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ABSTRACT: This deliverable document reviews the state-of-the-art markup languages that 
can be used to wrap up and annotate cancer models that will be stored and made available in 
the TUMOR digital model repository. The current state-of-the-art biological modelling 
languages are reviewed, and we discuss both their potential use for cancer modelling and their 
pitfalls when applied to the cancer modelling domain. Next, we review a range of XML-based 
metadata vocabularies that could be integrated into a new markup language for cancer 
modelling. A brief review of relevant medical ontologies follows, and we conclude with a high-
level design for TumorML, a new markup language for cancer modelling that we will develop 
within the TUMOR project to address the pitfalls of the current state-of-the-art. 
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1 Executive Summary 

The TUMOR project aims at developing a European clinically oriented semantic-layered 
cancer digital model repository from existing EC projects that will be interoperable with the 
US grid-enabled semantic-layered digital model repository platform at CViT.org (Center for 
the Development of a Virtual Tumor, Massachusetts General Hospital (MGH), Boston, USA) 
which is NIH/NCI-caBIG compatible. This interoperable, CViT interfaced, environment will 
offer a range of services to international cancer modellers, bio-researchers and eventually 
clinicians aimed at supporting both basic cancer quantitative research and individualized 
optimization of cancer treatment. This ‘Transatlantic’ project will therefore be the starting 
point for an international validation environment that will support joint applications, 
verification and validation of the clinical relevance of cancer models. 

The purpose of this deliverable is to review the state-of-the-art markup languages that can be 
used to wrap up and annotate cancer models that will be stored and made available in the 
TUMOR digital model repository. The current state-of-the-art biological modelling languages 
are reviewed; we discuss their potential use for cancer modelling and their pitfalls when 
applied to the cancer-modelling domain. Next, we review a range of XML-based metadata 
vocabularies that could be integrated into a new markup language for cancer modelling. A 
brief review of relevant medical ontologies follows, and we conclude with a high-level design 
for TumorML, a new markup language for cancer modelling that we will develop within the 
TUMOR project to address the pitfalls of the current state-of-the-art. 

The development of TumorML will contribute to enabling some of the key aims within the 
TUMOR project. Firstly, by annotating cancer models with appropriate document metadata, 
digital curation will be facilitated that will make publishing, search and retrieval of cancer 
models easier for researchers and clinicians using the TUMOR digital repository developed 
under WP3. Second, markup will be used to describe abstract interfaces to published 
implementations allowing execution frameworks to run simulations using published models, 
as required by WP5. Finally, TumorML markup will facilitate the composition of compound 
models, regardless of scale and source, enabling multiscale models to be developed in a 
modular fashion, and models from the US CViT DMR to be integrated with EC models in the 
transatlantic scenarios developed in WP2.   
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2 Introduction 

The TUMOR project aims to develop a European clinically oriented semantic-layered digital 
model repository for cancer models. The repository will store models provided by other EC 
projects, namely the Advancing Clinico Genomic Trials on Cancer (ACGT) and the Clinically 
Oriented Translational Cancer Multilevel Modeling (ContraCancrum) projects. One of the 
major aims of the TUMOR project is to design the digital repository to interoperate with the 
US counterpart repository developed by the Center for the Development of a Virtual Tumor 
(CViT) project led by the Massachusetts General Hospital (MGH) in Boston, USA. 

WP4 focuses two-fold on developing interoperable interfaces between the two repositories. 
Firstly, the TUMOR project aims to design the EC repository to be able to functionally 
operate seamlessly with the CViT Digital Model Repository (DMR). This will be achieved by 
the development of a set of Web services to expose the EC repository’s functionality to CViT 
DMR users, and by using the CViT DMR’s existing exposed Web service functionality. 
Secondly, and the focus of this deliverable, the TUMOR project will develop a simulation 
markup language specifically targeted at the cancer modelling domain. The overarching goal 
is to provide cancer researchers on both sides of the Atlantic (through their respective 
research platforms) more open access to computational cancer models shared amongst the 
international modelling community. 

The development of a markup language for cancer models will enable the provision of two 
features: 

1. By providing an expressive metadata vocabulary researchers will be able to 
appropriately curate their models and publish them to an audience of research peers 
and clinicians wishing to trial published models 

2. Markup will be developed to describe abstract interfaces to the computational 
execution of the models. These abstractions will be mapped to the appropriate 
biological entities that could be used to couple cancer models together. 

To demonstrate the fulfilment of (1), models taken from ACGT and ContraCancrum will be 
published directly to the EU repository by wrapping the computational components (as 
source code and/or executable binaries) in the newly developed markup language. Through 
the Web services delivered by D4.1.2, CViT DMR models will be imported into the EC 
repository where the US model metadata will be appropriately translated for storage by 
TUMOR. 

To demonstrate the fulfilment of (2), WP5 (Integrated, interoperable workflow environment) 
will, through automatic interpretation of the model markup, provide functionality to couple 
models using a graphical workflow tool. The tool will allow execution of the aggregate model 
as a workflow. As an exemplar for the ‘transatlantic’ aim of the project, a model taken from 
the US repository will be coupled with one provided by ACGT or ContraCancrum. 

Digital repositories for computational models are not novel, as demonstrated by a number of 
model repositories including E-Cell, the CellML and FieldML repositories, BioModels and the 
CViT DMR. However semantic integration for specific domains is still required where most of 
the aforementioned repositories targets select research areas. The TUMOR project will 
provide a repository for European-based and international researchers for cancer models. 

In computational biology, there is diverse range of programming and descriptive languages 
that span across different biological domains and scales. This creates challenges for model 
reuse and composition, since each model implementation, even if available, may use a 
completely different technological framework. Combining models may therefore require 
porting models to a new framework, or re-implementing them, both costly and error prone 
activities. Before the year 2000, there were no unified efforts towards standardized 
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languages for describing models. Markup languages for computational biology emerged 
soon after the turn of the millennium with the SBML (Systems Biology Markup Language) 
and CellML research programmes. 

Generally speaking, all application-specific markup languages are based on the eXtensible 
Markup Language (XML). XML emerged as a popular choice for computer-based language 
definition in the late 1990’s as it defines a standard syntax on to which other vocabularies 
can be built. This allows language-specific parsers to reuse the standard XML parsing 
routines for processing XML documents. XML-based languages are therefore well suited as 
software-neutral information exchange formats. XML can be thought of as the base alphabet 
and grammar of a language. What raw XML lacks is semantics or definitions to provide 
context and application. 

This is provided in part by specific vocabularies built on XML, which define element and 
attribute names and the structural relationships between them. Multiple XML vocabularies 
can be combined within a single document, enabling the development of various languages 
targeted at specific narrow domains of discourse that can be incorporated into a compound 
language. 

Further semantic metadata can be added to XML documents through the use of the 
Resource Description Framework (RDF). This standard from the World Wide Web 
Consortium enables descriptions (i.e. metadata) to be associated with any resource, such as 
a whole model, or a specific element within a model. Similarly to XML, RDF does not define 
specific metadata items, but rather provides a standard framework onto which metadata 
vocabularies can be hung. Some benefits of having this standard framework are: 

 It provides a common attribute=value data model for the metadata. All 
metadata expressed in RDF can be presented as a series of attributes (i.e. properties 
of the resource) and their values. 

 It therefore provides an extensible method for storing metadata of increasing 
complexity. Some metadata properties will have simple values. Other metadata 
properties will have complex values. In the latter case, the value of the metadata 
property is itself considered a resource, and additional metadata properties are stored 
about it. Furthermore, the system is open in that additional properties may be defined 
and incorporated later – the whole vocabulary does not need to be defined up-front. 

 This openness makes it possible for applications that don’t understand the 
whole model to process the metadata. There exist tools that understand general 
RDF and can parse it to build databases, knowledge stores, and the like, making 
inferences from the semantic information content. Where they understand a specific 
metadata vocabulary, more complex processing is possible, but even for other 
metadata items the attribute=value model still allows logical reasoning about 
relationships between resources. 
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3 Current State-of-the-art Markup Languages for 
Biological Modelling 

The need for fusing models together has been outlined in D2.1 (Specification and design of 
clinically oriented transatlantic scenarios), but how can we facilitate connecting disparate 
models together? Markup languages for modelling biological systems (based on XML) 
emerged in the early 2000s to address the problems associated with no single emerging 
standard for describing biological models. Four major markup languages have gained 
prominence in recent years each of which aims to tackle the problems associated with 
interoperability of biological models in different ways. The markup languages reviewed here 
are the Systems Biology Markup Language, CellML, FieldML and insilicoML. 

The	Systems	Biology	Markup	Language	
Maintained by: SBML Community 

Latest version: Level 3 Version 1 Core 

Availability: http://sbml.org/Documents/Specifications#SBML_Level_3 

Description 

The Systems Biology Markup Language (Hucka et al., 2004), commonly referred to as 
SBML, is a domain-specific XML markup language that addresses biochemical processes at 
the molecular scale. The motivations for SBML were three-fold: 

1. Multiple tools are usually used to develop models in systems biology. This is due to 
the fact that different modelling tools lend different advantages. For example, one tool 
may provide a useful graphical modelling interface, whilst another may implement 
facilities for finer grained modelling. Where a single software package does not 
provide the strengths afforded by both, there is the need for a common file format for 
both tools to be able to read and write 

2. Electronic versions of models often accompany written publications in peer-reviewed 
journals. Due to the diverse numbers of modelling software packages used to 
develop models, it was commonly found that researchers wishing to test models and 
re-run experiments either had to use the original modelling software, or to re-encode 
models to their preferred platform 

3. Models encoded in multiple languages tend to out live the modelling software tools in 
which they are implemented. No single modelling language was present to enable 
future interoperation with systems biology models. 

The aforementioned aims are quite generalised. However, the original authors explain that 
SBML does not aim to be a generic modelling language to cover quantitative models. They 
recognise that the common understanding of biological processes evolves quickly and as 
such suggest that a modelling language for systems biology be domain-specific and 
structured to represent the consensus of current understanding in the field. This aims to 
enable the state-of-the-art modelling tools in systems biology to use a common language in 
which to communicate models, rather than having a generalised modelling language for 
biological and/or computational modelling. 

SBML is developed as a set of incremental levels, where each subsequent level supersedes 
the former. This was to allow the language to be adopted quickly, and to evolve with the 
requirements of the representation and understanding of systems biology. Here we briefly 
describe the components of the Level 3 specification of SBML that is described in full in 
Hucka et al (2010). 
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SBML is comprised of a collection of optional components. A model definition lists a set of 
mathematical functions, unit definitions, compartments (a container that may or may not 
represent a physical structure), species (a set of entities within a compartment, such as 
chemical substances, that participate in some kind of reaction), global and local parameters, 
initial assignments that define the initial conditions of the model, rules that constrain the 
models behaviour, constraints, reactions (statements that describe some kind of process 
such as biochemical transformations or transport), and events to capture instantaneous 
changes within the model. To describe the mathematical components in SBML, the language 
utilises Content MathML (Carlisle et al, 2009), an XML language for describing mathematical 
formulae. While MathML supports encoding of arbitrary mathematical formulae, the SBML 
specification restricts the MathML vocabulary that may be used within SBML models to 
facilitate implementation. Typically the mathematics used to model systems biology is in the 
form of declarative formulae such as ordinary differential equations (ODEs) and differential-
algebraic equations (DAEs), and the markup used can adequately describe such equations. 
Spatially varying models using partial differential equations (PDEs), however, are not 
supported. SBML also provides facilities to associate metadata with models in order to 
properly curate models within online databases. 

The community of SBML users and developers have worked extensively to create a wide 
range of tools and infrastructure to support SBML models. 

References 

Hucka, M., Finney, A., Bornstein, B.J., Keating, S.M., Shapiro, B.E., Matthews, J., Kovitz, 
B.L., Schilstra, M.J., Funahashi, A., Doyle, J.C., Kitano, H., 2004. Evolving a Lingua Franca 
and Associated Software In- frastructure for Computational Systems Biology: The Systems 
Biology Markup Language (SBML) Project. Systems Biology 1. 

Hucka, M., Hucka, M., Bergmann, F., Hoops, S., Keating, S., Sahle, S., Wilkinson, D., 
Hucka, M., Bergmann, F., Hoops, S., Keating, S.M., Sahle, S., Wilkinson, D.J., 2010. The 
Systems Biology Markup Language (SBML): Language Specification for Level 3 Version 1 
Core (Release 1 Candidate). Nature Precedings. 

Carlisle, D., Ion, P., Miner, R., Ausbrooks, R., Buswell, S., Chavchanidze, G., Dalmas, S., 
Devitt, S., Diaz, A., Dooley, S., Hunter, R., Kohlhase, M., Lazrek, A., Libbrecht, P., Miller, B., 
Rowley, C., Sargent, M., Smith, B., Soiffer, N., Sutor, R., Watt, S., 2010. Mathematical 
Markup Language (MathML) Version 3.0, W3C Recommendation 21 October 2010. 

CellML	
Maintained by: Auckland Bioengineering Institute, University of Auckland 

Latest version: v1.1 

Availability: http://www.cellml.org/specifications/cellml_1.1 

Description 

Developed out of the cardiac modelling community, CellML (Lloyd et al., 2004) is a modelling 
markup language that aims to cover a range of biological phenomenon, primarily cell-
function. CellML was developed to address the lack of standards for describing cellular 
function and to provide unambiguous representations of models. One of the key motivating 
factors is in publishing models to research communities. The authors identified that because 
of the lack of rigour and standards in the publishing process, models could not be easily 
validated. Errors are commonly introduced when publishing models in journal texts and 
computational implementations are commonly targeted at specific software frameworks and 
tools, making the models themselves less portable. This poses problems when sharing with 
researchers who are unfamiliar with the modelling methodologies, frameworks, and tools 
others may have used. 
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Like SBML, CellML utilises Content MathML to describe systems modelled using 
mathematical equations. While it does not explicitly restrict the allowed vocabulary in the 
same fashion as SBML, existing tools also only support ODEs and DAEs, and there is a 
recommended “CellML subset” of MathML. CellML is designed to be modular in that 
encapsulated models (possibly of different scales) can be linked together through public and 
private interfaces. This allows multiple models whose variables might refer to the same entity 
to be logically linked. This component-based approach allows reuse of whole models or parts 
of models described with CellML markup. 

 

Figure 2: Cellular Open Resource (COR) (Garny et al., 2003), a software environment for 
modelling with CellML, in editorial mode. The mathematical equation shown in the top pane 
is rendered from the compact-form CellML markup highlighted in the middle pane. 

There are a growing number of CellML tools (Garny et al., 2008), and a popular model 
repository (http://models.cellml.org). CellML has also been used to provide validated model 
descriptions alongside journal paper publications (Nickerson et al., 2008). 

References 

Lloyd, C.M., Halstead, M.D.B., Nielsen, P.F., 2004. CellML: its future, present and past. 
Progress in Biophysics and Molecular Biology 85, 433 – 450. Modelling Cellular and Tissue 
Function. 

Garny, A., Kohl, P., Noble, D., 2003. Cellular open resource (COR): a public CellML based 
environment for modeling biological function. I. J. Bifurcation and Chaos 13, 3579–3590. 

Garny, A., Nickerson, D.P., Cooper, J., Santos, R.W., Miller, A.K., McKeever, S., Nielsen, 
P.M.F., Hunter, P.J., 2008. CellML and associated tools and techniques. Philosophical 
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, 
3017–3043. 
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Nickerson, D.P., Corrias, A., Buist, M.L., 2008. Reference descriptions of cellular 
electrophysiology models. Bioinformatics 24, 1112-1114. 

FieldML	
Maintained by: IUPS Physiome Project 

Latest version: v0.3 (beta) 

Availability: http://www.fieldml.org/ 

Description 

FieldML is a markup language primarily for modelling physiological structures, and their 
physics, described as abstract fields representing the variation in some quantity over a 
particular domain (Christie et al. 2009). These quantities will typically represent some 
physical state, and may be simple scalars or more complex structures such as vectors or 
tensors. A basic field describes the domain itself, but the language also includes a rich set of 
operators, in part utilising MathML, for defining new fields as functions of other fields. This 
allows the representation of partial differential equations (PDEs) which may be solved by, for 
example, the finite element method (FEM) to simulate spatially varying behaviour, such as 
the diffusion of chemicals or electrical charge, or the mechanical motion of an organ. 

FieldML is also being designed to complement CellML, allowing CellML models to be 
instantiated at all points within a domain, with field values at those points becoming inputs 
and outputs to the CellML models. This combination can represent models such as reaction-
diffusion equations, with CellML defining the reaction source terms, and FieldML defining the 
geometry and diffusion properties. 

FieldML is undergoing active development within other projects, notably the VPH project 
euHeart, but is still at early beta status, with frequent changes. It is thus too much in flux to 
depend upon within TUMOR. 

References 

Christie, G.R., Nielsen, P.M., Blackett, S.A., Bradley, C.P., Hunter, P.J., 2009. FieldML: 
concepts and implementation. Philosophical Transactions of the Royal Society A: 
Mathematical, Physical and Engineering Sciences 367, 1869–1884. 

insilicoML		
Maintained by: Physiome.jp / Worldwide Integrative Biomedical Research Cooperation 

Latest version: v1.0 

Availability: http://www.physiome.jp/insilicoml/index.html 

Description 

insilicoML (ISML) is a markup language for describing biological models developed out of the 
Japanese Physiome project (Asai et al., 2008; Suzuki et al., 2008, 2009). Like CellML, it was 
developed to be modular and it has many parallels with CellML. The authors designed ISML 
and its associated tools to facilitate conversion to multiple formats including CellML, SBML, 
C++ source code, and LaTeX. ISML supports a range of mathematical models such as those 
described with ODEs and PDEs, and agent-based models that utilise conditional constructs. 

ISML represents a biological system in a similar fashion to CellML and SBML. It models a 
system as an aggregate of modules, where each module corresponds to an entity with state 
and a corresponding mathematical implementation. The implementation details how the 
states change in reaction to specific events and to the progression of time. Signalling and 
communication between modules is represented with graph-like edges that link input and 
output interfaces of modules termed ports. These edges enable the communication of 
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physical quantities representing state values. Ultimately by structuring biophysical models in 
such a way, models can be represented as graphs, hierarchies and independent modules. 

ISML defines a concept called capsulation. This is where multiple modules can be packaged 
together, essentially encapsulating them in a larger capsule module. Capsule modules, like 
other modules, also possess input and output ports. To create logical connections between 
the capsules ports with the encapsulated modules, a specially defined edge called a 
forwarding edge links the capsule ports with internal module ports. Capsulation leads to 
hierarchical representations of componential models. 

There are a number of parallels between ISML and CellML. For example, ISML modules and 
physical quantities correspond to CellML components and variables respectively. However 
the parallels only run so far. For example, although CellML connections between 
public/private interfaces are structurally similar to ISML edges and ports, in CellML the 
purpose of connections is to link entities of semantically equivalent variables. Because of 
this, the connections themselves do not model any directionality. In ISML, edges between 
ports have explicit direction inputs to outputs. Additionally, ISML edges have specific 
operational types attached to them, labelled with a verb or verb phrase describing the 
functional relationship. ISML modules also have a defined set of types such as functional 
units, containers, capsules (already discussed), and templates. The definitions of each of the 
ISML types are not discussed in this paper, but are extensively described in Asai et al. 
(2008) and Suzuki et al. (2008, 2009). 

References 
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Kurachi, Y., Nomura, T., 2008. A platform for in silico mod- eling of physiological systems ii. 
cellml compatibility and other extended capabilities, in: Engineering in Medicine and Biology 
Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, pp. 573 –576. 

Suzuki, Y., Asai, Y., Oka, H., Heien, E., Urai, T., Okamoto, T., Yumikura, Y., Tominaga, K., 
Kido, Y., Nakanishi, M., Hagihara, K., Kurachi, Y., Nomura, T., 2009. A platform for in silico 
modeling of physiological sys- tems iii, in: Engineering in Medicine and Biology Society, 
2009. EMBC 2009. Annual International Conference of the IEEE, pp. 2803 –2806. 

Discussion	
The reviewed markup languages serve as excellent examples of how to tackle biological 
modelling with markup. However we feel that, although appropriate for describing a wide 
range of models, they are limited in expressiveness when considering more complex 
phenomenon found in the cancer modelling literature. Each of the markup languages 
reviewed describes models based mainly on solving mathematical formulae, however other 
modelling techniques include more algorithmic approaches. Control flow constructs, such as 
loops and conditional behaviours, data type collections, such as arrays and matrices, and 
domain-specific data objects, would give a markup language more expressive power, 
especially where models are developed using an in silico methodology rather than a pure 
mathematical approach. 

As a very generic example, consider a model that may be based on finite-state machines 
(FSMs) whereby each biological cells internal state is determined by events external to itself. 
States, transitions, conditions, and actions (all fundamental elements of FSMs) cannot be 
coded using any of SBML, CellML, FieldML or ISML. The definition of FSMs would require 
the use of formal logic that is not considered in any of these markup languages. We submit 
that the introduction of such constructs, which are commonly found in programming 
languages, would compliment pure mathematical modelling. 
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We do not propose that such an expansion of mathematical notation is undertaken to 
produce a general-purpose modelling markup. Using general-purpose languages for 
describing biological processes could introduce ambiguity in how models are developed and 
described. We also submit that the mathematics and computational descriptions should be 
encapsulated in domain-specific components, and consequently models described using 
domain-specific markup. Creating a language that is specific to computational cancer 
modelling, and using terminology that will be familiar to the field, will allow modellers to more 
easily on the scientific questions at hand rather than spending significant effort on learning 
how to use yet another general purpose programming language. Models will also become 
more modular allowing component reuse by restricting the concepts and cancer terminology 
used in the markup descriptions. General-purpose languages are not suited to domain-
specific modularisation as the specification of interfaces between model components is left 
entirely open to ambiguous definition. 

Each of the currently available markup languages addresses biological modelling by 
encapsulating the mathematics that underpins each component part of a model. However it 
should be noted that the expressiveness in each respective modelling language lacks 
somewhat when applied to more complex scenarios. For example, each modelling language 
bases its mathematical descriptions on MathML. While MathML consists of a mature 
vocabulary, it does not provide any way of expressing logic and control flow or complex data 
constructs. The models based on markup using MathML are typically simulated through 
solving ODEs and DAEs. SBML is a very specialised language and represents models 
through describing low-level molecular components and their relationships with each other. 
CellML relies on declarative mathematics that is interpreted and processed by numerical 
solvers, mainly to model biological cell function. The domain concepts in CellML are 
decoupled from the language and included as metadata. FieldML is being developed as a 
language to compliment CellML in modelling physiological structures based on geometric 
meshes and fields. ISML is similar to CellML is its application to a wide range of biology, and 
also demonstrates multi-scale application. Algorithmic and cellular automata-based cancer 
models, such as in the top-down approach of the Oncosimulator (Stamatakos et al, 2007), 
and agent-based molecular modelling from the bottom-up, cannot be expressed in any of the 
currently available markup languages, let alone before considering any hybrid top-down-
bottom-up composite models. 

The generic application target of these markup languages also hinders their adoption and 
usage in the cancer modelling community. SBML is a specialised language that describes 
molecular components and their relationships with each other. CellML depends on 
declarative mathematics that is processed by numerical solvers, mainly to model cell 
function, and the domain concepts in CellML are decoupled from the language as metadata 
annotations. FieldML is still in its infancy, and while it will add a spatial element to CellML 
descriptions, it is however limited to continuous models of behaviour, being unable to 
represent the agent-based approaches described above. ISML is similar to CellML in its 
application to a wide range of biology, and also demonstrates multi-scale application, but 
again in a very generic fashion. Although SBML, CellML and FieldML each addresses 
specific aspects of modelling biology, none of these can capture the multi-scale aspect of 
cancer modelling, and ISML is not domain-specific enough to capture cancer modelling 
terminology. CellML and ISML both address the modularisation of models, but neither 
facilitates capturing domain-specific cancer model definitions. As we believe the existing 
state-of-the-art modelling languages do not fulfil the remit of model interoperability for the 
cancer-modelling domain, we propose the development of a new markup language as part of 
the work falling under WP4, and the design of which described in the following sections. 
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4 Existing Reusable Markup Vocabularies 

Although there are a number of existing modelling markup languages, as described in the 
previous section, their application to the cancer-modelling domain is limited, as already 
discussed. In developing a new markup language, we will firstly review the currently available 
markup vocabularies that could be integrated into a new markup specification. The set of 
markup languages described in this section is not exhaustive, but aims to provide a review of 
the main kinds of markup that could be integrated to allow various functionality without 
having to ‘redefine the wheel’. We review markup languages relating to mathematical and 
computational descriptions, resource description/curation, medical and clinical data, and 
workflow composition, each of which has the potential to be integrated for use within the 
TUMOR project’s own markup. 

MathML	
Maintained by: World Wide Web Consortium 

Latest version: v3.0 

Availability: http://www.w3.org/TR/2010/REC-MathML3-20101021/ 

Description 

MathML is a markup specification to describe mathematics for machine-to-machine 
interpretation and for display on Web pages (Carlisle et al, 2010). Developed and maintained 
by the W3C, it provides an unambiguous language in which to describe mathematical 
formulae that can be interpreted for numerical processing or to render as human-consumable 
content in alternative ways to visual display. Tim Berners-Lee described the potential for 
MathML as follows: 

“MathML will make the Web even better for educational, scientific and technical 
materials. It also has the potential to make mathematics accessible to those with visual 
disabilities. It will allow mathematical content to be reused and exchanged with 
technical computing systems for further manipulation.” (Ion et al, 2002) 

MathML defines two subsets of markup – (1) Presentation MathML, and (2) Content MathML.  

Presentation MathML is designed solely for rendering mathematical expressions in Web 
pages, embedding the markup code into HTML pages. What distinguishes MathML from 
other mathematical markup languages, such as TeX/LaTeX and SGML mathematical 
markup defined in ISO 12083 Mathematics DTD, is that it additionally provides markup for 
describing the semantics of the mathematics, where the aforementioned alternatives only 
concentrate on document display rendering. Content MathML provides an alternative form of 
markup to Presentation MathML in order to capture the semantics of the mathematics being 
described. Table 1 illustrates an example of Presentation MathML versus Content MathML. 

As discussed in the previous section on Markup Languages for Biological Modelling, MathML 
has been used as the basis for the current state-of-the-art biomodelling languages including 
each of SBML, CellML, and ISML. 

Within the TUMOR project, models will be published as executable files and source code, 
however there is potential to augment these with MathML descriptions of the mathematical 
components of published models where applicable. 
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<mrow> 
   <mrow> 
      <msup> 
         <mi>x</mi> 
         <mn>2</mn> 
      </msup> 
      <mo>+</mo> 
      <mrow> 
         <mn>4</mn> 
         <mo>&InvisibleTimes;</mo> 
         <mi>x</mi> 
      </mrow> 
      <mo>+</mo> 
      <mn>4</mn> 
   </mrow> 
   <mo>=</mo> 
   <mn>0</mn> 
</mrow> 

<apply> 
   <plus/> 
   <apply> 
      <power/> 
      <ci>x</ci> 
      <cn>2</cn> 
   </apply> 
   <apply> 
      <times/> 
      <cn>4</cn> 
      <ci>x</ci> 
   </apply> 
   <cn>4</cn> 
</apply> 

� Table 1 Example contrasting Presentation MathML (left) against Content MathML (right). Both examples 
represent the equation x2 + 4x + 4 =0 (MathML, 2011). 

Strengths 

 Many biological models are based on solving numerical equations which can be 
expressed in MathML 

 Demonstrated usage in state-of-the-art modelling markup languages 

Weaknesses 

 Is not expressive enough to describe all mathematical models 

 Not applicable to all kinds of modelling, where some models use computational logic. 
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1999), 1-4. DOI:10.1145/329984.329985 

Job	Submission	Description	Language	
Maintained by: Open Grid Forum 

Latest version: v1.0 

Availability: http://forge.gridforum.org/sf/projects/jsdl-wg 

Description 

The Job Submission Description Language (JSDL) is an open standard for describing 
computational job executions (Anjomshoaa et al, 2005). Originally developed by the Global 
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Grid Forum (GGF), it is now maintained by the Open Grid Forum (OGF), due to a merger 
between the GGF and the Enterprise Grid Alliance. JSDL job descriptions are not intended to 
describe running computational jobs, but rather are used statically to declare the 
requirements, configuration, and interfaces that are needed to describe a computational 
application. Typically, applications described in JSDL are run in Grid Computing (Foster et al, 
2001) environments, however JSDL can be used to describe any computational application 
regardless of underlying infrastructure. Grid computing systems are typically middleware-
oriented, and although JSDL is developed as a standard, many Grid middleware do not 
directly support JSDL. However, as an open standard this means that translation between 
JSDL descriptions and specific implementations is straightforward. For example, the g-
Eclipse workbench (Gjermundrod et al, 2008) provides facility to translate JSDL, including 
workflows composed of multiple JSDL descriptions  (Johnson et al, 2009), on-the-fly to other 
formats for whatever available Grid middleware the workbench is configured to connect to. 

JSDL allows computational applications to be described with a set of properties including 
(but not limited to) the following: 

 General properties such as an application name and path to an executable binary 
application 

 Application-specific settings such as standard input/output/error files and environment 
variables 

 Data-staging paths, such as where files that the application needs as input are 
located and where output files are written to 

 Resources, such as the specific hardware and software requirements that the 
application needs to be able to run. 

<?xml version="1.0" encoding="UTF-8"?> 
<JobDefinition xmlns="http://schemas.ggf.org/jsdl/2005/11/jsdl"> 
   <JobDescription> 
      <JobIdentification> 
         <JobName>runModel</JobName> 

      </JobIdentification> 
      <Application> 
         <ApplicationName>runModel</ApplicationName> 
      </Application> 
      <Resources> 
         <IndividualDiskSpace> 
            <LowerBoundedRange>20000.0000000000</LowerBoundedRange> 
         </IndividualDiskSpace> 
      </Resources> 
      <DataStaging name="inputdata-001"> 
         <FileName>inputdata.txt</FileName> 
         <CreationFlag>overwrite</CreationFlag> 
         <DeleteOnTermination>true</DeleteOnTermination> 
      </DataStaging> 
   </JobDescription> 
</JobDefinition> 

� Table 2 Example JSDL file describing an application, 'runModel' with a default input file 'inputdata.txt' and the 
resource requirement of a minimum of 20,000kb of disk space. 

Table 2 shows an example JSDL file describing a simple computational job. The resource 
requirements can be a lot more specific to include details such as the required operating 
system, processor architecture, processor speeds and memory requirements. The details of 
the JSDL can be found fully described in the OGF specification by Anjomshoaa et al (2005). 
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To our knowledge, JSDL has never been incorporated into any biological modelling markup 
as the current state-of-the-art languages explicitly describe the internal model structure and 
functionality through other means, typically using MathML. However, JSDL has been used as 
a standard for publishing applications to an online repository for the UK National Grid Service 
(NGS), as described in Meredith et al (2007), which demonstrates its potential use in to other 
domains requiring digital curation. 

Using JSDL within the TUMOR project would bring several benefits. Firstly, it potentially 
provides a mechanism for interfacing published models with whatever execution environment 
is used to run models, both on the US side (within CViT via the Computational Modeling 
Execution Framework, CMEF) and the EU side (within the TUMOR workflow and execution 
environment). JSDL being XML based makes it more easily translatable to formats required 
by whatever execution environment is used. Secondly, and most importantly within the scope 
of the TUMOR project, JSDL allows the specification of hardware and software requirements. 
Where we envisage implementations of models stored in the TUMOR repository to have 
specific platform needs, metadata describing the runtime environment is essential. Finally, 
JSDL allows the specification of input parameters (via the command line) and input and 
output files. This information is again implementation specific, and therefore is required in 
order to be able to run simulations using published models. 

Strengths 

 Assists in specification of computational hardware/software requirements, which is 
essential for WP5 Integrated Workflow Execution Environment 

 Industry standard used in various execution environments and with good tools 
support 

 

Weaknesses 

 Does not provide internal descriptions of the executable file(s) in question 

 Does not link to biological domain concepts 

 No demonstrated use in currently available biological markup languages. 
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Dublin	Core	

Maintained by: Dublin Core Metadata Initiative 

Latest version: ISO 15836:2009 

Availability: http://dublincore.org/documents/2010/10/11/dcmi-terms/ 

Description 

A long established metadata vocabulary for annotating generic electronic resources is a set 
of elements called Dublin Core. Today maintained and promoted as a standard for metadata 
by the Dublin Core Metadata Initiative (DCMI), the element set is widely used in various topic 
areas that utilise digital repositories including in biological modelling. The original motivation 
for Dublin Core was the need to annotate web resources with metadata to more easily 
catalogue and make available online collections of documents. Originally designed to be 
author-populated fields, the implications for resource collection providers (i.e. museums and 
libraries, online or otherwise) were obvious – digital curation of resources by adding 
metadata to them would make searching and retrieving resources easier via semantic search 
and matching. The original authors identify that there are domain-specific elements that 
could be used to annotate resources to a finer level of detail, but also acknowledge it is a 
generic approach that is required to enable widespread adoption of the element set. The 
approach to identifying Dublin Core’s element set was simple: all resources share common 
metadata. 

The Dublin Core Metadata Element Set (v1.1) is comprised of 15 metadata elements [cite]: 

1. Title – the name of the resource given by the creator or publisher 

2. Creator – the person or organisation responsible for creating the intellectual content 
of the resource at hand 

3. Subject – the topic of the resource. Perhaps a list of keywords, or phrases describing 
the resource. This may be a controlled vocabulary and the definition of which is left to 
the implementation 

4. Description – a textual description of the resource. This may be an abstract or a 
textual description for non-textual content 

5. Publisher – the person or organisation responsible for making the intellectual content 
of the resource at hand available. Note that this may be a different entity to the 
creator 

6. Contributor – persons or organisations that, in addition to the creator, may have 
contributed to creating the intellectual content of the resource at hand 

7. Date – the date the resource was published (specific to this particular version of the 
resource) 

8. Type – a categorisation of the resource chosen from a finite enumeration defined 
elsewhere by DCMI 

9. Format – a specification of the data format of the resource chosen from a finite 
enumeration defined elsewhere by DCMI 

10. Identifier – a unique string or number to identify the resource with. The uniqueness 
and identification scheme is determined by the implementation. Typical schemes 
might be URLs or ISBNs 

11. Source – where applicable, a description of where the resource was originally derived 
from 

12. Language – the language in which the resource is expressed in 
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13. Relation – abstract relationship descriptions to other resources 

14. Coverage – spatio-temporal characteristic of the resource 

15. Rights – licensing or rights management via linking to an appropriate descriptor of the 
legal requirements associated with the resource. 

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"  
xmlns:dc="http://purl.org/dc/elements/1.1/"> 
   <rdf:Description 
rdf:about="http://media.example.com/audio/guide.ra"> 
      <dc:creator>Rose Bush</dc:creator> 
      <dc:title>A Guide to Growing Roses</dc:title> 
      <dc:description>Describes process for planting and nurturing 
different kinds of rose bushes.</dc:description> 
      <dc:date>2001-01-20</dc:date> 
   </rdf:Description> 
</rdf:RDF> 

� Table 3 An example of Dublin Core metadata markup (Hillmann, 2005). 

Table 3 shows an example of Dublin Core markup taken from Hillmann (2005). It describes 
an audio file, annotating metadata describing the creator, a title of the resource, a brief 
description, and a publication date. Dublin Core has been used to provide the basic 
descriptive parts of biological model metadata as it allows more meaningful search 
functionality in online digital model repositories. 

The TUMOR model repository will provide facilities for publication, search, and retrieval of 
models, and Dublin Core would provide more meaningful standardised semantic structure to 
the metadata attached to published models.  

Strengths 

 Standardised metadata for generic resources 

 Widely used in all domains, including existing biological modelling markup standards 

Weaknesses 

 Typically each element is expressed as free text fields. This means that there are no 
standard vocabularies for the element contents 

 Does not incorporate domain-specific elements in the markup standard. 
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RDF	vCard	
Maintained by: World Wide Web Consortium; Internet Engineering Task Force 

Latest version: W3C Member Submission 20 January 2010; RFC 2425, 2426 

Availability: http://www.w3.org/Submission/2010/SUBM-vcard-rdf-20100120/ 
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Description 

Developed and maintained by the Internet Engineering Task Force (IETF), the vCard 
standard defines metadata for describing people and organisations (Dawson and Howes, 
1998). The main idea is that vCards are synonymous with physical business cards to provide 
specific information related to a particular person or organisation that can be used as a 
unique identifier in a meaningful way (without the use of a universally unique identifier).  
vCards typically describe an entity using optional elements including: a name, organisation, 
roles within the organisation, telephone numbers, postal addresses, email addresses etc. 
They can also refer to multimedia and web resources where appropriate. For example, a 
vCard might describe a fictional person as follows: 

BEGIN:VCARD 
  VERSION:2.1 
  N:Gump;Forrest 
  FN:Forrest Gump 
  ORG:Bubba Gump Shrimp Co. 
  TITLE:Shrimp Man 
  TEL;WORK;VOICE:(111) 555-1212 
  TEL;HOME;VOICE:(404) 555-1212 
  ADR;WORK:;;100 Waters Edge;Baytown;LA;30314;United States of America 
  LABEL;WORK;ENCODING=QUOTED-PRINTABLE:100 Waters Edge=0D=0ABaytown, LA 
30314=0D=0AUnited States of America 
  ADR;HOME:;;42 Plantation St.;Baytown;LA;30314;United States of America 
  LABEL;HOME;ENCODING=QUOTED-PRINTABLE:42 Plantation St.=0D=0ABaytown, 
  LA 30314=0D=0AUnited States of America 
  EMAIL;PREF;INTERNET:forrestgump@example.com 
  REV:20080424T195243Z 
END:VCARD 

� Table 4 An example vCard encoded in RFC 2426. 

As illustrated by Table 4, the raw vCard format as defined and maintained by the IETF is not 
an XML format. However there is an RDF encoding for RFC 2426 vCards that provides 
equivalent functionality (Iannella, 2001). For example, the previous example encoded in its 
RDF equivalent would be as illustrated in Table 5. 

The RDF vCard encoding vocabulary has been utilised in some of the existing biological 
modelling languages to describe authors and organisational relationships to model creators 
and publishers, typically in combination with the appropriate Dublin Core elements. 

Actors within the TUMOR repository (i.e. Clinicians, researchers, scientists, modellers, 
managers etc.) need to be represented by more than just a username. vCard would provide 
a metadata set to describe people more fully and a means to efficient provenance 
management of data uploaded to the repository.   

Strengths 

 Maintained by universally accepted Internet standards organisations (IETF and W3C 
for RDF encoding) 

 Widely used in all domains, including industrial/commercial applications 

Weaknesses 

 Very verbose 

 More business oriented, so unclear as to whether additional metadata is needed 
when representing clinicians and researchers. 
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<?xml version="1.0"?> 
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

         xmlns:v="http://www.w3.org/2006/vcard/ns#"> 
<v:VCard rdf:about = "http://example.com/me/forestgump"> 
   <v:fn>Forest Gump</v:fn> 
   <v:tel> 
      <rdf:Description> 
         <rdf:value>(404) 555-1212</rdf:value> 
         <rdf:type rdf:resource="http://www.w3.org/2006/vcard/ns#Home"/> 
         <rdf:type rdf:resource="http://www.w3.org/2006/vcard/ns#Voice"/> 
      </rdf:Description> 
   </v:tel> 
   <v:tel> 
      <rdf:Description> 
         <rdf:value>(111) 555-1212</rdf:value> 
         <rdf:type rdf:resource="http://www.w3.org/2006/vcard/ns#Work"/> 
         <rdf:type rdf:resource="http://www.w3.org/2006/vcard/ns#Voice"/> 
      </rdf:Description> 
   </v:tel> 
   <v:email rdf:resource="mailto:forrestgump@example.com"/> 
   <v:adr> 
      <rdf:Description> 
         <v:street-address>42 Plantation St.</v:street-address> 
         <v:locality>Baytown, LA</v:locality> 
         <v:postal-code>30314</v:postal-code> 
         <v:country-name>United States of America</v:country-name> 
         <rdf:type rdf:resource="http://www.w3.org/2006/vcard/ns#Home"/> 
      </rdf:Description> 
   </v:adr> 
   <v:adr> 
      <rdf:Description> 
         <v:street-address>100 Waters Edge </v:street-address> 
         <v:locality>Baytown, LA</v:locality> 
         <v:postal-code>30314</v:postal-code> 
         <v:country-name>United States of America </v:country-name> 
         <rdf:type rdf:resource="http://www.w3.org/2006/vcard/ns#Work"/> 
      </rdf:Description> 
   </v:adr> 
</v:VCard> 
</rdf:RDF> 

� Table 5 The RDF encoding of the vCard RFC 2426 example. 
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FOAF	
Maintained by: FOAF Project 

Latest version: v0.98 

Availability: http://xmlns.com/foaf/spec/20100809.html 

Description 

The FOAF (Friend of a Friend) project defines an RDF-based vocabulary to describe people 
and their relationship with artefacts and other people on the Web (Brickley and Miller, 2005). 
Initially developed in 2000 by Dan Brickley and Libby Miller, FOAF is maintained as an open 
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source project at http://www.foaf-project.org. The main idea behind FOAF is being able to 
publish representations of how one particular person is connected to a variety of resources. 
Conceptually, this provides a way of building a network of information of not only how people 
are connected, but also how Web resources are connected. The authors explain FOAF with 
a fictional example: 

“Dan lives in Zetland road, Bristol, UK with Libby and Craig. Dan's email address is 
danbri@w3.org. Libby's email address is libby.miller@bris.ac.uk. Craig's is 
craig@netgates.co.uk. Dan and Libby work for an organisation called "ILRT" 
whose website is at http://ilrt.org/. Craig works for "Netgates", an organisation 
whose website is at http://www.netgates.co.uk/. Craig's wife Liz lives in Bristol with 
Kathleen. Kathleen and Liz also work at "Netgates". Damian lives in London. 
Martin knows Craig, Damian, Dan and Libby quite well. Martin lives in Bristol and 
has an email address of m.l.poulter@bristol.ac.uk. (etc...)” (Brickley and Miller, 
2008) 

In this example, the authors try to illustrate how by using short factual sentences information 
can be inferred about people and organisations. By analysing each of these short factoids, 
we can make connections between people, places and organisation – e.g. when we consider 
connections between the named people in the example, we might infer that Dan works with 
Libby, Libby knows Craig, Craig is married to Liz, and so on. This builds a web of information 
where Dan is connected to Liz, be it indirectly. 

<foaf:Person rdf:about="#davidjohnson" 
xmlns:foaf="http://xmlns.com/foaf/0.1/"> 
   <foaf:name>David Johnson</foaf:name> 
   <foaf:homepage rdf:resource=" 
http://www.comlab.ox.ac.uk/people/david.johnson/" /> 
   <foaf:img rdf:resource="/images/me.jpg" /> 
</foaf:Person> 

� Table 6 A simple example of a FOAF document describing a person, linking them to a Web page and an 
image file. 

A simple example of a FOAF document is shown in Table 6, however it should be noted that 
the detail in which FOAF can describe people and resources could go into much greater 
depth. The full details of the current FOAF vocabulary are published by Brickley and Miller 
(2010), and will not be detailed in this deliverable. 

FOAF links people and resources with other people and online resources. By using FOAF 
within TUMOR, we may be able to infer relationships between the different actors using the 
repository. Not only this, we would be able to use FOAF to express specific relationships 
between published models and external resources such as references to published journal 
papers or websites.  

Strengths 

 Can be used to map networks of relationships between actors and resources 

Weaknesses 

 Does not provide (on its own) detailed metadata for the elements within the networks 
described. 

References 

D. Brickley and L. Miller, " FOAF Vocabulary Specification 0.98 Namespace Document 9 
August 2010 - Marco Polo Edition," http://xmlns.com/foaf/spec/20100809.html, 2010. 

D. Brickley and L. Miller, “Introducing FOAF”, http://www.foaf-project.org/original-intro, 2008. 



TUMOR  FP7-247754  D  Report 

31/03/2011  Page 24 of 43 

	
Simulation	Experiment	Description	Markup	Language	

Maintained by: SED-ML Community 

Latest version: Level 1 RC1 

Availability: http://www.biomodels.net/sed-ml/ 

Description 

The modelling markup languages described above form part of a solution to the problem of 
sharing and reuse of computational models of biology, allowing the encoding of model 
structure and mathematics in a widely supported standard format. However, simply having a 
verified representation of the equations in a computer-readable format is not sufficient for 
supporting reliable and efficient reuse. The functional characteristics of the model also have 
to be known, which requires a description of simulations run using the model(s), and 
expected outputs. 

To address this, firstly a set of guidelines called the Minimum Information About a Simulation 
Experiment (MIASE) has been developed, setting out in general terms what details are 
required in order to be able to reproduce a simulation. It covers information about the 
simulation settings, including information about the models, changes on them, simulation 
settings applied to the models and output definitions. 

SED-ML is an XML format that enables the storage and exchange of part of the information 
required to implement the MIASE guidelines. SED-ML is independent of the formats used to 
encode the models – as long as they are expressed in XML – and it is independent of the 
software tools used to run the simulations. Several test implementations are being developed 
to benchmark SED-ML on simple cases, and pave the way to a more complete support of 
MIASE. 

It is thus still in the early stages of development, and not yet suitable for direct use in 
TUMOR. However, there is strong backing from the SBML community, and so future projects 
should consider it. 

Strengths 

 Independent of modelling language for describing how to reproduce simulations 

Weaknesses 

 Not a mature standard and has yet to be demonstrated with widespread adoption and 
use. 
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HL7	Clinical	Document	Architecture	
Maintained by: Health Level 7 International 

Latest version: v3 

Availability: http://www.hl7.org/implement/standards/cda.cfm 

Description 

The Clinical Document Architecture (CDA) is a markup standard for describing the structure 
and semantics of clinical documents. Developed by Health Level Seven (HL7), an 
organisation that develops health informatics interoperability standards, CDA forms part of 
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the wider HL7 version 3 standard that additionally includes standards for the general 
implementation model and messaging framework that HP7-compliant systems adhere to. 
CDA specifies a number of required characteristics: 

 Persistence – A clinical document continues to exist in an unaltered state, for a time 
period defined by local and regulatory requirements 

 Stewardship – A clinical document is maintained by an organization entrusted with its 
care 

 Potential for authentication - A clinical document is an assemblage of information that 
is intended to be legally authenticated 

 Context - A clinical document establishes the default context for its contents 
 Wholeness - Authentication of a clinical document applies to the whole and does not 

apply to portions of the document without the full context of the document 
 Human readability – A clinical document is human readable. 

 
‘Clinical documents,’ as defined by CDA, are not intended to be whole medical records of a 
single patient. They serve as a way of transmitting clinical data, and therefore are only 
expected to hold specific reports relating to individual instances relating to a patient’s record. 
An examples of the structure of a CDA document is shown in Table 7.  
 
<ClinicalDocument> 
   ... CDA Header ...  
   <StructuredBody> 
      <section> 
         <text>...</text> 
         <Observation> 
            ... 
         </Observation> 
         <Observation> 
            <reference> 
               <ExternalObservation> 
                  ... 
               </ExternalObservation> 
            </reference> 
         </Observation> 
      </section> 
      <section> 
         <section> 
            ... 
         </section> 
      </section> 
   </StructuredBody> 
</ClinicalDocument> 

� Table 7 The main elements of a CDA document 

CDA specifies that its primary use is for data exchange – not for creation and management 
of clinical documents. This means that in typical usage, clinical documents expressed in CDA 
markup are not stored in digital repositories. 

Within the TUMOR project’s infrastructure, it may be required to transmit clinical data 
between clinical databases and the execution environment to run and validate computational 
cancer models. CDA would provide a standard format for transmission of clinical data within 
TUMOR.  

Strengths 

 Industry accepted standard for clinical data exchange 
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 Generic enough to be applied to a wide range of types of clinical data 

Weaknesses 

 Does not provide markup for standalone data storage and management 

 CDA is not intended to contain whole patient’s medical records. 
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Medical	Markup	Language	
Maintained by: MedXML Consortium 

Latest version: v3.0 

Availability: http://www.medxml.net/E_mml30/ 

Description 

The Medical Markup Language (MML) is a language for describing different kinds of medical 
data, including clinical patient data, for a range of different medical fields (Kenji et al, 2000). 
Developed by the Japan Association for Medical Informatics “Electronic Health Record 
Research Group” to address interoperability when exchanging medical data between 
different hospitals and medical information providers. MML is split into nine modules that 
each addresses a specific type of medical data. These are: 

1. Patient information 

2. Health insurance information 

3. Diagnosis information 

4. Life style information 

5. Basic medical information 

6. Particular information at the time of first visit 

7. Progress course information 

8. Surgery information 

9. Clinical summary information. 

Each module is defined with its own XML namespace, and the authors designed MML to 
allow the linking of different kinds of documents through unique document identifiers. This 
would allow, for example, one particular patient information document to be linked to a 
diagnosis information document. 

In recognition of the HL7 CDA becoming an industry accepted standard for exchange of 
clinical data, the authors of MML developed their latest version to be compatible with 
transmission as HL7 CDA payloads. By basing MML on HL7 CDA, this allows MML to be 
transported in accordance with the HL7 specification, but also allows MML payloads to also 
be represented as stand-alone documents. 

Apart from transmission of clinical data, a fully integrated environment that incorporates 
TUMOR’s model repository and model execution environment may include infrastructure 
components for the actual management of clinical data. MML could then be used as a 
standard format for clinical data storage within TUMOR making it more easily accessible to 
run simulations. 
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Strengths 

 Is a useful specification for storage of patient records and clinical data in an XML 
format 

 Compatible with HL7 CDA messages making MML payloads transportable between 
HL7 compliant systems.  

Weaknesses 

 Unclear as to whether it is a widely accepted markup standard for medical data as it 
is developed and maintained by the Japan Association for Medical Informatics, which 
seems to target systems using the Japanese language. 
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XML	Simple	Conceptual	Unified	Flow	Language	
Maintained by: The Taverna Project 

Latest version: v0.1 (alpha) 

Availability: http://www.ebi.ac.uk/~tmo/mygrid/XScuflSpecification.html 

Description 

Developed out of the UK myGrid project, the Simple Conceptual Unified Flow Language 
(Scufl) is a markup language for describing workflows. Initially conceived for creating 
bioinformatics workflows using the Taverna software package, Scufl describes executable 
applications (termed procesors), data sources, and their dependencies on each other and 
myGrid enacts workflows using the IT Innovation Enactment Engine. An XML version of the 
Scufl specification (XScufl) allows the definition of workflows using an XML-based vocabulary 
and a different enactment engine called Freefluo. Table 8 illustrates the markup for a trivial 
workflow that concatenates two strings. 

To enable model composition, markup is needed to represent connections between 
component models as graphs, in a similar fashion to workflows. As one of the aims of 
TUMOR is to demonstrate transatlantic scenarios, the facilities to enable either transatlantic 
workflow composition or model coupling needs to be demonstrated. XScufl could potentially 
be used for either purpose.  

Strengths 

 Describes workflows in an abstract manner with an extensible language that can be 
adapted for other purposes than myGrid systems 

 Scufl is extensively used by the UK eScience community 

Weaknesses 

 XScufl is only provided as an alpha status prototype and the specification is not 
currently actively maintained or being developed further. 
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<?xml version="1.0" encoding="UTF-8"?> 
<s:scufl xmlns:s="http://org.embl.ebi.escience/xscufl/0.1alpha" 
version="0.2" log="0"> 
   <s:workflowdescription 
lsid="urn:lsid:www.mygrid.org.uk:operation:BD8CRS09KB0" author="Tom Oinn" 
title="Example of an alternate processor"> 
      Trivial workflow which will initially fail, retry twice then fall 
over to the alternative specified for the FailingThing process. 
   </s:workflowdescription> 
   <s:processor name="FooString"> 
      <s:stringconstant>foo</s:stringconstant> 
   </s:processor> 
   <s:processor name="BarString"> 
      <s:stringconstant>bar</s:stringconstant> 
   </s:processor> 
   <s:processor name="FailingProcessor"> 
      <s:local maxretries="2" retrydelay="1000" retrybackoff="2.0"> 
         org.embl.ebi.escience.scuflworkers.java.TestAlwaysFailingProcessor
      </s:local> 
      <s:alternate> 
         <s:local> 
            org.embl.ebi.escience.scuflworkers.java.StringConcat 
         </s:local> 
         <s:outputmap key="urgle" value="output" /> 
         <s:inputmap key="foo" value="string1" /> 
         <s:inputmap key="bar" value="string2" /> 
      </s:alternate> 
   </s:processor> 
   <s:link source="FooString:value" sink="FailingProcessor:foo" /> 
   <s:link source="BarString:value" sink="FailingProcessor:bar" /> 
   <s:link source="FailingProcessor:urgle" sink="out" /> 
   <s:sink name="out" /> 
</s:scufl> 

� Table 8 Exampe trivial workflow expressed in XScufl (Hoheisel, 2005) 
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Business	Process	Execution	Language	
Maintained by: OASIS 

Latest version: v2.0 

Availability: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html   

Description 

The Business Process Execution Language (BPEL) is an XML language for describing 
business process behaviour based on Web services. The BPEL workflow description 
language supports many of the features found in modern programming languages like flow 
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control, variables, concurrent execution, input and output, transaction scoping, 
compensation, and error handling. BPEL is layered on top of other Web technologies such 
as WSDL, XML Schema, XPath, XSLT, and WS Addressing. 

Each BPEL document specifies the behaviour of a business process. BPEL processes often 
invoke Web services to perform functional tasks and can be either abstract or executable.   

 Abstract processes are similar to library APIs: they describe what the process can do 
and its inputs and outputs but do not describe how anything gets done. Abstract 
processes are useful for describing a business process to another party that wants to 
use the process.   

 Executable processes do the “heavy lifting” - they contain all of the execution steps 
that represent a cohesive unit of work.  

Data in the BPEL is represented through XML types either the built-in ones or the types that 
can found in the XML Schemas imported in the BPEL document. Variables are then used to 
hold the data as is common in popular programming languages like Java. By assigning types 
to these variables it then becomes possible to validate both statically and dynamically that 
the data passed to and from a Web Service using SOAP messages are compatible with the 
parameters declared in the WSDL description of the service. Variables can be defined inside 
a scope and these scopes can be nested. Scopes not only prevent variable name clashes, 
but they also allow a BPEL execution engine to decide when the variables will no longer be 
needed and the, potentially large, data structures stored in a variable can be released. 

A BPEL process typically consists of activities connected by links that perform the actual 
work in order to deliver the final outcome of the process. The path taken through the 
activities and their links is determined by many things, including the values of variables and 
the evaluation of expressions. The most important basic activity in BPEL is used to invoke 
web services. Each Web Service is represented as a partner in the BPEL parlance and each 
partner must define WSDL port types for each interface that is used in the BPEL process.  

Invocation of a service can be either synchronous or asynchronous. Both are defined by the 
BPEL invoke construct. Invocations that give both input and output variables are executed 
synchronously and the BPEL workflow is blocked while the service executes. An example of 
such invocation is shown in Table 9. 

<invoke name="executeQuery"  
        partnerLink="SRV1PL"  
        operation="executeQuery" 
        inputVariable="query-in" outputVariable="result"/> 

� Table 9 Example of invoking a service. 

For asynchronous execution, BPEL supports the notion of correlation sets that are used to 
associate replies to invocations with business process instances. 

Every BPEL process is, in fact, a web service in its own right. The service can be invoked by 
sending a SOAP message to a BPEL engine. The BPEL primitive used to achieve this is a 
receive statement as shown in Table 10. 

<receive name="Start"  
         partnerLink="enactment" operation="doIt" 
         variable="input" createInstance="yes"/> 

� Table 10 Sending a SOAP message to a BPEL engine. 

Another important basic activity allows us to manipulate data stored in variables. This is done 
using assignments. An assignment consists of any number of copy statements that copy 
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data from a source to a target destination. Source destinations can be XML data given as a 
literal, the result of evaluating an expression, an XPath query that extracts data from some 
other variable, or the result of calling a procedure in a programming language, such as Java 
or JavaScript that can be incorporated using the BPEL extension mechanism. 

<assign> 
   <copy> 
      <from> 
         <literal> 
            <message>Hello World</message> 
         </literal> 
      </from> 
      <to variable="sayHello" part="parameters"/> 
   </copy> 
</assign> 

� Table 11 Assignments in BPEL. 

Finally BPEL provides further control flow facilities in a straightforward manner. These 
include sequence, while, switch and pick structured activities. Sequence, while and switch 
have the conventional semantics, while Pick provides for non-deterministic choice. 

Strengths 

 Ability for reuse within TUMOR as workflow editor and execution using BPEL was 
developed under ACGT. 

Weaknesses 

 As BPEL is designed to orchestrate Web services, it might not be useful for execution 
infrastructures that do not expose such services. 
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5 Ontologies for the Clinical Medicine and 
Cancer Domain 

In computer science, ontologies are a technique or technology used to represent and share 
knowledge about a domain by modelling the things in that domain and the relationships 
between those things. These relationships describe the properties of those things; in 
essence, what it is to be one of those things in the domain being modelled. This section 
presents the commonly used biomedical ontologies and terminologies in the clinical medicine 
and cancer domain. These ontological resources have various usages within the domain of 
biomedicine in general and in oncology and oncology-related biology in particular. The widest 
service which they provide is that of a good dictionary, where different classes, terms, 
entities are given unique identification codes and can be used in a way that they are 
univocal. Arguably this is the simplest service that ontologies can provide. Ability to draw 
inferences, relationship among entities at various levels of granularity, existential 
dependence, etc. is their more advanced services. These services are used for life-science 
data integration, integration of Electronic Health Record data, patient status description, and 
drug delivery information provision in the domain of oncology. Specific features of these 
terminologies and ontologies make them relevant for clinical practice in oncology and for 
oncology-related biomedical research, and their use possibly beneficial to the TUMOR 
project.  
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National	Cancer	Institute	Thesaurus	
Maintained by: National Cancer Institute 

Latest version: v11.02d 

Availability: http://ncit.nci.nih.gov/ 

Description 

The National Cancer Institute (NCI) Thesaurus is an ontology-like vocabulary that includes 
broad coverage of the cancer domain, including cancer related diseases, findings and 
abnormalities; anatomy; agents, drugs and chemicals; genes and gene products and so on. 
In certain areas, like cancer diseases and combination chemotherapies, it provides the most 
granular and consistent terminology available. It combines terminology from numerous 
cancer research related domains, and provides a way to integrate or link these kinds of 
information together through semantic relationships. The thesaurus currently contains over 
34,000 concepts, structured into 20 taxonomic trees. NCI Thesaurus is available for free use 
within the European Union within the terms of its license. 

Within the context of TUMOR, the NCI Thesaurus could be used as a source for standard 
medical terminology for annotating models with biological entities. The thesaurus is widely 
used internationally and is commonly used as a source for vocabulary used in biological and 
medical ontologies. 
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Foundational	Model	of	Anatomy	(FMA) 
Maintained by: University of Washington 

Latest version: - 

Availability: http://sig.biostr.washington.edu/projects/fm/ 

Description 

The FMA is developed by the Structural Informatics Group, University of Washington and it’s 
concerned with the representation of classes and relationships necessary for the symbolic 
representation of the structure of the human body in a form that is understandable to humans 
and is also navigable by computerised systems. Specifically, the FMA is a domain ontology 
that represents a coherent body of explicit declarative knowledge about human anatomy. 
FMA has four interrelated components:  

 Anatomy taxonomy: classifies anatomical entities according to the characteristics they 
share and by which they can be distinguished from one another. 

 Anatomical Structural Abstraction: specifies the part-whole and spatial relationships 
that exist between the entities represented in the taxonomy  

 Anatomical Transformation Abstraction: specifies the morphological transformation of 
the entities represented in the taxonomy during prenatal development and the 
postnatal life cycle 

 Metaknowledge: specifies the principles, rules and definitions according to which 
classes and relationships in the other three components of FMA are represented. 

FMA contains approximately 72,000 classes, over 115,000 terms and over 2.1 million 
relationship instances from 168 relationship types. 

FMA is very useful for representing anatomical entities in relevance to oncology. These 
include carcinoma staging, locations for radiotherapy and surgery, access routes for various 
procedures, locations for drug actions, and so on. The robust formalism allows derivation of 
inferences, especially for staging of carcinomas. 

Integrating the FMA into TUMOR could facilitate validation in model coupling, in particular 
where biological interfaces are linked and biological entities might interact. 
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International	Classification	of	Diseases	(ICD)	
Maintained by: World Health Organisation 

Latest version: ICD-10 2nd Edition 

Availability: http://www.who.int/classifications/icd/ 

Description 
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ICD is designed to promote international comparability in the collection, processing, 
classification, and presentation of diagnostics in health epidemiology, health management 
and mortality statistics. These include the analysis of the general health situation of 
population groups and monitoring of the incidence and prevalence of diseases and other 
health problems in relation to other variables such as the characteristics and circumstances 
of the individuals affected. The top classes consist mainly of diseases classified according to 
the body system, though neoplasms, infectious diseases and injuries and poisonings have 
their own axes. 

To a large extent, ICD provides a disease classification on the basis of anatomy. Although 
not all the diseases within ICD are classified according to anatomy, the neoplasms are more 
or less classified within the anatomical partition. Thus, an ontology of carcinomas that follows 
the anatomical partition for classification of neoplasms and related diseases can use portions 
of ICD more easily than other disease classifications. However there are issues of 
misclassifications within ICD and also terms, which do not represent a real disease. With 
certain modifications, integration of ICD with FMA related anatomy is possible in a way that 
inferences can be drawn on the basis of the anatomy ontology of FMA. 

ICD could be used within TUMOR as a standard dictionary for describing cancers tackled by 
models uploaded to the EC repository. 

Systematized	Nomenclature	of	Medicine	–	Clinical	Terms	
Maintained by: International Health Terminology Standards Development Organisation 

Latest version: - 

Availability: http://www.ihtsdo.org/snomed-ct/ 

Description 

SONMED CT is a generic healthcare terminology together with various relations between it’s 
over 300,000 concepts. There are about a million descriptions of those concepts and about a 
million semantic links between them. The SONMED CT core content consists of: 

 Concepts Table 

  Descriptions Table 

  Relationship Table 

  History Table 

  ICD Mapping 

The main top classes consist of Clinical Finding, Procedure, Observable Entity, Body 
Structure, Organism, Substance, Pharmaceutical/Biologic Product, Specimen and Events. 
SONMED CT classifies attributes according to the top classes. While some attributes are 
used across many top classes, there are many that are characteristically used within a single 
top class. For example, Clinical Finding top class is associated with attributes like Severity, 
Onset, Course, Episodicity, Stage and so on. Similar, for Procedure, the attributes include 
Procedure Site, Procedure Device, Procedure Morphology, Access and so on. SONMED CT 
is available under license for the countries within the European Union. 

SNOMED CT has been adopted internationally and maps to various other standard medical 
terminology dictionaries. Its potential use within TUMOR as a source of standard terminology 
could lead to the EC repository’s markup and Web services more interoperable with other 
existing systems that have adopted the same vocabulary. 
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ACGT	Master	Ontology	
Maintained by: Institute for Formal Ontology and Medical Information Science (IFOMIS) 

Latest version: v1.0 

Availability: http://www.ifomis.org/wiki/ACGT_MO  

Description 

The ACGT Master Ontology (ACGT-MO) is the result of the semantic (ontology-based) data 
integration in the ACGT European project. The goal of the EU co-funded project “Advancing 
Clinico-genomic Trials on Cancer – Open Grid Services for Improving Medical Knowledge 
Discovery” (ACGT) was to develop an ontology-driven, semantic grid services infrastructure 
that will enable efficient execution of discovery-driven scientific workflows in the context of 
multi-centric, post-genomic clinical trials. 

The ACGT-MO is implemented in OWL-DL, the description-logics based subtype of the Web 
Ontology Language (OWL) and can be freely downloaded from http://www.ifomis.org/acgt. It 
is re-using Basic Formal Ontology (BFO, http://www.ifomis.org/bfo) as upper level and the 
OBO Relation Ontology (http://www.obofoundry.org/ro/) (see Fig. 1). 

 
Fig. 1 Relations between ACGT-specific classes and their superclasses from BFO 

The ACGT-MO developers set out to comprehensively represent the domain of cancer 
research and management, with special emphasis on mammary carcinoma (“breast cancer”), 
Wilms’ tumour (nephroblastoma) and rhabdoid tumour and its development was guided and 
reviewed by researchers from two pre-existing clinical trials on Breast Cancer and 
Nephroblastoma. As a result of this development process, it not as a comprehensive domain 
ontology, but rather as an application ontology tailored to the needs of the ACGT software 
system. The ACGT-MO therefore is an application ontology and its main role, in the context 
of the translational medicine research framework within which it is developed and applied, is 
to support data integration across the borders of countries and disciplines, languages and 
professional terminologies; as well as integration of newly gathered data with data already 
stored. As a result, the ACGT-MO is heavily used in the context of the ACGT Semantic 
Mediation Process. 

The TUMOR repository aims to store cancer models taken from the ACGT and 
ContraCancrum projects, and to reuse some portions of ACGT software, the reuse of the 
ACGT-MO could be beneficial for the TUMOR project. 
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6 TumorML: A Markup Language for 
Computational Cancer Modelling 

To address the specific domain of cancer modelling, we propose the development of a 
markup language, TumorML, to describe computational cancer models within the TUMOR 
project. The motivation for such a markup language is two-fold: 

1. To describe the implementation of these cancer models in an abstract manner that is 
not tied to any particular programming notation 

2. To be able to couple our models to address the transatlantic scenarios such as those 
described in D2.1. 

The challenges posed in developing TumorML include: 

 Formalising cancer terminology 

 Linking biological entities with computational and mathematical elements of models 

 Incorporating features to allow for curating models in online repositories. 

Paired with ontologies of how entities of cancer biology are related and interact, and by using 
standard terminology dictionaries, for example the ACGT Master Ontology and the NCI 
Thesaurus, we will be able to package models with metadata that is standardised throughout 
the TUMOR repository. This would assist in modellers developing models composed of other 
models, irrespective of scale (e.g. molecular/microscopic to macroscopic scales) and source 
(e.g. models from CViT DMR or the EC TUMOR repository). Linking different models 
together will produce more accurate compound models, particularly when considering 
models operating from different scales in our bottom-up and top-down approaches described 
in D2.1. 

Conceptual	Design	
Conceptually, the design of TumorML will take a similar approach to that of CellML and ISML 
in how models are structured to allow modularisation and connectivity between component 
models. In the case of TumorML however, we propose to reuse the JSDL vocabulary since 
we initially target models published as pre-complied model binaries, or source-code 
implementations that can be compiled on-the-fly (since we have determined that MathML-
based descriptions of cancer models may not be sufficient within TUMOR). This means there 
are two key levels of abstraction when publishing a model: 

1. A computational description of the model implementation 

2. The biological description of the model function described by the aforementioned 
implementation. 

When analysing the kinds of models provided by ACGT, ContraCancrum, and from CViT’s 
DMR, we determined that an essential part of enabling model execution and workflow 
composition is the specification of the computational requirements to run the models. JSDL 
provides markup that can describe the hardware and software requirements of a binary or 
source file. It also allows the specification of standard inputs, outputs, data staging, and 
execution parameters. 

Once the input and output parameters are defined at a computational level, these could be 
mapped to entities from cancer biology. This might allow us to perform some type checking 
and units conversion where possible when presented with input data, and additionally 
semantic checks of the biological parameters to ensure scientific correctness when 
connecting multiple models together.  Directly connecting the computational parameters 
between models would not serve to validate any semantic connectivity, as raw parameters 
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do not have any semantic metadata attached to them by default. We term a model that is not 
made up of component parts a ‘Simple Model Description’ while a model that is composed of 
multiple model descriptions a ‘Complex Model Description’.  

Simple Model Descriptions (Figure 
1) are used as the initial step in 
wrapping up a computational 
cancer model. It refers to a 
single implementation, 
uploaded to the repository as a 
binary or as source code. An 
interface mapping bridges the 
computational interface (as 
command-line parameter lists or 
input files) with standardised 
biological entities (i.e. the bio-
parameter interface). Models 
are also curated with standard 
metadata to enable efficient 
search and management of 
models. By making the interface 

to the models domain-specific, 
researchers and clinicians will 
more easily understand how to 

run the models and how to couple 
them with other models where 
necessary. 

Complex Model Descriptions 
(Figure 2) provide similar 
functionality to Simple Model 
Descriptions in that they are 
curatable with the same 
metadata, and also provide a 
bio-parameter interface. The 
main difference is that as they 
describe a compound model, a 
single implementation is not 
referenced. Rather, a graph of 
references to other models 
describes the internal 
functionality of the complex 
model. These references may 
refer to any other kinds of Simple 
or Complex Model descriptions, 

and the edges of the graphs 

connect through each referenced 
model’s bio-parameter interface. 
The interface of the model at hand 

is then composed of the remaining unconnected interface components reflecting what inputs 
are needed and what outputs the compound model writes.  

 

Simple Model Description 

Curation metadata 

 

Bio-parameter interface mapping

Implementation (source or binary) 

� Figure 1 A 'Simple' Model Description 

Complex Model Description 

Curation metadata 

Bio-parameter interface mapping

Graph 

Model ref. 

Model ref.

Model ref. 

� Figure 2 A 'Complex' Model Description 
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Markup	for	Curating	Cancer	Models	
Like SBML, CellML, FieldML, and ISML, TumorML will utilise existing metadata vocabularies 
such as Dublin Core for document curation, MathML for providing validated mathematical 
content where possible, and where existing vocabularies do not exist we will specify our own 
cancer-specific metadata descriptions. Clinically oriented vocabularies and ontologies could 
also be integrated to assist in the management of clinical trials of TumorML models. 

Work has begun in developing the database schemas for the TUMOR model repository 
under WP3, and is described in deliverable D3.1.1. 

Through initial discussions in the first year of the TUMOR project, a basic model description 
was proposed that could capture domain specific elements of cancer models when searching 
for models in a digital repository. The CViT DMR's current approach is to provide the model 

publisher with free text fields 
describing Hypothesis, 
Description, Conclusion, etc. 
This has the advantage of 
being easier to enter, but may 
make it more difficult for the 
end-user to locate relevant 
information (or a computer 
program to utilize the 
information). The proposed 
metadata for TUMOR models 
are summarised as follows and 
would be in addition to Dublin 
Core elements. Figure 3 shows 
how the curation metadata is 
attached to the model 
description. 

 

 

 

Model structural details: The basic structural details of the models include: 

 Math type: Can be “discrete”, “continuous” or “hybrid”. 

 Biocomplexity direction: Can be “Top-down”, “Bottom-up” or “Middle-out”. Can be 
used to bind the models of the EU to the models of the CViT repository 

 Biological scales: "Atomic", "Molecular", "Cellular", "Tissue", "Organ", and 
"Population" 

 Type of cancer: The type of cancer described by the model (breast cancer, lung 
cancer, etc.) 

 Tumour details: Details about the tumour represented in the specific model. 
Described in the “Tumour details” sub-section 

 Treatment details: Details about the treatment bind with the specific model. Described 
in the “Treatment” subsection. Various treatments can be used with each model 

 Computational model details: Details about the computational parameters of the 
model. Described in the “Computational details” sub-section.  

 

Simple Model Description 

Curation metadata 

 

Bio-parameter interface mapping

Implementation (source or binary) 

� Figure 3 Conceptual view of a simple model description, 
highlighting the curation metadata 
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Tumour details: The details of the tumour described by the model. Includes the following 
elements: 

 Materialization: Can be “solid” or “liquid” 

 Homogeneousness status: Can be “macroscopically homogeneous” or 
“macroscopically non-homogeneous” 

 Initialization: Can be “imageable” or “non-imageable tumor” 

 Free-growth included: Can be “yes” or “no” 

 

Treatment: The details of the treatment that has been used with the model. Multiple 
treatment schemas can be used with each model. Includes the following elements: 

 Simulation duration: The duration of the whole treatment simulation. May include 
multiple chemo and/or radio cycles 

 Treatment type: The type of treatment. Can be chemotherapy or radiotherapy 

 Drug(s): The drug(s) used 

 Cycle schedule duration: The duration of the treatment cycle 

 Chemo cycle details: Details regarding the chemotherapy used. Described in detail in 
the “Chemo Details” sub-section. 

Radio cycle details: Details regarding the radiotherapy used. Described in detail in the “Radio 
Details” sub-section. 

 

Chemo Details: The details of the chemotherapy used with a specific treatment. May include 
multiple chemo cycles. For each chemo cycle, the following elements are included: 

 Day: The day(s) of the drug(s) administrations 

 Dose: The drug dose given 

 Drug(s): The drug(s) used. 

 

Radio Details: The details of the radiotherapy used with a specific treatment. May include 
multiple radio cycles. For each radio cycle, the following elements are included: 

 Day: The days of radiation administration 

 Hour: The hours of radiation administration 

 Total Dose and Fraction Dose used. 

At this early stage in the markup design, these proposed metadata details would be used to 
get a first prototype of the TUMOR digital repository functional. As many of these fields refer 
to specific entities in biology, we believe that utilising a standard dictionary of terms, such as 
those described in the section on state-of-the-art ontologies, would allow greater 
interoperability with outside repositories by being able to map terminology between different 
systems. In addition to this, where standard units are used to describe certain biological 
entities or properties, we will be able to check and automatically convert units where 
necessary.  

Markup	for	Interfacing	with	Models	
As a first step, we will develop metadata for curation and for describing the public interfaces 
with existing models that have been developed and published as source code and 
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executable files. This will allow us to investigate how to fuse models of different scales 
together through their exposed parametric inputs and outputs; an initial ‘black box’ approach 
to computational model execution and coupling. Parametric interfaces will be described using 
markup that will facilitate the specification of the underlying computational requirements for 
executing computational models. These computational interfaces could then be mapped to 
biological terminology ultimately providing a way to more easily validate the cancer biology 
through correct semantic matching, but also to provide a means to enforce type and units 
checking where heterogeneities in model descriptions exist. 

 

Parametric interfaces will be 
described using JSDL, which 
will also facilitate the 
specification of the underlying 
computational requirements for 
executing models. While the 
cancer modelling community 
adopts TumorML for publishing 
existing models, we will work 
with modellers to develop the 
next level of more detailed 
abstraction in the structural, 
mathematical, and algorithmic 
descriptions of the inner 
workings of models. Significant 

effort might be required to port 
existing models to TumorML, so 

by providing multiple levels of 
abstractive notation in our 
markup we can wrap existing 

models in early versions of TumorML as well as develop new models with an evolving 
markup specification. 

Markup	for	Connecting	Model	Interfaces	
As described previously, connecting models together will be paramount to investigate 
combining approaches and developing more accurate models through such composition. 
Where models are published as computational applications, as we envisage within the scope 
of the TUMOR project and as provided by the TUMOR model repository, linking models 
together essentially equates to workflow composition. Building workflows of computational 
applications is not novel and has been demonstrated by a number of well-known workflow 
systems such as the UK myGrid project’s Taverna software, and the US Kepler project. As 
described in the markup review, Taverna utilises XScufl for workflow descriptions; however, 
we will also investigate the use of BPEL as the choice of markup for workflows. This is 
because the ACGT project developed a workflow-authoring tool that could potentially be 
used as the basis for a model composition in TUMOR within the workflow environment to be 
developed in WP5. 

Simple Model Description 

Curation metadata 

 

Bio-parameter interface mapping

Implementation (source or binary) 

� Figure 4 A simple model with the parametric interface 
highlighted 
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The basic idea behind any workflow composition is to build a graph of dependencies 
between computational modules. 

As we plan to investigate 
mapping JSDL parametric 
interfaces to biological 
entities, a model composition 
within the TUMOR 
environment would link these 
bio-computational interfaces 

together. We envisage that 
when the computational 

parameters are linked 
between models during the 

composition process, 

semantic validation, including 
type and units checking, will 
be carried out where the user 
will be given warnings on-
the-fly. This would allow 
users to create compound 

models with immediate 
feedback, and thus reduce the 

likelihood of errors and 
execution problems that would 
arise at run-time.  

	
Deliverable	XML	Schemas,	Stylesheets,	and	Support	Tools	

Apart from a high-level schema design and specification for TumorML, during the next stage 
of WP4 we aim to develop a set of XML software applications and support tools. The 
deliverables associated with T4.2 will include: 

 An XML schema to allow TumorML documents to be validated against the markup 
specification 

 XSLT stylesheets to extract metadata relating to specific vocabularies (e.g. curation 
metadata, model interfaces, computational requirements etc.) 

  Programming APIs to assist use of TumorML in software, in particular with the 
TUMOR model repository (PHP, JavaScript) 

 A graphical authoring tool for users not familiar with programming languages or raw 
XML authoring 

 Documentation, including technical specifications, tutorials, examples. 

We expect to deliver all of the aforementioned by PM24, where they will be published on the 
TUMOR website for public access.  

Complex Model Description 

Curation Metadata 

Bio-parameter interface mapping

Graph 

Model ref.

Model ref.

Model ref.

� Figure 5  Complex model highlighting the details of the 
internal graph structure. Model references (yellow) are 
linked together through their model interfaces as a graph-
like structure (red) 
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7 Conclusion 

This deliverable document reviews the state-of-the-art biological modelling languages that 
could be considered appropriate for cancer modelling within the TUMOR project. We 
subsequently examined a range of metadata vocabularies that have the potential for 
integration into a new markup language for cancer modelling. We also review the current 
state-of-the-art medical ontologies and are available that could be used to solve 
interoperability issues that might arise in the future by providing standardised medical and 
domain-specific vocabularies or through ontology mapping. Finally, we outline our proposed 
work on TumorML, a domain-specific markup language for in silico cancer modelling.  

Our review of the currently available modelling languages (SBML, CellML, FieldML and 
ISML) illustrates the need for both a domain-specific approach to computational biomodelling 
and for one that is directed at the cancer-modelling domain. SBML is developed for the realm 
of systems biology – a broad ranging domain, but nonetheless a specific kind of biological 
modelling at the molecular scale, and hence applicable only to a subset of the models 
considered in TUMOR. CellML and ISML take a more generic approach and are not 
specifically constrained to a particular domain, although CellML was developed primarily to 
describe biological cell function. Both are however limited in the kinds of models they can 
represent. FieldML is still in development and is not yet widely adopted, and for the most part 
models physiological structures and their function. None of these modelling languages 
satisfies the needs and diversity found in cancer modelling. One other feature that is 
prevalent throughout is that these state-of-the-art modelling languages are designed to 
mainly simulate through pure mathematical description. Each language being based on 
MathML restricts their expressivity in modelling; especially where an in silico approach needs 
more algorithmic descriptions, for example in agent-based models. 

We go on to review a set of markup vocabularies that could then be used to compose a new 
markup language tailored specifically to TUMOR’s needs. Although there are many markup 
languages that could be incorporated into a TUMOR-specific language, we limit the scope of 
the proposed new cancer modelling language, TumorML, to three key functions: curating 
cancer models, computationally interfacing with cancer models, and connecting cancer 
models together. We propose to use Dublin Core along with cancer domain-specific 
metadata for model curation. We propose to use JSDL as the primary interface with 
published model implementations (as executable files) and map the computational interfaces 
with cancer domain-specific terminology and ontologies to aid in type and units checking. 
Finally, we propose to use a workflow markup language such as BPEL to enable the fusion 
of models, connecting their interfaces to form graph-like structures representing compound 
multiscale cancer models. 
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Appendix I - Abbreviations and acronyms 
ACGT – Advancing Clinico Genomic Trials on Cancer 

BPEL – Business Process Execution Language 

caBIG – cancer Biomedical Informatics Grid 

CDA – Clinical Document Architecture 

ContraCancrum - Clinically Oriented Translational Cancer Multilevel Modelling 

CViT – Center for the Development of a Virtual Tumor 

DAE – Differential Algebraic Equation 

DMR – Digital Model Repository 

DTD – Data Type Definition 

EC – European Commission 

FEM – Finite Element Method 

FOAF – Friend of a Friend 

HL7 – Health Level 7 

IETF – Internet Engineering Task Force 

ISML – In Silico Modelling Language 

JSDL – Job Submission Description Language 

MathML – Mathematical Markup Language 

MGH – Massachusetts General Hospital 

MML – Medical Markup Language 

NCI – National Cancer Institute 

NIH – National Institute of Health 

ODE – Ordinary Differential Equation 

PDE – Partial Differential Equation 

RDF – Resource Description Framework 

Scufl – Simple Conceptual Unified Flow Language 

SED-ML – Simulation Experiment Description Modelling Language 

SBML – Systems Biology Modelling Language 

SNOMED – Systematized Nomenclature of Medicine 

TUMOR – Transatlantic Tumor Model Repositories 

vCard – Virtual Card 

VPH – Virtual Physiological Human 

W3C – World Wide Web Consortium 

WSDL – Web Services Description Language 

XML – Extensible Markup Language 

XScufl – XML Simple Conceptual Unified Flow Language 

XSLT – Extensible Stylesheet Language Transformations 


