
 This project has received funding from the European Union’s Seventh Programme for research,
technological development and demonstration under grant agreement No 270089.

Deliverables No. 3.5

Final System Architecture

Grant Agreement No.: 270089

Deliverable No.: D3.5

Deliverable Name: Final System Architecture

Contractual Submission Date: 31/01/2015

Actual Submission Date: 31/01/2015

Dissemination Level

PU Public

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission
Services)

X

CO Confidential, only for members of the consortium (including the Commission
Services)

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 2 of 81

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: p-medicine

Project Full Name: From data sharing and integration via VPH models to
personalized medicine

Deliverable No.: D3.5

Document name: Final System Architecture

Nature (R, P, D, O)1 R

Dissemination Level (PU, PP,
RE, CO)2

RE

Version: 1.0

Actual Submission Date: 31/01/2015

Editor:
Institution:
E-Mail:

Stelios Sfakianakis

FORTH-ICS

ssfak@ics.forth.gr

ABSTRACT:

This document presents the final design for the p-medicine architecture. We describe the
generic context of personalized medicine and the specific application domains of the p-
medicine platform. The different architectural elements are then classified into these application
domains and their interfaces and interactions are fully described based on the input of the other
work packages.

KEYWORD LIST: architecture, domain driven design, programmatic interfaces, REST

The research leading to these results has received funding from the European Community's
Seventh Framework Programme (FP7/2007-2013) under grant agreement no 270089.

The author is solely responsible for its content, it does not represent the opinion of the
European Community and the Community is not responsible for any use that might be made
of data appearing therein.

1 R=Report, P=Prototype, D=Demonstrator, O=Other
2 PU=Public, PP=Restricted to other programme participants (including the Commission Services), RE=Restricted
to a group specified by the consortium (including the Commission Services), CO=Confidential, only for members

of the consortium (including the Commission Services)

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 3 of 81

MODIFICATION CONTROL

Version Date Status Author

0.1 13/03/2014 Draft Stelios Sfakianakis, FORTH

0.2 22/04/2014 Draft Stelios Sfakianakis, FORTH

0.4 23/04/2014 Draft Stelios Sfakianakis, FORTH

0.5 30/07/2014 Draft Stelios Sfakianakis, FORTH

0.6 25/01/2015 Pre-final Stelios Sfakianakis, FORTH

1.0 31/01/2015 Final Stelios Sfakianakis, FORTH

List of contributors

 Stelios Sfakianakis, FORTH

 Alberto Anguita, UPM

 Elias Neri, Custodix

 Jordi Mares, UCL

 Juliusz Pucacki, PSNC

 Gabriele Weiler, FhG-IBMT

 George Zacharioudakis, FORTH

 Manolis Tsiknakis, FORTH

 Aisan Maghsoodi, Philips

 Xaris Kondylakis, FORTH

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 4 of 81

Contents

1 EXECUTIVE SUMMARY .. 6

2 INTRODUCTION ... 7
2.1 CHANGES SINCE DELIVERABLE 3.2 .. 7
2.2 THE P-MEDICINE DOMAIN ... 7
2.3 STAKEHOLDERS AND CONCERNS ... 9
2.4 A LAYERED VIEW OF THE FINAL ARCHITECTURE... 10

3 THE STRUCTURE OF THE P-MEDICINE SYSTEM ... 13
3.1 AUTHENTICATION AND AUTHORIZATION .. 14
3.2 DATA MANAGEMENT ... 16

3.2.1 Initial Upload and the Pseudonymization framework .. 16
3.2.2 Ontology Annotation and Translation .. 17
3.2.3 Data Warehouse ... 18

3.3 COMPUTATIONAL CANCER MODELLING .. 20
3.4 PATIENT EMPOWERMENT .. 21

3.4.1 The ALGA-C questionnaire ... 22
3.4.2 Personal Health Record .. 22
3.4.3 Patient Empowerment support services: Drug-Drug interactions 23
3.4.4 Consent Services .. 23

3.5 CLINICAL DECISION SUPPORT ... 25
3.5.1 The p-medicine workbench ... 26

4 TECHNICAL DESCRIPTION OF THE COMPONENTS ... 29
4.1 DATA WAREHOUSE ... 29
4.2 TTP SERVICES ... 35
4.3 ONTOLOGY ANNOTATOR ... 36
4.4 DATA TRANSLATOR .. 37
4.5 ALGA-C PROFILING SERVICE ... 40
4.6 DRUG – DRUG INTERACTION SERVICE ... 41
4.7 “DONOR’S TOOL” CONSENT ACCESS SERVICE ... 43
4.8 WORKBENCH .. 45

5 NON FUNCTIONAL REQUIREMENTS .. 51
6 DEPLOYMENT.. 52
7 ARCHITECTURE COMPLIANCE ... 55
8 CONCLUSIONS .. 58
9 REFERENCES .. 59
APPENDIX A – FORMAL SCALABILITY ANALYSIS IN THE P-MEDICINE PLATFORM 60

APPENDIX B - ABBREVIATIONS AND ACRONYMS .. 81

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 5 of 81

Figures

Figure 1 The main "context" or application areas of the personalized medicine 8

Figure 2 The p-medicine stakeholders layered .. 9

Figure 3 A layered view of the p-medicine architecture...10

Figure 4 The p-medicine architecture divided in three operational contexts11

Figure 5 The colour coding introduced by Coad and used throughout this document13

Figure 6 A domain centred view of the architecture ..14

Figure 7 The XACML based Attribute Based Access Control model15

Figure 8 The users management domain model...15

Figure 9 The anonymization and ontology annotation steps in the data upload process16

Figure 10 The ontology annotation and translation processes that take place in the p-
medicine zone ..17

Figure 11 The "domain" of the Data Warehouse ...18

Figure 12 The abstract interface of the Data Warehouse ..20

Figure 13 The computational modelling domain ...21

Figure 14 The Simulation Service abstract interface ...21

Figure 15 The ALGA-C Questionnaire model ...22

Figure 16 The ALGA-C Profiling abstract interface ...22

Figure 17 The drugs and their interactions ...23

Figure 18 The abstract interface of the Drug Interaction service ...23

Figure 19 The main entities in the e-Consent context ...24

Figure 20 Overview of the interactions and the components in the e-Consent services24

Figure 21 The consent documents access interface ...25

Figure 22 The CDS Framework 's architecture ...26

Figure 23 The architecture of the p-medicine workbench ...27

Figure 24 The domain model of the p-medicine workbench ..27

Figure 25 The interface of the workbench...28

Figure 26 The deployment for the prototype system ...52

Figure 27 The levels of the architecture conformance according to TOGAF55

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 6 of 81

1 Executive Summary

The p-medicine project aims to design and build a platform for personalized medicine so its
grand vision is to revolutionize today’s medical practice to become more proactive and better
targeting the right patient the right time. From a technical point of view the p-medicine
platform is a system consisting of various collaborating subsystems that support different
aspects of the personalized medicine vision and therefore it presents a certain system
architecture. Generally speaking the architecture of a system is about its structure and the
vision for the objectives and the goal that the final product will serve, and therefore it’s
always present even if not documented at all.

This document intends to provide such documentation and to present the final crystallization
of the p-medicine system architecture. Emphasis is given on the application areas and the
context specific scenarios that present a showcase for the personalized medicine. At the
same time we have strived to provide the description of the underlying components,
interactions, and technical requirements in a concise and terse way and provide references
to the work done in other work packages and reported in their deliverables.

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 7 of 81

2 Introduction

2.1 Changes since Deliverable 3.2

In the Deliverable 3.2 “Initial System Architecture” we have followed a principled design
based on the ISO/IEC 42010:2007 standard and the use of the Rozanski and Woods set of
viewpoints [1]. Since then we have made the following simplifications and modifications:

 The functional and information views have been merged. The functional view
documents the system’s functional elements, their responsibilities, interfaces, and
primary interactions while the information view “architecture stores, manipulates,
manages, and distributes information”. It then became apparent that one of the most
important functionality of the system is the management of information and it’s so
much pervasive into the rest of the functional characteristics of the system that
presenting it as a different view does no justice to it. So now the conceptual
methodology for describing the architecture is based on the identification of its core
“domain models” that encapsulate the data and the data-related processing tasks,
effectively making the data and the information extracted from it the basic driving
force for the definition of the architecture. The relevant paragraph is “The p-medicine
domain” starting on page 7.

 The concurrency view which describes the concurrency structure of the system and
maps functional elements to concurrency units (e.g. threads) was considered to be
too low level for the design of a large, distributed system as the one introduced by the
p-medicine project. History in distributed systems has shown that the use of low level
and fine –grained constructs such as locking mechanisms (semaphores, monitors,
etc.), shared state, and transactions are not scalable and certainly a faulty basis for
the design of “correct”, heterogeneous, network accessible and operated systems[2].
Instead, we emphasize the use of coarse-grained message exchange patterns across
the boundaries of “services” as described in Section 3 starting on page 13 of this
document.

 The deployment view (chapter 6) has been extended to include information about the
hardware requirements of the p-medicine software components based on the
extensive stress testing and benchmarking tasks that the technical partners
performed.

 A new chapter 7 provides details about the compliance of third party or newly
developed tools with the p-medicine architecture and the integration means that bring
the whole platform together.

In the following sections we try to provide a clear description of the envisaged architecture.
We start by describing the domain of the p-medicine as an exemplar system (or better, group
of systems) for personalized medicine.

2.2 The p-medicine domain

All good design starts with a “divide-and-conquer” (partitioning) method following by the
abstraction of the underlying entities into more general and less detailed ones, which allows
us to manage the complexity of the problem at hand. The need for this design strategy was
recognized early on, based on the user needs and scenarios (Deliverable 2.2) In this line of
thought, we can identify the following generic areas or “functional profiles” where the p-
medicine platform aims at building solutions towards the goal of personalized medicine:

 Patient Empowerment, where the patient actively participates and interacts with the
system in order to become aware of new possibilities for improving his health or
helping the active research, like searching for clinical trials to enrol in.

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 8 of 81

 Knowledge discovery, exploratory, and predictive analysis and data mining. This
incorporates scenarios like new biomarkers discovery and experimentation in order to
produce new knowledge that of course needs to be subsequently validated.

 Data management, which deals with the handling of data from their initial import to all
the stages of their “life cycle” by maintaining linkage and provenance. This area also
incorporates semantic harmonization tools, which are responsible for semantic
annotation, translation, ontology maintenance, etc.

 Computational Cancer Modelling, where tools and components supporting the
modeling and simulation of tumor growth and response to drugs and other therapy
plans are located.

 Clinical Decision Support, which provide software tools and systems that support
physicians in decision making in their daily care of patients.

These application areas constitute “islands of functionality” for the personalized medicine
vision of the project and are depicted graphically in the following figure (Figure 1). At the
same time we are trying to implement them as “bounded contexts”, a term borrowed from the
seminal work of Eric Evans (and others) as described in his “Domain Driven Design” book
[3]. The Domain Driven Design (DDD) methodology focus on the modelling of the core
domain of an application or system using the language agreed with the domain experts. We
believe this is a useful methodology to follow because the p-medicine platform aims to
support a broad range of applications for personalized medicine and the complexity of such
diverse domain cannot be easily addressed by a single viewpoint.

Figure 1 The main "context" or application areas of the personalized medicine

In the figure above we show the main contexts (or sub-domains) of personalized medicine
and their possible interactions. Central to this view is the Data Management domain that is
used by all the other contexts. Other important interconnections are the use of Knowledge
Discovery -Data Mining and the Computational Cancer Modelling domains by the Clinical
Decision Support domain, underlining the requirement that the research outcomes in
prediction, simulation and visualization can be used as support means for better diagnosis or
individualization therapy in the clinical domain. Supportive for all the other contexts is the
Security related subdomain, which accounts for domain agnostic things like authentication,
access control, auditing and so forth.

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 9 of 81

Of course in defining the architecture we need also to consider the setting that the final
system will operate in, the “stakeholders” and their concerns, which is the subject of the next
section.

2.3 Stakeholders and Concerns

There are many different actors (people, organizations, etc.) that have vested interest in the
successful operation of a system for the personalized medicine. These can be organized in a
“stakeholder onion diagram” [4] as the one shown in Figure 2 where we have following

layers:

 The operational system. This identifies the stakeholder types that are in the vicinity of
the system and its daily usage and includes its users (e.g. patients, clinicians,
scientists, etc.), administrators responsible for the maintenance and the operational
wellbeing of the system, and the system developers (software engineers,
programmers, etc.). The concerns of the stakeholders in this layer are the
functionality of the system, its usability, performance, and maintainability
characteristics.

 The “containing system” groups together stakeholders that can have an effect in the
p-medicine system from the point of view of the business, organization, or context
that the system operates in. This context usually is the operational environment of a
hospital, or the interaction with an external (interfacing) system and includes
stakeholders such as the managers, the legal entities and other authorities. The
primary concerns here are related to the patient safety, the security, the funding and
cost of the operational system, and do on.

 The wider community, which can be citizens and organizations that became
interested in the platform and want to learn more about it and experiment.

Figure 2 The p-medicine stakeholders layered

Pmedicine
Platform Patient

Portal
Administrator

Clinician

General
public

Legal

Clinical Trial
Manager

Developer

Scientist

Administrator

Wider Community

The Containing System

The Operational System
Data

Curators

Hospital
Managers

Interfacing
System

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 10 of 81

The concerns of the different stakeholder groups can be classified as follows:

 Patient data protection and privacy in the most important concern that is also the
basis for other related concerns like the compliance to the EU legislation and the
research ethics.

 Technical requirements and constraints are also important from the software
engineering, administration, and maintenance points of view. Especially the use of
“Cloud and high performance computing” as the “fabric” for the management and
processing of data is nowadays introduced in almost every application domain and
presents a lot of potential for personalized medicine as well.

 Usability requirements, friendly user interfaces that also adapt to the profile (e.g.
patient, clinician) of the current user.

2.4 A layered view of the final architecture

It is customary to present a system architecture organized in layers. The layers organize
related functionality and architectural concerns and usually are the following:

 Presentation: the layer of the end-user applications where the “user interface” /
“human interface” components reside

 Application: The implementation of the core “business” logic and scenarios. This layer
includes the main components that realize the perceived user functionality.

 The Domain or Data access and management layer, which is the layer that deals with
the domain specific information and data.

 Infrastructure, where the database technologies, networking and other infrastructure
elements reside. This layer is usually domain agnostic and generic.

The idea for having this layered architecture is that there’s a more or less clear separation of
responsibilities of the architectural components and that there’s control over their
dependencies because each layer directly interacts only with the layer beneath it.

Following this archetypical layered architecture style we can further partition, elaborate, and
reposition each of the functional profiles and “bounded contexts” of the p-medicine system as
shown in the following figure.

Figure 3 A layered view of the p-medicine architecture

S
e

c
u

r
it

y

Data Management

Application

Presentation

Data

Warehouse

A
u

th
e

n
ti

c
a

ti
o

n

Data Mining

Knowledge Discovery

Computational Cancer

Modelling

Visualization Tools

Patient EmpowermentClinical Decision Support

Biobanks

Interfacing

Services

Portal

Clinical Trial

Management

Semantics

Services

A
u

th
o

ri
za

ti
o

n
C

e
rt

if
ic

a
te

M
a

n
a

g
e

m
e

n
t

I
n

f
r

a
s

t
r

u
c

u
r

e

H
P

C
C

lo
u

d
 S

to
ra

g
e

M
a

n
a

g
e

m
e

n
t

S
e

rv
ic

e
s

P
se

u
d

o
n

y
m

iz
a

ti
o

n

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 11 of 81

As can be seen in Figure 3, we have introduced the security layer as a cross cutting concern
because requirements such as the authentication and authorization of the users should be
supported in every other layer in order to support the common security framework throughout
the system. Another vertical layer is the infrastructure where the cloud storage and the high
performance facilities are conceptually located. This is a domain agnostic layer of
functionality but again pervasive in the sense that it supports all the other architectural
elements. The Presentation layer is the user access layer that consists mainly of the p-
medicine Portal and the visualization tools (e.g. image viewers and processing tools). The
application layer is the core of the p-medicine system implementing most of the end-user
scenarios (Deliverable 2.2) in the different application contexts. Finally the Data
Management layer supports the Application and Presentation ones by providing the
mechanisms for the efficient and secure upload, download, and management of data.

Nevertheless the layered presentation of the architecture described above hides important
information about the p-medicine platform. There are certain operational and security related
concerns that designate a more complex arrangement of the p-medicine components and
the layered architecture of Figure 3 is too abstract to convey such finer details.
Consequently, in Figure 4 we graphically present how the p-medicine components can be
deployed into three different operational contexts or tiers that more clearly portray the
context:

 The clinical domain is where the patient treatment takes place, for example in a
hospital’s premises. In this tier, users and affiliated personnel have full access to the
patients’ clinical records.

 The clinical research domain is where the clinical trial management happens. Here
the patient data have gone through a first pseudonymization round but are still
personal and the patients can be re-identified.

 The personalized medicine research domain is the core of the platform where truly
anonymous data are stored. Data entering to this domain are gone through the
second round of pseudonymization, are semantically annotated, and stored in the
global data warehouse.

Figure 4 The p-medicine architecture divided in three operational contexts

This 3-tier data architecture also separates the p-medicine application areas so that for
example patient empowerment is mostly related to the Clinical domain (because the patient
has access to his own clinical record), while knowledge discovery and data mining is taking

Cl i ni cal (Treatment) Domai n Cl i ni cal Research Domai n
Personal i zed M edi ci ne

Research Domai n
De facto Anonynous DataPseudonymized but integrated DataFull Patient Identification

ObTiMA
Central

Data
Warehouse

Biobank
Access

Hospital
Information

Systems

PIMS

Local Data
Warehouse

Clinical
Decision
Support

Data
Mining
& KDD

Disease
Modeling

Patient
Empower

ment

Public
Databases

Push
Services

Clinical
Trials

Clinical
Trial

Managem
ent

TTPCATS
User

Manag

ement

Role

Manag

ement

Secure

Transp

ort

Cloud

Storage

E
xt

er
n
a
l

In
fr

a
st

ru
ct

u
re

D
a
ta

 P
ro

te
ct

io
n

&
 S

ec
u
ri

ty

D
a
ta

M
a
n
a
g
em

en
t

in
fr

a
st

ru
ct

u
re

A
p
p
li
ca

ti
o
n

D
o
m

a
in

HPC

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 12 of 81

place in the core p-medicine research domain with the fully anonymous patient data. The p-
medicine platform aims at providing tools, services, and technological solutions to all three
operational contexts, as can be seen in the figure above.

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 13 of 81

3 The structure of the p-medicine system

In this section we follow the “domain driven design” and the separation of the p-medicine into
different but interoperating domains that we described in Paragraph 2.2. Each of the
identified “silos of functionality” (e.g. Clinical Decision Support, Computational Cancer
Modelling, and so on) is a system of its own, with some particular requirements and specific
architecture.

In each specific application domain we can identify a number of components or architectural
elements that offer a certain set of functionalities. In the following sections we try to abstract
the functionality of these components and present it in non-technical terms. The real
interface using HTTP-based request response messages and specific message formats are
described in subsequent sections.

Therefore for each component we provide:

 Its responsibilities, i.e. the description of what the component does

 Its collaborators, that is the components that this component interacts with

 Its (“abstract”) interface, which is the description of its operations, inputs, and outputs
with no reference to specific technological and implementation details.

So in the following we are going to describe the architectural components from the point of
view of the domain entities managed and the use cases they participate in, without delving
into the software engineering details. For the description of the entities and their associations
we will use the colour coding introduced by Coad [6] (please have look at Figure 5 for the
explanation of the colours used). The technical details, such as the use of web services
technologies for message delivery, will be detailed in Section 4 starting on page 29.

Figure 5 The colour coding introduced by Coad and used throughout this document

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 14 of 81

3.1 Authentication and Authorization

The p-medicine security framework is designed around the Security Assertion Markup
Language (SAML) standard and a number of WS-Security specifications. A p-medicine
Identity Provider (IdP) provides identity assertions to all services within p-medicine,
effectively providing single-sign-on (SSO) capabilities to the whole platform.

Web sites integrate with the IdP by providing a SAML compliant Identity Consumer (see
Deliverable 3.4 “Service Integration Guidelines” for more details). An Identity Consumer
consumes and validates the assertions provided by the IdP. For non user-interfacing clients
such as REST Web Services, a SAML Identity Assertion is transmitted through the HTTP
Authorization header (please see again Deliverable 3.4 for more details).

The “Hexagonal Architecture”

In describing the architecture of the specific application domains of the p-medicine platform
we could follow the same layered approach we showed in Figure 3. The layered approach is
of course a conceptual framework. In reality and in many cases there still dependencies
among components in non-adjacent layers (transitive dependencies are still dependencies)
and there’s a lot of coupling on low level details (e.g. the choice of frameworks, databases,
etc.).

There are alternative approaches in designing applications that put the layers in a different
perspective. Figure 6 shows one of these alternative views and it’s strongly influenced by the
“hexagonal architecture” (or the “ports-and-adapters”) by Alistair Cockburn [5]. The primary
difference of this new perspective is that the domain and application layers do not depend on
the other layers, the presentation (UI) and the infrastructure. Instead, the entire coupling is
towards the centre, i.e. the code depends on layers more central while the domain layer uses
the external “rings” through some generic abstractions (interfaces, adapters). The domain
layer is at the heart of the system, it’s the most important layer since it models the concepts,
ideas and rules within the software that are left after stripping away the stuff specific to the
technologies we are using.

This different perspective can be used in describing the architecture of an application by
prescribing a certain methodology: starting from the domain model (i.e. the data and the
information managed by the system to be designed) and the application layers while
postponing the selection of the infrastructure (databases, communication mechanisms, etc.)
and the design of the user access mechanisms to a second stage.

Figure 6 A domain centred view of the architecture

I
n

f
r

a
s

t
r

u
c

t
u

r
eP

r
e

s
e

n
t
a

t
io

n

Application

Domain

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 15 of 81

On the authorization front, the privacy and security concerns require the introduction of
access control rules for all the data managed by the p-medicine system. These requirements
led to the introduction of policy-based authorization services build upon the eXtensible
Access Control Markup (XACML) Language. In XACML, an access request is modeled as a
“subject” who wants to perform an “action” on a “resource” (subject/action/resource triplet)
and its underlying model can be seen in Figure 7. More details about the authorization
framework and its various services and roles, like policy enforcement points (PEP), policy
decision points (PDP) and policy administration points (PAP), can be found in Deliverable
3.4.

Figure 7 The XACML based Attribute Based Access Control model

The User Management is the other major component of the security framework which is
responsible for user enrolment, user identity and credential management. Its underlying
domain model is shown in the next figure.

Figure 8 The users management domain model

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 16 of 81

For each user there’s basic profile information like the name, email, and title and an
indication whether he/she has signed the data sharing contracts of the p-medicine system.
Finally, information about the roles the user has and the organization he/she is affiliated with
are also registered and subject to the attribute based access control of the authorization
infrastructure.

3.2 Data Management

The management of the data is the most important functional context because the data have
a central role in a personalized medicine environment. We are primarily interested in the
handling of patient data, which means that the primary concerns are the privacy and the
conformance to the ethical and legal guidelines and requirements. Deliverable 5.1 “Setting
up of the data protection and data security framework” includes a brief overview of the legal
rules concerning the use of personal data on a European level.

Based on the data protection requirements the data architecture of the p-medicine introduces
a clean separation of the clinical domain and the research domain. Within the research
domain only de facto anonymous data shall be used. Therefore, a data protection framework
based on a double pseudonymisation procedure has been devised with the Center for Data
Protection (CDP) as a central data protection authority and a Trusted Third Party (TTP) as a
trusted data custodian. Thus the p-medicine domain is a network of trust based on
contractual agreements that shall ensure the compliance to the data protection rules set up
for the framework (Deliverable 5.1).

In Figure 9 below we see the process of uploading of new data into the p-medicine platform
as they move from the clinical domain (e.g. a Hospital) where they are pseudonymized, to
the TTP zone where the second anonymization takes place, and finally to the p-medicine
data warehouse.

Figure 9 The anonymization and ontology annotation steps in the data upload process

3.2.1 Initial Upload and the Pseudonymization framework

Before the data enter the p-medicine research area they need to be anonymized. The details
of the double anonymization procedure and the related software components are described
in Deliverable 8.3.

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 17 of 81

As shown in Figure 9 above the data need to go through the Trusted Third Party (TTP)
before they are stored in the data warehouse. The end user application for the initial upload
of the data to the TTP is the Data Upload Tool that is described in Deliverable 8.5. For a
given user database or file there should be a “privacy profile” that is a set of transformation
rules for the pseudonymisation of patient identifying data. The privacy profiles are created
with the Custodix Anonymization Tool (CAT) and then uploaded to the Custodix
Anonymisation Tool Services (CATS) server. The Data Upload Tool uses the Java library of
the CATS tool and an existing privacy profile to perform locally, in the clinical domain, the
first round of pseudonymization. An additional component used in this use case is the Patient
Identity Management System (PIMS) that supports unique identification of a patient in
different administrative domains by assigning pseudonyms. Please see Deliverable 8.3 for
more details on these components and their interactions.

After the first pseudonymization round, the (pseudonymized) data are uploaded into the TTP.
There, the data need to go under the scrutiny of CDP and the second round of
pseudonymization takes place that results in new pseudonyms by the transformation (using a
cryptographic operation) of the original pseudonyms. Finally the now de facto anonymous
data are uploaded from the TTP to the p-medicine data warehouse.

3.2.2 Ontology Annotation and Translation

After the data enter the p-medicine zone and stored in the filestore of the data warehouse the
ontology annotation and translation takes place (Figure 10).

Figure 10 The ontology annotation and translation processes that take place in the p-medicine zone

This step is needed because the Data Warehouse is also backed up by an RDF “TripleStore”
i.e. the uploaded databases and files are transformed to Semantic Web-compliant “triples”
and semantically annotated using p-medicine’s Health Data Ontology Trunk (HDOT)
ontology. This is a requirement described in the Deliverable 4.2 where the p-medicine

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 18 of 81

semantic layer is discussed. HDOT itself and the p-medicine ontology suite are presented in
Deliverable 4.1.

The ontology annotation step is required in order to provide a mapping from the anonymized
data to the HDOT concepts and relationships. The data are transformed to RDF by some file-
type specific “RDFizer” and then the user (either the original uploader or an ontology expert)
launches the Ontology Annotator to create the mapping from the “local” schema of the
uploaded data to the global schema of HDOT. Please keep in mind that this step is not
required if the data have been already annotated with HDOT terms as is the case with the
ObTiMA data.

The Data Translator service is then put in charge of performing the actual translation of data
from the annotated databases to an HDOT compliant format. The Data Translator takes as
input the data of one database and its ontological annotation (previously generated with the
Ontology Annotator or ObTiMA), and returns the data translated to an HDOT compliant form.
The new triples are then inserted into the Data Warehouse’s triplestore.

The Ontology Annotator and Data Translator tools are described in Deliverable 4.3.

3.2.3 Data Warehouse

Responsibilities

The data warehouse is the responsible for the storage and management of different types of
medical data. It can manage databases in CSV and Microsoft Access formats, clinical files,
and also manages DICOM images access. The most interesting point is that data warehouse
extracts semantic information from all of the types, storing it as RDF triples in the triplestore.
This information then, is automatically ready to be queried by authorised third-parties.

The definition of this component alongside its requirements is available in Deliverable 7.1
(“Report on overall design including VPH-Share 2.2 and indicating its impact”). A depiction of
the main entities managed by the data warehouse is shown in Figure 11 using the colour
coding of Peter Coad in [6].

Figure 11 The "domain" of the Data Warehouse

The main domain entities managed by the data warehouse are:

- Generic files will be stored in the data warehouse. Files in the store will be referred to
by URI, since many federated file stores may exist and they may be referred to by the
structured data in other data warehouses. There is no specific need to keep any
information about the file beyond its name, and the content of the file. File metadata

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 19 of 81

and relationships between files (resembling a hierarchy) are stored in the structured
data store (i.e. the triplestore).

- DICOM Images: DICOM (Digital Imaging and Communications in Medicine) is the de
facto standard for handling, storing, printing, and transmitting information in medical
imaging. The image store should offer direct, secure access to images through the
standard DICOM image access protocols.

- Structured Data: The core data that will be stored in the warehouse is structured data.
Since ontologies play a key part in the p-medicine project, the structured data should
be transformed into the HDOT format to be saved at the data warehouse.

Collaborators

The user does not directly interact with it: the data warehouse is intended to be used by other
components from the p-medicine project as a central storage service. The components that
directly interact with the data warehouse are the Data Translator tool, which is triggered
every time a new database is added to the data warehouse, the Security Framework, which
manages the permissions on accessing the data warehouse, the TTP services, which insert
new elements in the data warehouse, the ObTiMA front-end system, which is the user-
interface tool for the data in the data warehouse, and the images server, which provides
DICOM images access for the data warehouse. Furthermore the data warehouse makes use
of the cloud storage services for its file store.

Interface

The Data Warehouse offers the following functionality (Figure 12):

 Get current version of the data warehouse contents: get_current_version(u:
User): String

 Upload a new file: store_file(u: User, f: File): String The file is stored

in the Filestore and its identifier is returned

 Upload a new image file: store_image(u: User, f: File): String The file

is stored in the Imagestore and its identifier is returned

 Retrieve Image Files from ImageStore given their identifier: get_image_file(u:
User, id: String)

 Retrieve Files from Filestore given their identifier: get_file(u: User, id:

String)

 Search triplestore given a SPARQL query: search_triples(u: User, query:
String)

 Search triplestore using “query-by-example”: get_triples(u: User,

template: RDFTriple)

 Search triplestore using “query-by-example” in a specific version of the triplestore:
get_triples_of_version(u: User, template: RDFTriple, version:

String)

 Get the triples that were produced during the translation of a specific file:
get_triples_of_file(u: User, fileId: String)

 Get the anotation (mapping file) of a specific file: get_anotation_of_file(u:
User, fileId: String)

 Add triples to the triplestore: add_triples(u: User, triples:

List<RDFTriple>)

 Delete triples from the triplestore: delete_triples(u: User, triples:

List<RDFTriple>) (After the deletion of the file the associated RDF triples are also

removed from the triplestore).

The precondition for invoking these operations is that the invoker has been authenticated as
a legitimate p-medicine user and therefore provides the relevant User information.

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 20 of 81

Figure 12 The abstract interface of the Data Warehouse

3.3 Computational Cancer Modelling

Deliverable 12.1 describes the p-medicine simulation scenarios for breast cancer, Wilm’s
tumour, and Acute Lymphoblastic Leukemia. This application area has a strong need for
computational power, more than the other p-medicine application domains. Therefore a
major concern is the use of high performance (HPC) facilities, such as clusters of machines
and the computational Cloud.

The main domain entity here is the computational model, which is a “mathematical model
implemented in a computer system that requires high performance computational resources
to execute” [7]. The computational needs for the cancer modeling have been demonstrated
and addressed as described in Deliverable 12.3 “Report on the Development of the
Oncosimulator and the Utilization of the Biomechanism Models” through the use of Graphics
Processing Units (GPU). Furthermore, with the cooperation of VPH-Share consortium the p-
medicine computational models have been demonstrated to run on the VPH-Share cloud
infrastructure.

A model of this kind incorporates simulations of cellular, molecular, and other processes in
living organisms and requires input data and parameters values for its initialization while it
(usually) produces some visualization (e.g. for tumour growth) and output values. The
execution of a Model given some inputs data and parameters creates a “simulation”, a
domain entity encapsulating the specific run and its results (Figure 13). During this run the
simulation passes through a series of statuses (e.g. starting, running, finished, or failed).

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 21 of 81

Figure 13 The computational modelling domain

To support the execution and the monitoring of the models’ execution and to abstract over
the differences between the execution frameworks (e.g. GPUs versus Cloud) a Simulation
Service interface can be defined:

Figure 14 The Simulation Service abstract interface

The operations supported by this abstract interface are:

 Start a new simulation: start_simulation(u: User, m: Model, input:

List<Data>): String The caller of this operation should provide the model to run

and a list with the required input data. The return value is the identification of the
simulation (run) just triggered.

 Query the status of a simulation, given its identification:
get_simulation_status(u: User, s: String): Enum

 Retrieve the results of a simulation as a list of output data given its identification:
get_results(u: User, s: String): List<Data>

3.4 Patient Empowerment

The goal of the Interactive Empowerment Services system is to help the patients to
understand the medical documentation and to help them make informed choices. To this end
in this application domain of personalized medicine, the following components are
introduced:

 The ALGA-C questionnaire which provide clinicians with information about the
cognitive attributes of each individual patient

 The Personal Health Record (PHR), which is used by the patients to overview and, in
some cases, update their clinical record, i.e. their drugs, chronic and other diseases,
etc.

 Domain specific support tools, such as components for validating the medication list
of the patient and reporting drug-drug interactions.

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 22 of 81

 Informed Consent management tools such as the “Donor’s Decision Tool”
(Deliverable 14.3) that allow patients to be the owners and managers of their data.

3.4.1 The ALGA-C questionnaire

The ALGA-C questionnaire provides a psycho-cognitive picture of the patient whom the
physician is about to meet, so that he can optimize the communication style and catalyse the
interaction (see deliverables Deliverable 14.1 and Deliverable 15.4 for more details
respectively on development and validation of the two versions of ALGA questionnaire, for
healthy people and cancer patients). As shown in Figure 15 below a patient can fill-in the
ALGA-C Questionnaire multiple times, before seeing their doctor or at any other time through
their PHR application, and the answers to the questionnaire are used to build the psycho-
cognitive profile of the patient. For the result profile a number of recommendations can be
given to the physician in order to adapt his style of communication and improve the interview
or visit.

Figure 15 The ALGA-C Questionnaire model

The questionnaire requires a user-interfacing tool for the patient to fill it. The management of
the questionnaires is done centrally by a “Profiling service” that allows accessing the results,
patient profiles and recommendations, as shown in Figure 16.

Figure 16 The ALGA-C Profiling abstract interface

Details for the implementation of the questionnaire application and the profiler service can be
found in Deliverable 14.4.

3.4.2 Personal Health Record

The PHR is the patient managed electronic health record. It is an external application in the
vicinity of the patient but in any case outside the p-medicine domain. The consortium has
selected IndivoX3 as the specific implementation of the PHR because it allows for
extensibility. Therefore we have extended its user interface and functionality by incorporating
the ALGA-C questionnaire for the patient to fill it and also by taking advantage of its results
(coming from the Profiling service) to adapt PHR’s interface based on the most recently

3 http://indivohealth.org

http://indivohealth.org/

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 23 of 81

extracted psycho-cognitive profile of the patient. Description of the possible adaptations is
given in Deliverable 14.4.

3.4.3 Patient Empowerment support services: Drug-Drug interactions

The Drug-Drug interaction service is an example of a supporting tool that can be used by the
physicians and the patients alike. Its aim is to check whether two or more drugs can be
safely used together. This is an important functionality when a patient through his/her PHR
updates the medication list with a newly (possibly un-prescribed) medicine e.g. an antibiotic.

The implementation uses the publicly available DrugBank [8] database.

Figure 17 The drugs and their interactions

This simple tool allows its collaborators (mainly the PHR but also any other component of the
p-medicine system) to retrieve the interactions of a single drug or the possible interactions of
a set of drugs, as shown in Figure 18. Please note that this service does not require any
authentication information in order to be used.

Figure 18 The abstract interface of the Drug Interaction service

3.4.4 Consent Services

The patient’s written Informed Consent is a mandatory prerequisite for any type of biomedical
research. Deliverable 14.3 describes the tools for the integration of the ethical-legal
information on consent given by donors into biobank data.

The underlying domain model for the informed consent deals with the management of the
patients’ consent and the relevant data. More specifically, as shown in Figure 19, the consent
of a patient is provided in the context of a «project» that can be a clinical trial or other
research study. In other words, the «project» represents the extent for the informed consent
and therefore the scope which the patient’s biomaterial can be used for. The consent is given
at an instant in time and possibly is held for a time period i.e. until it is withdrawn. Associated
with a «project» there are the consent document itself and possibly other descriptive
information that provide additional documentation and explanations (e.g. multi-media content
regarding the study to enhance comprehension and retention).

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 24 of 81

Figure 19 The main entities in the e-Consent context

Figure 20 shows the overall architecture for the provision or withdrawal of the patient’s e-
consent and how this affects the management of their clinical data. The primary stakeholders
in this domain are the following:

 The treating physicians that provide a short summary of the project in layman’s
language and in the mother tongue of the patient. This needs to explain the reason
why the biomaterial is needed and what will be the expected result.

 The patients that provide or withdraw their consent for the sharing and the use for
research purposes of their biomaterial and related data.

 The researchers that have access to the material the patients have provide consent
for.

Figure 20 Overview of the interactions and the components in the e-Consent services

In terms of the technical architecture the following components operate in this context:

 The Portal is the tool used by the physicians for describing the terms of the consent
and managing the relevant documents. All the consent related information is stored in
a portal accessible and authorized database.

 The Personal Health Record (PHR) portal and specifically its e-Consent application
present the consent forms and related documents to the patients. A patient is then
supported through this application to provide their consent or even withdraw it at a
later time, while at any time can review his/her consents and their terms.

 The Biobank platform comprises the relevant information system and the Biobank
access framework (p-BioSPRE) through which accessing biobanks and sharing
biomaterial is greatly simplified.

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 25 of 81

 The communication between the PHR and the Portal, shown as number (2) in Figure
20, is supported through a programmatic interface that allows accessing the details of
the available “projects” and their consent documents and supporting documentation.
This interface shown in Figure 21 is provided by the Portal, or actually a component
hosted together with the Portal and having access to the same consent/”project”
database, and it is invoked by the PHR in order to present the consent related
information to the patients.

Figure 21 The consent documents access interface

As can be seen in Figure 20 the consent related documents, which are prepared by the
ethical and legal committees and enhanced by healthcare professionals, are uploaded into
the p-medicine portal while the actual capture of the patient’s consent takes place in the
PHR. After the patient’s consent has been given, their biomaterial can be shared in the
context of the associated “project” but the rest of this scenario requires to a large extent
manual interaction. A major complication is that biobanks and the rest of the infrastructure
deals with anonymised data and therefore the donor’s real identifier, used in the context of
PHR and informed consent, should be associated with the corresponding pseudonymised
samples held in the biobanks. This process is greatly facilitated by the use of the CATS and
related security and pseudonymisation infrastructure but nevertheless cannot be totally
automated, in the same vein as the general data upload and pseudonymisation process can
not be fully computerized (see paragraph 3.2.1). The same process should be followed in the
case donors withdraw their consent, where the associated samples must be located and
destroyed.

3.5 Clinical Decision Support

A Clinical Decision Support System (CDSS or CDS) is an interactive computer software
system designed to assist physicians and other health professionals with decision-making
tasks, as determining diagnosis of patient data. CDS systems by definition are in the clinical
domain that is outside of the research domain where the core of the p-medicine system is
located. Nevertheless, the CDS application domain is in the fringes of the p-medicine system
by taking advantage of the p-medicine managed data and the knowledge extracted from
these data.

Deliverable 13.1 presents the requirements for the clinical decision support tool and also
describes a number of scenarios where data mining tools (e.g. literature mining for the
identification of Severe Adverse Events - SAEs) and computational models like the
oncosimulator to predict the likely response of a given patient’s breast cancer. Deliverable
13.4 presents the details of the CDS prototype and its generic architecture (Figure 22).

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 26 of 81

Figure 22 The CDS Framework 's architecture

The integration of the p-medicine computational models with the CDS system was further
described in Deliverable 13.7.

3.5.1 The p-medicine workbench

This tool is essentially a "tool registry" where the p-medicine tools and other tools outside of
p-medicine are registered. The annotation of tools includes a classification hierarchy
borrowed from VPH Toolkit, a semantic based classification using EDAM4 terms, and user-
submitted "tags" (keywords). The users can submit free text queries that match tools' names
and descriptions or keywords, semantic terms to filter the data that the tools produce or
consume or their functionality, etc. There's also ongoing work for supporting natural language
processing of user submitted queries.

The user does not directly interact with the Workbench. Instead, there's the workbench
"portlet" in the p-medicine portal that provides the user interface for this service. So far this
portlet is its only "client" but the interface is open for all the p-medicine functional
components to use it.

4 http://edamontology.org/

http://edamontology.org/

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 27 of 81

The generic application
architecture is shown in the
right (Figure 23). Generally
there can be a number of p-
medicine tools and services
that the Workbench server
contacts. In principle the
workbench server should
also contact other tool
registries such as the VPH
Toolkit but so far this has
not been implemented (and
actually the VPH Toolkit
lacks any API for
automating this interaction.)

Figure 24 The domain model of the p-medicine workbench

Its “domain model” includes the Tool as the central domain entity that can have a number of
operations, each with a set of inputs and outputs (Figure 24). Each tool, operation, input, and
output can be annotated with semantic terms from the EDAM ontology while Tools can also
be classified into a predetermined (static) hierarchy of categories and in an open ended,
unstructured set of Tags (keywords) submitted by the users. The users can also register their
approval for specific tools using the “like” functionality of the system. The interface of the p-
medicine workbench is shown in Figure 25.

Figure 23 The architecture of the p-medicine workbench

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 28 of 81

Figure 25 The interface of the workbench

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 29 of 81

4 Technical description of the Components

The REST architectural style has been selected for the implementation of the platform. An
introduction to this style and its adaption to the HTTP and web services related technologies
can be found in Chapter 6 in the Deliverable 8.6.1 “Integration guidelines and monitoring of
tools and services”.

REST is resource oriented or data-oriented rather than service oriented. In the HTTP
realization of the REST style, there is a predetermined set of operations (HTTP methods like
GET and POST, the “verbs”) and a potentially infinite, application specific set of resources
(e.g. “questionnaire”, the “nouns”) Therefore, in the following sections we see how the
abstract interface that is method and operation centred is transformed to be resource (data)
centred.

Most of the components are implemented as HTTPS/REST based services. There are some
notable exceptions:

 The communication with the security infrastructure, such as the Identity Provider
(IdP), uses the SOAP/WSDL-based WS-Security (e.g. WS-Trust). But the
transmission of the SAML tokens is implemented with the traditional HTTP
“Authorization” header, which makes secure component interactions RESTful again.

 Some components like the Data Translator and the Custodix Anonymization Tool
(CAT) are provided as Java libraries for performance reasons, i.e. all communication
is local and in memory. Nevertheless we still consider them to be components since
they offer clearly specified functionalities.

4.1 Data Warehouse

The Data Warehouse component provides data storage and it can be accessed through a
RESTful API.

Accessing Triples

HTTP Method GET/POST

HTTP Endpoint /v1/triplestore

Query Parameters query : URL-encoded SPARQL query

timeout: Optional limit in whole seconds on evaluation time

of query. If omitted, query time is unlimited

Formats Comma separated values responses for SELECT queries with
the binding variable as the column names in the first row,
followed by a row per binding result

SAML Authorization Yes

Description This is a resource for accessing triples in the main data
warehouse triplestore. This interface is based upon the
OpenRDF Sesame RESTful interface. It supports both GET
(preferred) and POST that is useful when the query is
considered too long to be transmitted as part of the request
URL. In the case of POST the query parameters MUST be
passed in the request body as web form data as per HTML 4.01
section 17.13.413

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 30 of 81

Accessing Version

HTTP Method GET

HTTP Endpoint /v1/triplestore/version

Query Parameters None

Formats None

SAML Authorization Yes

Description Returns the current version of the triplestore and date and time
of last change in the response headers:

• X-Version: Integer version number of the triplestore.

• Last-Modified: HTTP-date of the last change to the
triplestore, when this version was created.

Statements Resources

HTTP Method GET/POST/PUT/DELETE

HTTP Endpoint /v1/triplestore/statements

Query Parameters GET

• subj: Optional subject which all returned statements

should have

• pred: Optional predicate which all returned statements

should have

• obj: Optional object which all returned statements should

have

POST

• update: Optional SPARQL 1.1 update string to be

executed. Note that this parameter may be part of the
request URL, or in the body of the request with a Content-
Type application/x-www-form-urlencoded

• baseURI: Optional base URI to resolve any relative URIs

found in uploaded data against.

• Content-Type request header: Where RDF statements

are provided for addition to the triplestore.

PUT

• baseURI: Optional base URI to resolve any relative URIs

found in the uploaded data.

• Content-Type request header: any RDF response type.

DELETE

• subj: Optional subject which all returned statements

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 31 of 81

should have

• pred: Optional predicate which all returned statements

should have

• obj: Optional object which all returned statements should

have

• Content-Type request header: any RDF response type.

Formats No payload. For the POST, PUT, and DELETE methods the X-
Transaction response header contains a URL representing this
transaction, which is used to refer to this transaction in the
logging, provenance and history metadata model.

SAML Authorization Yes

Description In the case of a GET request it fetches statements from the
repository. For POST, it performs updates on the triplestore,
either by adding triples from and RDF document provided in the
request, or by executing a SPARQL 1.1 update query provided
in the request. With PUT, it updates the triplestore by adding
triples from an RDF document provided in the request. DELETE
removes the specified triples from the triplestore. As a
precaution to prevent the extremely rare case where a user
wants to delete all the statements in the repository, or all
statements with a particular object, subject or predicate, normal
users are required to specify at least two of "subj", "pred" or

"obj".

Accessing Previous Triplestore Version Statements

HTTP Method GET

HTTP Endpoint /v1/triplestore/versions/{version}/statements

Query Parameters • subj: Optional subject which all returned statements

should have

• pred: Optional predicate which all returned statements

should have

• obj: Optional object which all returned statements should

have

Formats None

SAML Authorization Yes

Description Fetches statements from the repository in the specified version.

Upload Files to Filestore

HTTP Method POST

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 32 of 81

HTTP Endpoint /v1/filestore

Query Parameters None

Formats None

SAML Authorization Yes

Description Upload a new file to the filestore. Request Headers:

• Content-Type: Mime type of uploaded file.

• Content-Location: Optional absolute or relative URI for

source of uploaded file. This is used for informational
purposes only during subsequent annotation, and may not
be available due to legal constraints upon what data is
stored in the warehouse.

• Last-Modified: Optional date and time (HTTP-date) of

last modification of file contents.

• X-Supercedes: URL of a file which this file supercedes.

Response headers:

• Location: Complete URL for uploaded file. The name of

the file is generated internally and is universally unique.

Access Files from Filestore

HTTP Method GET / DELETE

HTTP Endpoint /v1/filestore/{filename}

Query Parameters None

Formats None

SAML Authorization Yes

Description Resource representing a file in the filestore. With GET it
retrieves the specified file. With DELETE it removes it.

Deleting a file should only be done if it contains data which
should not be present in the warehouse - for example it has
serious errors or it contains personally identifiable information.
Normally, if a file is to be replaced with a newer version, the new
file should be uploaded through a POST method on
"/v1/filestore", with the X-Supercedes header set to the

URL of the file begin replaced. This is so that analyses which
rely upon the previous versions of the file still work. In addition,
file deletion also triggers removal of all triples from triplestore
produced by that file. This is done globally in the non-reversible
manner, so the triples will be removed from all versions of the
triplestore.

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 33 of 81

Access Triples of Files from Filestore

HTTP Method GET

HTTP Endpoint /v1/filestore/{filename}/triples

Query Parameters None

Formats N-Triples

SAML Authorization Yes

Description Resource representing the raw triples extracted from the file
upon submission. It retrieves the triples of the specified file, in
the N-triples format

Access Ontologies of Files from Filestore

HTTP Method GET

HTTP Endpoint /v1/filestore/{filename}/ontology

Query Parameters None

Formats N-Triples

SAML Authorization Yes

Description Returns the ontology file (in OWL format) representing the triples
extracted from the file upon submission, and used in the

"/v1/filestore/{filename}/triples".

Access Annotation Description Files for Files from Filestore

HTTP Method GET/PUT

HTTP Endpoint /v1/filestore/{filename}/annotationDescription

Query Parameters None

Formats None

SAML Authorization Yes

Description Returns the ontology annotation file of the given fileName. If

the PUT method is used a new annotation file is uploaded. This
triggers a call to the Data Translator library to transform raw
triples into the data to be stored in the triplestore. If the
annotation description subsequently changes, the previously
added triples are removed prior to addition of the new triples

Access Image Files from Imagestore

HTTP Method GET

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 34 of 81

HTTP Endpoint /v1/imagestore/{SOPInstanceUID}

Query Parameters None

Formats None

SAML Authorization Yes

Description Retrieves the specified image file

Access Triples for Image Files from Imagestore

HTTP Method GET

HTTP Endpoint /v1/imagestore/{SOPInstanceUID}/triples

Query Parameters None

Formats N-Triples

SAML Authorization Yes

Description Resource representing the raw triples extracted from the image
upon submission. It retrieves the triples of the specified image
file, in the N-triples format.

Non functional requirements

The Data Warehouse should have access to a large storage. However, it cannot be said in
advance how much space will be needed because it is always depending on the amount of
data that is going to be put in there but, usually, the more available space, the better. In
addition, as explained in all operations, Data Warehouse is embedded in the security
framework and it needs authorised requests at all times by passing the SAML token in the
"Authorization" HTTP header.

Installation instructions

Required software:

• Operating System: Linux (Ubuntu 12.04)

• Persistence Layer: OpenRDF Sesame 2.x and Redis 2.x

• Application Container: Apache Tomcat 6 or 7

• Java 7 Runtime Environment

Installation Steps:

• Install and start Tomcat (regular installation, nothing special)

• Install and start Redis (regular installation, nothing special)

• Deploy OpenRDF Sesame (the workbench too) in Tomcat

• Create a native repository in OpenRDF with name "dwh" using the OpenRDF

Workbench

• Create the following folders in "/var/lib/":

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 35 of 81

 - dwh/

 - dwh/files/

 - dwh/files/dwh/

 - dwh/audit-logs/

• Put "DataTranslationAPIConfig.xml" file in your preferred location.

• Create the configurations file following the template below:

 openrdf-sesame =

 repository-id = "dwh"

 authz-service =

 disable-audit-log = false

 dwh.repository-id = "dwh"

 dwh.authz-service =

 dwh.audit-log-path = "/var/lib/dwh/audit-logs"

 dwh.backend-options = {:root "/var/lib/dwh"}

 conf-dt =

• Deploy Data Warehouse WAR "dwh.war" file in Tomcat

4.2 TTP Services

Upload file / Create processing Request

HTTP Method POST

HTTP Endpoint /services/rest/processingRequest/?name={fname}

Query Parameters None

Formats Text

SAML Authorization Yes

Description Uploads a new (pseudonymized) file into the TTP using the
specified name It returns the processing request id. TTP should
have knowledge of the schema of the uploaded file, otherwise
processing will fail.

Get Request status

HTTP Method GET

HTTP Endpoint /services/rest/processingRequest/status/{id}

Query Parameters None

Formats Text/XML

SAML Authorization Yes

Description Accesses the processing status of the uploaded file..

Example Output:

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 36 of 81

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<UploadStatus state="DELIVERED" name="data.csv" id="1530155"/>

Get All Requests

HTTP Method GET

HTTP Endpoint /services/rest/processingRequest/status

Query Parameters None

Formats Text/XML

SAML Authorization Yes

Description Accesses the processing status of all the uploaded files. File
names are not unique so multiple response can thus be returned

Example Output:

<?xml version="1.0" encoding="UTF-8"?>

<UploadStatuss>

<UploadStatus state="DELIVERED" name="data.csv" id="1800180"/>

<UploadStatus state="DELIVERED" name="data.csv" id="1670167"/>

<UploadStatus state="DELIVERED" name="data.csv" id="1530155"/>

<UploadStatus state="CONFIRMED_ERROR" id="1530154"/>

<UploadStatus state="CONFIRMED_ERROR" id="1530153"/>

<UploadStatus state="CONFIRMED_ERROR" id="1450145"/>

<UploadStatus state="CONFIRMED_ERROR" id="1370137"/>

</UploadStatuss>

4.3 Ontology Annotator

The Ontology Annotator is a web-based tool that can be accessed through the p-medicine
portal. It was designed to allow end users to specify annotations of databases for their
semantic integration in the p-medicine platform.

The Ontology Annotator is an annotation tool for specifying semantic relationships between
elements of the schema of a database with elements of an ontology (in the case of p-
medicine, the HDOT ontology). Users can create "annotation projects" for their database, in
which they can browse their database schema and the HDOT ontology and specify the
semantic relations between them that will enable the automatic translation of the database
into an HDOT-compliant form. The annotation of a database can be done in different
sessions (users can save their work and recover it in subsequent accessions), can be shared
with other users (several users can collaborate in one annotation project), and, when
finished, can be submitted to the p-medicine platform. Once the annotation of a database is
submitted, the corresponding database will be automatically integrated into the p-medicine
Data Warehouse.

The Ontology Annotator is supported by the HDOT ontology. This ontology is graphically
represented to users during the annotation projects. The Ontology Annotator also makes use
of the TTP services to ensure that all operations are secure. Finally, the Ontology Annotator
communicates with the Data Warehouse (through the TTP services) to upload the
annotations defined by the users.

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 37 of 81

Ontology annotator provides some search operations and management of the projects and
users like:

• Login.

• Create project.

• Open project.

• Delete project.

• Add new user to project.

• Create database view.

• Create HDOT view.

• Create annotation entry.

• Submit annotation.

Non functional requirements

The Ontology Annotator performs user authentication, by accessing the TTP services.

Installation instructions

Ontology Annotator is a web-based tool which must be deployed in an application contained
with JSP capabilities (e.g. Tomcat version 7). The tool also requires JDK version 7.

The Ontology Annotator also employs an SQL database as persistence layer. This database
must be accessible by the tool (either locally or remotely).

Detailed installation instructions can be found in the p-medicine wiki.

4.4 Data Translator

The Data Translator is a Java-based API capable of transforming data into an HDOT-
compliant form. It provides a unique service, for translating data from its original format to the
format of HDOT. For performing this operation, the Data Translator receives the original data
in form of N-Triples (http://www.w3.org/TR/n-triples/) and one annotation description, and as
a result produces another set of N-Triples, based on the HDOT structure. The annotation
description received is actually the identifier of the annotation file that must guide the
translation process. This annotation file is stored in the Ontology Annotator database.

The Data Translator is used solely by the p-medicine Data Warehouse (DW). The DW
invokes the Data Translator whenever a new database is uploaded or updated, or when the
annotation for an existing database is updated. It also collaborates with the Ontology
Annotator, for retrieving the required annotation files.

Interface

The Data Translator provides a Java Library (JAR) interface for accessing its translation
service. The Data Translator includes two different operations: configure and translateData

Operation: configure

This operation configures the Data Translator with the necessary parameters. The configure
method is contained in the es.upm.gib.datatranslator.DataTranslationService

class, and is accessible as a public static method. The configure operation has three
(overloaded) methods in this class (the client can invoke the one that finds more convenient,
they all produce the same result). Their signature is the following:

public static void configure(String configurationFileName)

throws IOException;

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 38 of 81

public static void configure(File configurationFile) throws IOExcept

ion;

public static void configure(URL configurationFileURL) throws IOExce

ption;

which only differ in the parameter received.

The input to the configure operation is an XML file containing information for properly
initializing the Data Translator. Each of the three overloaded methods receives this XML file
as a different type:

• String configurationFileName: this parameter provides a local path to the XML

configuration file

• File configurationFile: this parameter provides a java.io.File object

pointing to the XML configuration file

• URL configurationFileURL: this parameter provides an URL which gives access to

the XML configuration file

Below is an example of a valid configuration file:

<?xml version="1.0"?>

<DT_Service>

 <!-- Location of the HDOT files for initial loading. Options: -->

 <!-- i) <HDOTLocation type="directory">path</HDOTLocation> -> loads the

HDOT files from a local directory, specified by path -->

 <!-- ii) <HDOTLocation type="URL">URL</HDOTLocation> -> loads the HDOT

files from a specific URL, specified by URL -->

 <!-- iii) <HDOTLocation type="source"/> -> loads the HDOT files from

the HDOT project page -->

 <HDOTLocation type="source"/>

 <!-- Names of the actual HDOT files to load -->

 <!-- HDOT is divided in several files, which correspond to its

different modules. This element indicates the names of the actual files to

load -->

 <!-- These names are contatenated to the HDOT location, provided in the

previous element -->

 <!-- To see a full list of files composing HDOT, visit its project page

at http://code.google.com/p/hdot/source/browse/trunk/ -->

 <HDOTFiles>

 <HDOTFile>swo_inferred_pMed.owl</HDOTFile>

 <HDOTFile>hdot_core.owl</HDOTFile>

 <HDOTFile>hdot_KLt.owl</HDOTFile>

 <HDOTFile>doid_import.owl</HDOTFile>

 <HDOTFile>hdot_pfm.owl</HDOTFile>

 <HDOTFile>hdot_pem.owl</HDOTFile>

 <HDOTFile>hdot_OXt.owl</HDOTFile>

 <HDOTFile>hdot_bsds.owl</HDOTFile>

 <HDOTFile>hdot_dicom.owl</HDOTFile>

 <HDOTFile>swo_inferred_pMed.owl</HDOTFile>

 <HDOTFile>swo_inferred_v0.5.owl</HDOTFile>

 <HDOTFile>hdot_pm.owl</HDOTFile>

 </HDOTFiles>

 <!-- URL where the DW is deployed, including its version (v1) -->

 <DWURL>https://schroedinger.chem.ucl.ac.uk:8443/dwh/v1/</DWURL>

 <!-- location of the keystore file containing the DW certificate

(needed to properly access the DW) -->

http://code.google.com/p/hdot/source/browse/trunk/
https://schroedinger.chem.ucl.ac.uk:8443/dwh/v1/

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 39 of 81

 <!-- can be placed in a local directory (type="directory") or in an URL

(type="URL"). The password attribute indicates the password for accessing

the keystore. -->

 <!-- The text value of the tag indicates either the local directory or

the URL -->

 <keystore type="directory" password="123456">c:\myKeys.kst</keystore>

</DT_Service>

Operation: translateData

This operation performs the translation of the provided data into an HDOT-compliant form.
The translateData method is contained in the

es.upm.gib.datatranslator.DataTranslationService class, and is accessible as

a public static method. Its signature is the following:

public static Iterator translateData(InputStream rawTriples,

InputStream annotationDescription, String baseURI) throws Exception;

The translateData operation receives three parameters:

• InputStream rawTriples: an InputStream which must be open and provide access

to the N-TRIPLES content of the file to translate

• InputStream annotationDescription: an InputStream which must be open and

provide access to the annotation identifier to use for this translation

• String baseURI: the base URI of the file to translate (required to properly extract the

data from the file)

The translateData operation returns an Iterator over

es.upm.gib.owlbasicmodel2.NTripleGenerator.Triple objects. Each of these

objects is a simple collection of three Strings: origin, property and destination (each with its
corresponding getter), which form an RDF triple. The returned iterator allows recovering all
the HDOT-compliant triples generated during the translation process.

Installation instructions

The Data Translator must be imported as a Java library in the project that requires using it. It
requires Java 1.7 or higher to run. Some specific details:

• It is OS-independent

• There is no persistence layer required. No data is stored

• There are no specific HPC requirements. The Data Translator can run in any average
machine

• Importing the Data Translator into a project

• Maven configuration

The Data Translator can be imported into a maven-enabled project, by specifying the
following dependency:

 es.upm.gib.datatranslator

 datatranslator

 1.0

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 40 of 81

4.5 ALGA-C Profiling Service

This service is part of the Patient Empowerment suite of services and provides access to the
results of the processing of a patient's answers after he/she has completed the ALGA-C
questionnaire.

The service publishes a single endpoint URL for retrieving the questionnaire results of a
single patient:

Operation: Get Patient Profile

HTTP Method GET

HTTP Endpoint /getPatientResults

Query Parameters patientId : the patient identifier, uniquely identifying the

patient in the Patient Empowerment context

Formats JSON5

This endpoint returns the results of the questionnaire for each of the following categories:

 Perceived Health State

 Physical_Health State

 PsychoSocial Aspects

 Cognitive Aspects

 Psychological Aspects

And the following subcategories (per category):

Category Subcategory

Cognitive Aspects

Cognitive Closure

Memory Attention

Rumination

Perceived Health State Perceived Health State

Physical Health State Physical Health State

PsychoSocial Aspects

Body Image

Sexual Problems

Self Efficacy

In the case that the same patient has filled in the questionnaire multiple times in the past, the
service returns the most recent results.

Example Output:

5 JavaScript Object Notation, http://json.org/

http://json.org/

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 41 of 81

The returned message is in JSON format. It is actually an array (sequence) containing
objects of the following form:

{

 "score": 1,

 "z_score": -1.414730358868464,

 "recommendationText": "
Explanation: High values are

generally associated with a negative mood state and to problems with

intimate relationship.
Recommendation: highlight eventual

organic-therapeutic consequences and distinguish those from the

psychological ones.",

 "numberOfQuestions": 2,

 "pointsSum": 2,

 "subcategory": "Sexual_Problems",

 "category": "PsychoSocial_Aspects"

 }

The numberOfQuestions field provides the number of questions that this

category/subcategory pair contains while the z_score contains the (normalised to zero

mean) score of the patient in this set of questions. This score can be interpreted as follows:

 Values between -1 and 1 are considered "safe" or "normal"

 Values between -2 and -1 or 1 and 2 are "cautious" i.e. somewhat divergent from the
normal case

 Values below -2 or above 2 are on the critical level

The recommendationText contains an explanation for the non-normal setting and some

recommendations. These are always the same irrespective of the actual z_score.

4.6 Drug – Drug Interaction Service

This is a RESTful web service for retrieving drug related information. It offers the following
functionality:

 Get information for a specific drug

 Return potential interactions among two given drugs.

Operation: Get Drug information

HTTP Method GET

HTTP Endpoint /getDrugInformation

Query Parameters drugName : the name or synonym of a drug

Formats JSON

This endpoint returns information about the given drug, such as the following:

 Name

 ID

 Synonyms

 Categories

 Dosages

 Brand names

 Drug interactions

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 42 of 81

 Food interactions

Example Output:

{

 "drugbank_id": "DB00471",

 "name": "Montelukast",

 "brands": [

 "Montair",

 "Singulair",

 "Singular"

],

 "synonyms": [],

 "description": "Montelukast is a leukotriene receptor antagonist

(LTRA) used for the maintenance treatment of asthma and to relieve

symptoms of seasonal allergies. It is usually administered orally.

Montelukast blocks the action of leukotriene D4 on the cysteinyl

leukotriene receptor CysLT1 in the lungs and bronchial tubes by

binding to it. This reduces the bronchoconstriction otherwise caused

by the leukotriene, and results in less inflammation. Because of its

method of operation, it is not useful for the treatment of acute

asthma attacks. Again because of its very specific locus of

operation, it does not interact with other allergy medications such

as theophylline. Montelukast is marketed in United States and many

other countries by Merck & Co. with the brand name Singulair®. It is

available as oral tablets, chewable tablets, and oral granules. In

India and other countries, it is also marketed under the brand name

Montair®, produced by Indian company Cipla.",

 "categories": [

 "Anti-Asthmatic Agents",

 "Antiarrhythmic Agents",

 "Leukotriene Antagonists"

],

 "dosages": [

 {

 "form": "Granule",

 "route": "Oral",

 "strength": "No strength information"

 },

 {

 "form": "Tablet",

 "route": "Oral",

 "strength": "No strength information"

 }

],

 "drug_interactions": [

 {

 "drug": "DB01124",

 "name": "Tolbutamide",

 "description": "Tolbutamide, a strong CYP2C9 inhibitor, may

decrease the metabolism and clearance of Montelukast. Consider

alternate therapy or monitor for changes in Montelukast therapeutic

and adverse effects if Tolbutamide is initiated, discontinued or

dose changed. "

 }

],

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 43 of 81

 "food_interactions": [

 "Take without regard to meals."

]

}

The drug should exist. In case of an unknown drug the service returns an error:

{

"Error":"Drug with the specified name is not found in the database!"

}

Operation: Get Drug-Drug Interaction

HTTP Method GET

HTTP Endpoint /getDrugToDrugInteractions

Query Parameters drugNameA : the name or synonym of the first drug

drugNameB : the name or synonym of the second drug

Formats JSON

It returns the description of a potential interaction between two drugs

Example Output:

The prostacyclin analogue, Treprostinil, increases the risk of

bleeding when combined with the anticoagulant, Lepirudin. Monitor

for increased bleeding during concomitant thearpy.

In the case that no interaction found, the service returns:

No Interactions are found between the two drugs!

4.7 “Donor’s Tool” Consent Access Service

This is a RESTful web service for retrieving information about the available “donation
projects” and their consent documents and related material (see paragraph 3.4.4). It offers
the following functionality:

 Get all projects

 Get general information for a specific project

 Get all the relevant documents for a specific project.

Operation: Get All Projects Ids

HTTP Method GET

HTTP Endpoint /DonorsTool/getAllProjectIdsAndNames

Query Parameters

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 44 of 81

Formats JSON

It returns a list of the available project ids and their names.

Example Output:

[

 {"projectId": 1, "name": "Test project 1"},

 {"projectId": 2, "name": "Test project 2"}

 ...

]

Operation: Get General Project Information

HTTP Method GET

HTTP Endpoint /DonorsTool/getGenericProjectInformation

Query Parameters projectId : the id of a specific project

Formats JSON

It returns the details of the specific project such as the its name, summary, and contact
person information.

Example Output:

{

 "projectId": 6, "name": "i", "summary":"i", "lang": "en",

 "contactPerson": {

 "name": "John Doe",

 "email": "doej@example.com",

 "phone": "555-555-5555"

 }

}

Operation: Get Documents of a Project

HTTP Method GET

HTTP Endpoint /DonorsTool/getConcentFilesInformationByProjectId

Query Parameters projectId : the id of a specific project

Formats JSON

It returns (links to) all relevant documents for the given project.

Example Output:

[

 {

 "projectId": 6,

 "consentDescription": "...",

 "doc": "http://example.com/6/1.pdf"

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 45 of 81

 }

 ...

}

4.8 Workbench

The Workbench is a tool registry and repository. The basic functionality it offers is the
discovery of tools and services based on some given criteria.

 Tool searching

HTTP Method GET

HTTP Endpoint /v1

Query Parameters
 qcat: a “strong” filter for the categories the returned

tools should belong

 q: a “weak” filter for searching the names and

descriptions of the tools using “full-text” search
capabilities

 qtag: a “weak” filter for (full-text based) searching the

user supplied tags. Can be used multiple times.

Formats JSON

SAML Authorization Not required

Description Searching for tools. The client can use a number of key - value
pairs in the query part of the URI in order to set search filters.
The filters can be "strong" or "weak". Strong filters must be
satisfied for a tool to be returned in the results. "Weak" filters are
not filters actually, they are used for sorting the results so that
tools that satisfy them are returned first.

Example output:

For a request searching for the word “miRNA” in the names and descriptions of tools
(…/v1?q=mirna) we can get the following output:

{

 "count": 13,

 "total": 13,

 "limit": 1000,

 "start": 0,

 "items": [

 {

 "img": null,

 "score": 1,

 "name": "MiRDeep",

 "ratings": null,

 "@type": "tool",

 "@id": "v1/012dbea9-d4dc-42c0-bf82-49e8813242fe",

 "user_likes": null,

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 46 of 81

 "description": "Discovering known and novel miRNAs from deep

sequencing data",

 "tag": ["mirna"],

 "category": ["Sequence Analysis"],

 "tags_per_role": [

 {

 "role": "ADMINISTRATOR",

 "tags": ["mirna"]

 }

]

 },

 {

 "img": null,

 "score": 1,

 "name": "SeqBuster",

 "ratings": null,

 "@type": "tool",

 "@id": "v1/0365a3cd-e0b2-4387-a7e8-5780e035a416",

 "user_likes": null,

 "description": "SeqBuster, a web-based bioinformatic tool offering a

custom analysis of deep sequencing data at different levels, with special

emphasis on the analysis of miRNA variants or isomiRs and the discovering

of new small RNAs. ",

 "tag": ["Small RNA transcriptome","miRNA "],

 "category": ["Sequence Analysis"] ,

 "tags_per_role": [

 {

 "role": "ADMINISTRATOR",

 "tags": ["Small RNA transcriptome","miRNA"]

 }

]

 },

 //… rest omitted for brevity

]

}

Tool retrieval

HTTP Method GET

HTTP Endpoint /v1/{toolId}

Query Parameters None

Formats JSON

SAML Authorization Not required

Description Get the metadata for a specific “tool”.

Example Output:

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 47 of 81

{

 "@type": "tool",

 "@id": "v1/fd0cfbc5-74f0-4389-b5b3-01fde1c60c40",

 "id": "fd0cfbc5-74f0-4389-b5b3-01fde1c60c40",

 "file": null,

 "publisher": null,

 "description": "Basic graphic utilities for visualization of genomic

data. The biovizBase package is designed to provide a set of utilities,

color schemes and conventions for genomic data. It serves as the base for

various high-level packages for biological data visualization. This saves

development effort and encourages consistency.",

 "tag": ["Bioinformatics", "Infrastructure",

 "Preprocessing", "Software", "Visualization"],

 "category": ["Microarrays"]

 "license": null,

 "creator": null,

 "img": null,

 "source_code": null,

 "semterm": [

 "http://edamontology.org/data", "http://edamontology.org/data_0006",

 "http://edamontology.org/topic", "http://edamontology.org/topic_0209",

 "http://edamontology.org/topic_3176"],

 "name": "biovizBase",

 "technology_type": null,

 "webpage":

"http://www.bioconductor.org/packages/release/bioc/html/biovizBase.html",

 "operation": [

 {

 "@id": "v1/op/546c193c-ff54-4c82-98ee-65a50ad6fbda",

 "@type": "operation",

 "name": "biovizBase",

 "description": null,

 "semterm": []

 "input": [

 {

 "name": "GenomicFeatures",

 "description": null,

 "required": true,

 "data_type": null,

 "@id": "v1/in/00846052-8db6-40c8-9316-93112620abe3",

 "@type": "input",

 "semterm": null

 },

 {

 "name": "grDevices",

 "description": null,

 "required": true,

 "data_type": null,

 "@id": "v1/in/08e97b08-6636-4577-890e-840e50013fc8",

 "@type": "input",

 "semterm": null

 },

 //… rest input parameters omitted for brevity

],

 "output": [

 {

 "name": "vizualization",

 "description": null,

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 48 of 81

 "data_type": null,

 "@id": "v1/out/f87fe09d-e966-4fb0-8b79-a71355a69b5e",

 "@type": "output",

 "semterm": null

 }

]

 }

],

 "tags_per_role": [],

 "os": null,

 "ratings": null,

 "user_likes": null

}

Tool Update

HTTP Method PUT

HTTP Endpoint /v1/{toolId}

Query Parameters None

Formats JSON (in request)

SAML Authorization Yes

Description Update the metadata for a specific “tool”. The client should
submit the complete description of the tool, i.e. its operations,
inputs, outputs, etc. and the existing definition in the workbench
will be completely replaced.

Update the “rating” of a tool

HTTP Method POST

HTTP Endpoint /v1/{toolId}/ratings

Query Parameters None

Formats -

SAML Authorization Yes

Description Update the ratings for a specific “tool”. In the tool repository it is
registered that the current principal user (extracted from the
SAML token) has “liked” the given tool. Therefore the number of
“likes” for this tool is increased by one.

Update the role specific tags of a tool

HTTP Method POST

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 49 of 81

HTTP Endpoint /v1/{toolId}/tags/{role}

Query Parameters None

Formats JSON (in request)

SAML Authorization Yes

Description Update the tags of he given “tool” for the specific role. The
request contains the tags to be added in JSON formatted array
of strings.

Non functional requirements

User roles will be used to regulate actions performed within the workbench. Three user roles
are used to regulate actions within the workbench: CLINICIAN, SCIENTIST, and
ADMINISTRATOR. These roles match the existing user roles of the P-Medicine's portal:

Portal Role Workbench Role User groups

CLINICIAN CLINICIAN Clinicians, physicians

CLINICAL TRIAL
LEADER

CLINICIAN Clinical trial chairman, clinical trial designers

SCIENTIST SCIENTIST Researchers from the scientific community
(mathematicians, physicists,
bioinformaticians, computer scientists, etc.)

PMED
ADMINISTRATOR

ADMINISTRATOR Administrator of the p-medicine portal
(responsible for user management, user
permissions, community management, etc.)

COMMUNITY
ADMINISTRATOR

ADMINISTRATOR Administrators of the communities created in
the p-medicine portal

DEVELOPER (IT) ADMINISTRATOR Developers of tools and services for p-
medicine

Actions within workbench are regulated by user roles. These actions are listed below (the
roles in the table below, correspond to Workbench's User Roles):

User Role Actions

No role required Can search for tools

At least one role Can register a tool

At least one role Can add new or edit existing tool tag.

ADMINISTRATOR Can confirm that some registered tool is valid.

Furthermore the system utilizes these roles in order to assist user during the tool discovery
phase. Thus, the provided custom tags are displayed in certain priority that depends on
user's roles. i.e. tags that have been created by clinicians will be displayed first in case that
the current user has the role of clinician. In case that the user does not have any role, will still
be able to see the tags, but in mixed sequence. In case that the user has multiple roles, the
following priority is taken into account:

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 50 of 81

• CLINICIAN

• SCIENTIST

• ADMINISTRATOR

This priority is used for determining which tags to be displayed first and which role to be used
as reference when a user creates a new or edit's an existing tag (users with no roles cannot
delete, edit or create new tags). The Workbench Portlet in the Portal can also be accessed
by non-authenticated users, but in this case the functionality is limited. For example only
authenticated users can make one tool as their “favourite”.

Therefore, the server makes use of the p-medicine security framework to achieve two goals:

• Restrict access to the operations that perform server side, i.e. any POST, PUT,
DELETE request. This means that retrieving the workbench contents (e.g. through
search) is always allowed and unauthenticated requests (i.e. GETs without SAML token
in the Authorization HTTP header) are always allowed. Of course the requests coming
from the workbench portlet will always carry user authentication information.

• Support "personalization". When an authenticated user is the requester of the
information returned by its REST API, the server can take advantage of the role
information associated with this user (as retrieved by the SAML token). For example for
each tool we can have tags associated with the role that the user who submitted them
had. This way we can return role specific tags (e.g. clinician related tags versus
bioinformaticians ones)

Installation instructions

Software requirements:

• The tools are stored in a PostgreSQL database so you need to install it first. the
recommended versions are in the 9.X series, 9.3.3 being the latest at the time of this
writing.

• Java Runtime Environment 6 or newer.

The server is provided as a single JAR file and no other application server (e.g. Tomcat) is
needed. In order to test it please do as follows:

• Bootstraping the database.

• Change the configuration file to specify TCP port to use, etc.

• Launch it by issuing in the commend line: java -jar wbench-0.5-
standalone.jar

• Use the browser to visit http://localhost:<port>/v1?q=analysis

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 51 of 81

5 Non functional requirements

The most fundamental quality of the p-medicine architecture is security. The data upload and
management is very complex due to this emphasis on the preservation of patient’s privacy
and anonymity.

Next to that is the issue of usability and user friendliness. This is an ongoing task and there
were a number of usability workshops, the most recent of the 7th progress meeting in April
2014.

Finally after the experts’ recommendations in the 2nd review of the project we have made
some extensive analysis of the system’s performance focusing on specific components of the
architecture. The methodology and the results can be found in Appendix A.

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 52 of 81

6 Deployment

The p-medicine platform will be distributed along many computational nodes due to its
complexity, functionality, and heterogeneity of components. A test deployment comprising
most of the platform’s components is available in a private cloud environment hosted by
partner PSNC in Poland since they have access to the highly efficient and available storage
services provided by National Data Storage (NDS), which is part of the EUDAT (European
Data Infrastructure, http://www.eudat.eu/).

The cloud offers the flexibility to adapt to increased demands for computation and storage
and therefore is the ideal infrastructure for deploying a complex system such as p-medicine.
The primary emphasis of the p-medicine architecture is the handling of large data sets and
therefore storage is the primary concern. The Cloud storage in p-medicine environment is
needed primarily by the Data Warehouse for the management of files and RDF data. The
other scenarios are related to data mining workflows that can use cloud storage for
intermediate computation results, and oncosimulator application executed in a dedicated
cluster environment (not shown here).

The current prototype of the p-medicine platform deployed in Poland is shown below:

Figure 26 The deployment for the prototype system

http://www.eudat.eu/

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 53 of 81

The only services currently not installed in the p-medicine cloud are the security related ones
(e.g. CATS, the pseudonymisation service) that are hosted by partner Custodix on their
premises.

The configuration of the virtual machines and relevant p-medicine as well as third party
software is shown in the next Table.

Node(s) Functionality Components Configuration

Portal

Liferay6 portal within
Apache Tomcat7 and
apache, PostgreSQL8,
Taverna. The portal hosts
various tools for accessing
the p-medicine services (e.g.
Workbench, Data Mining etc)
as portlets.

2 CPU, 10 GB RAM, 110 GB
storage

Data warehouse
Data Warehouse, Redis9,
dcm4chee DICOM server10,
OWLIM triplestore11

3 CPU, 10 GB RAM, 4 TB
storage

Semantic Services
Ontology Annotator and
Ontology Aggregator with
Apache Tomcat

1 CPU, 2 GB RAM, 10 GB
storage

Workbench
Workbench Server, nginx
web server12, PostgreSQL

1 CPU, 2 GB RAM, 30 GB
storage

OpenStack Object Storage

OpenStack’s Object Storage
(Swift13)

 1 Proxy node: 4 CPU,
10 GB RAM, 10 GB
storage

 4 storage nodes: 4
CPU, 10 GB RAM, 16
TB storage

Auditing Server
RabbitMQ14, ElasticSearch,15
logstash16 and Apache
Tomcat with kibana17

1 CPU, 2 GB RAM, 110 GB
storage

All machines run Ubuntu Linux 14.04 LTS18.

6 http://www.liferay.com/
7 http://tomcat.apache.org/
8 http://www.postgresql.org/
9 http://redis.io/
10 http://www.dcm4che.org/
11 http://www.ontotext.com/owlim/
12 http://nginx.org/
13 http://swift.openstack.org/
14 http://www.rabbitmq.com/
15 http://www.elasticsearch.org/
16 http://logstash.net/
17 http://www.elasticsearch.org/overview/kibana/

http://www.liferay.com/
http://tomcat.apache.org/
http://www.postgresql.org/
http://redis.io/
http://www.dcm4che.org/
http://www.ontotext.com/owlim/
http://nginx.org/
http://swift.openstack.org/
http://www.rabbitmq.com/
http://www.elasticsearch.org/
http://logstash.net/
http://www.elasticsearch.org/overview/kibana/

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 54 of 81

The current prototype fits more than enough the internal needs of the project but but this is
an initial version of the platform and a production level platform will probably need more
resources. The use of the cloud allows such “scale out”. From the beginning, all resources
are monitored and in case of higher resource usage additional nodes will be added. Of note,
the use of REST architectural style and its stateless principle affords increase in scalability of
the p-medicine services through load balancing and partitioning with relatively ease. The
reader can refer to Appendix A for more details about the performance and scalability
characteristics of prominent p-medicine tools.

18 http://www.ubuntu.com/

http://www.ubuntu.com/

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 55 of 81

7 Architecture Compliance

The p-medicine platform intends to be open so that new components can be attached to its
architecture. Of course such openness should not be unconditional, i.e. there should be
certain requirements met by an external component in order to be compatible with the p-
medicine platform. Furthermore, there can be different levels of compatibility between the
designed system and a third party component. Of note, The Open Group Architecture
Framework (TOGAF19) introduces different terms (e.g. “conformant”, “compliant” etc.) and
provides detailed definitions of those terms so as to describe the possible degrees of
compatibility between the architecture and an implementation of this architecture (Figure 27).

Figure 27 The levels of the architecture conformance according to TOGAF

In our case the p-medicine platform is fully conformant to its architecture “by definition” (since
it was developed in accordance with it) but the important question is: What are the
requirements for a new tool, which could be developed outside of the p-medicine, to be
compliant with the p-medicine platform, i.e. to implement some of its features while still
conforming to its architectural constraints?

19 TOGAF®, an Open Group standard: http://www.opengroup.org/subjectareas/enterprise/togaf/

http://www.opengroup.org/subjectareas/enterprise/togaf/

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 56 of 81

Deliverable 8.6.1 (“Integration Guidelines and Monitoring of tools and services”) describes
three “integration maturity” levels aptly named Bronze, Silver, and Gold. These levels, shown
in the next table, refer to the provision of programmatic interfaces for the accessing the
component in question, and Deliverable 8.6.1 recommends the adoption of at least the Silver
level. This means that potential third party tools should at least provide a well-described
programmatic interface over secure transport for the exchange of data in the data formats
adopted by the consortium.

Architectural View Legacy Bronze Silver Gold

Programming and
Messaging
Interfaces.

- No programmatic

interfaces to the

system are available.

Only local data files in

a custom format can

be read.

- Data transfer

mechanisms are

implemented only on

an ad hoc basis.

- Programmatic

access to data from an

external resource is

possible.

- Well-described APIs,

approved by the p-

medicine Architecture

Board, provide access

to data.

- Electronic data

formats corresponding

to a registered domain

model approved by the

p-medicine

Architecture Board are

supported wherever

messaging is indicated

by the use cases.

- Messaging protocols

approved by the p-

medicine Architecture

Board are supported

wherever messaging is

indicated by the use

cases.

- Secure services must

use the p-medicine

security guidelines

mechanisms for

authentication, trust

management, and

communication

channel protection.

- All features of silver,

plus:

- APIs are exposed as

operations of a web

service; Object-

Oriented client APIs

are available for

invoking those

operations.

-Service operations

use XML as data

exchange format, and

are invoked using

standardized protocols

and communication

channels.

- Services provide

public access to p-

medicine standardized

service metadata and

have capability to

register it with the p-

medicine Tool/Service

Repository.

Of course these are generic guidelines that can be adapted in accordance to the specific
application area of personalized medicine. As described in Sections 2.2 and 2.4, the p-
medicine platform covers domains such as clinical decision support, computational cancer
modelling, data mining, etc. that have different requirements or even operate in different
contexts, e.g. clinical treatment domain versus clinical research domain. Despite these
differences there are two main points in the compatibility checklist for a candidate new p-
medicine component or application:

 Conformance to the security infrastructure and the related guidelines. This means
that the component under consideration should use the authentication, authorization,
confidentiality, and trust mechanisms of the p-medicine platform (Section 3.1).
Concretely, the component should use SAML tokens, preferably over REST/HTTPS
message exchange channels, and contacting the designated p-medicine Identity
Provider (IdP) server. In the case where the new component provides a data upload
functionality (for example, an external data source “feeding” the p-medicine data
warehouse), it should additionally comply to the secure data management
requirements: use the pseudonymization infrastructure and more specifically the

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 57 of 81

CATS and TTP services (Sections 3.2.1 and 4.2) in order to ensure the privacy of the
patient data.

 Conformance to the semantics and the ontology based annotation of the data
managed in p-medicine. A data provider should use the Ontology Annotator (Section
3.2.2) to provide proper semantic annotations to the uploaded data and then register
those annotations into the data warehouse so the correct transformations are
performed and the data are integrated appropriately. On the other hand, an
application, which intends to reuse data managed by p-medicine, should use the
semantically rich, SPARQL based interface of the Data Warehouse in order to
retrieve the data.

As already mentioned these are relatively universal requirements for connecting the p-
medicine platform. On specific occasions more restrictions apply. For example, the use of a
new computational model for in-vivo tumor evolution requires the use of certain software
libraries and development techniques in order to be used in the p-medicine computational
modelling infrastructure and take advantage of high performance (HPC) or cloud computing.
The detailed integration requirements and compatibility checking instructions on these
domain specific cases are outside the scope of this document.

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 58 of 81

8 Conclusions

The p-medicine architecture is defined a complex system of loosely interconnected
subsystems. The different subsystems correspond to application areas of the personalized
medicine vision, such as clinical decision support, patient empowerment, computational
modelling etc. The architectural components comprising the p-medicine platform interact
using well-defined programmatic interfaces based on HTTP web services. Although the
platform may appear loose and unrestricted its components are bind together using the strict
security guidelines and the semantic infrastructure as the primary integration mechanisms. A
prototype version of the system has been deployed in a private cloud environment in Poland.

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 59 of 81

9 References

[1] N. Rozanski and E. Woods, Software systems architecture: working with stakeholders
using viewpoints and perspectives, 1st ed. Addison-Wesley Professional, 2005.

[2] P. Deutsch, “Fallacies of Distributed Computing - Wikipedia, the free encyclopedia,”
en.wikipedia.org. [Online]. Available:
http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing. [Accessed: 14-Apr-
2014].

[3] E. Evans, Domain-driven design: tackling complexity in the heart of software. Addison-
Wesley Professional, 2004.

[4] I. Alexander, “Stakeholders: who is your system for?,” Computing and Control
Engineering, 2003.

[5] A. Cockburn, “Hexagonal Architecture: Ports and Adapters (‘Object Structural’),”
alistair.cockburn.us. [Online]. Available:
http://alistair.cockburn.us/Hexagonal+architecture. [Accessed: 15-Apr-2014].

[6] P. Coad, J. Luca, and E. Lefebvre, Java Modeling Color with Uml: Enterprise
Components and Process. Prentice Hall, 1999.

[7] J. Garrido, “Introduction to Elementary Computational Modeling: Essential Concepts,
Principles, and Problem Solving,” Introduction to Elementary Computational Modeling:
Essential Concepts, Principles, and Problem Solving, Oct. 2011.

[8] V. Law, C. Knox, Y. Djoumbou, T. Jewison, A. Guo, Y. Liu, A. Maciejewski, D. Arndt,
M. Wilson, V. Neveu, A. Tang, G. Gabriel, C. Ly, S. Adamjee, Z. T. Dame, B. Han, Y.
ZHOU, and D. S. Wishart, “DrugBank 4.0: shedding new light on drug metabolism.,”
Nucleic acids research, pp. 1091–1097, 2014.

 This project has received funding from the European Union’s Seventh Programme for research,
technological development and demonstration under grant agreement No 270089.

Appendix A – Formal scalability analysis in the p-

medicine platform

The p-medicine platform is comprised by a set of state-of-the-art tools and services for the
managing, exploration and analysis of biomedical data. Depending on the specific data
repositories and the number of concurrent accessions, these tools must handle immense
volumes of data, leading to high response times and/or low throughput values. This section
provides a thorough analysis of the requirements for ensuring scalability of the developed
tools and services.

The report begins with an estimation of the current and near-future needs of the p-medicine
platform (i.e. number of simultaneous users that should be supported, number of biomedical
databases to integrate and frequency of updates). The report continues with the identification
of the p-medicine tools and components that must handle a significant load of work under
specific load conditions. This allows discarding several tools and focusing the analysis on
those which might become a bottleneck of the platform. Finally, the report concludes with
specific scalability analysis for the selected tools and services, performing different
benchmarks on each of them.

A.1 Current and near future platform requirements

The platform requirements are estimated in two dimensions: i) Amount of resources (Clinical
Trials, biomedical databases) incorporated in the platform by unit of time, and ii) Number of
users accessing those resources by unit of time. Regarding the former, the number of
ongoing clinical trials in Europe is nowadays almost 16,000, as stated at
https://www.clinicaltrialsregister.eu/. The number of available biomedical databases is above
1,500 [A1]. Considering that a single deployment of the p-medicine platform acquires 10% of
these resources, and assuming an average size of 1 million items per CT or database and an
average of two updates per month (both estimates can be considered as “above” average
requirements, since many of the existing clinical trials and databases do not offer public data,
and many existing databases do not undergo any frequent updates or any updates at all), the
platform should be able to handle around 1350 items per second.

Regarding the latter value (number of users accessing the platform), we can use a value of
10,000 (the European Association of Medical Oncology has around 6500 members, and the
International Society of Paediatric Oncology lists around 1500). Assuming that each user
makes an average of a single query to the platform every 30 seconds, the platform should be
able to support over 300 concurrent requests per second20. Again, this can be taken as an
“above” average estimate, since not every “possible” user is going to use the platform.

A.2 Preliminary analysis of p-medicine tools & services

The scalability study of the p-medicine platform began with a preliminary performance
analysis of the tools comprising the platform. This stage served to identify those tools in p-
medicine which could affect the scalability of the platform and therefore produce bottlenecks

20 This “30 seconds” rate of user requests includes user’s “think time” (reading the description of what
the server replies, submitting the next query, etc.) and also the response time for the submitted query.
The majority of those requests should complete in a time below 1 sec in order for the system to
appear responsive to the user, which means that in a half of minute we can get at least 30 requests
(from 30 users, because each user makes one request per 30 seconds, and assuming a uniform
distribution) with no overlap. So for all the 10,000 users, with the uniform distribution in a 30 seconds
time window, we will get at most 10000 / 30 ≈ 334 concurrent requests per second from the
corresponding number of users.

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 61 of 81

in future deployments of the developed technology. As a result, two differential tool groups
were generated: i) a group of tools that produced negligible response time values, and ii) a
group of tools that presented significant response times and high dependency on the input
data size.

A.2.1 Procedure description

The preliminary analysis consisted on shallow tests to detect intensive computing tasks. The
tested tools and services were the following:

 Portal

 Ontology Annotator

 ObTiMA

 Data Warehouse (deployed in PSNC infrastructure)

 Data Translator

 Workbench

 Cloud Storage System

 CATS

For each tool, basic tests were run (one simultaneous user). The tests were run manually
and response times and/or throughputs were measured. In case of the Portal, the Ontology
Annotator and ObTiMA, the tests were performed by manually accessing the tools through a
web browser and manually accessing the services provided by those tools.

For the Portal, the tested operations included: opening the main page, log in, selecting the
“Documents and Media” page, selecting a document in the Portal, downloading a document,
switching between communities, opening the control panel, opening a user profile page,
opening the p-medicine tools page.

For the Ontology Annotator, the tests were: opening the available annotation projects page,
creating a new project, opening an existing project, selecting HDOT modules, searching for
an HDOT class, adding classes to the HDOT window, creating an annotation entry and
uploading an annotation to the Data Warehouse.

For ObTiMA, the tests consisted of creating a new trial, entering trial data and uploading the
trial data to the Data Warehouse.

The rest of tools were tested programmatically. The tests included the handling the data of a
medium-size database (500 patients, 10 attributes for each patient) in case of the Data
Warehouse, the Data Translator and CATS, and handling the sequential registry and
retrieval of 20 tools in case of the Workbench.

A.2.2 Analysis results

The response time operations performed on the Portal provided negligible values. Similarly,
the operations performed in the Ontology Annotator showed good response times
(operations completed in less than a second, except for the creation of new projects, which
took an average of 5 seconds). The Workbench also provided good response times of less
than a second. The rest of tools provided response times of several seconds for most of the
tested operations.

The performance of the Portal is acceptable for a web application. While this tool was tested
with one single user, the performance hit with more concurrent users should not be elevated
as it would be handled by the container hosting it. In case of the Ontology Annotator, the
response times are also above acceptable for a web application and the scalability with users
should depend on the application container on which this tool runs. The percentage of users
that potentially might access this tool will be very low, and database annotations will be
created only once per database. Both these tools can be discarded as possible performance
bottlenecks in the p-medicine platform, since their response time does not depend on the

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 62 of 81

volume of data handled, and they are not expected to receive high amounts of requests from
users, since they do not handle data directly.

The rest of tools were selected for further scalability analysis. Details are provided in the
following section.

A.3 Tool-specific scalability analysis

The advanced scalability analysis of the tools selected in the previous section involved more
complex tests. The goal was to measure the effect of the input data size and number of
simultaneous requests on the response time and throughput of the tested tools. Each tool
analysis was specifically designed to find the capability of scaling up upon the growth of the
mentioned input variables.

A.3.1 Data Warehouse

The p-medicine Data Warehouse is a central repository of heterogeneous data. As a service
itself, it features a REST-based interface supporting the following operations:

 Add/Retrieve files to/from the filestore.

 Add/Retrieve semantic triples extracted from uploaded files to/from the triplestore.

 Retrieve DICOM images.

The Data Warehouse serves as a heterogeneous data integration framework, where
disparate databases are pushed to the filestore and their HDOT-compliant version are
pushed to the triplestore.

Test description

In order to evaluate the performance of the Data Warehouse, three different tests were
designed:

 The first test checks the performance on the triplestore when adding/retrieving triples
to/from the data warehouse.

 The second test checks the performance on the filestore when
uploading/downloading files to/from the data warehouse.

 The third test checks the memory usage for both the triplestore and the filestore.

The tests were executed with different file sizes containing data about 1, 100, 500, 1000 and
5000 patients (each file contained 10 items per patient, so the item count was, respectively,
10, 1000, 5000, 10000 and 50000 items). All tests included monitoring of processor activity
and file system activity. The DICOM server was excluded from the tests, since the workload
is expected to be primarily supported by the two other components, which serve for more
general purpose tasks.

The configuration employed during the tests relied on the following software:

 Key-Value Database: Redis 2.8.3

 Application Server: Apache Tomcat 7.0.26

 RDF Storage: OpenRDF Sesame 2.7.6

In terms of hardware and operating system, an Intel® Core®2Duo Processor T7700 with 2
Cores, 2 GB RAM and a mechanical hard drive system (7200rpm) running Linux Kernel :
3.2.0-24-virtual 64 Bit running Ubuntu 12.04 (“Precise”) was employed.

Test results

The results obtained in test 1 are shown in figure A1.

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 63 of 81

Fig A1: response times for storing and retrieving data in the triplestore.

Test 2 results are depicted in figure A2.

Fig A2: response times for storing and retrieving triples in the filestore.

Finally, figure A3 shows the results of the third test.

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 64 of 81

Fig A3: memory requested by the filestore and the triplestore during the tested operations.

Scalability Analysis

The triplestore test shows how the storage of new triples produces much higher response
times than the retrieval of triples, with values around 3000 patients per minute, or 500 items
per second. The monitoring of the machine running the test showed that the element limiting
the performance was the IO system (hard drives).

The results of the filestore test show that pushing files into the Data Warehouse takes again
much more time than retrieving files. The reason in this case is that, for any uploaded file,
there are three additional files created: the one containing the raw triples, the one with the
ontology and the one containing metadata. The obtained values are again around the 500
items per second.

With regards to the memory consumption, the third test showed that the filestore comsumes
much more memory than the triplestore. In any case, the memory consumption grows almost
linearly with the number of data items

The achieved performance of the Data Warehouse is slightly lower than the highest
estimated current requirements for data processing performance. However, the tests show
that response times can be greatly reduced by using more advanced data storage units,
such as SSDs. The memory can also be a limiting parameter for the Data Warehouse.
Increasing the amount of RAM will allow the Data Warehouse to scale up in the event of
increased data processing requirements.

A.3.2 Data Translator

The Data Translator handles the homogenization of datasets to an HDOT-compliant format.
This involves an automatic data analysis and refactoring process, which heavily depends on
the size of the managed datasets. The Data Translator is designed to concurrently handle
several translations and make use of multi-processor configurations.

The data translation process is guided by the database annotations. A database annotation
(represented by an XML file describing semantic relationships between elements of the
database and elements of HDOT) allows the Data Translator to automatically perform the
homogenization of that database. The annotation can involve one or more elements of the

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 65 of 81

database, depending on what attributes shall be translated. For each element of the
annotated database, the corresponding annotation will store one annotation entry. Therefore,
the size of a database annotation can be regarded as the number of entries contained in that
annotation. A small-sized annotation can be formed by 1 to 5 entries. A medium-size
annotation can contain around 15 entries. Larger annotations can contain dozens of entries.

As a result, the load of work of the Data Translator depends on three variables:

 Number of simultaneous requests: the number of simultaneous translations that must
be achieved (can be seen as the number of simultaneous users making use of the
translation service).

 Size of databases: the number of items that a database contains. In the scalability
analysis, we focus on the number of rows of the databases.

 Size of the database annotations: the number of entries of the employed database
annotations.

Test description

The Data Translator scalability analysis aims to determine how the variables described
above affect the throughput of the Data Translator. The analysis also includes the use of
different machine configurations (varying in number of processing units and amount of RAM)
to measure what resource allows the system scaling up. Two different scalability tests were
run on the Data Translator:

 Test #1: This test aimed to measure the sensibility of the throughput of the Data
Translator upon different input sizes, maintaining a fixed machine configuration. More
specifically, we set the number of active processing units to 4, and the amount of
used RAM to 4GB. We set up a test with sequential accessions (no simultaneous
users) and different values of database size and annotation size. The database size
included the values 1, 100, 500, 1000 and 5000 rows, and the annotation sizes were
1, 2, 5, 10, 20 and 40 entries.

 Test #2: This test focused on finding the relation between machine parameters
(number of active processing units, amount of RAM) and system throughput. In this
case, the input size was maintained constant (1000 rows, 20 entries), but the number
of simultaneous accessions varied from 1 to 64 concurrent accessions. The RAM
amount varied: 256MB, 512MB, 1GB, 2GB and 4GB. For each of these values, the
system was tested with 1, 2, 3 and 4 active processing units and 1, 2, 4, 8, 16, 32 and
64 concurrent accessions.

The tests were performed with a dedicated Corei7 860 system (4 cores) including 8GB of
RAM. The machine used a Windows Server 2008 operating system and the Java 7 update
51 runtime environment.

Test results

The results for test #1 are shown in table A1 (times are given in seconds).

Rows # Entries

 1 2 5 10 20 30 40

1 1,29 1,76 1,78 1,17 1,72 2,06 2,01

100 1,89 1,89 2,22 2,20 1,91 1,96 1,47

500 2,53 2,85 2,68 2,10 3,55 2,97 3,20

1000 3,30 3,49 4,43 4,14 3,29 4,44 4,03

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 66 of 81

5000 11,07 9,48 10,43 11,21 12,14 14,01 16,52

Table A1: response times obtained for test# 1.

Figure A4 shows these values graphically.

Fig A4: the response times obtained for the test# 1.

For the second test, the results for the different amounts of RAM are shown in tables A2, A3,
A4, A5 and A6.

#Accessions # Processing Units

 1 2 3 4

1 4,75 4,01 4,43 3,88

2 6,73 5,52 5,64 5,80

4 12,02 10,16 9,77 10,83

8 35,39 - - -

16 - - - -

32 - - - -

64 - - - -

Table A2: response times for test# 2 run with 256MB of RAM

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 67 of 81

#Accessions # Processing Units

 1 2 3 4

1 4,23 3,63 4,02 3,93

2 6,79 6,05 5,50 5,31

4 12,86 10,61 9,12 9,66

8 22,91 21,12 17,64 18,24

16 49,00 45,08 40,01 40,72

32 - - - -

64 - - - -

Table A3: response times for test# 2 run with 512MB of RAM

#Accessions # Processing Units

 1 2 3 4

1 4,16 4,11 3,44 3,63

2 6,66 5,09 5,59 5,32

4 12,48 10,14 8,12 8,64

8 23,59 20,66 16,84 17,12

16 44,66 40,77 33,52 32,33

32 96,63 84,12 71,13 72,93

64 - - - -

Table A4: response times for test# 2 run with 1024MB of RAM

#Accessions # Processing Units

 1 2 3 4

1 4,28 3,84 3,83 3,38

2 6,26 6,35 5,31 5,08

4 12,68 11,04 8,38 7,71

8 23,38 18,71 15,22 15,06

16 46,56 36,52 31,49 32,75

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 68 of 81

32 92,30 75,81 64,44 64,14

64 196,55 167,72 139,01 137,37

Table A5: response times for test# 2 run with 2048MB of RAM

#Accessions # Processing Units

 1 2 3 4

1 4,47 3,52 3,70 3,62

2 6,03 5,76 4,88 4,86

4 12,14 9,37 8,11 9,59

8 23,57 17,27 16,22 16,49

16 47,21 33,95 30,57 30,84

32 95,09 69.65 62,74 63,49

64 185,42 146,77 132,44 127,57

Table A6: response times for test# 2 run with 4096MB of RAM

Figures A5, A6, A7, A8 and A9 graphically represent these values.

Fig A5: the response times obtained for the test# 2, with 256MB or RAM.

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 69 of 81

Fig A6: the response times obtained for the test# 2, with 512MB or RAM.

Fig A7: the response times obtained for the test# 2, with 1024MB or RAM.

Fig A8: the response times obtained for the test# 2, with 2048MB or RAM.

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 70 of 81

Fig A9: the response times obtained for the test# 2, with 4096MB or RAM.

Scalability Analysis

Test #1 shows a clear relation between the system throughput and input data size. However,
the parallelized algorithm allows to maintain that dependency below linear. For example, with
a fixed value or 5000 rows, moving from 20 entries to 40 entries increases the response time
1,36 times. With a fixed value of 40 entries, moving from 500 rows to 5000 rows increases
the response time 5,61 times. These data show that, in principle, the system is able to scale
upon the growth of the input data size, both in terms of database rows and annotation
entries.

The results of test #2 show that the number of simultaneous accessions directly affects the
performance of the system, and doubling the amount of accessions approximately reduces
performance by a 50%. For each fixed RAM configuration, there is an amount of
simultaneous accessions where this linear dependency breaks, and response time start
rising more abruptly. In the case of 256 MB of RAM, for a value of accessions between 4 and
8 the system stalls and performance greatly degrades (even makes the system fail). For 512
MB of RAM, this value lies between 8 and 16 accessions. For 1 GB of RAM, it is between 16
and 32 accessions. These data indicate that there is a linear dependency between the
amount of system RAM and the maximum amount of allowed simultaneous accessions (for
the system to scale). With respect to the number of processing units, the data show that they
allow reducing response times significantly, but they do not specifically allow the system to
scale up upon large input sizes.

A.3.3 Workbench

The Workbench is basically a registry/repository for Tools and domain specific Services. As a
service itself, it features a REST-based interface supporting the following:

 Full Text Search for textual attributes (names, descriptions, tags, etc.)
 Combined queries, e.g. search the names/descriptions and tags of tools in a specific

category: ../v1?q=rna&qtag[]=sequence&qcat=Bioinformatics

 Both retrieve and update/store interfaces is used by the workbench portlet in the
Portal

Input data size in this case is measured by the amount of tools registered in the portal.

Test description

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 71 of 81

The setup for the stress tests is shown in the figure on the right. The benchmarking client is
the Apache JMeter21 running in a Windows 7 machine that accesses the workbench
application using a typical 10/100Mbps local area network. The communication between the
client and the server is based on the HTTP/REST interface using JSON messages while the
database connections are using the PostgreSQL JDBC 4 driver22.

The database contains around 500 “tools” that we consider more or less an example of a
typical load. The tools have been annotated with 1000 (free text) "tags" and 1300 “semantic
terms” from the EDAM ontology23 and have been classified in 10 categories.

We consider two basic scenarios:

 Test #1: a client application representing a principal user submits queries in order to
locate tools matching some given description and tags

 Test #2: a synthetic scenario where the searching for tools happens with concurrent
updates to the tools’ tags. 90% of users perform searches, while 10% perform
updates

Additionally we incorporate some randomization in order to increase confidence in the
results:

 10 different search queries are randomly sampled to select one before each request
 5 different “tag updates” actions randomly sampled to select one before each request

In the second scenario the client chooses in (approximately) 90% of time to do one of the
search queries and 10% of time to do one of the tag updates

We perform stress testing by varying the number of concurrent users: From 100, 200, 500,
800, to 1000. Each user makes 5 requests and each scenario is repeated 20 times.
Therefore, we make:

 100 * 5 * 20 = 10,000 total requests for the 100 users
 200 * 5 * 20 = 20,000 total requests for the 200 users
 500 * 5 * 20 = 50,000 total requests for the 500 users
 800 * 5 * 20 = 80,000 total requests for the 800 users
 1000 * 5 * 20 = 100,000 total requests for the 1000 users

Finally we make the following measurements:

 Throughput, i.e. the number of successful requests per second
 Response times, i.e. the time taken to receive a complete response to a submitted

request. For this we compute some statistical metrics for the "central tendencies"
(mean, median) and the "Dispersion" (standard deviations, IQRs, range (max - min))
of measurements.

In terms of the software technologies used, the following applies:

 Relational Database: PostgreSQL 9.3
 Application Server: Clojure (JVM “1.6.0_33” Hotspot Server), with embedded Jetty24.

The application uses a (conservative) "ThreadPool" of 30 threads, each holding a
single database connection (Therefore there are 30 concurrent connections to the
database)

In terms of the hardware and operating system used in the stress tests:

21 https://jmeter.apache.org/
22 http://jdbc.postgresql.org/
23 http://edamontology.org/
24 http://www.eclipse.org/jetty/

https://jmeter.apache.org/
http://jdbc.postgresql.org/
http://edamontology.org/
http://www.eclipse.org/jetty/

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 72 of 81

 2 Intel® Xeon® Processors E5-2630 with 6 Cores each yielding 12 Cores. With 2
"hyper" threads, the system appears to provide 24 threads in total.

 64 GB RAM
 Linux Kernel : 3.2.0-37-generic SMP 64 Bit running Ubuntu 12.04 (“Precise”).

This machine runs both the Database and the Application Server but its processing power is
shared with other services (e.g. a DICOM server) used internally at FORTH.

Test results

Figure A10 shows the results obtained for the first test.

Fig A10: Distribution of response times for the performed requests in milliseconds. The highest response
times are slightly above 1 second.

Table A7 shows a summary of these results, providing several statistical parameters.

Users Min Max Mean Median IQR
1st

quartile
3rd

quartile
90th

percentile

100 20 551 127.15 137 51.25 96.75 148 169

200 17 755 96.18 59 42.00 44 86 282

500 18 968 429.88 426 64.00 398 462 508

800 16 4255 914.97 882 121.00 844 965 1186

1000 17 4681 1105.70 1123 78.00 1083 1161 1207

Table A7: statistical parameters obtained in the first test (milliseconds).

Throughput was also measured for the first test. Throughput results are provided in figure
A11.

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 73 of 81

Fig A11: obtained throughput (search requests completed per second) for different amount of
simultaneous users for test #1.

For the test #2, Figure A12 shows the obtained results.

Fig A12: distribution of response times in milliseconds for the second test. Response times are lower
compared to test #1, staying below 1 second

Table A8 provides the statistical parameters extracted for this test.

Users Min Max Mean Median IQR
1st

quartile
3rd

quartile
90th

percentile

100 3 440 78.96 76 51 49 100 132

200 3 530 186.64 180 177 100 277 308

500 2 947 151.35 128 112 78 190 270

800 2 3352 155.72 141 117 87 204 275

1000 2 7813 270.23 240 141 171 312 389

Table A8: statistical parameters obtained in the first test (values represent milliseconds).

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 74 of 81

Throughput was measures again for this test, as shown in figure A13.

Fig A13: obtained throughput (search requests completed per second) for different amount of
simultaneous users for test #2.

Scalability Analysis

We have made some extensive testing by taking into account the number of concurrent
"users" of the system. The results show that the Workbench is able to achieve around 600
requests per second in synthetic load even with 1000 simultaneous users, which is more
than enough for the current needs.

In the case that more raw performance is required, a more complex application architecture
is needed. In particular since the contents of the tool repository rarely change, the system's
performance can be greatly increased by the introduction of a “caching” layer. Moreover,
again due to the large ratio of read to write operations, replicas of the tool repository can be
used to achieve horizontal scaling.

A.3.4 Cloud Storage System

P-medicine Cloud Storage System is the lowest level component in the data management
architecture of p-medicine. It provides REST interfaces for managing the storage of files in
the cloud environment and is built based on OpenStack technology.

The Cloud Storage System is used by Data Warehouse as a storage backend for files and is
also linked to DICOM server for storing medical images. It relies on the OpenStack Swift
software25. It’s functionality is an archive backend for patient data. OpenStack Swift is
responsible for replication of the data distributed across multiple drives in the server cluster.
All the data is accessible through a RESTfull API. Main OpenStack Swift operations are to
upload, download and remove data from the system.

Test description

The performed tests measured the transfer speeds to and from the Cloud Storage System.
The tests consisted in uploading and downloading data files of different sizes (10, 50, 100

25 https://swiftstack.com/openstack-swift/

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 75 of 81

and 500 Mbytes), and measuring the speed. Measurements were made using 40 files of
each size, and final speed for each file size was calculated as the average of the 40 runs.

In case of the operation of file deletion, the amount of deleted files was also considered as a
measurement parameter.

The last test focuses on the speed of creating and removing containers for files. In this case,
the number of creaion and removal operations ranged from 5 to 200.

All tests were run on a system containing one proxy server and five storage servers. All
servers machine work on AMD Opteron 2,6Ghz (6 core) processors. The proxy server uses
2GB of RAM and the storage servers use 1GB of RAM.

Test results

The first test measured the average download transfer rate of the Cloud Storage System.
Figure A14 shows the results of this test.

Fig A14: Average download speed achieved by the Cloud Storage System.

Table A9 provides the values obtained in this test.

File size [MBytes] 10 50 100 500

Upload average transfer speed [kBytes/s] 598,29 1267,90 1369,74 1241,00

Table A9: The values obtained for the first test.

The second test measured the download transfer speed for the same files. Figure A15 shows
the results.

0

200

400

600

800

1000

1200

1400

1600

10 50 100 500

Sp
e

e
d

 [
kb

yt
e

s/
s]

File size [Mbytes]

Upload average transfer speed [kbytes/s]

Upload average transfer
speed [kbytes/s]

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 76 of 81

Fig A15: Average upload speed achieved by the Cloud Storage System.

And table A10 provides the values for this test.

File size [Mbytes] 10 50 100 500

Download average transfer speed [Mbytes/s] 6,06 3,94 5,00 4,03

Table A10: The values obtained for the second test.

The third test measured the file removal response time (the time in seconds to delete certain
amount of files). Figura A16 shows the obtained results.

0

1

2

3

4

5

6

7

10 50 100 500

Sp
e

e
d

 [
M

b
yt

e
s/

s]

File Size [Mbytes]

Download average transfer speed [Mbytes/s]

Download average transfer
speed [Mbytes/s]

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 77 of 81

Fig A16: Average response time in seconds for the operation of deletion of files.

Scalability Analysis

The performed tests show that the Cloud Storage System performance varies depending on
several factors. In case of upload operations, the system scales worse with small files (less
than 50Mbytes), and reaches speeds of around 1200Kbytes per second with large files. In
the case of download operations, obtained speeds are much higher, with values around
5Mbytes per second (and slight decreases for larger files). Finally, deletion operations do not
show a dependance on file size, and the system is able to delete around 0,2 files per second.

The uploading speeds obtained by the current configuration of the Cloud Storage System
should be capable of handling current requirements. By average, one database item is
smaller than 1Kbyte in size, so the system is able to process the maximum estimated data
volumes. The obtained download speeds are more than 1000 times greater than the upload
speeds. Current needs are perfectly fulfilled by this capability. In terms of file deletion, this is
a rarely required operation, so the obtained values are more than enough to satisfy the
needs of the platform.

Proxy services depend on number of nodes and speed of networking for better performance.
The system can be easily scaled up by adding more nodes and providing faster networking
infrastructure. In extreme situations, more than one proxy can be used for performing load
balancing, and providing larger amounts of RAM to each proxy will enable the system to
maintain performance under heavy traffic. Servers responsible for storing data do not need
as much RAM or CPU as the proxies, but their performance can be scaled up by providing
high-speed storage units, such as SAS or SSD based units.

0

200

400

600

800

1000

1200

10 50 100

Sp
e

e
d

 [
se

co
n

d
s]

File size [Mbytes]

Removal speed test

Operations number = 5

Operations number = 10

Operations number = 100

Operations number = 200

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 78 of 81

A.3.5 CATS

The p-medicine pseudonymisation services are implemented by CATS (Custodix
Anonymisation Tool Services). CATS provides patient and medical data pseudonymisation
through a REST-based web service. Data is submitted to CATS, where it will be processed
asynchronously one by one sequentially to remove all identifiers. Subsequently the
processed data is sent to the data warehouse where it will be stored for further use.

Test description

The test starts after the files containing the data are uploaded to CATS. These files are
processed by the tool to remove any information providing patient identification. The test
measure the response time of this process, and ends before the data is submitted to the data
warehouse.

A submitted REST message can contain data elements from multiple patients to be
processed. The amount of patients is varied, and the time it takes for each request to be
processed is recorded. These measurements will provide us with the necessary information
to assess the scalability of the CATS service and give us an insight into the average
response time for the CATS service.

For the performed test the amount of patients ranges from 1 to 5000. The test makes use of
a public dataset containing miRNA expression data and used within p-medicine.

The tests were performed on a virtual machine with 2 Intel cores running at 2,93 GHz and
1,5 GB of RAM running CentOS.

Test results

The results for the tests are shown in table A11, with the amount of patients and data size
given, and the time to process measured.

#Patients Size (kb) Time (s)

1 21 17

5 61 24

50 504 16

100 997 23

500 4939 49

1000 9868 95

3000 29584 305

5000 49291 445

Table A11: processing response times obtained by CATS for different file sizes

The relation between processing time and file size is shown in figure A17.

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 79 of 81

Fig A17: relation between the amount of patients (file size) and processing time in CATS

Scalability Analysis

The graph shows that the time to process grows linearly with the amount of patients. This is
certainly the case for larger patient amounts. For smaller amounts this linear dependency is
less explicit. The reason is that pseudonymisation requests are put in a waiting line that is
polled. For smaller data sizes the time it takes to process a file is much shorter than the
polling frequency, so the time it takes to process small data sizes is almost independent from
the amount of patients.

The processing time per patient, which is the slope of the curve, is shown to be almost
constant once the amount of patients grows beyond 500, reaching a value around 10
patients per second. It should be noted however that this processing time is dependent on
the contents of the data and the pseudonymisation operations that should be performed.

The CATS service does not need to process every database item, but only those that can
lead to patient identification. The performance requirements are therefore not as high as
other data processing tools, such as the Data Translator. Moreover, not every dataset to be
integrated in p-medicine stores patient-related data, so CATS does not need to process
every possible dataset. Our preliminary estimations indicate that the achieved performance
of CATS is nearly enough to cope with the needs of the p-medicine platform. In any case, the
data processing carried out by CATS is able to benefit from multiple node configurations,
thus allowing the tool to scale up upon large volumes of data.

A.4 Conclusions

The scalability analysis carried out on the different tools and services of the p-medicine
platform allowed to evaluate the capability of this platform to handle the amounts of data and
user requests. Although some more testing has to be carried out the initial results show that
the tools comprising the platform are able to cope with current estimated performance
requirements, as tested in local configurations. Furthermore, specific requirements have
been identified for ensuring the scalability of each tool, allowing producing technical
guidelines for future deployments of the platform.

0

1

2

3

4

5

6

7

8

0 1000 2000 3000 4000 5000 6000

Ti
m

e
 t

o
 p

ro
ce

ss
 in

 m
in

u
te

s

Amount of patients

Pseudonymisation processing time

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 80 of 81

The scalability proof of the different tools is also a proof of the technical viability of the
platform architecture approach, in terms of handling of data and user requests. The service
oriented architecture followed in p-medicine allows adapting the platform to individualized
needs, and facilitates its long-term sustainability. As each tool and service is highly
decoupled from each other, resources can be easily redistributed and reconfigured.

Scalability of the developed tools is a primary concern in p-medicine, together with clinical
validity and sustainability. The executed tests allow to state, with a high degree of
confidence, that the platform can scale up and maintain good performance upon future
needs.

A.5 References:

[A1] Fernández-Suárez XM, Rigden DJ, Galperin MY. The 2014 Nucleic Acids Research
Database Issue and an updated NAR online Molecular Biology Database Collection.
Nucleic Acids Res. 2014 Jan;42(Database issue):D1-6.

– Grant Agreement no. 270089 D3.5 – Final System Architecture

 Page 81 of 81

Appendix B - Abbreviations and acronyms

ABAC Attribute Based Access Control

CDS Clinical Decision Support

DDD Domain Driven Design

EHR Electronic Health Record

HDOT Health Data Ontology Trunk

IdP Identity Provider

IT Information Technology

JSON JavaScript Object Notation

PHR Personal (or Patient) Health Record

REST Representational state transfer

SAML Security Assertion Markup Language

UI User Interface

VPH Virtual Physiological Human

XACML Extensible Access Control Markup Language

	Contents
	Figures
	1 Executive Summary
	2 Introduction
	2.1 Changes since Deliverable 3.2
	2.2 The p-medicine domain
	2.3 Stakeholders and Concerns
	2.4 A layered view of the final architecture

	3 The structure of the p-medicine system
	3.1 Authentication and Authorization
	3.2 Data Management
	3.2.1 Initial Upload and the Pseudonymization framework
	3.2.2 Ontology Annotation and Translation
	3.2.3 Data Warehouse
	Responsibilities
	Collaborators
	Interface

	3.3 Computational Cancer Modelling
	3.4 Patient Empowerment
	3.4.1 The ALGA-C questionnaire
	3.4.2 Personal Health Record
	3.4.3 Patient Empowerment support services: Drug-Drug interactions
	3.4.4 Consent Services

	3.5 Clinical Decision Support
	3.5.1 The p-medicine workbench

	4 Technical description of the Components
	4.1 Data Warehouse
	Accessing Triples
	Accessing Version
	Statements Resources
	Accessing Previous Triplestore Version Statements
	Upload Files to Filestore
	Access Files from Filestore
	Access Triples of Files from Filestore
	Access Ontologies of Files from Filestore
	Access Annotation Description Files for Files from Filestore
	Access Image Files from Imagestore
	Access Triples for Image Files from Imagestore
	Non functional requirements
	Installation instructions

	4.2 TTP Services
	Upload file / Create processing Request
	Get Request status
	Get All Requests

	4.3 Ontology Annotator
	Non functional requirements
	Installation instructions

	4.4 Data Translator
	Interface
	Operation: configure

	Operation: translateData

	4.5 ALGA-C Profiling Service
	Operation: Get Patient Profile

	4.6 Drug – Drug Interaction Service
	Operation: Get Drug information
	Operation: Get Drug-Drug Interaction

	4.7 “Donor’s Tool” Consent Access Service
	Operation: Get All Projects Ids
	Operation: Get General Project Information
	Operation: Get Documents of a Project

	4.8 Workbench
	Tool searching
	Example output:
	Tool retrieval
	Tool Update
	Update the “rating” of a tool
	Update the role specific tags of a tool
	Non functional requirements
	Installation instructions

	5 Non functional requirements
	6 Deployment
	7 Architecture Compliance
	8 Conclusions
	9 References
	Appendix A – Formal scalability analysis in the p-medicine platform
	A.1 Current and near future platform requirements
	A.2 Preliminary analysis of p-medicine tools & services
	A.2.1 Procedure description
	A.2.2 Analysis results

	A.3 Tool-specific scalability analysis
	A.3.1 Data Warehouse
	A.3.2 Data Translator
	A.3.3 Workbench
	A.3.4 Cloud Storage System
	A.3.5 CATS

	A.4 Conclusions
	A.5 References:

	Appendix B - Abbreviations and acronyms

