of users and different contexts of use are more likely to emerge.

This concept was promoted in ISF, International Scientific Forum “Towards an Information Society for All” with the aim to foster universal design in Information Society technologies, emphasising accessibility and high quality of interaction.

According to ISF principles, “designing for all” defines also a concept of accessibility as the global requirement for access to information, communication and social interaction by individuals with different abilities, requirements and preferences, in a variety of contexts of use. Thus, the meaning of the term is intentionally broadened to encompass accessibility challenges as posed by diversity in:

· The target user population (including people with special needs) and the individual and cultural differences

· The scope and nature of tasks (especially as related to the shift from computer-assisted business tasks to residential and social computer-mediated human activities)

· The technological platforms and associated devices likely to penetrate the emerging broad range of computer-mediated human activities.

Finally, the notion of quality in use, typically associated with various meanings and connotations and entails the consideration of a broad range of functional (e.g., domain specific qualities, such as interoperability and search efficiency) and non-functional attributes (e.g., portability, scalability, modifiability), which affect the use of information artefacts by humans, in their various problem solving, information seeking and communication intensive computer-mediated activities.

This notion of quality goes beyond the traditional concept of usability (i.e., measurable attributes based on performance criteria such as effectiveness, efficiency, satisfaction, etc), to include aspects (such as usefulness, suitability for task, tailorability, etc), which may not be measurable with currently available means. It’s a concept to be considered when designing for heterogeneous targets as eu-DOMAIN end-users (see Section 2.2.3)

It should be noted that universal design has often attracted criticism regarding its practicality and cost justification. In particular, there is a line of argumentation raising the concern that “many ideas that are supposed to be good for everybody aren’t good for anybody” (Lewis & Rieman, 1994 -Section 2.1, Paragraph 3). However, as already mentioned, universal design should not be conceived as an effort to advance a single solution for everybody, but as a user centred approach and a code of practice aiming to provide products that can automatically address the possible range of human needs, requirements and preferences. In this perspective, design is used to reflect a new concept, or philosophy that recognises, respects, values and attempts to accommodate the broadest possible range of human abilities, skills, requirements and preferences in the design of all computer users.

3.1.2 Heuristics

In a particular field, as designing for user interfaces, that deals with interaction between humans and machines, the experience “on flied” and some practical rules of thumb are an effective remedy to some non-predictable behaviours and attitudes that users may manifest toward computer terminals.

Heuristics, are general principles that can guide design decisions. As soon as it became obvious that bad interfaces were a problem, people started proposing heuristics for interface design, ranging from short lists of very general platitudes ("be informative") to a list of over a thousand very detailed guidelines dealing with specific items such as menus, command names, and error messages. None of these efforts has been strikingly successful in improving the design process, although they're usually effective for criticizing bad examples of someone else's design. When the short lists are used during the design process a lot of problems get missed; and the long lists are usually too unwieldy to apply. In addition, all heuristics require that an analyst have a fair amount of user interface knowledge to translate the general principles into the specifics of the current situation.

In 1990, Jacob Nielsen and Rolf Molich made a real breakthrough in the use of heuristics. Nielsen and Molich have developed a short list of general heuristics, and more importantly, they've also developed and tested a procedure for using them to evaluate a design. They used their own experience to identify nine general heuristics (see table, below), which, as they noted, are implicit or explicit in almost all the lists of guidelines that have been suggested for HCI. Then they developed a procedure for applying their heuristics. The procedure is based on the observation that no single evaluator will find every problem with an interface, and different evaluators will often find different problems. So the procedure for heuristic analysis is this: Have several evaluators use the nine heuristics to identify problems with the interface, analyzing either a prototype or a paper description of the design. Each evaluator should do the analysis alone. Then combine the problems identified by the individual evaluators into a single list. Combining the individual results might be done by a single usability expert, but it's often useful to do this as a group activity.

	Simple and natural dialog
	 Simple means no irrelevant or rarely used information. Natural means an order that matches the task.

	Speak the user's language
	Use words and concepts from the user's world. Don't use system-specific engineering terms.

	Minimize user memory load
	Don't make the user remember things from one action to the next. Leave information on the screen until it's not needed.

	Be consistent
	Users should be able to learn an action sequence in one part of the system and apply it again to get similar results in other places.

	Provide feedback
	Let users know what effect their actions have on the system.

	Provide clearly marked exits
	If users get into part of the system that doesn't interest them, they should always be able to get out quickly without damaging anything.

	Provide shortcuts
	 Shortcuts can help experienced users avoid lengthy dialogs and informational messages that they don't need.

	Good error messages
	Good error messages let the user know what the problem is and how to correct it.

	Prevent errors
	Whenever you write an error message you should also ask, can this error be avoided?

Table 2: Nielsen and Molich's Nine Heuristics

More recently three short principles could be mentioned from 2002 Sun’s Worldwide Java Developer Conference, they are as follows:

- Fast Orientation, in order to allow users to understand clearly where they are inside the application, where they can find what they want and what is the current status of the program;

- Fast Completion, to enhance productivity allowing users to find the fastest way to accomplish their tasks;

- Consistency, meaning a common behaviour in different parts of the application to minimize training and support.

These rules are suggested by the experience of an user interface designer; of course they might seem too synthetic anyway represent useful rules of thumb to keep in mind when analysing many different advices coming from literature, web and platform vendors that are going to be presented in the next paragraph. However, these rules constitute an easily applied evaluation methodology for eu-DOMAIN applications and services interfaces.

3.1.3 Existing guidelines

Existing guidelines can be identified from different sources as platform vendors, web sites, books and articles. Next paragraph presents a collection of principles and guidelines, gathered from designers which have just merged their experience and know-how with specific methodologies; these indications better represent starting points and useful recommendations in the definition of a eu-DOMAIN approach for creation of User Interfaces and will be basic indications to define a set of common guidelines defined in Section 4.1.

3.1.4 Related Standards

This paragraph contains a list of guidelines and standards related to usability and user-interfaces; it is not comprehensive by any means, but it provides a quick reference to some of the most important resources.

ISO
 standards for software interface and interaction

These standards can be used to support user interface development in the following ways:

1. To specify details of the appearance and behaviour of the user interface. ISO 14915 and IEC 61997
 contain recommendations for multi-media interfaces. More specific guidance can be found for icons in ISO/IEC 11581, PDAs in ISO/IEC 18021 and cursor control in ISO/IEC 10741.

2. To provide detailed guidance on the design of user interfaces (ISO 9241 parts 12-17).

3. To provide criteria for the evaluation of user interfaces (ISO/IEC 9126 parts 2 and 3).

However the attributes that a product requires for usability depend on the nature of the user, task and environment. ISO 9241-11 can be used to help understand the context in which particular attributes may be required. Usable products can be designed by incorporating product features and attributes known to benefit users in particular contexts of use.

ISO 9241: Ergonomic requirements for office work with visual display terminals
ISO 9241 provides requirements and recommendations relating to the attributes of the hardware, software and environment that contribute to usability, and the ergonomic principles underlying them. Parts 10 and 12 to 17 deal specifically with attributes of the software. Parts 14-17 are intended to be used by both designers and evaluators of user interfaces, but the focus is primarily towards the designer.

The standards provide an authoritative source of reference, but designers without usability experience have great difficulty applying these types of guidelines (de Souza and Bevan 1990). To apply guidelines successfully, designers need to understand the design goals and benefits of each guideline, the conditions under which the guideline should be applied, the precise nature of the proposed solution, and any procedure that must be followed to apply the guideline. Parts 12 to 17 contain a daunting 82 pages of guidelines, but even then do not provide all this information for every guideline.

ISO/IEC 11581 Icon symbols and functions

Part 1: Icons - General (2000)

This part contains a framework for the development and design of icons, including general requirements and recommendations applicable to all icons.

Part 2: Object icons (2000)

This part contains requirements and recommendations for icons that represent functions by association with an object, and that can be moved and opened. It also contains specifications for the function and appearance of 20 icons.

Part 3: Pointer icons (2000)

This part contains requirements and recommendations for 8 commonly used pointer icons that represent a pointer associated with a physical input device. It also specifies how pointer icons change appearance to give user feedback.

Part 4: Control icons (CD: 1999)

This part contains requirements and recommendations for 14 commonly used control icons that enable the user to operate on windows, lists and other graphical elements.

Part 5: Tool icons (FCD: 2000)

This part contains requirements and recommendations for 20 commonly used icons for tools, and specify the relationships between tool and pointer icons

Part 6: Action icons (1999)

This part contains requirements and recommendations for 23 commonly used icons typically used on toolbars that represent actions by association with objects that prompt the user to recall the intended actions.

ISO/IEC FCD 18021: Information Technology - User Interface for mobile tools (2001)

This standard contains user interface specifications for PDAs with a data interchange capability with corresponding servers.

ISO 14915: Software ergonomics for multimedia user interfaces

Part 1: Design principles and framework (DIS: 2000)

This part provides as an overall introduction to the standard.

Part 2: Multimedia control and navigation (CD: 2000)

This part provides recommendations for navigation structures and aids, media controls, basic controls, media control guidelines for dynamic media and controls and navigation involving multiple media.

Part 3: Media selection and combination (DIS: 2000)

This part provides general guidelines for media selection and combination, media selection for information types, media combination and integration and directing users' attention.

Part 4: Domain specific multimedia interfaces (AWI)

This part is intended to cover computer based training, computer supported co-operative work, kiosk systems, on-line help and testing and evaluation.

IEC CDV TR 61997: Guidelines for the user interfaces in multimedia equipment for general purpose use (2000)

This technical report gives general principles and detailed design guidance for media selection, and for mechanical, graphical and auditory user interfaces.

ANSI
 standards

ANSI/HFES-200-199x - Ergonomic Requirements for Software User Interfaces

An extension of ISO 9241, developed in the Human Factors and Ergonomic Society and final document approved by the American National Standards Institute.

Includes a chapter on guidelines for making user interfaces usable for people with disabilities of different kinds, written in response to the Americans with Disabilities Act.

3.2 List of principles

"Web information will grow immensely in variety, and be used by a much greater diversity of people than today. What is imperative is that simplicity and interoperability continue to be of prime importance." -- Vincent Quint, W3C User Interface Domain Leader

Much successful work has been carried out in developing rules to guide the design and implementation of interfaces for desktop machines and their applications: Shneiderman’s “Golden Rules of Interface Design” or Deborah J. Mayhew's "General Principles of User Interface Design" just to mention a few.

In addition interesting collections of design principles have been presented by Microsoft, Apple, SUN and IBM. Last ones, as mentioned in the previous paragraph, are derived from traditional design principles with extensions to address evolving aspects of future interfaces, based on their design experience in creating an object-oriented user interface (OOUI). These principles are useful to be detailed both to list a series of existing guidelines important for defining background know-how and to follow the lead of consolidated paradigms.

3.2.1 Microsoft

User in Control

An important principle of user interface design is that the user should always feel in control of the software rather than feeling controlled by the software. It’s a fundamental and general concept (see also Apple 3.2.2 and IBM 3.2.3), which will be a basic rule for eu-DOMAIN interface guidelines. This principle has a number of implications:

- The user plays an active rather than reactive role.

- Because of their widely varying skills and preferences, users must be able to personalize aspects of the interface.

- Your software should be as interactive and responsive as possible. Avoid modes whenever possible.

Directness

Design your software so that users can directly manipulate software representations of information. Familiar metaphors provide a direct and intuitive interface for user tasks. By allowing users to transfer their knowledge and experience, metaphors make it easier to predict and learn the behaviours of software-based representations.

The purpose of using metaphor in the interface is to provide a cognitive bridge; the metaphor is not an end in itself.

Metaphors support user recognition rather than recollection. Users remember a meaning associated with a familiar object more easily than they remember the name of a particular command.

Consistency

Consistency allows users to transfer existing knowledge to new tasks, learn new things more quickly, and focus more attention on tasks. This is important for improving user interaction.

To design consistency into software, someone must consider the following:

- Consistency within an application.

- Consistency within the operating environment.

- Consistency with metaphors.

Forgiveness

Users like to explore an interface and often learn by trial and error. An effective interface allows for interactive discovery. Even in the best-designed interface, users can make mistakes. An effective design avoids situations that are likely to result in errors. It also accommodates potential user errors and makes it easy for the user to recover.

Feedback

Always provide feedback for a user's actions. Good feedback helps confirm that the software is responding to input and communicates details that distinguish the nature of the action, it’s a general rule (see also Apple in 3.2.2) important for defining eu-DOMAIN interface guidelines. Effective feedback is timely and is presented as close to the point of the user's interaction as possible.

Aesthetics

Visual design is an important part of an application's interface. Visual attributes provide valuable impressions and communicate important cues to the interactive behaviour of particular objects.

Simplicity

An interface should be simple (not simplistic), easy to learn, and easy to use. It must also provide access to all functionality of an application. Maximizing functionality and maintaining simplicity work against each other in the interface. An effective design balances these objectives and is one of the purposes in defining project guidelines.

Simplicity also correlates with familiarity; things that are familiar often seem simpler. Whenever possible, try to build connections that draw on your users' existing knowledge and experiences.

3.2.2 Apple

Metaphors

Take advantage of people’s knowledge of the world by using metaphors to convey concepts and features of your application. Use metaphors that represent concrete, familiar ideas, and make the metaphors obvious, so that users can apply a set of expectations to the computer environment. Metaphors should suggest a use for a particular element, but that use doesn’t have to limit the implementation of the metaphor. It is important to strike a balance between the metaphor’s suggested use and the computer’s ability to support and extend the metaphor. For example, the number of items a user puts in the Trash is not limited to the number of items a physical wastebasket could hold.

Explicit and Implied Actions

This guideline applies to manipulation of an object using an action. In the first step of the manipulation, the user sees the desired object onscreen. In the second step, the user selects or designates that object. In the final step, the user performs an action, either using a menu command or by direct manipulation of the object with the mouse or other device. This leads to two paradigms for manipulating objects: explicit and implicit actions.

Explicit actions clearly state the result of manipulating an object. For example, menus list the commands that can be performed on the currently selected object. Explicit actions do not require the user to memorize the commands that can be performed on a given object.

Implied actions convey the result of an action through visual cues or context. A drag-and-drop operation is a common example of an implied action. For implied actions to be apparent, the user must be able to recognize the objects involved, the manipulation to be performed, and the consequences of the action.

Direct Manipulation

Direct manipulation allows users to feel that they are controlling the objects represented by the computer. According to this principle, an onscreen object should remain visible while a user performs an action on it, and the impact of the action should be immediately visible. For example, with a drag-and-drop operation (the most common example of direct manipulation) users can move a file by dragging its icon from one location to another, or drag selected text directly into another document.

User Control

Allow the user, not the computer, to initiate and control actions; just mentioned in Microsoft guidelines and very important for eu-DOMAIN (as described in 4.1). You may use progressive disclosure to present users with the most appropriate actions but offer alternatives when they exist.

The key is to provide users with the capabilities they need while helping them avoid dangerous, irreversible actions. For example, in situations where the user might destroy data accidentally, you should always provide a warning but allow the user to proceed if desired.

Feedback and Communication

Keep users informed about what’s happening by providing appropriate feedback. Another important and common concept: when a user initiates an action, provide an indication that your application has received the user’s input and is operating on it.

For potentially length operations, use a progress indicator to provide useful information about how long the operation will take. Users don’t need to know precisely how many seconds an operation will take, but an estimate is helpful.

Provide direct, simple feedback that people can understand. For example, error messages should spell out exactly what situation caused the error (“There’s not enough space on that disk to save the document”) and possible actions the user can take to rectify it (“Try saving the document in another location”).

Consistency

Consistency in the interface allows users to transfer their knowledge and skills from one application to another.

What You See Is What You Get (WYSIWYG)

In applications in which users can format data for printing, publish to the web, or write to film, DVD, or other formats, make sure there are no significant differences between what users see onscreen and what they receive in the final output. Use a preview function if necessary.

People should be able to find all the available features in your application. Don’t hide features by not having commands visible in a menu.

Forgiveness

Encourage people to explore your application by building in forgiveness, which is, making most actions easily reversible. People need to feel that they can try things without damaging the system or jeopardizing their data.

Anticipate common problems and alert users to potential side effects.

Perceived Stability

To give users a conceptual sense of stability, the interface should provide a clear, finite set of objects and set of actions to perform on those objects. For example, when a menu command doesn’t apply to a selected object or to the object in its current state, the command is dimmed rather than omitted.

To help convey the perception of stability, preserve user-modifiable settings such as window dimensions and locations. When a user sets up his or her onscreen environment to have a certain layout, the settings should stay that way until the user changes them.

Providing status and feedback also contributes to perceived stability by letting users know that the application is performing the specified task.

Aesthetic Integrity

Aesthetic integrity means that information is well-organized and consistent with principles of good visual design. Your product should look pleasant on the screen, even when viewed for a long time.

Keep graphics simple, and use them only when they truly enhance usability. Don’t overload windows and dialogs with dozens of icons or buttons. Don’t use arbitrary symbols to represent concepts; they may confuse or distract users.

Match a graphic element with a user’s likely expectations of its behaviour. Don’t change the meaning or behaviour of standard items.

Modelessness

As much as possible, allow users to do whatever they want at all times. Avoid using modes that lock them into one operation and prevent them from working on anything else until that operation is completed.

If an application uses modes, there must be a clear visual indicator of the current mode, and it should be very easy for users to get in to and out of the mode. For example, in many graphics applications, the pointer can look like a pencil, a cross, a paintbrush, or an eraser, depending on the function (the mode) the user selects.

3.2.3 IBM

Simplicity: Don't compromise usability for function

Simplicity means keeping the interface simple and straightforward. Basic functions should be immediately apparent, while advanced functions may be less obvious to new users. It’s a basic rule just mentioned listing Microsoft principles and will be part of eu-DOMAIN common guidelines in Chapter 4.

Support: Place the user in control and provide proactive assistance

Means to give users control over the system, enabling them to accomplish tasks using any sequence of steps that they would naturally use. Don't limit them by artificially restricting their choices to your notion of the "correct" sequence. Ideally, assistance should provide users with knowledge that will allow them to accomplish their tasks quickly.

Familiarity: Build on users' prior knowledge

Allow users to build on prior knowledge, especially knowledge they have gained from experience in the real world. A small amount of knowledge, used consistently throughout an interface, can empower the user to accomplish a large number of tasks.

Avoid the tendency to employ consistency without understanding your users, their tasks, and their shared experiences. When choosing a dimension within which to be consistent, seek to understand what the user expects and be consistent with those expectations. Providing a familiar experience is the ultimate use of consistency in which a truly intuitive interface will result.

Obviousness: Make objects and their controls visible and intuitive

Where you can, use real-world representations in the interface. Real-world representations and natural interactions (direct action) give the interface a familiar look and feel and can make it more intuitive to learn and use. Icons and windows were early attempts to draw on user experiences outside the computing domain. The controls of the system should be clearly visible and their functions identifiable.

Allow users to interact directly with objects and minimize the use of indirect techniques.

Encouragement: Make actions predictable and reversible

A user's actions should cause the results the user expects. In order to meet those expectations, the designer must understand the user's tasks, goals, and mental model. Users should feel confidant in exploring, knowing they can try an action, view the result, and undo the action if the result is unacceptable. Users feel more comfortable with interfaces in which their actions do not cause irreversible consequences. Even seemingly trivial user actions, such as deselecting or moving objects, should be reversible.

Avoid bundling actions together, because the user may not anticipate the side effect.

Satisfaction: Create a feeling of progress and achievement

Allow the user to make uninterrupted progress and enjoy a sense of accomplishment. Reflect the results of actions immediately; any delay intrudes on users' tasks and erodes confidence in the system. Immediate feedback allows users to assess whether the results were what they expected and to take alternative action immediately. For example, when a user chooses a new font, the font of all applicable text, or of sample text, should change immediately. The user can then decide if the effect is what was desired and, if not, can change it before switching attention to something else.

Availability: Make all objects available at all times

Users should be able to use all of their objects in any sequence and at any time. Avoid the use of modes, those states of the interface in which normally available actions are no longer available, or in which an action causes different results than it normally does.

Safety: Keep the user out of trouble

Users should be protected from making errors. The burden of keeping the user out of trouble rests on the designer. The interface should provide visual cues, reminders, lists of choices, and other aids, either automatically or on request. Contextual and hover help, as well as agents, can provide supplemental assistance. Simply stated, eliminate the opportunity for user error and confusion.

Users should never have to rely on their own memory for something the system already knows, such as previous settings, file names, and other interface details. If the information is in the system in any form, the system should provide it.

Two-way communication may be necessary at times to allow users to clarify or confirm requests, or to remedy a problem. Adopt the following design perspective: users know what they want to accomplish, but sometimes they find it difficult to express their desires using the objects and actions provided, and the system is unable to recognize their request. Two-way communication may be used to help users reach their goals.

Versatility: Support alternate interaction techniques

Allow users to choose the method of interaction that is most appropriate to their situation. Interfaces that are flexible in this way are able to accommodate a wide range of user skills, physical abilities, interactions, and usage environments.

Providing a range of interaction techniques recognizes that users are individuals with different abilities and situations. The differences include disabilities, preferences, and work environments.

Personalization: Allow users to customize

The interface should be tailorable to individual users' needs and desires. No two users are exactly alike. Customization can help make an interface feel comfortable and familiar. In an environment where one user may be using many computers, or where there could be many users with different “profiles” as described for eu-DOMAIN previously (see 2.2.3), personalization will also mean make information portable so the user can carry that "personality" from one system to another.

Affinity: Bring objects to life through good visual design

The goal of visual design in the user interface is to surface to the user in a cohesive manner all aspects of the design principles. Visual design should not be the "icing on the cake" but an integral part of the design process. The final result should be an intuitive and familiar representation that is second nature to users.

The following are visual design principles that promote clarity and visual simplicity in the interface:

· Subtractive design - reduce clutter by eliminating any visual element that doesn't contribute directly to visual communication.

· Visual hierarchy - by understanding the importance of users' tasks, establish a hierarchy of these tasks visually. An important object can be given extra visual prominence. Relative position and contrast in colour and size can be used.

· Affordance - when users can easily determine the action that should be taken with an object, that object displays good affordance. Objects with good affordance usually mimic real world objects.

· Visual scheme - design a visual scheme that maps to the user model and lets the user customize the interface. Do not eliminate extra space in your image just to save space. Use white space to provide visual "breathing room."

3.3 Multimodal Interfaces

Multimodal and perceptual interfaces represent an emerging interdisciplinary research direction, involving spoken language understanding, natural language understanding, image processing, computer vision, pattern recognition, experimental psychology, etc. They aim at efficient, convenient and natural interaction and communication between computers and human users. Multimodal interfaces will ultimately enable users to interact with computers using everyday skills.

When we communicate with each other, we use more than just words to express ourselves. We use our hands for gestures and we point to things we want to draw attention to. We look at the other person's lips to better understand spoken words and we look into the other person's eyes for subtle emotional cues. That is, human communication is not carried on a single channel, e.g. speech, but rather is carried on many different channels that together convey a complex combination of apparent actions and many subtle messages and expressions. Only taken together do these multiple channels express our individual personality or intent. Motivated by this, the goal of these interfaces is to allow one to communicate with a computer in a natural and effortless way, far beyond using a keyboard and mouse. Sensing and tracking human body motion is a key technology for developing such interfaces.

Currently, there is tremendous research effort put down towards developing multimodal interfaces and related technologies. In the context of this document we will refer only to the ongoing work done by the W3C named as Multimodal Interaction Activity, which seems to be closer to the requirements and the architecture of eu-Domain regarding client interaction, and which potentially will evolve into a standard. What the W3C Multimodal Interaction Activity actually does is to extend the Web to allow users to dynamically select the most appropriate mode of interaction for their current needs, whilst enabling developers to provide an effective user interface for whichever modes the user selects. Depending upon the device, users will be able provide input via speech, handwriting, and keystrokes, with output presented via displays, pre-recorded and synthetic speech, audio, and tactile mechanisms such as mobile phone vibrators and Braille strips.

Closing this section, a number of user interface design guidelines for multimodal interaction, as discussed by Raman, are been presented:
· Multiple modalities need to be synchronized

· Multimodal interaction should degrade gracefully

· Multiple modalities should share a common interaction state

· Multimodal interfaces should be predictable

· Multimodal interfaces should adapt to users environment

The area of multimodal interfaces is not as mature as other areas of user interface design. However, even if eu-DOMAIN is not expected to utilize them from the beginning, it should probably adopt them in the future.

3.4 Design trade-offs

A number of additional factors may affect the design of eu-DOMAIN applications from technical requirements mentioned in 2.1 to different user profiles described in 2.2.3. For example, considerations for a specific content provider may require delivering an application with a minimal design process, or comparative evaluations may force to consider additional features.

There is no simple equation for determining when a design trade-off is appropriate. So in evaluating the impact, some factors might be considered as follows:

· Every additional feature potentially affects performance, complexity, stability, maintenance, and the support costs of an application.

· It is harder to fix a design problem after an application is released because users may adapt to, or even become dependent on, a peculiarity in the design.

· Simplicity is not the same as being simplistic. Making something simple to use often requires a good deal of code and work.

· Features easily implemented by a small extension in the application code do not necessarily improve a user interface. For example, if the primary task is selecting a single object, extending it to support selection of multiple objects could make the frequent, simple task more difficult to carry out.

The envisioned eu-DOMAIN scenarios describe multi-platform environments where people are surrounded by different types of devices and terminals through which they can connect to network in different ways and eu-DOMAIN project aims at developing means and tools to help a more effective integration between ambient and users.

One of the main current challenges for designers and developers of interactive systems is how to address applications that can be accessed through a variety of terminals that may vary in terms of interaction resources (screen size, processing power, modalities supported …). Multimodality adds further complexity to this challenge: depending on the software and the browser available, the same terminal can support different modalities in different manners.

In addition to the issues discussed above, the subject of section 2.2.2 clearly shows that there is another trade-off we have to deal with, namely the trade-off between security and usability of user interfaces. For example, while eu-DOMAIN should provide an extremely secure execution context in some cases, requesting the user to log into every single device, service, or application is not an option. As it has been discussed earlier, mechanisms like location-based authentication will be used to resolve such problems.
Closing this section, it’s useful to try to sketch some points of consideration in designing for particular characteristics of mobile devices; mobile device interface design is, of course, more restrictive than desktop interface design because of relative limited computing and communication power, smaller platform sizes, an always-changing context, and smaller amount of user attention.

Reduce short-term memory load

Given the limitations of a user’s short-term memory, interfaces should be designed such that very little memorization is required during the performance of tasks. When in the mobile environment, a user has to potentially deal with more distractions than with a desktop computer. A mobile application may not be the focal point of the user’s current activities, and a user may not be able to suspend his or her primary task to interact with the mobile device. Using alternative interaction modes such as sound can be beneficial.

Design for multiple and dynamic contexts

The contexts of computer applications used in the office, home, or similar settings are relatively stable. On the other hand, with mobile applications, there can be a significant number of additional people, objects, and activities vying for a user’s attention aside from the application or computer itself. Environmental conditions (e.g., brightness, noise levels, weather) can change depending on location, time of day, and season. The usability or appropriateness of an application can change based on these different context factors. For example, in the presence of strangers, users may feel uncomfortable speaking input aloud, and certain places (e.g., libraries) might restrict the use of voice input. Small text sizes may work well under office conditions but suddenly become unreadable in bright sunshine or in dimly lit spaces. In addition, users may have one hand, or even both hands, occupied while using a mobile device. Therefore, for different contexts, allowing operations with 0, 1, or 2 hands becomes extremely important to the viability of the interface.

One way to solve the problem of changing contexts is to implement context-awareness and self-adapting functionalities. This can potentially save the user effort and frustration, and increase the usability of applications. Usability in a dynamic environment might also be improved by devices that derive input indirectly from the user.

Design for Limited and Split Attention

Users of mobile devices often need to focus on more than one task. A mobile application may not be the focal point of the user’s current activities. Mobile devices that demand too much attention may distract users from more important tasks. Interfaces for mobile devices need to be designed to require as little attention as possible. Sometimes this can be accomplished by designing for hands-free interaction or even eyes-free interaction.

Design for speed and recovery

For mobile devices and applications, time constraints need to be taken into account in initial application availability and recovery speed. When time is critical, waiting a few minutes for an application to start may not be in the user’s best interest. Given the different contexts under which mobile devices are used, users may need to quickly change or access functions or applications. When such situations rise, a user would need to quickly and securely save any work already performed and resume it later without any loss.

Design for “Top-Down” Interaction

Mobile devices with small screens have limitations on the amount of information that they can present at one time. Reading large amounts of information from such devices can require large amounts of scrolling and focused concentration. To reduce distraction, interactions, and potential information overload, a better way of presenting information might be through multilevel or hierarchical mechanisms. For example, a mobile worker may not need or want the entire contents of a message. However, they may wish to receive a notification that a message is available, along with an indication of how important it is. That way, the worker can make their own decision, whether or not to stop their primary task to access the contents of the message.
3.5 Conclusions

The collection of principles mentioned above provide important indications and a background know-how to which a reference will be made in the rest of the document when describing eu-DOMAIN general and specific guidelines. When dealing with general eu-DOMAIN interface guidelines in fact (Section 4.1) the most important common concepts expressed in Chapter 3 will be taken into account. In particular the importance of “putting the user in the centre” , a basic concept described in eu-DOMAIN DOW, will be considered for the project vision in relation to user interface design; listing a collection of user-centred principles well expressed in common guidelines from IBM, Microsoft or Apple like User Control , Personalisation or Simplicity. Finally when dealing with specific guidelines too, basic concepts expressed in this Chapter will be considered; as an example many visual design rules described in Section 4.2.2 will reference directly to fundamental common principles which has been discussed here.

4. User Interfaces Design Guidelines

4.1 Common Guidelines for eu-DOMAIN User Interface Design

Even though gathered from different backgrounds and philosophies, the lists of principles described previously have many common points and show a shared User Centred approach. It could be useful to try to collect most important concepts in a single list which should take into account the aim of the document to present user interface guidelines for terminals used by eu-DOMAIN users, which are mainly desktop PCs, PDAs and smart phones.

As mentioned before, using existing interface guidelines as a starting point, it’s possible to collect a set of practical design guidelines for mobile interfaces grounded also on heuristics and previous research on mobile design and use:

Enable Frequent Users to Use Shortcuts

This rule combines the need for Simplicity and User Control (IBM, Apple and Microsoft) with Personalization (IBM).

Due to an increased frequency of use, and to the fact that time is often more critical to a mobile device user, reducing the number of operations needed to perform regular (i.e., repetitive) tasks is a key factor in the ease of use of mobile terminals.

This rule could be also applied to PC terminals, although input capabilities of these devices make them easier to use, and the size of the screen allows more information to be shown. Anyway, trying to be as simple as possible is a very important rule to follow in any environment.

Allow for personalization

One of the most important issues in User Interfaces is personalization. Each user would like to see each application in his personal view. This means offer users the contents they like or the visual design they prefer. Nevertheless, the considerations regarding personalization vary between PC and PDA or mobile phone’s environments. In PC’s environment, personalization is related to colours or the fonts used, the arrangement of the elements, the information shown, etc,, but there is no problems with the space used to show the information and its layout. On the other hand, due to the size of PDAs and mobile phones, this issue is the most complicated and important pitfall to solve.

Mobile devices, by their nature, are more personal. While traditional telephones and desktop computers can many times be shared among different users, a mobile device is usually carried and used by only one person. Therefore it is more likely that a user of mobile applications will personalize the device and its applications to his or her preferences. Different users have different usage patterns, preferences, and skill levels. So it is important to allow for variations among users, as IBM states with the Personalization guideline. For example, when visibility is good, it is reasonable to show more text on a screen; and while in a dark environment, bigger fonts might allow better readability. But the interface design should not exclude the possibility that some users may always prefer larger fonts regardless of the lighting conditions.

Most of the times, the best way of solve this problem is make use of templates that could be selected by users when using the application.

Offer Informative Feedback

An important and common requirement listed is to provide some Feedback and to establish a Communication with the user.

For every operator action, there should be some system feedback, such as a beep when pressing a key or an error message for an invalid input value. Such feedback should be substantial and understandable by the user. For example, the messages “HTTP404 ERROR” and “THE PAGE CAN NOT BE FOUND” may be equivalent, but the latter will most likely be of greater benefit to most users.

Design Dialogs to Yield Closure

Effective design must provide a clear Feedback but also a sense of Stability (Apple), Satisfaction (IBM).

Sequences of actions should be organized into groups with a beginning, middle, and end. Users should be given the satisfaction of accomplishment and completion, no matter whether they are using desktop computers or PDAs.

Support Internal Locus of Control

Users want to be in charge of the system and have the system respond to their actions, rather than feeling that the system is controlling them. Systems should be designed such that users initiate actions rather respond to them. This guideline is applicable both to traditional desktop applications and mobile applications and is referred to what has been previously called User in Control (Microsoft), User Control (Apple) and Support (IBM).

Consistency

Consistency, already mentioned referring to Microsoft and Apple guidelines, takes on an additional dimension with mobile applications: the consistency across multiple platforms and terminals for the same application. Users of mobile terminals may need to switch between their desktop machines and different terminals frequently. For example, a user may want to transfer some documents from a home desktop computer to a PDA, read them while riding the subway, and call colleagues with questions. In this situation, consistency should be maintained between desktop and PDA (and possibly cell phone). Consistency can also be achieved by creating I/O methodologies that are device independent.

Reversal of Actions

Allowing easy reversal of actions, what has been called Encouragement in IBM principles, may be more difficult for mobile devices because of a lack of available resources and computing power. Mobile devices have less memory to store the states of past events. Even if state information is offloaded to more powerful stationary computers, the greater susceptibility of wireless communications to connectivity losses makes tracking of past states more difficult.

Error Prevention and Simple Error Handling

Preventing and handling errors on mobile interfaces are similar to those for desktop interfaces, although the need becomes more critical due to the more rapid pace of events in the mobile environment. Error prevention also needs to take the physical design of mobile devices into account. Smaller device sizes make the proximity of buttons to each other more of a potential problem.

4.2 Guidelines for User Interface Presentation

4.2.1 Language

Typically, most Websites you come across are customized for a specific locale, with the locale defined as a geographical region or political entity that shares a common language, culture, and customs. While this may not be a significant issue to most people, it may pose some interesting challenges to those conducting business on the Web. By its very nature, ecommerce is all about facilitating commerce across national, linguistic, and cultural boundaries. While the Web may have opened up businesses to a truly international clientele, Web-based firms have to contend with the all-too-probable scenario of non-English-speaking users struggling to understand their sites' content. As many businesses have come to realize, every Web surfer who turns away because of the site's English-centric nature is a potential customer lost. This is also true for eu-DOMAIN. So that, a new necessity appears: deliver a tailored-made portal for every user, personalizing it in contents, shaped and also language. An Italian worker, for example, wants to do their tasks in Italian, not in English, French or Spanish. This is a challenge we have to cope to, because eu-DOMAIN is intended to be installed all over Europe, where different language and cultures are joined with the same idea in mind: Europe.

Options for Provision of Multilanguage Support

There are many opportunities to deliver multiple language support to an application, and each one has positives and negatives. On the one hand we could delegate the choice to the user. One of the simplest ways to support more than one language is to provide a set of static HTML pages for each language you want to support. Just consider one HTML page as your starting point for an application and have a link for each language (for example, "Click here to view this site in English"). After this point, you can have separate page sets, but multiple times with the same application logic. If you think about it, it's not very handy for a user because he has to click on a link to only start this particular application. And it's not very friendly for your content team or you as the developer. On the other hand the server could make the choice based on related information, for example user's browser is adjusted to a particular region. In this way the browser specifies which region and language the user might like to see with every request to the server. Using this information the server could redirect the user to the correct set of pages accordingly.

Implementing Multilinguality

If we are centred in the technology we are going to use to build the eu-DOMAIN interfaces (Java) there are some easy, manageable solutions to this problem that keeps you from having to run multiple versions of the site.

One way of doing this is by using a feature that Java has, which is that the platform intrinsically supports the development of locale-independent applications through various classes supporting internationalization. Internationalization itself is the name given to the design process wherein an application's country, language, and culture-specific information is isolated and typically encapsulated within some external files or objects. Consequently, making your application compatible with an entirely new language or country does not have to involve a major rewrite of your presentation logic; rather, it now merely involves creating an additional version, specific to the new locale, of the external files. The process of creating these locale-specific entities (be they files or objects), along with the associated translation of text, is called localization. Websites based on JavaServer Pages (JSPs) lend themselves more easily to internationalization than those developed using servlets. This is because the technology facilitates the separation of presentation from application logic.

Another way of solving the Multilanguage problem is the use of Struts to provide users with internationalized messages.

Struts builds upon the standard classes available on the Java platform to build internationalized and localized applications. Please note that the internationalization (i18n) support in a framework like Struts is limited to the presentation of internationalized text and images to the user. Support for Locale specific input methods (used with languages such as Japanese, Chinese, and Korean) are left up to the client device, which is usually a web browser.

Struts Internationalization (i18n) can be done with some handy modifications in our existing application. We have to know the two Internationalization (i18n) components that are packaged with the Struts Framework. The first of these components, which is managed by the application Controller, is a Message class that references a resource bundle containing Locale-dependent strings. The second Internationalization (i18n) component is a JSP custom tag, which is used in the View layer to present the actual strings managed by the Controller.

4.2.2 Visual design

The first thing to bear in mind when trying to cope with an interface design is that it’s equals parts art and science, draws upon the vision of the graphic artist, the findings of the human factors researcher, and the intuitions of the potential user. Nevertheless, there are some general principles in GUI design which very good designer should never forget:

· Understand what the user has to do (the basic of User Centred and Task Centred approach). User interface designers typically perform a task analysis to understand the nature of the user's work. Our use case analysis roughly corresponds to this.

· Make the user feel in control of the interaction (Support internal Locus of Control). Always include the capability for the user to cancel an interaction (Reversal of Actions) after it's started.

· Give the user multiple ways to accomplish each interface-related action (like closing a window or a file) and forgive user errors gracefully (Error Prevention and Simple Error Handling).

· Because of cultural influences, our eyes are drawn to the upper-left corner of a screen. Put the highest priority information there. This would change if the target users were Chinese, Japanese or Arab people.

· Take advantage of spatial relationships. Screen components that are related should appear near one another, perhaps with a box around them.

· Emphasize readability and understanding. Use active voice to communicate ideas and concepts.

· Limit the number of colours you use. Limit that number severely. Too many colours will distract the user from the task at hand.

· If you're thinking of using colour to denote meaning, remember it's not always easy for a user to see an association between a colour and a meaning.

· As is the case with the colour, limit your use of fonts. Avoid italics and ornate fonts.

· Try to keep components (like the buttons and list boxes) the same size as much as possible. If you use different-size components, a multiplicity of colours, and a variety of fonts, you'll create a patchwork that GUI specialists call a clown-pants design.

· Left-align components and data fields - line them up according to their left-side edges. This minimizes eye movements when the user has to scan the screen.

· When the user has to read and process information and then click a button, put the buttons in a column to the right of the information or in a row below and to the right of the information. This is consistent with the natural tendency to read left to right. If one of the buttons is a default button, highlight it and make it the first button in the set.

When trying to develop an application, a very important issue, which is a lot of times overridden, is the visual design and aesthetics, as it affects user confidence in and comfort with your application. You can have developed the most wonderful tool but, if the user doesn’t understand the symbolism or the colours are nor suitable, the user is not going to use it. A polished and professional look without excess or oversimplification is not easy to attain.

4.2.2.1 Colours

Visual designers have to bear in mind that colours can be used as far as the interface elements of the application remain visually coherent. It’s very important to use a simple colour model (the palette of colours to be used) so that it can run on a variety of platforms and on devices capable of displaying various depths of colour.

In order to have the interface objects properly rendered, dark-to-light gradation should be maintained where possible.

Colour may be used with great effect to highlight important elements of the interface. However, too much colour in one interface will generally lead to confusion on the part of the user. When using colour in an interface, the designer should have the following concepts in mind:

· More than two or three colours of highlight will generally lead to a confusing interface. If that many colours are required to make the message known, the designer should consider giving the user the capability to limit the information they have to deal with at any given time.

· For the sake of those who might be colour blind (9% of men and 2% of women have some form of colour blindness), choose colours not only on the basis of base-colour (Red vs. Green), but also on basis of contrasting brightness. Consider whether another interface device (use of an icon, for instance) could convey the same message.

· Backgrounds should never distract the user from accomplishing the task at hand. Using dark colours, or patterns and textures as backgrounds causes eye fatigue and makes reading text more difficult. Users attempting to print web pages using dark or patterned backgrounds often end up with an unreadable document. Using light-coloured backgrounds with black or dark-coloured text offers the most contrast and improves readability for users. Judge for yourself which combination is most readable.

The next figure shows the effect of overusing colour. Instead of attracting it becomes distracting.

[image: image3.png]
Figure 3: Overusing of colour

4.2.2.2 Fonts

Fonts are another important feature to study when trying to design a simple but interesting user interface. If we talk about fonts we’re also talking about font typefaces, sizes, and styles in the application. The most important thing to do is to ensure that the font settings you choose are legible and can be rendered well on your target systems.

Layout and Visual Alignment

Another important consideration is to be careful about the layout of components in the windows and dialog boxes. A clear and consistent layout streamlines the way users move through an application and helps them utilize its features efficiently. The best designs are aesthetically pleasing and easy to understand. They organize components in the direction in which people read them, and they group together logically related components. When you lay out your components, remember that users might use the mouse, keyboard, or assistive technologies to navigate through them.

One important advice to take care about is to use a logical order when laying out the components (for instance, placing the most important elements within a dialog box first in reading order).

Text Layout

Text is an important design element in your layouts. The way you align and lay out text is vital to the appearance and ease of use of your application. The most significant layout issues with respect to text are label placement and alignment.

Moreover, the type, colour and size of the text are also important. There are some guidelines to follow regarding this issue:

· Minimize the number of different fonts

· Avoid using coloured fonts

· Use bold sparingly only for emphasis

· Avoid using underlining

· Keep line lengths short

· Be clear and concise

· Write to allow users to easily scan

· Avoid using all uppercase for large text areas

· Avoid using italics for large text areas

4.2.2.3 Text in the Interface

Text is an important design element and appears throughout your application in such components as command buttons, checkboxes, radio buttons, alert box messages, and labels for groups of interface elements. Strive to be concise and consistent with language. The following list shows common guidelines when using text in interfaces:

· Use language that is clear, consistent, and concise throughout your application text. Moreover, ensure that the wording of your labels, component text, and instructions is readable and grammatically correct.

· For all text that appears in the interface elements of your application, follow one of two capitalization conventions: headline capitalization or sentence capitalization. Use headline capitalization for most names, titles, labels, and short text. Use sentence capitalization for lengthy text messages.

· Do not capitalize words automatically. You might encounter situations in your interface when capitalization is not appropriate, as in window titles for documents that users have named without using capitalization.

· Use standard typographical conventions for sentences and headlines in your application components.

· Place all text in resource bundles so that localization experts don't have to change your application's source code to accommodate translation. The idea in here is to use constants in the source code to be replaced by language translations in running time.

4.2.2.4 Animation

Animation, when used in a correct way can provide effective emphasis, but give careful thought to whether animation is warranted. The human eye is attracted to animated elements. If the user's attention needs to be elsewhere, animation might increase user errors.

So that, an interface do not have to include an animation when it:

· Detracts from more important screen elements

· Interferes with the user's work

· Dazzles without purpose

The common idea is to limit animations to situations that provide meaningful feedback to the user.

4.2.2.5 Screen Layout

There are some principles that should be taken into account when designing the layout of a user interface:

· The information should be arranged either in a vertical or horizontal flow.

· Items should be aligned along vertical margins in order to minimize eye movement.

· Try to group large amounts of information into smaller, related groups.

· It’s better to use white space instead of separator lines to avoid clutter.
As a general rule, there should be a consistent amount of space between any two adjacent controls and between any control and the screen or group-box border in which the control sits. Moreover, controls should be aligned based upon their relationship to each other. The common rule is that labels and controls being aligned together should be aligned on the left. Further, radio buttons and check boxes should generally have their interactive component on the left, with their text following to the right.

The next figure shows how a poor alignment causes excessive eye movement and makes it difficult for users to quickly scan the screen content because there is no obvious flow. This is a bad layout design that does not follow the first principle explained.

[image: image4.png]
Figure 4: Bad Alignment Design

On the other hand, the next figure shows that by aligning labels and fields along vertical margins, eye movement is minimized and permits fast scanning of screen content. Users can quickly scan the field labels in this example to locate the item they want.

[image: image5.png]
Figure 5: Good Alignment Design
Moreover, the next figure shows a layout that follows all the principles that a good page layout should consider. White space can be used to separate different groups of related items and also to establish a vertical or horizontal flow when users are scanning the screen. In this diagram a horizontal flow is established by inserting rows of white space between the groups of data.

[image: image6.png]
Figure 6: Good Layout Design

4.3 Common design mistakes to avoid

This section tries to join, in a unique list, the most common mistakes committed when designing and building web interfaces. This list should be considered as a black list of bad design choices. Surely, there are more than the ones we put in here, but several studies had found them as the most annoying for end-users.

Violating Design Conventions

Consistency is one of the most powerful usability principles: when things always behave the same, users don't have to worry about what will happen. Instead, they know what will happen, based on earlier experience. The more users' expectations prove right, the more they will feel in control of the system and the more they will like it. And the more the system breaks users' expectations, the more they will feel insecure.

Jakob's Law of the Web User Experience states that "users spend most of their time on other websites." This means that they form their expectations for your site based on what's commonly done on most other site. If you deviate, your site will be harder to use and users will leave.

Not using a liquid layout that lets users adjust the homepage size

Fighting frozen layouts seems a lost battle, but it's worth repeating: different users have different monitor sizes. People with big monitors want to be able to resize their browsers to view multiple windows simultaneously. You can't assume that everyone's window width is 800 pixels: it's too much for some users and too little for others.

Not Changing the Colour of Visited Links

A good grasp of past navigation helps you understand your current location, since it's the culmination of your journey. Knowing your past and present locations in turn makes it easier to decide where to go next. Links are a key factor in this navigation process. Users can exclude links that proved fruitless in their earlier visits. Conversely, they might revisit links they found helpful in the past.

Most important, knowing which pages they've already visited frees users from unintentionally revisiting the same pages over and over again.

These benefits only appear under one important assumption: that users can tell the difference between visited and unvisited links because the site shows them in different colours. When visited links don't change colour, users exhibit more navigational disorientation in usability testing and unintentionally revisit the same pages repeatedly.

Use of Non-Scanable Text

A wall of text is deadly for an interactive experience. It’s intimidating, boring and painful to read.

Write for online, not print. To draw users into the text and support scanability, use well-documented tricks:

· subheads

· bulleted lists

· highlighted keywords

· short paragraphs

· the inverted pyramid

· a simple writing style

Use of Fixed Font Size

CSS style sheets unfortunately give websites the power to disable a Web browser's "change font size" button and specify a fixed font size. About 95% of the time, this fixed size is tiny, reducing readability significantly for most people over the age of 40.

Respect the user's preferences and let them resize text as needed. Also, specify font sizes in relative terms -- not as an absolute number of pixels.

Use graphics to show real content, not just to decorate your homepage

For example, use photos of people who have an obvious connection to the content as opposed to using models or generic stock photos. People are naturally drawn to pictures; gratuitous graphics can distract users from critical content.

Stock photography sellers are doing a brisk business, but users don't believe that your product will make them happy just because there's a smiling lady on your homepage. Better to show your actual product.

Include small Thumbnail Images of big, detailed Photos

It's great that websites are now using smaller pictures. In this way, we avoid the bloated designs of the past decreases download time and increases information richness. It's also good when sites link small pictures to bigger pictures, so users have the option of seeing the image in more detail.

The main problem here is that websites typically produce small images by simply scaling down bigger images. If an original photo has a lot of intricate detail, the thumbnail is often incomprehensible.

[image: image7.jpg] [image: image8.png]
Figure 7: Small Thumbnails

The photo on the left shows the president of the United States, the Secretary of the Interior, and the Director of the National Park Service walking in the Santa Monica Mountains. Nevertheless, it’s impossible to know by simply looking the photograph. On the other hand, the photo on the right illustrates a story about flooding; in this case, you can clearly see what's going on, even though the image is only 65 x 49 pixels.

So that, when using photos on the Web, it’s important to follow the following guidelines:

· Include fewer people and objects, in less complicated settings than you would for photos intended for print

· Emphasize close-up shots with clean backgrounds

· Use relevance-enhanced image reduction when preparing small photos from big ones. Don't just resize; first crop the image to focus on a salient and simple element

Bad search engine and form

Overly literal search engines reduce usability in that they're unable to handle typos, plurals, hyphens, and other variants of the query terms. Such search engines are particularly difficult for non-technical users, but they hurt everybody.

Search is the user's lifeline when navigation fails. Even though advanced search can sometimes help, simple search usually works best, and search should be presented as a simple box, since that's what users are looking for.

[image: image9.png]
Figure 8: Bad search example

Include an active link to the homepage on the homepage

This is a special case of a guideline that applies to all website or intranet pages. They should never have a link that points to the current page. Active links to current pages cause three problems:

· If they click it, a link leading to the current page is an utter waste of users' time.

· Worse, such links cause users to doubt whether they're really at the location they think they're at.

· Worst of all, if users do follow these no-op links they'll be confused as to their new location, particularly if the page is scrolled back to the top.

Use anything that looks like an advertisement

Selective attention is very powerful, and Web users have learned to stop paying attention to any ads that get in the way of their goal-driven navigation. Unfortunately, users also ignore legitimate design elements that look like prevalent forms of advertising. After all, when you ignore something, you don't study it in detail to find out what it is. Therefore, it is best to avoid any designs that look like advertisements. The exact implications of this guideline will vary with new forms of ads; currently follow these rules:

· banner blindness means that users never fixate their eyes on anything that looks like a banner ad due to shape or position on the page

· animation avoidance makes users ignore areas with blinking or flashing text or other aggressive animations

· Pop-up purges mean that users close pop-up windows before they have even fully rendered.

Use of detailed ALT Text

Many sites have begun paying attention to users with disabilities and are following accessibility guidelines, such as including ALT texts for images. Unfortunately, some sites don't realize that ALT text is a user interface element, not a statement of political correctness. ALT text should help blind users (and others who can't see images) navigate and operate the site. The text should describe the image's meaning for the interaction and what users need to know about the image to use the site most effectively. There is no need to describe irrelevant visual details. Short is good when writing for the Web; it's even better when writing for screen readers.

Use of restrictive form entry

One important guideline to bear in mind is: “Put the burden on the computer, not the human”. This means that we should let users enter data in the format they prefer. Two common ways of unfairly restricting users:

· Splitting what users see as a single piece of information into multiple fields means that users must waste time moving the cursor around. A typical example is when forms ask users for their first and last names as two items, rather than simply letting users enter their full name in a single field, which is much faster to type.

· Human formatting prohibited. Any text entry field that requires users to type information in a specific way rather than allow the natural variations that humans prefer can be irritating. Many sites, for example, force users to enter credit card numbers as 1234567890123456, rather than letting them put spaces between groups of four digits, which significantly reduces the risk of errors.

Restrictive data entry also causes internationalization problems, because the one, sacred format that the computer will accept often ends up excluding customers from other countries.

4.4 Mobile Devices VS PC User Interfaces

First of all, we’ll try to expose the main differences that arise when trying to design an application, and more concretely a web application on a desktop computer and in a mobile handset (including in this term standard mobile phones, smart phones and PDAs).

In a desktop web application, the paradigm to be used is quite clear, as the interface of all of them vary very little, so we can talk about a generic desktop computer, whereas we cannot say the same for mobile handsets. In a desktop web application we always find the following elements:

· Graphical User Interface (GUI)

· What You See Is What You Get (WYSIWYG) Paradigm

· Windows, Icons, Menus and Pointing devices (WIMP)

· VGA resolutions, keyboard and mouse expected

· X Windows, Macintosh, and Microsoft Windows as the platforms where the web application can be developed and shown.

On the other hand, when we want to develop a web application for a mobile handset we find the following:

· There is not a well established paradigm

· In a lot of cases, components of GUI/WIMP are absent

· As the main functionality of them is to be use as a mobile phone (portability)

· The screen size is small

· There is a lack of a full size QWERTY keyboard

· They may not have pointing device

We’ll try now to expose the characteristics of the gadgets we’ve included in the term “mobile handset”:

· Mobile phones

· Screen size: 1-2 inches (2,5-5 cm)

· Telephone keypads

· Voice call function buttons

· Low processing and storage capability

· No installation of additional applications

· E.g. Sony Ericsson T630

· Smart phones

· Screen size: 2-3 inches (5-7,5 cm)

· Touch screen/Navigation button

· Voice call function buttons

· Low to medium processing and storage capability

· E.g. Sony Ericsson P800

· PDAs

· Screen size: 3-4 inches (7,5-10 cm)

· Touch screen and stylus

· Medium processing and storage capability

· PIM, web browsing, mp3, video, database, games

· E.g. HP Ipaq

The question is that most Web sites are written for, and tested exclusively on, desktop computers with large colour monitors. Mobile devices typically have much smaller screens, and until recently it was a challenge to present Web pages in such a small area. In eu-Domain we have to develop web applications for both desktop computers and mobile devices.

As it was stated before, the most important differences between application development for PCs and for mobile devices are:

· Mobile devices have smaller displays, as well as a wide variety of display sizes.

· Text inputting is slower in mobile devices than it is with a full PC keyboard.

· Current mobile devices with colour displays support either 4,096 (12-bit) or 65,536 (16-bit) colours while some PCs are able to display over 16 million colours (32-bit). Secondly, colour displays haven been available in mobile domain only for a couple of years now.

· Some mobile devices and/or browser view modes support only vertical scrolling.

· Mobile devices usually have no mouse for activating an object, which limits the possible user interface components and slows down object activation.

· Soft keys are used for activating commands in mobile devices; the number and purpose of soft keys vary between devices from different manufacturers.

· Connection establishment and data transfer between the terminal and the server is slower than in a fixed domain.

· Mobile users may have to pay for each piece of transferred data.

· The amount of cookie data that can be stored in a mobile device is limited.

When designing a service aimed at both mobile devices and PCs, the design should begin with the mobile device's user interface. It is generally easier to extend a mobile-oriented service to a PC environment, rather than the other way around. However, if a PC-optimized Web service is the starting point, developers should break the service into small segments and choose only the core elements for the mobile service. In order to create efficient services for mobile browsers, it is important to research existing information about the different mobile browsers on the market. Developers will need to know the maximum allowed size of documents, supported elements and image formats, screen space available, etc. Both the information architecture and UI design must underline ease of use in mobile services, even more strongly than in Web design. This is a key factor in successfully ensuring customers' continual use of mobile services. Even though many features and possibilities are available thanks to evolving browsing technology, the focus should be on usability. Unfortunately, there are a lot of services that don’t succeed here, because the method used to create the user experience was not user centric, and did not take into account the way end users would like or expect their mobile service to work.

Then, when styling content for small screens, it is important to find a good balance between minimizing scrolling and having a crowded layout. Aligning content to the left is strongly recommended because it keeps the content readable. Be consistent when using alignment, as the more different alignments (left, centre, or right) applied to a page, the more effort is required from the end user to get an overview of the content. Colours are excellent for adding more "life" to a service, but at the same time they can decrease the usability of the service if used improperly. Limit the number of different colours on a page, and always use the same colour for the same elements throughout the service. Not all mobile devices support colours, so make sure that the service content does not mention specific colours (for example, "Press the red link to proceed") because colours may be converted to black by devices that only support black and white. In general, try to apply the same styling on all pages in a service. Consistency increases learning, especially for users who return and use the service again and again.

Two or three different text styles and sizes are the recommended maximum. Basically, this means separating headings (bold) and content (normal). Separate the main heading from subheadings and define one style for content. You may also use bold to emphasize some key words. Avoid using text emphasis properties such as italics and underlining because it interferes with readability. Avoid graphic-based navigation. Mobile users have to wait for graphics longer than text-based content. Enable navigation as soon as the user can see the content.

It’s also important to remember common accessibility rules, such as changing the colour of the visited links or avoiding self-defined abbreviations because not all users will understand them. Use a clear, to-the-point writing style. Extra text is annoying on the Web, and even more so in mobile browsing.

We’ve discussed here browsing in mobile and PC browsers and we’ve exposed the differences in these two domains. Even though, in general, mobile devices have some limitations in capabilities when compared to PCs, browsing services can be useful in both ends, when designed well enough. The key in making a browsing service succeed is taking the user into account already in the design phase and guaranteeing that the service provides the best user experience.

4.5 Conclusion

In this chapter we’ve explained the guidelines that should be followed in order to develop a suitable user interface for eu-DOMAIN services and applications. Most of them are general guidelines that could be used in either desktop or mobile device environment. We only have to bear in mind the limitations of screen, colours, input, processor and memory of the last ones.

· Try to be as simple as possible.

· Reduce the number of operations needed to perform regular tasks.

· Personalise the interface for every different user.

· Provide informative feedback and communication with the user.

· Sequences of actions should be organized into groups with a beginning, middle, and end.

· Make the user feel in control of the interaction.

· Consistency.

· Reversal of Actions.

· Error Prevention and Simple Error Handling.

· Language personalization (multi-language support).

· Understand what the user wants/has to do.

· Put the highest priority information in upper-left corner of a screen (this would change if the target users were Chinese, Japanese or Arab people).

· Screen components that are related should appear near one another.

· Emphasize readability and understanding.

· Use a simple colour model.

· Use a readable background (simple and light colours).

· Limit the number of colours you use.

· Limit your use of fonts.

· Use legible fonts that can be rendered well on all target systems.

· Try to keep components (like the buttons and list boxes) the same size as much as possible.

· Limit animations to situations that provide meaningful feedback to the user.

· Do not use anything that looks like an advertisement.

· Do not use of restrictive form entry (Put the burden on the computer, not the human).

These general rules should be followed when developing eu-Domain interfaces for both desktop and mobile environments.

5. Implementation Issues

5.1 Software tools

If we want to build the interface for a system or application, and we want to do it in such a way that it is independent of the platform and of the device where it’s rendered, we have to develop it by using some of the multiple tools that the market offers in order to perform this issue. The purpose of this chapter is to show some of them, the ones we think are most valuable for eu-DOMAIN interfaces. Moreover, we’ll try to find, where possible, open source solutions to be used within the project.

5.1.1 Content Management Systems

The basic idea behind a Content Management System (CMS) is to separate the management of content from presentation. Page designs are stored in templates while the content may be stored in a database or separate files. When a user requests a web page, the parts are combined to produce a standard HTML page (or another mark-up language, such as VoiceXML or WML). The resultant web page may include content from multiple sources. For instance, a page describing a workshop might have, as a sidebar, a list of all the other workshops on this year along with the standard navigation and title bar at the top.

A CMS usually has the following components:
· Document templates

· A scripting language and/or a mark-up language

· Integration with a database

· The inclusion of content is controlled by the use of special tags in pages. These tags are often unique to a CMS. There is usually support for languages such as Python, Perl, or Java for more complex operations.

Why we would want to use a CMS

Content management systems offer benefits for both website administrators and authors. Greatest amongst these is the ability to use templates and common design elements to ensure consistent design throughout the site. Authors incorporate the templates into their documents by adding a small amount of extra code. The author can then concentrate on content over design. To change the appearance of the website, the administrators need only modify the templates and not each individual page.

A CMS may also simplify the delegation of responsibility for the provision and maintenance of content on the website. Many CMSs enable different levels of access to be set for separate areas of the website without the need to delve into UNIX permissions. This can usually be done through a web browser based interface.

Extra features, such as search engines, calendars, web mail, and other components may be built into the CMS, or available as third-party plug-ins. The provision of the features would save time that would otherwise be spent developing or attempting to integrate such components.

When analyzing a CMS, some points have to be taken into account, let’s say, some key issues that a suitable Content Management System should have in order to be used by an organization:

Content creation

This is the functionality required by the authors (content creators) using the CMS. Without an effective authoring process, use of the CMS will wither and fail within a year of implementation. Key requirements may include:

· Integrated authoring environment: the CMS must provide a seamless and powerful environment for content creators. This ensures that authors have easy access to the full range of features provided by the CMS.

· Separation of content and presentation: it is not possible to publish to multiple formats without a strict separation of content and presentation.

· Authoring must be style-based, with all formatting applied during publishing.

· Multi-user authoring: the CMS will have many simultaneous users. Features such as record locking ensure that clashing changes are prevented.

· Single-sourcing (content re-use): a single page (or even paragraph) will often be used in different contexts, or delivered to different user groups. This is a prerequisite to managing different platforms (intranet, internet) from the same content source.

Content management

The core of most CMS solutions is a central repository, supported by a range of tools for manipulating and managing the content. Key requirements may include:

· Version control & archiving: strict version control is necessary for legal accountability, backup and disaster recovery. A simple but powerful interface must be provided for these features.

· Workflow: decentralised content creation relies heavily on a powerful workflow model that can be easily customised, and is resilient against organisational change.

· Understand the needs of the authors of the site: they will be doing all the hard work

· Security: adequate security levels and audit trails must be in place to protect the integrity of the content.

· Integration with external systems: an enterprise-wide CMS will only be successful if it can be cleanly integrated with existing business systems. The mechanisms for achieving this must be fully documented, and based on open or industry standards.

· Reporting: the CMS must provide an extensive range of reports, for both users and administrators. Support for customised reporting is also desirable.

Publishing

The publishing engine takes the content stored in the repository, and generates the final pages. While this may be a dynamic or batch process, the same basic requirements apply. Key requirements may include:

· Style sheets: final appearance is controlled through the use of style sheets. This provides flexibility and expandability.

· Page templates: overall page layout is specified via page templates. Ideally, a non-technical interface should be provided for managing this.

· Extensibility: it must be simple to integrate code "snippets" (or equivalent) to provide additional publishing functionality. The CMS must support a process of "continual improvement" in interface design.

· Support for multiple formats: the CMS must publish to multiple formats, such as: HTML (web), printed, PDF, hand-held (WAP), and more. It should be possible to add support for additional formats, which will be necessary as new standards evolve. In order to achieve high quality in every format, it is critical that the content be separated from presentation at the time of authoring. This allows distinct style sheets to be used for each output. The most important part of a CMS is the content itself

· Personalisation: different information is presented based on either user profiles, or metadata in the source content. This is typically required for large "portal" websites.

· Usage statistics: the CMS must allow comprehensive usage statistics to be gathered, including: most popular pages, daily usage, and search engine usage. This information allows the success of the site to be tracked, and any usability issues identified.

Presentation

The published pages must meet certain standards if they are to be of value to your users. It is important to specify these requirements if you are asking the vendor to design the appearance and layout of the web pages.

Key requirements may include:

· Usability: this covers aspects such as ease of use, learn ability and efficiency. Usability can be assured by conducting tests on the prototype designs with real users. Usability heuristics (guidelines) must also be followed.

· Accessibility: the CMS must conform to standards such as the W3C Web Accessibility Initiative (WAI).

· Cross browser support: the pages must be viewable in all major web browsers (Internet Explorer, Netscape, Opera, etc).

· Speed: page size must be limited to ensure that load times are acceptable for users. Specify the typical user access methods (LAN, modem, cable, etc).

· Valid HTML: all pages must conform to the current HTML specification. This ensures maximum compatibility across browsers and platforms.

· Effective navigation: users must be provided with consistent, comprehensive and usable navigation aids.

Open Source Java CMS

There are a lot of Content Management Systems. Each one is associated to some specific language, such as Java, PHP, Python, etc. Examples of these CMS are the well-known PHPNuke or PostNuke (based on PHP) or Nukes on JBoss (Java solution). In eu-DOMAIN we’ve chosen Java as the implementation language for the CMS. This due to its platform independency and because Java world follow (and build), whenever they can, the standards proposed. Moreover, we can find proprietary and open source solutions in the CMS’s market. We’ll focus on the second group. The following list shows some of these solutions:

· EXO Platform. The eXo platform is a powerful Open Source - JSR 168 compliant - enterprise portal built from several modules. It's based on Java Server Faces, Pico Container, JbossMX and AspectJ.
· Liferay. Liferay is a portal designed to deploy portlets that adhere to the Portlet API (JSR 168). Many useful portlets are bundled with the portal (Mail, Document Library, Calendar, Message Boards, etc).
· Jakarta Pluto. Pluto is the Reference Implementation of the Java Portlet Specification (JSR 168).
· Jakarta JetSpeed. Jetspeed is an Open Source implementation of an Enterprise Information Portal, using Java and XML. The data presented via Jetspeed is independent of content type. This means that content from for example XML, RSS or SMTP can be integrated with Jetspeed.

· JBoss/Nukes. Nukes on JBoss is a full fledged Content Management System (CMS) with advanced user/group management, security rules and pluggable components. Components can be deployed at runtime while the application is running. It is all written in JBoss.

· OpenPortal. OpenPortal is a web portal framework that allows its users to personalise their web page on the site running this software. The users constructs his/her page by selecting between a set of portlets made available. A portlet can be a servlet or a JSP page.

· basicPortal CMS (TM). basicPortal CMS (TM) is an Enterprise Information Portal (EIP) based entirely on open source software technology that enables users to develop standard and inexpensive, cross-platform web applications that are dynamic, flexible, and very fast.

· TM)

· Stringbeans. Stringbeans is a portal framework compatible with JSR 168 Portlet API standard. Stringbeans offers JAAS based authentication, flexible portlet access control and monitoring, and support for mobile clients. It is bundled with portlets for displaying charts, reports, database tables, XML documents, RSS headlines, etc.

· InfoGlue. InfoGlue is an advanced, scalable and robust content management / Portal platform written in 100% Java. It is suitable for a wide range of applications and organisations. Typical uses include public websites, portal solutions, intranets and extranets. The platform is released under the GPL-license and it can be run on almost any platform and most known databases.

· Magnolia. Magnolia is the first open-source content-management-system (CMS), which has been built from scratch to support the upcoming standard API for java content repositories (JCR).

· Ion. The ion project is an effort to provide a very simple but powerful content management system based on the most recent technologies. Ion is 100% compliant with J2EE standards, uses XML to define contents structures, XSL to provide rendered contents in many format (HTML, XML, PDF, TXT ...), and JSP with JSTL as a template system.

· OpenCMS. OpenCms is a professional level Open Source Website Content Management System. OpenCms helps to create and manage complex websites easily without knowledge of html. An integrated WYSIWYG editor with a user interface similar to well known office applications helps the user creating the contents, while a sophisticated template engine enforces a site-wide corporate layout. As true Open Source software, OpenCms is completely free of licensing costs.

· Jahia. Jahia is a mid-range Content Management and Corporate Portal Framework. It integrates in one single package a full web application platform suite.

There are maybe much more than the ones we’ve listed, but they show the great variety that exists in CMS’s implementations.

eu-DOMAIN will build its Interaction Server over Liferay as CMS. Portlets for the different services to be offered to eu-DOMAIN users will be developed. The intention is to use Liferay as the CMS where users, using their terminals can access the functionality provided by eu-DOMAIN platform, because Liferay is JSR168 compliant, and it’s not tight to any deployment platform such as JBoss (although it can run on top of it). It’s also database independent. Our first intention was to use JBoss/Nukes, as it was nearer the philosophy of PHPNuke than other CMSs, but it was tight to JBoss, which makes it less attractive than Liferay. So that, taking into account that we want to develop a solution as much platform independent as possible and that makes use of available standards, eu-DOMAIN consortium chooses Liferay as the CMS as it fully fulfils these requirements and expectations.

5.1.2 Portals and portlets

The solution chosen as CMS is built using portlets, which are managed inside portals. Let’s see these concepts in more depth. Portlets are Java-based Web components, managed by a portlet container, that process requests and generate dynamic content. Portals use portlets as pluggable user interface components that provide a presentation layer to information systems.

Portals

It’s a Web-based application that provides personalization, single sign-on, and content aggregation from different sources, and hosts the presentation layer of information systems. Aggregation is the process of integrating content from different sources within a Webpage. A portal may have sophisticated personalization features to provide customized content to users. Portal pages may have different sets of portlets creating content for different users. Next figure depicts a portal's basic architecture. The portal Web application processes the client request, retrieves the portlets on the user's current page, and then calls the portlet container to retrieve each portlet's content. The portlet container provides the runtime environment for the portlets and calls the portlets via the Portlet API. The portlet container is called from the portal via the Portlet Invoker API; the container retrieves information about the portal using the Portlet Provider SPI (Service Provider Interface).

[image: image10.jpg]
Figure 9: Portal's basic architecture

Portlets

As mentioned above, a portlet is a Java-based Web component that processes requests and generates dynamic content. The content generated by a portlet is called a fragment, a piece of mark-up (e.g., HTML, XHTML, or WML (Wireless Markup Language)) adhering to certain rules. Web clients interact with portlets via a request/response paradigm implemented by the portal. Usually, users interact with content produced by portlets by, for example, following links or submitting forms, resulting in portlet actions being received by the portal, which then forward to the portlets targeted by the user's interactions. The content generated by a portlet may vary from one user to another depending on the portlet's user configuration.

Portlet container

A portlet container runs portlets and provides them with the required runtime environment. A portlet container contains portlets and manages their life cycles. It also provides persistent storage mechanisms for the portlet preferences. A portlet container receives requests from the portal to execute requests on the portlets hosted by it. A portlet container is not responsible for aggregating the content produced by the portlets; the portal itself handles aggregation. A portal and a portlet container can be built together as a single component of an application suite or as two separate components of a portal application.

5.1.3 Interoperability Standards

Organizations that are engaged in enterprise portal projects find application integration to be a major issue. Until now, users have had to develop portlets using proprietary APIs for a single portal platform and often are faced with a limited number of available portlets from a particular portal vendor. All this changes with the introduction of the Web Services for Remote Portlets (WSRP) and Java Specification Request (JSR 168) standards. These two standards enable development of portlets that can be interoperable on different portal products and therefore increases the availability of portlets to an organization. This, in turn, can dramatically increase an organization's productivity when building enterprise portals.

WSRP
Web Services for Remote Portals (WSRP) is a standard for XML and Web Services that allows the interactive, human-facing Web services to be plugged into portals with a minimum of fuss. These services can be published, found, and bound in a standard way. This issue could be of a great help for Content Providers in order to provide interactive and visual web services independently from the platform or the technology where the portal is developed. Before WSRP, content providers wrote special adapters to accommodate different interfaces and protocols and integrate applications into a single portal, which created a confusing environment for developers.

[image: image11.jpg]
Figure 10: Presentation VS Data Oriented WS

This figure shows WSRP in action (comparing it with a typical web service, on the right). In it, a portal is used to present to the end users a remotely graphic application. Its simple workflow has three parts: an application provider (server), an application distributor (client), and users (the ones that interact with the portal, let’s say the client). The distributor handles SOAP messages regarding the information provided by the graphic application, sending and receiving them to and from the application provider. Using HTML, the graphic application is presented to the human users.
If you do not like the colour of the graphic itself, or the presentation's font style or size, you can override defaults with adaptation points employed by Adaptation Description Language. On the other hand, the service provider sends XML data to the application distributor, which has to build a tailored-made application to handle the data and show the information to the end-users.

WSRP defines:

· A WSDL interface description for invocation of WSRP services.
· Semantics for interacting with WSRP services that cannot be expressed in WSDL.

· Markup fragment rules for mark-up emitted by WSRP services.
JSR 168

JSR 168 is a specification that defines a set of APIs to enable interoperability between portlets and portals, addressing the areas of aggregation, personalization, presentation, and security. The goal of JSR (Java Specification Request) 168, the Portlet Specification, is to enable interoperability between portlets and portals. This specification defines the contract between portlet and portlet container, and a set of portlet APIs that address personalization, presentation, and security. The specification also defines how to package portlets in portlet applications. So that, JSR 168 defines:

· The portlet API (Portlet container) provides a runtime environment to invoke portlets.
· Provides URL-rewriting mechanism for creating user interaction within a portlet container.
· Effectively handles the security and personalization of portlets.

JSR 168 defines portlets as Java-based Web components, managed by a portlet container, that process requests and generate dynamic content. Portals use portlets as pluggable user interface components that provide a presentation layer to information systems. JSR 168's goals are the following:

· Define the runtime environment, or the portlet container, for portlets.

· Define the API between portlet container and portlets.

· Provide mechanisms to store transient and persistent data for portlets.

· Provide a mechanism that allows portlets to include servlets and JSP (JavaServer Pages).

· Define a packaging of portlets to allow easy deployment.

· Allow binary portlet portability among JSR 168 portals.

· Run JSR 168 portlets as remote portlets using the Web Services for Remote Portlets (WSRP) protocol.

Relationship between WSRP and JSR 168

WSRP is a communication protocol between portal servers and portlet containers, while JSR 168 is a Java API for portlets to work with WSRP portals. This API enables developers to integrate their applications from any internal / external content as portlets with WSRP portals. The illustration below shows the architecture of the WSRP specification.

[image: image12.png]
Figure 11: Architecture of the WSRP specification

5.1.4 Device Independence

Some years ago, the only way to access the Web was through a personal computer or workstation. It was true, however, that there were variations between the facilities offered by various browsers, some being capable of rendering images, others just text, for example. However, almost invariably, web access, for individuals without specific accessibility needs, involved using a machine with a reasonably large, colour display with full graphic capabilities. While this is still primarily true, since the middle of 2000, the number of different kinds of device that can access the web has grown from a small number with essentially the same core capabilities to many hundreds with a wide variety of different capabilities. Nowadays, mobile phones, smart phones, personal digital assistants, interactive television systems, voice response systems, kiosks and even certain domestic appliances can all access the Web.

The range of capabilities for input and output and the range of mark-up languages and networks supported greatly complicate the task of authoring web sites and applications that can be accessed by users whatever device they choose to use. Device Independence encompasses the techniques required to make such support an affordable reality. In particular the activity focuses on methods by which the characteristics of the device are made available for use in the processing associated with device independence methods to assist authors in creating sites and applications that can support device independence in ways that allow it to be widely employed. Without this initiative, there is an increasing danger that parts of the Web will become unavailable to users unless they employ a particular type of device. One of these initiatives is Composite Capabilities / Preferences profile (CC/PP), which is also known as JSR 188 for Java developers and programmers.

Composite Capabilities/Preferences Profile
CC/PP stands for Composite Capabilities/Preferences Profile, and is a system for expressing device capabilities and user preferences. With CC/PP, a user with a specific preference or disability-related need can clarify that even though their browser handles millions of colours, they personally can only distinguish certain colours. Or, perhaps the user navigates exclusively with a keyboard or stylus. We have a clearer knowledge about what is CC/PP, so the next question is why we need it. With the growing popularity of ubiquitous Web devices spread across such a broad range of media and bandwidth, authoring for the Web can sometimes look like a very difficult equation to solve: how can a Web author provide cool multimedia Web content, while keeping that content small and simple enough for very basic devices? Managing multiple devices is not a new problem, and even though the rapid growth of Web appliances beyond the familiar Web browser makes the challenge especially acute, a few solutions have been developed over the years. Most of these solutions are based on content selection: the content is given in several equivalent variants, or has mechanisms to define alternative behaviour. Then, at the time the resource is served, either the server chooses which variant is most suitable, or the user agent decides what to do with the choices it is given.

This is easily achieved because user agents identify themselves to servers and scripting languages, and through specific features included in Web document languages:

· Server-driven content negotiation, as defined by HTTP.

· On-the-fly content selection and presentation based on user agent detection, using scripting languages.

· HTML object and link elements have mechanisms defining alternate behaviours.

· SMIL (pronounced "smile"), the multimedia language for audio/visual content, has a switch element defining alternate elements to chose from, and can be used, for example, to choose some content based on available bandwidth.

· CSS also has such a mechanism called Media Queries for selecting appropriate style sheets.

Even today, a combination of the methods detailed above can be used to serve content on a large range of devices with very good results. It remains, however, difficult to reach a perfect result:

Things that make CC/PP a better choice than others

When expressing device capabilities, the strength of CC/PP is that it has the flexibility HTTP content negotiation lacks. Far from simply defining a fixed set of preferences that would be used to build device profiles, the RDF-based framework also allows the creation of whole vocabularies, making the expression of device and agent capability, as well as user preference, infinitely extensible. Using CC/PP, creators of Web devices and user agents can easily define precise profiles for their products. Web servers and proxies can use these profiles to adapt, through fine-tuned content selection or transformation, the content they serve to the needs of the Web device.

The following image shows an example of how CC/PP can be used to describe user preference and agent capability.

[image: image13.png]
Figure 12: CC/PP example

It may look like CC/PP does not address the issue of having to create multiple instances of Web content. In fact, it seems even worse now than with the simple HTTP negotiation. Because profiles are much more flexible and precise about what the agent can do and wants, one could think that CC/PP encourages the creation of one variant of content for each type of user agent.

CC/PP itself does not define what behaviour should follow the exchange of a CC/PP profile. And while content selection, just as in the HTTP negotiation, is one option, there is another, much more interesting perspective. CC/PP profiles could automatically trigger content transformation, allowing one source to be adapted to a broad range of devices and user agents.

The transformation mechanisms are not formally defined, so it’s up to us, in many cases to develop them, but many have been envisioned or implemented already, such as:

· Resizing images to fit the device's resolution. This can be done automatically by proxies based on the resolution information given by the CC/PP profile. And of course, using scalable graphics such as SVG it is even easier.

· XHTML is powerful because it is XML, or so we've been taught. And the power of XML is often demonstrated through the use of XSLT, the transformation language for XML. Combining the possibility to transform XHTML content through XSLT with the flexibility and accuracy provided by CC/PP makes it possible to transform hypertext content on-the-fly beyond what style sheets already allow. You can show tabular content in a linear fashion for agents that can't handle tables, transform a long XHTML document with many sections in an SVG slideshow and so on, with very few limitations.

· The Open Mobile Alliance (OMA) already implements CC/PP in their UAProf technology for WAP devices. This technology is used to help proxies transform content for mobile use.

The conclusion of this overview (and what the future holds) is that CC/PP is not a magic rod that makes that any content is automatically rendered in every device. The future is more likely to see the cooperation between existing methods and languages such as SMIL's switch and CSS media queries as well as with emerging methods and languages. All of these refined and orchestrated through the use of CC/PP profiles and preferences.

5.2 The eu-DOMAIN Approach

This section discusses in short how the technologies presented before will be utilized to support efficient development of user interfaces within the eu-DOMAIN project following the proposed guidelines. The architectural component, which is responsible for supporting user interaction, is the Interaction Server. The Interaction Server is the entrance point for end-user terminals to the functionality of the server-side of eu-DOMAIN. For more information the reader should refer to the eu-DOMAIN architecture specification document.

We begin by introducing the “technical” interaction that appears in eu-DOMAIN. Most of it is transparent for the user, who only sees the web page that appears in his screen. Next figure shows the typical interaction that takes place when a user, using any of the available terminals tries to access the functionality eu-DOMAIN provides.

[image: image14.png]
Figure 13: eu-DOMAIN Interaction Server

In this figure you can see that users use a web browser installed in their terminals (laptops, handsets, personal computers, etc.) to access the functionality that eu-DOMAIN provides. All these services are stored as portlets (5.1.2) inside the CMS portal (5.1.2), which allows single-sign-on, privileges management, uniform design style, etc. (5.1.1).

Before the web page is rendered in the browser’s terminal, a negotiation is performed in order to know the specific characteristics of the device (browser, size, etc.) (5.1.4). In this way, the layout of the web page is done taking into account these issues.

HTTP is used to transport the mark-up traffic between client (web browser) and server (interaction server). The mark-up language would be HTML, WML, VoiceXML, etc.

Then, the portlets “talk” with the managers to do the things users want to do (5.1.1 – integration with external sources). It’s important to highlight that the user sees the interface, but the processing in done much deeper inside eu-DOMAIN Server Park.

In the next figure the interaction is showed in the shape of an interaction diagram:

[image: image15.png]
Figure 14: User's Interaction Diagram

Anyway, all these details are the ones that the user does not see. What the user really sees are the forms, the checkbox lists, the menus and the information that the system shows him. In this way, we’ll try to show the different (and general) steps that a user has to follow in order to perform a certain task:

1. The user, making use of the browser its terminal has, access the eu-DOMAIN Interaction Server (a negotiation about the lay-out for terminal is done in a transparent way for the user) (5.1.4).

2. He has to enter his login and password to see his tailored portal (each personal account access a personalised view of the portal, regarding his privileges, his interests and tasks) (5.1.1).

3. The user’s personal portal (5.1.2) is shown, with his menus to navigate through and the portlets (5.1.2) associated to his account.

4. The user navigates using the tools the portal offers him, until he reaches the point he’s looking for.

5. The user interacts with the portlet developed to help him to perform the task (the information flows from the portlet to the adequate server element and the action is done).

6. The user is informed about the result of the action (the user is always informed about what’s going on in the interaction).

7. Once the user has done his tasks, he logs out from the interaction server for security reasons.

It has to be said that any service or task offered by eu-DOMAIN to his users (administrators, patients, workers, etc.) would need specific interaction patterns, as they are tight to different elements of the Server Park, each one with specific features. However, the general idea of implementing usable user interfaces, independent of the task in concern, based on guidelines presented in Chapter 4 to support execution of eu-DOMAIN user’s tasks could be efficiently supported by the technologies presented above. Information presentation could adapt to cover user’s needs dynamically taking under consideration his personal preferences, the context of use, the available hardware and software, etc, while the required security mechanisms could be enforced. In addition to this, the components nature of portlets isolates changes and allows independent evolution of them while at the same time the potential for reuse of portlets for sure is an interesting option. Closing this section we should bear in mind that the status of eu-DOMAIN instantiations might continuously change, so tools to efficiently support application of theory (guidelines) into practice (user interfaces) in a flexible manner constitute a fundamental building block for eu-DOMAIN.

6. Conclusions

In this document we tried to describe design guidelines for user interfaces in relation to the eu-DOMAIN project goals and technical and functional features.

It has been underlined that the dynamic architecture designed for the project implies a particular attention in developing dynamic, flexible and easily customisable interfaces with less possible additional development.

Terminals are part of the Client Tier and provide the user interface to the eu-DOMAIN platform through a web browser. Examples of terminals are desktop PCs, laptops, PDA, smart phones, etc. Terminals exchange data solely with the eu-DOMAIN platform through communication with the Interaction Server in the Server Tier. In this server a CMS portal is installed and is in charge of delivering services, stored as portlets, which allow single-sign-on, privileges management, uniform design style, etc.

Before the web page is rendered in the terminal’s browser, a negotiation is performed in order to know the specific characteristics of the device (browser, size, etc.). In this way, the layout of the web page is been built dynamically taking into account these issues.

eu-DOMAIN users are a composite set of users that might need to interact with the system exploiting different functionalities and using different kind of terminals. So interfaces should be designed for allowing users to interact with PDAs and mobile phones, but also with desktop PCs and notebooks as well. Furthermore their background could be totally different, varying from managers and supervisor to specialized or technical workers to common people not particularly technology oriented.

For this reason, initially, the document presents a list of guidelines grounded on heuristics and previous research on design that are general principles useful for following development; a few most important ones are Use of Shortcuts, Consistency, User Control, Personalisation, Providing feedback, Error Prevention, Offer Feedback, Reversal of Action.

A second step of the analysis is the description of practical common rules for design interfaces, based on the general principles previously mentioned, such as:

· Enable Frequent Users to Use Shortcuts, in order to improve personalisation and allow users to feel in charge of the system;
· Allow for personalization, a fundamental rule for interfaces that must be designed for heterogeneous sets of users;

· Offer Informative Feedback to improve interaction and provide information to the user;
· Design Dialogs to Yield Closure, to give users a sense of stability and satisfaction for the accomplishment of tasks;
· Support Internal Locus of Control and letting the user feel in charge of the application;
· Consistency. Create I/O methodologies that are device independent in order to support efficiently multimodality.
· Reversal of Actions, in order to let users feel more comfortable with interfaces in which their actions do not cause irreversible consequences;

· Error Prevention and Simple Error Handling, a principle that should take into account also physical design of terminals in general and in particular of mobile ones.
In particular we proposed to focus the attention to study a visual design according to general guidelines described. This involves investigation on suitable colours, fonts, and layout, both visual and textual, in order to streamline the way users move through an application and help them utilize its features efficiently.

In details, in relation to colours:

· it’s very important to use a simple colour model (the palette of colours to be used) so that it can run on a variety of platforms and on devices capable of displaying various depths of colour;

· designers should take into account that more than two or three colours of highlight will generally lead to a confusing interface;

· backgrounds should never distract the user.

For text layout it’s important to:

· minimize the number of different fonts;

· Avoid using coloured fonts;

· Use bold sparingly only for emphasis;

· Avoid using underlining;

· Keep line lengths short;

· Be clear and concise;

· Write to allow users to easily scan;

· Avoid using all uppercase for large text areas;

· Avoid using italics for large text areas

At last but not of least importance, the security requirements of eu-DOMAIN regarding user interfaces were analyzed and their implications on user interface design were uncovered. The main problems discovered concerned user authentication, single sign-on and digital signing. Java applets or some other kind of client-side plug-ins technology seem to be appropriate technological solutions to implement usable security enforcement mechanisms like location-based authentication on browsers.
A final consideration: different issues have to be taken into account when designing a user interface, in particular in relation to eu-DOMAIN platform; technical and related to potential users. The work done for the creation of this document is aimed at giving an effective background for the future development both describing detailed information about eu-DOMAIN platform and with analysis of user interface design principles.

7. Appendix A

7.1 Implementation examples

In this appendix you’ll see some examples of good design for interfaces. The next figure, for example, shows an interface design that follows all the guidelines stated in this document. You can see how the blank space is used to separate the different elements (portlets) and that the information is arranged in columns. Moreover, the use of the colour is very sober and the text is use in a minimal way.

[image: image16.jpg]
Figure 15: Laptop Interface Screenshot

The eu-DOMAIN project will follow the design guidelines in order to have an interesting, attractive and useful interface for the users. The previous screenshot would be a good example to follow for a good design in a web application for a laptop or a personal computer.

On the other hand, the next figure presents an interface designed for a PDA. Due to the limited amount of space of the screen the information presented to the user is less than in a laptop. Colour, spaces, text and general guidelines are followed to have an intuitive and suitable interface for those terminals. The same could be said for smart phones.

[image: image17.jpg]
Figure 16: PDA Interface Screenshots

8. References

http://www.steptwo.com.au/papers/kmc_evaluate/
http://www.atnf.csiro.au/computing/web/cms_eval.html
http://portalstudio.oracle.com/pls/ops/docs/FOLDER/COMMUNITY/PDK/articles/OVERVIEW.WSRP.JSR168.HTML
http://www.w3.org/Mobile/CCPP/
http://www.w3.org/2001/di/
http://www.javaworld.com/javaworld/jw-08-2003/jw-0801-portlet-p2.html
http://www.exoplatform.com/portal/faces/public/exo
http://www.liferay.com/cms/servlet/HOME-INDEX
http://portals.apache.org/pluto/
http://www.jboss.org/developers/projects/nukes/index
http://www.javaworld.com/javaworld/jw-03-2000/jw-03-ssj-jsp.html
http://www.grc.nasa.gov/WWW/usability/guidelinescss.html
http://www.useit.com/alertbox/20031110.html
http://is4all.ics.forth.gr/index.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwue/html/ch02a.asp
http://www-306.ibm.com/ibm/easy/eou_ext.nsf/publish/558
http://developer.apple.com/documentation/index.html
http://developer.apple.com/documentation/MacOSX/Conceptual/AppleSWDesign/index.html#//apple_ref/doc/uid/TP40001084
http://java.sun.com/products/jlf/ed2/book/index.html
http://www.rspa.com/spi/design-interface.html
http://www.w3.org/2002/mmi/
Antolín, P. (2004). WSRP analysis. eu-DOMAIN.

Lewis, C., & Rieman, J. (1994). Task-Centred User Interface Design: A Practical Introduction. [On-line]. Available: http://www.syd.dit.csiro.au/hci/clewis/contents.html.

Molich, R. and Nielsen, J. (March 1990) "Improving a human-computer dialogue: What designers know about traditional interface design." Communications of the ACM, 33, pp. 338-342.

Gong, J. and Tarasewich, P. (2004) “Guidelines for handheld mobile device interface design”, Proceedings of the DSI 2004 Annual Meeting

Shneiderman, B.(1998) Designing the User Interface – Strategies for Effective Human-Computer Interaction, Addison-Wesley.

Aiello, I., De Bona, M. (2004). D2.3 Functional User Requirements Specifications. Confidential eu-DOMAIN deliverable. IST-2003-004420.

Raman V. T., “User Interface Principles For Multimodal Interaction”, CHI, 2003

� ISO: International Organisation for Standards, it is a network of the national standards institutes of 148 countries.

� IEC: International Electrotrchnical Commission, it is the leading global organization that prepares and publishes international standards for all electrical, electronic and related technologies. These serve as a basis for national standardization and as references when drafting international tenders and contracts.

� ANSI: American National Standard Institute, is a private, non-profit organization that administers and coordinates the U.S. voluntary standardization and conformity assessment system.

Filename: euD044.2Design Guidelines for User Interfaces V2.0 final EC
Printed Date: 2005-04-24 13:40
Page 2 of 58
Version 2.0
Page 56 of 56
March 2005

