
TUMOR FP7-247754 D4.1.1 Report

Transatlantic TUmour MOdel Repositories

D4.1.1

State of the art review on web-services,
interoperability design directions

tailored to TUMOR needs

Project Number: FP7--IST-247754

Deliverable id: D4.1.1

Deliverable name: State of the art review on web-services, interoperability design
directions tailored to TUMOR needs

Submission Date: 31/3/2011

TUMOR FP7-247754 D Report

31/03/2011 Page 2 of 60

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: TUMOR

Project Full Name: Transatlantic TUmour MOdel Repositories

Document id: D4.1.1

Document name: State of the art review on web-services, interoperability
design directions tailored to TUMOR needs

Document type (PU, INT,
RE)

PU

Version: 7

Submission date:

Editor:
Organisation:
Email:

Thomas Deisboeck
MGH
DEISBOEC@HELIX.MGH.HARVARD.EDU

Document type PU = public, INT = internal, RE = restricted

ABSTRACT: This deliverable describes the implementation of dedicated web services (using
WSDL and SOAP) that provide various facilities for connecting data and tools between the EU
repository and the MGH-CViT. Services will be defined both for the CViT DMR and the EU
repository, and accessible through the TUMOR integrated environment. These will include
functionalities such as the ability to locate and search the stored models, review their attributes,
download the models, upload new models into the repository, and execute the models. Much of
this is already available or under development for CViT (e.g. https://www.cvit.org/node/314
[Data service]); more work will be required to implement equivalent services for the EU
repository, and this will be done in close collaboration with T3.1. These services will be
designed with consistent APIs to facilitate their combination within TUMOR, such that
information from both repositories can be combined. For example, the system will allow users
to perform a simulation of a coupled model with a component from each repository,
parameterised using data from each repository. Development of these services will make use
of existing tools where appropriate, for example, CViT provides its existing RDF repository and
semantic modelling and annotation facilities, the caGrid domain information model and Grid
service API, and has a model execution framework currently under development.

KEYWORD LIST: design directions, state-of-the-art review, web services

TUMOR FP7-247754 D Report

31/03/2011 Page 3 of 60

MODIFICATION CONTROL

Version Date Status Author

1 March 1, 2011 Draft Thomas Taylor

2 March 7, 2011 Draft Thomas Deisboeck, Thomas Taylor

3 March 14, 2011 Draft Thomas Deisboeck, Thomas Taylor

4 March 18, 2011 Draft Thomas Taylor

5 March 24, 2011 Draft Thomas Taylor

5.1 March 29, 2011 Draft Stelios Sfakianakis

6 March 30, 2011 Pre-final Thomas Taylor

7 March 31, 2011 Final Vangelis Sakkalis, Thomas Taylor

List of Contributors

 All consortium

 Thomas Deisboeck (MGH)

 Thomas Taylor (MGH-INFOTECH Soft)

 Stelios Sfakianakis (FORTH)

 Vangelis Sakkalis (FORTH)

 Giorgos Zacharioudakis (FORTH)

TUMOR FP7-247754 D Report

31/03/2011 Page 4 of 60

Contents

1 EXECUTIVE SUMMARY .. 5

1 TASK DESCRIPTION .. 6

2 WEB SERVICES DISCUSSION ... 7

COMPARISON SOAP VS. REST .. 7
CVIT DIGITAL MODEL REPOSITORY APPROACH .. 8
BRIEF SURVEY OF SELECTED WEB SERVICES ON THE INTERNET .. 9

3 REVIEW OF WEB SERVICES TECHNOLOGIES ... 13

WEB SERVICE STYLES OF USE ... 14
WEB SERVICES DESCRIPTION LANGUAGE (WSDL) ... 15

3.1.1 Service Description .. 15
3.1.2 Component Model .. 15
3.1.3 Types .. 20

SIMPLE OBJECT ACCESS PROTOCOL / SERVICE ORIENTED ARCHITECTURE PROTOCOL (SOAP) 21
3.1.4 SOAP Messages ... 21
3.1.5 SOAP - Remote Procedure Calls.. 22

SEMANTIC ANNOTATIONS FOR WSDL AND XML SCHEMA (SAWSDL) .. 23
3.1.6 Annotation Mechanisms ... 23
3.1.7 Annotating WSDL ... 23
3.1.8 Annotating XML Schema .. 24

REPRESENTATIONAL STATE TRANSFER (REST) WEB SERVICES .. 28
3.1.9 Data Elements .. 29
3.1.10 Resources and Resource Identifiers ... 29
3.1.11 Representations .. 29
3.1.12 Connectors ... 30
3.1.13 Components ... 30

WEB APPLICATION DESCRIPTION LANGUAGE (WADL) ... 32

4 MGH CENTER FOR THE DEVELOPMENT OF A VIRTUAL TUMOR (CVIT) OVERVIEW 34

MGH-CVIT DMR AND CMEF COMBINED ARCHITECTURE ... 34
MGH-CVIT DMR AND CMEF (COMBINED DOMAIN MODEL) .. 36
MGH-CVIT DMR TUMOR WEB SERVICE ... 54

TUMOR FP7-247754 D Report

31/03/2011 Page 5 of 60

1 Executive Summary

The TUMOR project aims at developing a European clinically oriented semantic-layered cancer
digital model repository from existing EC projects that will be interoperable with the US grid-enabled
semantic-layered digital model repository platform at CViT.org (Center for the Development of a
Virtual Tumor, Massachusetts General Hospital (MGH), Boston, USA) which is NIH/NCI-caBIG
compatible. This interoperable, CViT interfaced, environment will offer a range of services to
international cancer modellers, bio-researchers and eventually clinicians aimed at supporting both
basic cancer quantitative research and individualized optimization of cancer treatment. This
‘Transatlantic’ project will therefore be the starting point for an international validation environment
that will support joint applications, verification and validation of the clinical relevance of cancer
models.

The purpose of this deliverable is to review the state-of-the-art web service technologies and service
description languages capable of connecting data and tools between the EU repository and the MGH-
CViT. Services will be defined both for the CViT DMR and the EU repository, and accessible through
the TUMOR integrated environment. These will include functionalities such as the ability to locate
and search the stored models, review their attributes, download the models, upload new models into
the repository, and execute the models. Much of this is already available or under development for
CViT (e.g. https://www.cvit.org/node/314 [Data service]); more work will be required to implement
equivalent services for the EU repository, and this will be done in close collaboration with T3.1

There are also open source CellML, SBML and FieldML simulation tools either already available or
under development within VPH projects, with efforts co-ordinated by the VPH NoE, which will be
utilised by the model execution server. Key to achieving interoperability is the use of semantic meta-
information associated with both models and data, as indicated in the description of T3.1. Annotation
of both models and data with terms from the same ontology (or mapped ontologies) will allow for
mechanistic determination of corresponding entities (for example, variables in two models referring to
the same biological entity, or models describing the same process). In many cases these annotations
will refer to third party web-service enabled databases, such as MINT, IntAct, DIP,BioCyc, KEGG,
PUMA2, or Reactome, and in such cases the use of these databases is likely to be useful in integrating
models. Thus the use of semantic metadata together with the web services developed will facilitate
registration, discovery, comparison and interoperability between models, and the integration of data
from clinical, laboratory and modeling domains.

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 6 of 60

1 Task Description

T4.1 Interoperable interface and connectivity design (PM8-PM28) (Leader: 5, Participants: all)

This task will implement dedicated web services (using WSDL and SOAP) providing various facilities
for connecting data and tools between the EU repository and the MGH-CViT. Services will be defined
both for the CViT DMR and the EU repository, and accessible through the TUMOR integrated
environment. These will include functionalities such as the ability to locate and search the stored
models, review their attributes, download the models, upload new models into the repository, and
execute the models. Much of this is already available or under development for CViT (e.g.
https://www.cvit.org/node/314 [Data service]); more work will be required to implement equivalent
services for the EU repository, and this will be done in close collaboration with T3.1. These services
will be designed with consistent APIs to facilitate their combination within TUMOR, such that
information from both repositories can be combined. For example, the system will allow users to
perform a simulation of a coupled model with a component from each repository, parameterised using
data from each repository. Development of these services will make use of existing tools where
appropriate, for example, CViT provides its existing RDF repository and semantic modelling and
annotation facilities, the caGrid domain information model and Grid service API, and has a model
execution framework currently under development.

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 7 of 60

2 Web Services Discussion

We need to decide (among other things) the technologies and the standards that will be used for the
implementation of the interoperable interfaces. As mentioned in the Description of the Work these
interfaces will be "service oriented" and particularly based on Web Services. As mentioned
in Wikipedia, W3C defines two major types of web services:

 REST type web services, provide a uniform interface and they are more "web-
friendly". For example, an HTTP(S) REST web service will use some or all of the
standard HTTP protocol operations: GET, POST, HEAD, PUT, DELETE,...

 SOAP/WSDL based Web Services (also known as "Big web services") that provide
an arbitrary (i.e. developer defined) set of operations

There are pros and cons to both of them. So we need either to choose one of the two or maybe follow a
hybrid approach. In any case these decisions should be well documented and justified.

--Stelios 19:55, 16 February 2011 (EET)

Comparison SOAP vs. REST
http://www.ajaxonomy.com/2008/xml/web-services-part-1-soap-vs-rest

http://www.petefreitag.com/item/431.cfm

SOAP REST-XML

Pros:

 Language, platform, and transport
agnostic

 Designed to handle distributed
computing environments

 Is the prevailing standard for web
services, and hence has better
support from other standards (WSDL,
WS-*) and tooling from vendors

 Built-in error handling (faults)
 Extensibility
 Support for semantic web service

Cons:

 Conceptually more difficult, more
"heavy-weight" than REST

 More verbose
 Harder to develop, requires tools

Pros:

 Language and platform agnostic
 Much simpler to develop than SOAP
 Small learning curve, less reliance on

tools
 Concise, no need for additional

messaging layer
 Closer in design and philosophy to

the Web

Cons:

 Assumes a point-to-point
communication model--not usable for
distributed computing environment
where message may go through one
or more intermediaries

 Lack of standards support for
security, policy, reliable messaging,
etc., so services that have more
sophisticated requirements are
harder to develop ("roll your own")

 Tied to the HTTP transport model

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 8 of 60

CViT Digital Model Repository Approach
The CViT DMR provides a SOAP/WSDL Web Service based on the National Cancer Institute's
cancer Biomedical Informatics Grid (caBIG) specification.

 The advantage is that the DMR caBIG Service can utilize the caBIG infrastructure
(caDSR - repository of UML models for all caBIG services; caGrid Portal - UDDI-like
index of all running caBIG services; EVS - enterprise vocabulary service for consistent
use of terminology; and Grid Trust Service/Dorian - for user authentication and delegation
of trust across services). All caBIG Data Services implement a simple caBIG Query
Language (CQL), based on XML, 'query' interface to locate and retrieve any data
exposed by the UML model (stored in caDSR). This makes it easy for any 'novice' user to
find available caBIG services, understand what the data means, and query/retrieve
appropriate data.

 The disadvantage is that the caBIG infrastructure has a lot of overhead (Globus Toolkit,
Dorian), which is not trivial to install and configure correctly. More troubling is that all of
the packages (Globus, Dorian, caBIG) depend on different versions of the same Java
library (which is poorly documented), which requires you to 'guess-and-test' various
versions of the libraries until you have a working system.

CViT's DMR communicates with the Computational Model Execution Framework (CMEF) using a
REST interface. This is a much lighter, easier to implement interface; however, it does not have the
many useful services provided by caBIG (Grid Trust, Security, caDSR, EVS/Semantics). To prevent
unauthorized use, the CMEF runs on a private network and only allows computational jobs to be
submitted through the DMR's Website. Unlike the CViT DMR caBIG Data Service, the CViT CMEF
service is not semantically annotated.

REST may be easier to implement, but including REST Security is a challenge:
(http://www.infoq.com/news/2010/03/REST_security,
http://features.techworld.com/security/3213655/the-security-nightmare-of-rest-web-services/,
http://features.techworld.com/security/3213655/the-security-nightmare-of-rest-web-services/) Also,
the less structured interface may require more/better end-user documentation (e.g., API specs, how to
configure security, etc.) to properly use the service. It should be possible to semantically annotate
REST results; however, there is no standard for specifying REST semantics.

The more structured API of SOAP/WSDL may make it easier for client programs to utilize the Web
Service, including using built-in WS-Security. Workflow tools such as Taverna
(http://www.taverna.org.uk/developers/web-service-developers/) support including SOAP/WSDL
services. Many development tools support client code generation from WSDL specs.

--Thomas T. 15:55, 16 February 2011 (EST)

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 9 of 60

Brief Survey of Selected Web Services on the Internet
http://www.programmableweb.com

Name Description REST SOAP

CViT DMR

caBIG Data Service

Through CViT’s Digital Model Repository (DMR),
scientists can add new models, share models with other
researchers, and discuss model simulations. The
website also allows for starting grid-based execution of
the models in the repository. eLicensing Workflow
protects intellectual property . The CViT DMR caBIG
Data Service is a caBIG Silver-Level Compliant Web
Service that provides secure access to the DMR through
caGrid.

 Yes

CViT CMEF

Through CViT’s Computational Model Execution
Framework (CMEF), scientists can perform grid-based
execution of the models stored in the DMR. CMEF
Server runs Java, C, and R programs on both Windows
and Linux, and models are automatically annotated with
execution metadata.

Yes

NCI Cancer Biomedical
Informatics Grid

The mission of caBIG® is to develop a collaborative
information network that accelerates the discovery of
new approaches for the detection, diagnosis, treatment,
and prevention of cancer. caBIG® is sponsored by the
National Cancer Institute (NCI) and its activities are
supervised by the National Cancer Institute Center for
Bioinformatics and Information Technology (NCI-
CBIIT). The initiative operates through an open
development community.

 Yes

Taverna API

Taverna is an open source domain independent
Workflow Management System – a suite of tools used
to design and execute scientific workflows. Taverna has
been created by the myGrid project and funded through
the OMII-UK. Taverna has guaranteed funding till
2014.

 Yes

KEGG API

KEGG API provides valuable means for accessing the
KEGG system, such as for searching and computing
biochemical pathways in cellular processes or analyzing
the universe of genes in the completely sequenced
genomes. This enables the users to write their own
programs for many different purposes and to automate
the procedure of accessing the KEGG API server and
retrieving the results.

 Yes

Reactome Data Sharing API

A SOAP based Web Services API is available to access
the Reactome data. Reactome is a human-curated
knowledgebase of biological pathways and reactions.
The information in this knowledgebase is authored by
biological researchers with expertise in their fields,
maintained by the Reactome editorial staff, and cross-

 Yes

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 10 of 60

referenced with PubMed, Gene Ontology, NCBI,
Ensembl, UniProt, OMIM and other databases.

PSICQUIC Standard

Proteomics Standard Initiative Common Query
Interface. PSICQUIC is an effort from the HUPO
Proteomics Standard Initiative (HUPO-PSI) to
standardize the access to molecular interaction
databases programmatically. Several interaction
databases are already implementing PSICQUIC: IntAct,
MINT, MPIDB, MatrixDB, BioGrid, iRefIndex,
InnateDB, APID, STRING and ChEMBL.

Yes Yes

IntAct

IntAct is the Molecular Interaction database at the
European Bioinformatics Institute (UK). Implements
PSICQUIC.

Yes Yes

MINT

MINT, the Molecular INTeraction database. MINT
focuses on experimentally verified protein-protein
interactions mined from the scientific literature by
expert curators. Implements PSICQUIC.

Yes Yes

Pathway Commons API

Pathway Commons is a convenient point of access to
biological pathway information collected from public
pathway databases, which you can browse or search.
You can programmatically access pathway data via the
Web Service API.

HTTP/URL

Amazon eCommerce API

What was formerly the ECS - eCommerce Service - has
been renamed the Product Advertising API. Through
this API developers can retrieve product information.
The API exposes Amazon's product data and e-
commerce functionality.

Yes Yes

Amazon S3 API

Amazon S3 API, the Simple Storage Service provides a
simple web services interface used to store objects
using the Amazon online storage infrastructure.

Yes Yes

Business.gov API

Business.gov is an official site of the US government
that helps small businesses understand their legal
requirements, and locate government services
supporting the nation’s small business community.

Yes

CareerBuilder API

CareerBuilder API allows you to integrate their
database of over 1.5 million jobs with your software or
website. The API provides methods for basic job
searching, retrieving data for a specific job, and
applying to a job.

Yes

Deutsche Telekom Voice
Call API

The Deutsche Telekom Voice Call API can be used to
initiate voice calls between phones.

 Yes

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 11 of 60

Dun and Bradstreet Credit
Check API

Perform low risk credit assessments and pre-screen
prospects with D&B’s core credit evaluation data.
Information includes company identification, payment
activity summary, public filings indicators, and the
D&B Rating.

 Yes

E*TRADE API

With E*TRADE's open XML-based Application
Programming Interface, you can now use industry-
leading trading applications to execute your trades
directly through E*TRADE - no additional software
needed.

Yes

eBay API

World's largest online auction service. API allows for
both searching of products and upload of new listings.

Yes Yes

Facebook API

The Facebook API is a platform for building
applications that are available to the members of the
social network of Facebook. The API allows
applications to use the social connections and profile
information to make applications more involving, and
to publish activities to the news feed and profile pages
of Facebook, subject to individual users privacy
settings.

Yes

Google Ajax Search API

The Google AJAX Search API is a Javascript library
that allows you to embed Google Search in your web
pages and other web applications. You can embed a
simple, dynamic search box and display search results
in your own web pages or use the results in innovative,
programmatic ways.

Yes

Google AdSense API

Using the AdSense API, developers can let users sign
up for AdSense through their site or program, generate
detailed performance reports for users, and choose how
the AdSense revenue is shared with our revenue sharing
program.

 Yes

Google Base API

The Google Base API makes it possible to get items in
and out of Google Base; a free service for submitting
various content for Google to host and to make
searchable online. The Google Base data API is
designed to enable developers to do two things: (1)
Query Google Base data to create applications and
mashups. (2) Input and manage Google Base items
programmatically.

Yes

Microsoft MSDN API

The MTPS Content Service is an XML web service that
provides access to the content stored in MTPS. Using
the MTPS Content Service, developers can integrate
documentation, technical articles, whitepapers, images
and the other content available from the MTPS system
into their own applications.

 Yes

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 12 of 60

Microsoft HealthVault API

Use the HealthVault API to access an open platform for
giving your users data storage, security features, and
authentication. Use the platform to make it easier to
collect health data from other apps, devices, lab tests,
etc., and share the data with HealthVault-compatible
apps.

Yes

Scopus API

Search the largest abstract and citation database of peer-
reviewed literature and quality web sources. Include
Scopus content in your website, perhaps to broadcast
your own organization's researchers. You can access
more than 33 million continuously updated records.

JavaScript

SciVerse Framework and
Content API

With SciVerse APIs, developers can build applications
that appear alongside full text articles, journal abstracts
and search results within the SciVerse Product Suite:
ScienceDirect, Scopus and SciVerse Hub.

Yes

Swoogle API

Use the Swoogle API to search semantic web
ontologies, markup and documents hosted by UMBC.
The system is the result of ongoing research. It provides
a set of functions, such as search Semantic Web
ontologies, search Semantic Web instance data, etc.

Yes

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 13 of 60

3 Review of Web Services Technologies

A “Web service” is a method of communication between two electronic devices over a network. The
W3C describes a Web service as “A Web service is a software system designed to support
interoperable machine-to-machine interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL). Other systems interact with the Web service in a
manner prescribed by its description using SOAP-messages, typically conveyed using HTTP with an
XML serialization in conjunction with other Web-related standards.” (http://www.w3.org/TR/ws-
gloss/)

W3C describes the set of interrelated technologies that can be utilized to construct and consume Web
services, as illustrated in Figure 1.

 Figure 1. Web Services Architecture Stack from http://www.w3.org/TR/ws-arch

 XML – provides a standard, flexible, and extensible data format that reduces the
burden of deploying the technologies utilized in Web services. Key concepts are XML
core syntax, XML Infoset, XML Schema, and XML Namespaces.

 SOAP – provides a standard, extensible, composable framework for packaging and
exchanging XML messages. SOAP also provides a mechanism for referencing
capabilities (a named feature or piece of functionality that is declared or requested by
an agent).
 SOAP 1.2 Part 1 – defines an XML-based messaging framework, a processing

model, and an extensibility model.
 SOAP 1.2 Part 2 – defines encoding rules for expressing instances of application-

defined data types, conventions for representing remote procedure calls and
responses, and rules for using SOAP with HTTP.

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 14 of 60

 WSDL – defines a language for describing Web services. WSDL describes the
messages that are exchanged between requester and provider agents. The
messages are described abstractly and bound to a concrete network protocol and
message format. Web service definitions can be mapped to any implementation
language, platform, object model, or messaging system.

Web Service styles of use
Web services are a set of tools that can be used in a number of ways. The three most common styles of
use are RPC, SOA and REST (http://en.wikipedia.org/wiki/Web_service).

 Remote procedure calls - RPC Web services present a distributed function (or
method) call interface that is familiar to many developers. Typically, the basic unit of
RPC Web services is the WSDL operation. Other approaches with nearly the same
functionality as RPC are Object Management Group's (OMG) Common Object
Request Broker Architecture (CORBA), Microsoft's Distributed Component Object
Model (DCOM) or Sun Microsystems's Java/Remote Method Invocation (RMI).

 Service-oriented architecture - Web services can be implemented according to
service-oriented architecture (SOA) concepts, where the basic unit of communication
is a message, rather than an operation. Unlike RPC Web services, loose coupling is
more likely, because the focus is on the "contract" that WSDL provides, rather than
the underlying implementation details.

 Representational state transfer (REST) - REST attempts to describe architectures
that use HTTP or similar protocols by constraining the interface to a set of well-
known, standard operations (like GET, POST, PUT, DELETE for HTTP). Here, the
focus is on interacting with stateful resources, rather than messages or operations.
An architecture based on REST can use WSDL to describe SOAP messaging over
HTTP, can be implemented as an abstraction purely on top of SOAP, or can be
created without using SOAP at all.

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 15 of 60

Web Services Description Language (WSDL)
Web Services Description Language (WSDL) Version 2.0 Part 0:

Primer

W3C Recommendation 26 June 2007

http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626/

Web Services Description Language (WSDL) Version 2.0 Part 1:
Core Language

W3C Recommendation 26 June 2007

http://www.w3.org/TR/2007/REC-wsdl20-20070626/

Web Services Description Language (WSDL) provides a model and an XML format for describing
Web services. WSDL 2.0 enables one to separate the description of the abstract functionality offered
by a service from concrete details of a service description such as “how” and “where” that
functionality is offered. The WSDL 2.0 specification defines a language for describing the abstract
functionality of a service as well as a framework for describing the concrete details of a service
description. It also defines the conformance criteria for documents in this language.

3.1.1 Service Description
A service description indicates how potential clients are intended to interact with the described
service. It represents an assertion that the described service fully implements and conforms to
what the WSDL document describes. WSDL describes a Web service in two fundamental
stages: one abstract and one concrete. At an abstract level, WSDL describes a Web service in
terms of the messages it sends and receives; messages are described independent of a specific
wire format using a type system, typically XML Schema.

An operation associates a message exchange pattern with one or more messages. A message
exchange pattern identifies the sequence and cardinality of messages sent and/or received as
well as who they are logically sent to and/or received from. An interface groups together
operations without any commitment to transport or wire format.

At a concrete level, a binding specifies transport and wire format details for one or more
interfaces. An endpoint associates a network address with a binding. And finally, a service
groups together endpoints that implement a common interface.

3.1.2 Component Model
Components are typed collections of properties that correspond to different aspects of Web
services.

 Description - a container for two categories of components: WSDL 2.0
components and type system components. WSDL 2.0 components are interfaces,
bindings and services. Type system components are element declarations and
type definitions. An Element Declaration component defines the name and
content model of an element information item such as that defined by an XML
Schema global element declaration. A Type Definition component defines the
content model of an element information item such as that defined by an XML

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 16 of 60

Schema global type definition. Interface, Binding, Service, Element Declaration,
and Type Definition components are directly contained in the Description
component and are referred to as top-level components.

<description
 targetNamespace="xs:anyURI" >
 <documentation />*
 [<import /> | <include />]*
 <types />?
 [<interface /> | <binding /> | <service />]*
</description>

 Interface - describes sequences of messages that a service sends and/or
receives. It does this by grouping related messages into operations. An operation
is a sequence of input and output messages, and an interface is a set of
operations. The set of operations available in an interface includes all the
operations defined by the interfaces it extends directly or indirectly, together with
any operations it directly defines.

<description>

 <interface

 name="xs:NCName"

 extends="list of xs:QName"?

 styleDefault="list of xs:anyURI"? >

 <documentation />*

 [<fault /> | <operation />]*

 </interface>

</description>

 Interface Fault - describes a fault that may occur during invocation of an
operation of the interface. A fault is an event that occurs during the execution of a
message exchange that disrupts the normal flow of messages. A fault is typically
raised when a party is unable to communicate an error condition inside the normal
message flow, or a party wishes to terminate a message exchange. A fault
message may be used to communicate out of band information such as the
reason for the error, the origin of the fault, as well as other informal diagnostics
such as a program stack trace.

<description>
 <interface>
 <fault
 name="xs:NCName"
 element="union of xs:QName, xs:token"? >
 <documentation />*
 </fault>
 </interface>
</description>

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 17 of 60

 Interface Operation - describes an operation that a given interface supports. An
operation is an interaction with the service consisting of a set of messages
exchanged between the service and the other parties involved in the interaction. A
message exchange pattern defines placeholders for messages, the participants in
the pattern, and the cardinality and sequencing of messages exchanged by the
participants. The message placeholders are associated with specific message
types by the operation that uses the pattern by means of message and fault
references.

<description>
 <interface>
 <operation
 name="xs:NCName"
 pattern="xs:anyURI"?
 style="list of xs:anyURI"? >
 <documentation />*
 [<input /> | <output /> | <infault /> | <outfault />]*
 </operation>
 </interface>
</description>

 Interface Message Reference - defines the content, or payload, of a message

exchanged in an operation. By default, the message content is defined by an
XML-based type system such as XML Schema. Other type systems may be used
via the WSDL type system extension mechanism. A message exchange pattern
defines a set of placeholder messages that participate in the pattern and assigns
them unique message labels within the pattern.

<description>
 <interface>
 <operation>
 <input
 messageLabel="xs:NCName"?
 element="union of xs:QName, xs:token"? >
 <documentation />*
 </input>
 <output
 messageLabel="xs:NCName"?
 element="union of xs:QName, xs:token"? >
 <documentation />*
 </output>
 </operation>
 </interface>
</description>

 Interface Fault Reference - associates a defined type, specified by an Interface

Fault component, to a fault message exchanged in an operation. The purpose of
an Interface Fault Reference component is to associate an actual message type
with a fault message occurring in the pattern.

<description>
 <interface>
 <operation>
 <infault
 ref="xs:QName"
 messageLabel="xs:NCName"? >
 <documentation />*

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 18 of 60

 </infault>*
 <outfault
 ref="xs:QName"
 messageLabel="xs:NCName"? >
 <documentation />*
 </outfault>*
 </operation>
 </interface>
</description>

 Binding - describes a concrete message format and transmission protocol which may

be used to define the implementation details necessary to access the service. Binding
information may be specified on a per-operation basis within an interface, in addition
to across all operations of an interface. Binding components that do not specify an
interface may be used to specify operation-independent binding details for Service
components with different interfaces.

<description>
 <binding
 name="xs:NCName"
 interface="xs:QName"?
 type="xs:anyURI" >
 <documentation />*
 [<fault /> | <operation />]*
 </binding>
</description>

 Binding Fault – describes a concrete binding of a particular fault within an interface
to a particular concrete message format. The fault binding information specified in a
Binding Fault component describes how faults that occur within a message exchange
of an operation will be formatted and carried in the transport.

<description>
 <binding>
 <fault
 ref="xs:QName" >
 <documentation />*
 </fault>
 </binding>
</description>

 Binding Operation - describes the concrete message format(s) and protocol
interactions associated with a particular interface operation for a given endpoint.

<description>
 <binding>
 <operation
 ref="xs:QName" >
 <documentation />*
 [<input /> | <output /> | <infault /> | <outfault />]*
 </operation>
 </binding>
</description>

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 19 of 60

 Binding Message Reference - describes a concrete binding of a particular message
participating in an operation to a particular concrete message format.

<description>
 <binding>
 <operation>
 <input
 messageLabel="xs:NCName"? >
 <documentation />*
 </input>
 <output
 messageLabel="xs:NCName"? >
 <documentation />*
 </output>
 </operation>
 </binding>
</description>

 Binding Fault Reference - describes a concrete binding of a particular fault

participating in an operation to a particular concrete message format.

<description>
 <binding>
 <operation>
 <infault
 ref="xs:QName"
 messageLabel="xs:NCName"?>
 <documentation />*
 </infault>
 <outfault
 ref="xs:QName"
 messageLabel="xs:NCName"?>
 <documentation />*
 </outfault>
 </operation>
 </binding>
</description>

 Service - describes a set of endpoints at which a particular deployed implementation
of the service is provided. The endpoints are in effect alternate places at which the
service is provided.

<description>
 <service
 name="xs:NCName"
 interface="xs:QName" >
 <documentation />*
 <endpoint />+
 </service>
</description>

 Endpoint - defines the particulars of a specific endpoint at which a given service is
available. Endpoint components are local to a given Service component. The Binding
component is said to be applied to the Interface component which is the value of the
interface property of the parent Service component of the Endpoint.

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 20 of 60

<description>
 <service>
 <endpoint
 name="xs:NCName"
 binding="xs:QName"
 address="xs:anyURI"? >
 <documentation />*
 </endpoint>+
 </service>
</description>

3.1.3 Types
The content of messages and faults may be constrained using type system components. These
constraints are based upon a specific data model, and expressed using a particular schema
language. WSDL only defines a means of expressing constraints based upon the XML Infoset,
and WSDL only defines the use of XML Schema. Specifically, the element declarations and
type definitions properties of the description component are collections of imported and
inlined schema components that describe Infoset element information items. The schema
components contained in the element declarations property of the Description component
provide the type system used for Interface Message Reference and Interface Fault
components. Interface Message Reference components indicate their structure and content by
using the standard attribute information items element. Interface Fault components behave
similarly.

<description>
 <types>
 <documentation />*
 [<xs:import namespace="xs:anyURI" schemaLocation="xs:anyURI"? /> |
 <xs:schema targetNamespace="xs:anyURI"? /> |
 other extension elements]*
 </types>
</description>

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 21 of 60

Simple Object Access Protocol / Service Oriented Architecture
Protocol (SOAP)

SOAP Version 1.2 Part 0: Primer (Second Edition)

W3C Recommendation 27 April 2007

http://www.w3.org/TR/2007/REC-soap12-part0-20070427/

SOAP Version 1.2 Part 1: Messaging Framework (Second Edition)

W3C Recommendation 27 April 2007

http://www.w3.org/TR/2007/REC-soap12-part1-20070427/

SOAP Version 1.2 is a lightweight protocol intended for exchanging structured information in a
decentralized, distributed environment. "Part 1: Messaging Framework" defines, using XML
technologies, an extensible messaging framework containing a message construct that can be
exchanged over a variety of underlying protocols. SOAP is fundamentally a stateless, one-way
message exchange paradigm, but applications can create more complex interaction patterns (e.g.,
request/response, request/multiple responses, etc.) by combining such one-way exchanges with
features provided by an underlying protocol and/or application-specific information. SOAP is silent on
the semantics of any application-specific data it conveys, as it is on issues such as the routing of SOAP
messages, reliable data transfer, firewall traversal, etc. However, SOAP provides the framework by
which application-specific information may be conveyed in an extensible manner.

3.1.4 SOAP Messages
A SOAP message is specified as an XML infoset whose comment, element, attribute,
namespace and character information items are able to be serialized as XML 1.0.

 SOAP Envelope - The SOAP
Envelope element information item
has: A [local name] of Envelope; A
[namespace name] of
http://www.w3.org/2003/05/soap-
envelope; Zero or more namespace-
qualified attribute information items
amongst its [attributes] property; One
or two element information items in its
[children] property in order as follows:
An optional Header element
information item; A mandatory Body
element information item. (See Figure
2)

 Figure 2. SOAP Message Structure from
http://www.w3.org/TR/2007/REC-soap12-
part0

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 22 of 60

 SOAP Header - The SOAP Header element information item provides a
mechanism for extending a SOAP message in a decentralized and modular way.
The SOAP Header element is optional. A SOAP header is an extension
mechanism that provides a way to pass information in SOAP messages that is not
application payload. Such "control" information includes, for example, passing
directives or contextual information related to the processing of the message. This
allows a SOAP message to be extended in an application-specific manner.

 SOAP Body - A SOAP body provides a mechanism for transmitting information to
an ultimate SOAP receiver. The SOAP body is the mandatory element within the
SOAP env:Envelope, which implies that this is where the main end-to-end
information conveyed in a SOAP message must be carried.

 SOAP Fault - A SOAP fault is used to carry error information within a SOAP
message. To be recognized as carrying SOAP error information, a SOAP
message MUST contain a single SOAP Fault element information item as the only
child element information item of the SOAP Body.

3.1.5 SOAP - Remote Procedure Calls
One of the design goals of SOAP Version 1.2 is to encapsulate remote procedure call
functionality using the extensibility and flexibility of XML. To invoke a SOAP RPC, the
following information is needed:

 The address of the target SOAP node.
 The procedure or method name.
 The identities and values of any arguments to be passed to the procedure or

method together with any output parameters and return value.
 A clear separation of the arguments used to identify the Web resource which is

the actual target for the RPC, as contrasted with those that convey data or control
information used for processing the call by the target resource.

 The message exchange pattern which will be employed to convey the RPC,
together with an identification of the so-called "Web Method" (on which more
later) to be used.

 Optionally, data which may be carried as a part of SOAP header blocks.

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 23 of 60

Semantic Annotations for WSDL and XML Schema (SAWSDL)
W3C Recommendation 28 August 2007

http://www.w3.org/TR/2007/REC-sawsdl-
20070828/

The W3C recommendation Semantic Annotations for WSDL and XML Schemas (SAWSDL) defines
a set of extension attributes for WSDL and XML Schema providing for incorporating semantics.
SAWSDL describes how semantic annotation is accomplished using ontologies and provides an
annotation mechanism where concepts from ontologies can be referenced from within WSDL and
XML schema.

3.1.6 Annotation Mechanisms
WSDL utilizes five components to describe service definitions. Element Declaration, Type
Definition, and Interface deal with the abstract definition of a service. Binding and Service
deal with service implementation. SAWSDL focuses on semantically annotating the abstract
definition of a service to support dynamic discovery, composition, and invocation of services.
SAWSDL defines three extension attributes:

 Model Reference - specifies the association between a WSDL or XML Schema
component and a concept in some semantic model. It is used to annotate XML
Schema type definitions, element declarations, and attribute declarations as well
as WSDL interfaces, operations, and faults. The modelReference attribute is a set
of zero or more URIs, separated by whitespaces, that identify concepts in a
semantic model. Each URI is a pointer to a concept in a semantic model and is
intended to provide semantic information about the WSDL or XML Schema
component being annotated.

 Schema Mapping (liftingSchemaMapping, loweringSchemaMapping) - are added
to XML Schema element declarations and type definitions for specifying mappings
between semantic data and XML. Schema mapping relates the instance data
defined by an XML Schema document with some semantic data defined by a
semantic model. Schema mapping annotations address post-discovery issues in
using a Web service. In general, lifting schema mappings lift data from XML to a
semantic model, whereas lowering schema mappings lower data from a semantic
model into an XML structure.

3.1.7 Annotating WSDL
A model reference is a new property for WSDL. The modelReference annotation on
xs:element, xs:complexType, xs:simpleType and xs:attribute defines the semantics of the
input or output data of WSDL operations. A modelReference on a WSDL operation or fault
gives semantic information about that operation, while a modelReference on a WSDL
interface provides a classification or other semantic descriptions of the interface.

 Interfaces – A modelReference on a WSDL interface element provides a
reference to a concept or concepts in a semantic model that describe the
Interface. For taxonomies whose elements are not identifiable with a URI, the
modelReference can point to a simple semantic model that contains the taxonomy
reference information. SAWSDL does not constrain the form of the semantic
model for categorization or that of any other semantic model specified in a
modelReference on an interface.

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 24 of 60

...

<wsdl:interface name=“Order”
sawsdl:modelReference=“http://example.org/categorization/products/el
ectronics”>

 ...

</wsdl:interface>

...

 Operations – The annotation of an operation element carries a reference to a
concept in a semantic model that provides a high level description of the
operation, specifies its behavioral aspects or includes other semantic definitions.
Although inputs and outputs provide one way of capturing the semantics of an
operation, a simple semantic annotation indicating the intended behavior of a
given operation as a verb concept may be useful at certain times. During service
discovery, this verb provides a coarse indication of whether this service is a match
for a given request. Operations can also be annotated with category references.
These are separate from any categorizations applied to other WSDL components.

...

<wsdl:operation name=”order” pattern=”http://www.w3.org/ns/wsdl/in-
out”

sawsdl:modelReference=”http://www.w3.org/2002/ws/sawsdl/spec/ontology
/purchaseorder#RequestPurchaseOrder”>

 <wsdl:input element=”OrderRequest”/>

 <wsdl:output element=”OrderResponse”/>

</wsdl:operation>

...

 Faults – The annotation of the fault element carries a reference to a concept in a
semantic model that provides a high level description of the fault and can include
other semantic definitions. The fault annotation does not describe the fault
message, which should be annotated in the XML schema.

...

<wsdl:interface name=”Order”>

 <wsdl:fault name=”ItemUnavailableFault”
element=”AvailabilityInformation”

sawsdl:modelReference=”http://www.w3.org/2002/ws/sawsdl/spec/ontology/p
urchaseorder#ItemUnavailable”/>

 ...

</wsdl:interface>

3.1.8 Annotating XML Schema
SAWSDL supports both model references and schema mappings to annotate XML Schema
(see Annotation Mechanisms).

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 25 of 60

 Simple Types - Simple types can be annotated by including a modelReference
attribute on the xs:simpleType element.

...

<xs:simpleType name="Confirmation"

sawsdl:modelReference="http://www.w3.org/2002/ws/sawsdl/spec/ontology/pur
chaseorder#OrderConfirmation">

 ...

</xs:simpleType>

...

 Complex Types – Complex types can be annotated using Bottom Level
Annotation (at member element or attribute level) or Top Level Annotation (at
complex type container level). In bottom level annotation, all the member
elements and attributes in a complex type can be annotated. In top level
annotation, the complex types themselves are annotated with model references. If
multiple concepts describe the complex type, all of their URIs can be included in
the value of the modelReference attribute.

Bottom Level Annotation

...

<xs:complexType>

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="quantity" type="xs:integer"

sawsdl:modelReference="http://www.w3.org/2002/ws/sawsdl/spec/ontology/pur
chaseorder#Quantity"/>

 <xs:element name="UPC" type="xs:string"

sawsdl:modelReference="http://www.w3.org/2002/ws/sawsdl/spec/ontology/pur
chaseorder#ProductCode"/>

 </xs:sequence>

</xs:complexType>

...

Top Level Annotation

...

<xs:complexType
sawsdl:modelReference="http://www.w3.org/2002/ws/sawsdl/spec/ontology/purch
aseorder#OrderRequest">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="quantity" type="xs:integer"

 <xs:element name="UPC" type="xs:string"

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 26 of 60

 </xs:sequence>

</xs:complexType>

...

 Elements – An element declaration can be annotated by including a
modelReference on the xs:element element.

...

<xs:element name="OrderRequest"

sawsdl:modelReference="http://www.w3.org/2002/ws/sawsdl/spec/ontology/purch
aseorder#OrderRequest">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="customerNo" type="xs:integer" />

 <xs:element name="orderItem" type="item" minOccurs="1"
maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

</xs:element>

...

 Attributes - An attribute can be annotated by including a modelReference on the
xs:attribute element.

...

<xs:attribute name="quantity" type="xs:integer"

sawsdl:modelReference="http://www.w3.org/2002/ws/sawsdl/spec/ontology/purch
aseorder#Quantity"/>

...

 Schema Mapping - liftingSchemaMapping and loweringSchemaMapping are
used to associate a schema type or element with a mapping to an ontology.
Schema mappings may be added to global type definitions (complex or simple) as
well as to global element declarations. A mapping referenced by
liftingSchemaMapping defines how an XML instance document conforming to the
element or type defined in a schema is transformed to data that conforms to some
semantic model, i.e. the output of the transformation process will be semantic
data. A mapping referenced by loweringSchemaMapping defines how data in a
semantic model is transformed to XML instance data.

Lifting Schema Mapping

...

<xs:element name="OrderResponse" type="confirmation" />

<xs:simpleType name="confirmation"

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 27 of 60

sawsdl:modelReference="http://www.w3.org/2002/ws/sawsdl/spec/ontology/purch
aseorder#OrderConfirmation"

sawsdl:liftingSchemaMapping="http://www.w3.org/2002/ws/sawsdl/spec/mapping/
Response2Ont.xslt">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Confirmed" />

 <xs:enumeration value="Pending" />

 <xs:enumeration value="Rejected" />

 </xs:restriction>

</xs:simpleType>

...

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 28 of 60

Representational State Transfer (REST) Web Services
Architectural Styles and the Design of Network-based Software Architectures

Roy Fielding Ph.D. Dissertation, University of California, Irvine, 2000

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

The Representational State Transfer (REST) style is an abstraction of architectural elements within a
distributed hypermedia system. REST ignores the details of component implementation and protocol
syntax in order to focus on the roles of components, the constraints upon their interaction with other
components, and their interpretation of significant data elements. It encompasses the fundamental
constraints upon components, connectors, and data that define the basis of the Web architecture, and
thus the essence of its behavior as a network-based application.

REST-style architectures consist of clients and servers. Clients initiate requests to servers; servers
process requests and return appropriate responses. Requests and responses are built around the transfer
of representations of resources. A resource can be essentially any coherent and meaningful concept
that may be addressed. A representation of a resource is typically a document that captures the current
or intended state of a resource. The client begins sending requests when it is ready to make the
transition to a new state. While one or more requests are outstanding, the client is considered to be in
transition. The representation of each application state contains links that may be used next time the
client chooses to initiate a new state transition.

In HTTP(S) based RESTful web services, the emphasis is on simple point-to-point communication
over HTTP using XML. REST is a hybrid style derived from several of the network-based
architectural styles and combined with additional constraints that define a uniform connector interface.
REST architectures that use the HTTP application protocol can be summed up as using five verbs
(GET, HEAD, POST, PUT, and DELETE methods from HTTP 1.1) and the nouns, which are the
resources available on the network (referenced in the URI). The verbs have the following operational
equivalents:

HTTP CRUD Equivalent Safe Idempotent

GET Read

HEAD Get metadata

POST Create, Update, Delete

PUT Create, Update

DELETE Delete

In the REST “circles” the convention has been established that the GET and HEAD methods should
not have the significance of taking an action other than retrieval i.e. they don't have side effects. These
methods ought to be considered "safe". Methods can also have the property of "idempotence" in that
(aside from error or expiration issues) the side-effects of two or more identical requests is the same as
for a single request. The methods GET, HEAD, PUT and DELETE share this property.

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 29 of 60

3.1.9 Data Elements
REST data elements focus on a shared understanding of data types with metadata, but limit the
scope of what is revealed to a standardized interface. REST components communicate by
transferring a representation of a resource in a format matching one of an evolving set of
standard data types, selected dynamically based on the capabilities or desires of the recipient
and the nature of the resource.

Data Element Modern Web Examples

resource the intended conceptual target of a hypertext reference

resource identifier URL, URN

representation HTML document, JPEG image

representation metadata media type, last-modified time

resource metadata source link, alternates, vary

control data if-modified-since, cache-control

 Figure 3. REST Data Elements from http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

3.1.10 Resources and Resource Identifiers
The key abstraction of information in REST is a resource. Any information that can be named
can be a resource. A resource is a conceptual mapping to a set of entities, not the entity that
corresponds to the mapping at any particular point in time. REST uses a resource identifier to
identify the particular resource involved in an interaction between components. REST
connectors provide a generic interface for accessing and manipulating the value set of a
resource, regardless of how the membership function is defined or the type of software that is
handling the request. The naming authority that assigned the resource identifier, making it
possible to reference the resource, is responsible for maintaining the semantic validity of the
mapping over time.

3.1.11 Representations
REST components perform actions on a resource by using a representation to capture the
current or intended state of that resource and transferring that representation between
components. A representation consists of data, metadata describing the data, and, on occasion,
metadata to describe the metadata (usually for the purpose of verifying message integrity).
Metadata is in the form of name-value pairs, where the name corresponds to a standard that
defines the value's structure and semantics. Response messages may include both
representation metadata and resource metadata: information about the resource that is not
specific to the supplied representation. Control data defines the purpose of a message between
components, such as the action being requested or the meaning of a response. It is also used to
parameterize requests and override the default behavior of some connecting elements.

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 30 of 60

3.1.12 Connectors
REST uses various connector types to encapsulate the activities of accessing resources and
transferring resource representations. The connectors present an abstract interface for
component communication, enhancing simplicity by providing a clean separation of concerns
and hiding the underlying implementation of resources and communication mechanisms.

All REST interactions are stateless. This restriction accomplishes four functions: 1) it removes
any need for the connectors to retain application state between requests, thus reducing
consumption of physical resources and improving scalability; 2) it allows interactions to be
processed in parallel without requiring that the processing mechanism understand the
interaction semantics; 3) it allows an intermediary to view and understand a request in
isolation, which may be necessary when services are dynamically rearranged; and, 4) it forces
all of the information that might factor into the reusability of a cached response to be present
in each request.

Connector Modern Web Examples

client Libwww, libwww-perl, Apache HttpComponents (java)

server Libwww, Apache API, NSAPI, ISAPI, WSGI (Python)

cache Browser cache, Web Proxy servers, Akamai cache network

resolver Bind (DNS lookup library)

tunnel SOCKS, SSL after HTTP CONNECT

 Figure 4. REST Connectors from http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

3.1.13 Components
REST components are typed by their roles in an overall application action. A user agent uses a
client connector to initiate a request and becomes the ultimate recipient of the response. An
origin server uses a server connector to govern the namespace for a requested resource. It is
the definitive source for representations of its resources and must be the ultimate recipient of
any request that intends to modify the value of its resources. Intermediary components act as
both a client and a server in order to forward, with possible translation, requests and
responses.

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 31 of 60

Component Modern Web Examples

origin server Apache httpd, Microsoft IIS

gateway Squid, CGI, Reverse Proxy

proxy CERN Proxy, Netscape Proxy, Gauntlet

user agent Browsers (e.g. Firefox), “search bots”/“spiders” (e.g. GoogleBot)

 Figure 5. REST Components from http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 32 of 60

Web Application Description Language (WADL)
Web Application Description Language

W3C Member Submission 31 August 2009

http://www.w3.org/Submission/wadl/

An increasing number of Web-based enterprises are developing HTTP-based applications that provide
programmatic access to their internal data. Typically these applications are described using textual
documentation that is sometimes supplemented with more formal specifications such as XML schema
for XML-based data formats. WADL is designed to provide a machine process-able description of
such HTTP-based Web applications. Oracle, formerly Sun Microsystems, has submitted the Web
Application Description Language (WADL) to the W3C for consideration.

WADL provides mechanisms for describing Web applications in a machine processable format, this
includes:

 Set of resources - Analogous to a site map showing the resources on offer.
 Relationships between resources - Describing the links between resources, both

referential and causal.
 Methods that can be applied to each resource - The HTTP methods that can be

applied to each resource, the expected inputs and outputs and their supported
formats.

 Resource representation formats - The supported MIME types and data schemas
in use.

WADL is intended to provide a common foundation for individual applications and protocols to reuse
and extend. WADL highlights several use cases not supported by current state-of-the-art Web
application description:

 Application Modeling and Visualization - Support for development of resource
modeling tools for resource relationship and choreography analysis and manipulation.

 Code Generation - Automated generation of stub and skeleton code and code for
manipulation of resource representations.

 Configuration - Configuration of client and server using a portable format.

WADL defines the following components to describe a Web application:
 Application – The application element forms the root of a WADL description
 Documentation - Each WADL-defined element can have one or more

child doc elements that can be used to document that element.
 Grammars – The grammars element acts as a container for definitions of the format

of data exchanged during execution of the protocol described by the WADL
document. Such definitions may be included inline or by reference using
the include element.

 Resources – The resources element acts as a container for the resources provided
by the application.

 Resource Type - A resource_type element describes a set of methods that,
together, define the behavior of a type of resource. A resource_type may be used to
define resource behavior that is expected to be supported by multiple resources.

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 33 of 60

 Method - A method element describes the input to and output from an HTTP protocol
method that may be applied to a resource. A method element can either be a method
definition or a reference to a method defined elsewhere.

 Request - A request element describes the input to be included when applying an
HTTP method to a resource.

 Response – A response element describes the output that results from performing
an HTTP method on a resource.

 Parameter - A param element describes a parameterized component of its parent
element. A param element can either be a parameter definition or a reference to a
parameter defined elsewhere.

 Option - An option element defines one of a set of possible values for the parameter
represented by its parent param element.

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 34 of 60

4 MGH Center for the Development of a Virtual Tumor
(CViT) Overview

Digital Model Repository (DMR)

• RDF-based Semantic database to store models and model metadata
• RDF links to other web-based resources produces a semantic graph

CViT.org Web Application

• Provides the graphical user interface to the repository
• eLicensing Workflow protects intellectual property
• Scientists can add new models, share models, and discuss model simulations
• Allows for execution of the models in the repository

caBIG DMR Data Service

• Silver-Level Compliant caBIG Data Service
• Securely access DMR through caGrid
• eLicensing Workflow preserved through caGrid

Computational Model Execution Framework

• Models annotated with execution metadata
• Grid-based execution of the models in the repository

MGH-CViT DMR and CMEF Combined Architecture
The MGH-CViT DMR and CMEF together can either run on a single computer, or on the production
servers at MGH/CViT, the DMR (plus caBIG Data Service) is installed on one computer, the CMEF is
installed on a second computer, and additional Condor grid execution nodes are installed to handle
model execution. The CMEF computer can be configured to execute models (as a grid execution node)
or forward jobs to separate nodes.

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 35 of 60

The MGH-CViT DMR uses Resource Description Framework (RDF) as the foundational means to
model and link entities corresponding to real-world concepts, for the DMR, it uses RDF to represent
computational models of cancer and links these models to publications, experiments, and data built
into a provenance structure. RDF is a standard model for data interchange on the Web. RDF facilitates
data merging even when the underlying schemas differ and supports the evolution of schemas over time
without requiring changes to the persistent storage and APIs accessing the data. In general, RDF is more
robust against schema evolution than relational and XML approaches In addition, RDF allows structured and
semi-structured data to be mixed, exposed, and shared across different applications and linked with external
websites. RDF extends the linking structure of the Web to use URIs to name the relationship between things
as well as the two ends of the link (referred to as a “triple”).

Component Description

Dojo

The Dojo Toolkit is an open source modular JavaScript library designed to ease the rapid development of
cross platform, JavaScript/Ajax based applications and web sites. Dojo is available under either the terms of
the modified BSD license or the Academic Free License version 2.1. (Dojo Foundation 2009). The CViT
DMR utilizes Dojo to facilitate interactive user interfaces and data transfer.

Drupal

Drupal is a free software package that allows a community of users to easily publish, manage and organize a
wide variety of content on a website. Drupal is open-source software distributed under the GPL ("GNU
General Public License") and is maintained and developed by a community of thousands of users and
developers (Drupal 2009). CViT’s DMR utilizes custom Drupal modules to support collaboration and the
CViT community.

Anzo

Anzo is an open source enterprise-featured RDF store and service oriented middleware platform that
provides support for multiple users, distributed clients, offline work, real-time notification, named-
graph modularization, versioning, access controls, and transactions with preconditions. At the center of
an Anzo system is a server capable of storing many millions of RDF triples in an underlying relational
database (OpenAnzo 2009). CViT’s DMR was one of the first productions systems to utilize Anzo for
RDF storage.

Apache
HTTPD

The Apache HTTP Server Project is an effort to develop and maintain an open-source HTTP server for
modern operating systems including UNIX and Windows. The goal of this project is to provide a secure,
efficient and extensible server that provides HTTP services in sync with the current HTTP standards. Apache
has been the most popular web server on the Internet since April 1996 (Apache Software Foundation 2009).
The CViT Digital Model Repository employs the Apache HTTPD server along with Drupal and Dojo to
manage the Web-based interface to CViT.

MySQL

MySQL is a relational database management system (RDBMS) which has more than 11 million installations.
The project's source code is available under terms of the GNU General Public License, as well as under a
variety of proprietary agreements (MySQL 2009). While IBM DB2 is the primary production database for
the CViT Digital Model Repository, MySQL has been successfully used in development and test
installations of the DMR.

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 36 of 60

MGH-CViT DMR and CMEF (Combined Domain Model)
The conceptual data model of DMR and CMEF is shown in the diagram below. In the following tables we provide details about the entities and attributes of
this model.

TUMOR FP7-247754 D4.1.1 Report

Entry

Description An entry in the repository contains relevant, uploaded information regarding a
project. Entries can only be created by Principal Investigators (PIs). With a
Licensing Officer's (LO's) approval a PI can have his entry published to other
users of the repository. Designated contributors can annotate entries with
metadata.

NCI Concept Code C47885

id

Description A unique entry identifier

Data Type String

NCI Concept Code C25364

title

Description A name to identify the entry

Data Type String

NCI Concept Code C42774

description

Description A paragraph explaining why the entry exists and what project it contains. This
defines the scope for further data uploaded to the entry.

Data Type String

NCI Concept Code C25365

abstractText

Description A brief summary of the project's description

Data Type String

NCI Concept Code C60765

concept

Description Background and basic idea of this project

Data Type String

NCI Concept Code C48910

hypothesis

Description What assumption(s) will be proved by this experiment

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 38 of 60

Data Type String

NCI Concept Code C28362

conclusion

Description The outcome and significance of the project

Data Type String

NCI Concept Code C54033

note

Description Space for adding notes

Data Type String

NCI Concept Code C42619

keywords

Description List of 3‐5 searchable terms characterizing the entry

Data Type Collection<String>

NCI Concept Code C43513

Associations

fundingOrganization

Description A source of funding for this particular entry

Data Type Organization

NCI Concept Code C19711, C17769

contributors

Description Repository users with write access to this entry

Data Type Collection<Person>

NCI Concept Code C25190

references

Description Upload, link to, or select (link within repository) references

Data Type Collection<Reference>

NCI Concept Code C25641

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 39 of 60

data

Description Data files can be included in an entry by way of upload, http reference, or
internal repository reference

Data Type Collection<DataClassification>

NCI Concept Code C25474

types

Description Model entry classification denotes the origin of the data

Data Type Collection<EntryType>

Value Domain Computation | Invitro | Invivo | Clinical

NCI Concept Code C25284, C25474, C47885

categories

Description A collection of values from the Entry Category enumeration describing the Entry.

Data Type Collection<EntryClassification>

NCI Concept Code C25372, C47885

Person

Description User profile

NCI Concept Code C25190

id

Description A unique user identifier

Data Type String

NCI Concept Code C25364

userId

Description The persons DMR user id

Data Type String

NCI Concept Code C42694

title

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 40 of 60

Description Suffix titles. Usually Ph.D. or M.D.

Data Type String

Value Domain Ph.D. | M.D. | Sc.D.

NCI Concept Code C25354

firstName

Description User's first name

Data Type String

NCI Concept Code C40974

lastName

Description User's last name

Data Type String

NCI Concept Code C40975

phone

Description Phone number

Data Type String

NCI Concept Code C40978

emailAddress

Description Email address

Data Type String

NCI Concept Code C42775

website

Description User's homepage (URL)

Data Type String

NCI Concept Code C19467

depiction

Description User's icon/picture (URL)

Data Type String

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 41 of 60

NCI Concept Code C54273

research

Description Type of research being done by user. (used in cvit.org/mashup)

Data Type String

Value domain experimental | computational | both | nci

NCI Concept Code C25284, C15429

geoCode

Description Coordinates for placing organizations on cvit.org/mashup

Data Type String

NCI Concept Code C25341, C68643, C68642

position

Description Job title

Data Type String

NCI Concept Code C19067, C25193

fax

Description Fax number

Data Type String

NCI Concept Code C42879

address

Description Current mailing address

Data Type String

NCI Concept Code C70946

researchInterest

Description Several paragraphs describing current research interests

Data Type String

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 42 of 60

NCI Concept Code C48910, C15429

group

Description Tracks groups of cvit users for cvit.org/teampages

Data Type String

Value Domain Main | AdvisoryBoard | NCI | ICBP | Unlisted

NCI Concept Code C41167

seniority

Description Tracks a user's expertise level

Data Type String

Value Domain Faculty | Postdoc | GradStudent | Other

NCI Concept Code C25554, C25193

Associations

entries

Description List of Entries for which this Person is listed as a contributor. See:
Entry.contributors

Data Type Collection<Entry>

NCI Concept Code C47885

organization

Description Institution with which user is affiliated. Within the DMR, users can only belong
to one organization.

Data Type Organization

NCI Concept Code C19711

EntryCategory

Description Enumerates a set of classifications to facilitate discovery and retrieval of entries.
Each entry may be tagged with an Entry Category so that it can be found in the
classification tree.

NCI Concept Code C47885, C25372

id

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 43 of 60

Description A unique data classification identifier

Data Type String

NCI Concept Code C25364

name

Description The name for the category

Data Type String

NCI Concept Code C42614

Associations

entries

Description List of Entries for which this EntryCategory is relevant

Data Type Collection<Entry>

NCI Concept Code C47885

EntryType

Description Model entry classification denotes the origin of the data. (Computation } Invitro |
Invivo | Clinical)

NCI Concept Code C47885, C25474, C25284

id

Description A unique data classification identifier

Data Type String

NCI Concept Code C25364

name

Description The name of the Entry Type. One of In silico, In vitro, In vivo, Clinical

Data Type String

NCI Concept Code C42614

Associations

entries

Description List of Entries for which this EntryType is relevant.

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 44 of 60

Data Type Collection<Entry>

NCI Concept Code C47885

DataClassification

Description Data files can be included in an entry by way of upload, http reference, or internal
repository reference.

NCI Concept Code C25474,C25161

id

Description A unique data classification identifier

Data Type String

NCI Concept Code C25364

title

Description Name of the upload

Data Type String

NCI Concept Code C42774

description

Description A brief description of the file's contents

Data Type String

NCI Concept Code C25365

source

Description Link to the file itself (URL)

Data Type String

NCI Concept Code C42743

comment

Description Any additional user input

Data Type String

NCI Concept Code C25393

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 45 of 60

Associations

entry

Description List of Entries for which this Data is relevant. See: Entry.data

Data Type Collection<Entry>

NCI Concept Code C47885

Algorithm: DataClassification

Description Tag indicates uploaded data is an algorithm

NCI Concept Code C16275

SourceCode: DataClassification

Description Tag indicates uploaded data is source code

NCI Concept Code C47901

Parameters: DataClassification

Description Tag indicates uploaded data is a set of parameters

NCI Concept Code C48913

Image: DataClassification

Description Tag indicates uploaded data is an image

NCI Concept Code C48179

Movie: DataClassification

Description Tag indicates uploaded data is a movie (e.g., simulation, microscopy)

NCI Concept Code ObjectClassConceptCode: C75001

ExperimentalData: DataClassification

Description Tag indicates uploaded data is experimental data

NCI Concept Code ObjectClassConceptCode: C25474

ObjectClassQualifierConceptCode1: C42790

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 46 of 60

Reference

Description Link to a bibliographical reference. This can point to a PDF for upload, a
PubMed id, or a reference already in the repository.

NCI Concept Code C25641

id

Description A unique reference identifier

Data Type String

NCI Concept Code C25364

title

Description Name of reference

Data Type String

NCI Concept Code C42774

description

Description Details about/in the reference

Data Type String

NCI Concept Code C25365

source

Description Link to the reference file (URL)

Data Type String

NCI Concept Code C42743

comment

Description Additional comments from user

Data Type String

NCI Concept Code C25393

Associations

entries

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 47 of 60

Description List of Entries for which this Reference is relevant. See: Entry.reference

Data Type Collection<Entry>

NCI Concept Code C47885

Book: Reference

Description Tag indicates uploaded reference is a book

NCI Concept Code C16360

Paper: Reference

Description Tag indicates uploaded reference is a paper

NCI Concept Code C47902

Review: Reference

Description Tag indicates uploaded reference is a review

NCI Concept Code C47902,C42729

Organization

Description An institution. Most of these will be colleges, universities, and research institutes.
Each user in the repository is affiliated with one and only one organization. Each
organization has one or more licensing officers to approve of user's licensing
requests.

NCI Concept Code C19711

id

Description A unique organization identifier

Data Type String

NCI Concept Code C25364

name

Description Name of the organization

Data Type String

NCI Concept Code C42614

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 48 of 60

description

Description Brief description of the organization

Data Type String

NCI Concept Code C25365

website

Description Organization's homepage (URL)

Data Type String

NCI Concept Code C19467

geoCode

Description Geographical location of organization in “lat, long” format. Used in
cvit.org/mashup

Data Type String

NCI Concept Code C25341, C68643, C68642

Associations

members

Description People associated with the Organization. Within the DMR, users can only belong
to one Organization. See: Person.organization

Data Type Collection<Person>

NCI Concept Code C25190

fundedEntries

Description An entry funded by a particular organization

Data Type Collection<Entry>

NCI Concept Code C47885,C17769

ComputationalModel: DataClassification

Description Extends from DataClassification to encapsulate the content and metadata of an
executable computational model

name

Description The name of the model

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 49 of 60

Data Type String

description

Description Describes the operation of the model

Data Type String

commandLine

Description Command line used to execute the model. Values enclosed in angle brackets are
replaced by corresponding ParameterValues before the model is executed

Data Type String

version

Description Software version of the computational model

Data Type String

Associations

modelFiles

Description Source files that constitute the computational model and requisite executable files.
For example, a Java archive or a program configuration file

Data Type Collection<File>

modelDocumentation

Description User’s Guide or documentation describing the use of the computational model

Data Type File

modelComputer

Description Operating system and CPU constraints required by the model

Data Type ComputingPlatform

modelProgram

Description Program execution language constraints (Java, Perl, R, C++, etc.) required by the
model

Data Type ProgrammingPlatform

modelParameter

Description Program parameters that can be set for the model

Data Type Collection<Parameter>

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 50 of 60

File

Description References a file

Name

Description The file’s name

Data Type String

Source

Description The file’s location

Data Type URL

ComputingPlatform

Description Describes model program execution hardware constraints

operatingSystemType

Description Indicates the operating system required to run the model (Any | Windows | Linux)

Data Type OperatingSystem Type

processorArchitecture

Description Indicates the required CPU type to run the model(Any | x86 | x64)

Data Type Processor Type

ProgrammingPlatform

Description Describes model program execution environment constraints

languageType

Description Classifies the programming language of the model (C | C++ | Java | R)

Data Type Program Type

languageVersion

Description The minimum version of the programming language supported by the model

Data Type String

Parameter

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 51 of 60

Description Defines the metadata for describing an individual input value for a computational
model. Parameters may be input files or values entered on the command line. See
ComputationalModel::commandLine

Name

Description The name of the parameter – for a file, it should be the file’s name, for a command
line parameter, it should match the name specified in commandLine, for example
“<name>”

Data Type String

Description

Description Description of the parameter or value constraints

Data Type String

dataType

Description Defines the required parameter value type (Text | Integer | Float | File)

Data Type Data Type

Prefix

Description A command line prefix that will be added if the value is present. For example “-F
“ or “-o “

Data Type String

Choices

Description Set of values that constrain the input parameter

Data Type Collection<String>

defaultValue

Description Default value used during model execution if no value is specified

Data Type String

isOptional

Description Indicates that the parameter value can be omitted (if true)

Data Type Boolean

isFile

Description Indicates that the parameter value is a file

Data Type Boolean

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 52 of 60

ComputationJob: DataClassification

Description Extends from DataClassification to encapsulate the content and metadata of an
executing (or executed) computational model

dateSubmitted

Description The date/time that the computation job was submitted for execution

Data Type Date

dateCompleted

Description The date/time that the computation job execution completed

Data Type Date

jobNumber

Description System-assigned number identifying the model execution job

Data Type Integer

jobStatus

Description Result of running the model (Success | Failure)

Data Type String

userId

Description Identifier of the user who initiated the ComputationJob

Data Type String

Associations

jobParameterValue

Description Values set for each Parameter of the model for the job

Data Type Collection<ParameterValue>

jobFiles

Description Files produced by executing the model computation job, may include execution
log, console output, and output files

Data Type Collection<File>

ParameterValue

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 53 of 60

Description Value that will be utilized during the computation job for the given parameter

Value

Description Value that will be utilized during the computation job for the given parameter.
Input files should be specified by URLs

Data Type String

Associations

parameterValue

Description Parameter that this value sets

Data Type Parameter

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 54 of 60

MGH-CViT DMR TUMOR Web Service
PROVIDES READ-ONLY ACCESS TO AUTHORIZED MODELS IN DMR.

Based on the planned clinical scenarios (D2.1), the MGH-CViT Digital Model Repository must be
extended to provide the required functionality to provide the models and model metadata stored in the
CViT repository to the EU/TUMOR platform for remote execution. The TUMOR clinical scenario
indicates a read-only interface to the models, metadata, and simulation results are sufficient to support
the requirements. The TUMOR clinical scenarios do not envision altering the content of the CViT
repository.

TUMORService

Description The MGH-CViT Digital Model Repository provides authenticated access to
computational models, model metadata, and model simulation results through a
TUMOR-specific Web Service API. The TUMOR Web Service API extends the
DMR caBIG Data Service API by providing additional methods to retrieve
computational models and computation job results executed by the
Computational Model Execution Framework.

Note: All methods in the TUMORService API can be reproduced through the
“CQLQueryResults query(CQLQuery cqlQuery)” method. The
additional methods are provided for convenience.

listEntries

Enumerates the set of Entries in the DMR that the user has authorization to read.

Parameters

none

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 55 of 60

Returns

Entry[] – list of all Entries in the repository, filtered by user authorization

Exceptions

LoginException – if authenticated session has not been established.

AuthorizationException – if User does not have sufficient privilege to perform this action.

getEntry

Returns the Entry specified by the provided Entry UID.

Parameters

String entryUid – unique Entry identifier

Returns

Entry – specific Entry identified by entryUid, null if Entry does not exist

Exceptions

LoginException – if authenticated session has not been established.

AuthorizationException – if User does not have sufficient privilege to perform this action.

listDataForEntry

Enumerates the set of DataClassification associated with the given Entry UID that the user has
authorization to read.

Parameters

String entryUid – unique Entry identifier

Returns

DataClassifcation[] – array of DataClassification sub-classes that are associated with the specified
Entry, filtered by user authorization

Exceptions

LoginException – if authenticated session has not been established.

AuthorizationException – if User does not have sufficient privilege to perform this action.

getData

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 56 of 60

Returns the DataClassification specified by the provided DataClassification UID

Parameters

String dataClassificationUid – unique DataClassification identifier

Returns

DataClassification – DataClassification subclass identified by dataClassificationUid

Exceptions

LoginException – if authenticated session has not been established.

AuthorizationException – if User does not have sufficient privilege to perform this action.

listModelsForEntry

Enumerates the set of ComputationalModel associated with the given Entry UID that the user has
authorization to read.

Parameters

String entryUid – unique Entry identifier

Returns

ComputationalModel[] – array of ComputationalModel classes that are associated with the
specified Entry, filtered by user authorization

Exceptions

LoginException – if authenticated session has not been established.

AuthorizationException – if User does not have sufficient privilege to perform this action.

getModel

Returns the ComputationalModel specified by the provided ComputationalModel UID.

Parameters

String computationalModelUid – unique ComputationalModel identifier

Returns

ComputationalModel – ComputationalModel identified by computationalModelUid

Exceptions

LoginException – if authenticated session has not been established.

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 57 of 60

AuthorizationException – if User does not have sufficient privilege to perform this action.

listJobsForModel

Enumerates the set of ComputationJob associated with the given ComputationalModel UID that the user
has authorization to read.

Parameters

String computationalModelUid – unique ComputationalModel identifier

Returns

ComputationJob[] – array of ComputationJob classes associated with the specified
ComputationalModel, filtered by user authorization

Exceptions

LoginException – if authenticated session has not been established.

AuthorizationException – if User does not have sufficient privilege to perform this action.

getJob

Returns the ComputationJob specified by the provided ComputationJob UID

Parameters

String computationJobUid – unique ComputationJob identifier

Returns

ComputationJob – ComputationJob identified by computationJobUid

Exceptions

LoginException – if authenticated session has not been established.

AuthorizationException – if User does not have sufficient privilege to perform this action.

listReferencesForEntry

Enumerates the set of Reference associated with the given Entry UID that the user has authorization to
read.

Parameters

String entryUid – unique Entry identifier

Returns

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 58 of 60

Reference[] – array of Reference sub-classes that are associated with the specified Entry, filtered
by user authorization

Exceptions

LoginException – if authenticated session has not been established.

AuthorizationException – if User does not have sufficient privilege to perform this action.

getReference

Returns the Reference specified by the provided Reference UID

Parameters

String referenceUid – unique Reference identifier

Returns

Reference – Reference sub-class identified by referenceUid

Exceptions

LoginException – if authenticated session has not been established.

AuthorizationException – if User does not have sufficient privilege to perform this action.

listFundingOrganizationsForEntry

Enumerates the set of Organizations associated with the given Entry UID under the role ‘funding
organization’

Parameters

String entryUid – uniqe Entry identifier

Returns

Organization[] – array of Organization classes associated with the specified Entry as a Funding
Organization, filtered by user authorization

Exceptions

LoginException – if authenticated session has not been established.

AuthorizationException – if User does not have sufficient privilege to perform this action.

getOrganization

Returns the Organization specified by the provided Organization UID

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 59 of 60

Parameters

String organizationUid – unique Organization identifier.

Returns

Organization – Organization identified by organizationUid, null if Organization does not exist.

Exceptions

LoginException – if authenticated session has not been established.

AuthorizationException – if User does not have sufficient privilege to perform this action.

listContributorsForEntry

Enumerates the set of Person associated with the given Entry UID under the role ‘contributor’

Parameters

String entryUid – unique Entry identifier

Returns

Person[] – array of Person classes associated with the Entry as a Contributor, filtered by user
authorization.

Exceptions

LoginException – if authenticated session has not been established.

AuthorizationException – if User does not have sufficient privilege to perform this action.

getPerson

Returns the Person specified by the provided Person UID

Parameters

String personUid – unique Person identifier

Returns

Person – Person class specified by persionUid, null if Person does not exist.

Exceptions

LoginException – if authenticated session has not been established.

AuthorizationException – if User does not have sufficient privilege to perform this action.

TUMOR FP7-247754 D4.1.1 Report

31/03/2011 Page 60 of 60

query

Executes a caBIG Query Language (CQL) query against the information in the repository. Only records
that the User has read access to will be returned in the result set.

Parameters

CQLQuery cqlQuery – the CQL query to execute against the repository.

Returns

CQLResult – the result of executing the query against the repository.

Exceptions

LoginException – if authenticated session has not been established.

AuthorizationException – if User does not have sufficient privilege to perform this action.

IllegalArgumentException – if CQLQuery is improperly formatted.

See Also

DMR Use Case #3.8

