

Deliverable No. 3.4

Service Integration Guidelines

Grant Agreement No.: 270089

Deliverable No.: D3.4

Deliverable Name: Service Integration Guidelines

Contractual Submission Date: 31/07/2012

Actual Submission Date: 31/07/2012

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission
Services)

CO Confidential, only for members of the consortium (including the Commission
Services)

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 2 of 42

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: p-medicine

Project Full Name: From data sharing and integration via VPH models to
personalized medicine

Deliverable No.: D 3.4

Document name: Service Integration Guidelines

Nature (R, P, D, O)1 R

Dissemination Level (PU, PP,
RE, CO)2

PU

Version: 1

Actual Submission Date: 31/07/2012

Editor:
Institution:
E-Mail:

Elias Neri
Custodix
elias.neri@custodix.com

ABSTRACT:

This deliverable starts by elaborating on the technical details of the data security framework
defined in D5.1. The main focus initially lies on the authentication components to enable SSO,
brokered authentication for as well web sites as REST services and delegation. Later iterations
will further define authorisation and auditing.

The second part of the deliverable further extends the privacy framework as defined in D5.1. A
global high level overview of the import of sensitive patient data into p-medicine is given. Next
to this the specific components CATS and PIMS are explained in more detail.

The last part explains how p-medicine services can integrate with the authentication
components. For this the minimal requirements are given to which a service should adhere to
be integrable. Some examples are given to explain in detail how integration can be achieved.

The integration of services with the privacy framework is described in D8.6.1 "Integration
guidelines and monitoring of tools and services". D8.6.1 also covers more general non security
related integration guidelines.

KEYWORD LIST: security, integration guidelines, SAML, XACML, delegation, REST, WS-
Security, WS-TRUST, anonymisation, pseudonymisation, CATS, PIMS, Identity Provider

1
 R=Report, P=Prototype, D=Demonstrator, O=Other

2
 PU=Public, PP=Restricted to other programme participants (including the Commission Services), RE=Restricted

to a group specified by the consortium (including the Commission Services), CO=Confidential, only for members

of the consortium (including the Commission Services)

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 3 of 42

The research leading to these results has received funding from the European Community's
Seventh Framework Programme (FP7/2007-2013) under grant agreement no 270089.

The author is solely responsible for its content, it does not represent the opinion of the
European Community and the Community is not responsible for any use that might be made
of data appearing therein.

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 4 of 42

MODIFICATION CONTROL

Version Date Status Author

0.1 15/05/2012 Draft Elias Neri, Wouter Dhaeze

0.2 13/07/12 Draft Elias Neri, Wouter Dhaeze

1.0 31/07/12 Final Elias Neri

List of contributors

 Benjamin Jefferys, UCL

 Dawid Szejnfeld, PSNC

 Elias Neri, Custodix

 Fatima Schera, Fraunhofer IBMT

 Giorgos Zacharioudakis, FORTH

 Jelle Van Den Driesche, Custodix

 Wouter Dhaeze, Custodix

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 5 of 42

Contents

1 EXECUTIVE SUMMARY ... 6

2 INTRODUCTION ... 8

3 SECURITY FRAMEWORK OVERVIEW ... 9

3.1 INTRODUCTION .. 9
3.2 SECURITY ARCHITECTURE .. 9
3.3 BROKERED AUTHENTICATION AND SSO .. 10

3.3.1 Web Sites .. 11
3.3.2 Web Services ... 12

3.4 AUTHORISATION ... 17
3.5 USER MANAGEMENT .. 19
3.6 DELEGATION .. 19

4 PRIVACY FRAMEWORK .. 22

4.1 INTRODUCTION .. 22
4.2 CATS ... 23
4.3 PIMS .. 23

5 INTEGRATION WITH AUTHENTICATION FRAMEWORK .. 26

6 SERVICE PROVIDER IMPLEMENTATION .. 28

6.1 EXAMPLE: JAVA SPRING SECURITY ... 28
6.1.1 Configure your project to use Spring and Spring Security .. 28
6.1.2 Register website's metadata.. 36

6.2 EXAMPLE: LIFERAY .. 38

7 CONCLUSION ... 41

APPENDIX 1 - ABBREVIATIONS AND ACRONYMS .. 42

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 6 of 42

1 Executive Summary

This document elaborates on the technical details of the data security framework defined in
D5.1 and explains how the services within p-medicine can integrate with the security
framework. The first step in the setup of the security architecture focuses on the
authentication and de-identification components. Therefore this deliverable explains how
services should integrate with the authentication components. As the de-identification
components are part of the p-medicine workbench and tools, integration with the privacy
framework is described in "D8.6.1 Integration guidelines and monitoring of tools and
services".

The p-medicine security framework is designed around a lightweight dynamic architecture. It
consists of modular re-usable components dealing with authentication, authorisation, auditing
and de-identification based on widely used industry standards such as SAML and XACML.

Identity assertions (SAML tokens) are provided to the p-medicine web sites by the Identity
Provider (IdP). Web sites integrate with the IdP by publishing SAML metadata that define
which SAML profiles and bindings are supported by the site. SAML consumers, matching
those profiles and bindings, are then responsible to consume and verify, on the web sites,
the tokens issued by the IdP. A commonly used binding and profile for browser SSO is the
HTTP redirect binding of the web browser SSO profile. A user agent is hereby redirected to
the IdP, passing through an authentication request, when visiting a protected web site. If the
user has no active SSO session open, the IdP will request the user to authenticate himself.
Once authenticated the IdP issues an identity token and redirects the user agent to the web
site passing through the issued token. Chapter 5 and chapter 6, through examples, further
explain how web sites can integrate with the Identity Provider.

For non browser clients (e.g. clients calling web services) SAML provides the ECP
(Enhanced Client or Proxy) profile. To not authenticate on each web request, the SAML
profiles assume session-based security to keep the security context open. As web services
are typically stateless and a different security context can be required for each message,
message level security is preferred. For SOAP web services there is the whole set of WS-*
specifications handling message level security and brokered authentication.

For REST web services there are no such specifications yet. As REST services are web
services, security in REST can actually be based on WS-*. Therefore to do brokered
authentication in REST the same SOAP Secure Token Service (STS) can be used as with
SOAP web services. REST clients are then responsible for retrieving a SAML token from the
STS and then passing it through the HTTP authorization header to the REST service.

The client needs security metadata from the REST service to know what kind of tokens the
service requires and which STS to call. In WS-* a web service publicises its security policies
through WS-Policy annotations on the service's WSDL metadata. Such a WSDL file, or a
more REST oriented WADL file, annotated with security policies could actually also be used
for REST services. For WADL no known specification exists that defines how to add security
policies. Therefore, in the context of p-medicine, research should be done on whether WS-
Policy metadata annotations can be used to add security annotations to a WADL metadata
file.

Delegation allows an intermediate client to call a service in name of an end user. Delegation
is supported by the STS through the ActAs element. A client can request a delegation token
form the STS by embedding the end user's SAML identity token in the ActAs element of a
token request. The returned delegation token is then a SAML token that identifies the end
user as subject and the client as intermediate.

Next to authentication, the de-identification components are further defined. These
components are an important part of p-medicine as all data that will be imported into p-

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 7 of 42

medicine, should be pseudonymised. Two rounds of pseudonymisation are mentioned. At
the hospitals, the treatment domain, a first round of pseudonymisation is performed. The
data is then passed to the Trusted Third Party (TTP) for a second round of
pseudonymisation. This to ensure that there is no direct link between the p-medicine
pseudonyms and the pseudonyms in the treatment domain. The data is then delivered to p-
medicine. Any re-identification needs to pass through and be allowed by the TTP.

Two major de-identification components can be identified. CATS pseudonymises data files
by using privacy profiles that define transformation rules such as pseudonymisation of
identifiers, clearing of dates, encryption of sensitive information. PIMS stores the link
between identifiable patient information and patient pseudonyms. PIMS also matches and
links patient records that represent the same real-world person. PIMS hereby builds a so
called Master Patient Index (MPI).

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 8 of 42

2 Introduction

The P-medicine security architecture is a lightweight dynamic architecture consisting of
reusable components dealing with authentication, authorisation, auditing and de-
identification.

The first step in the setup of the security architecture focuses on the authentication and de-
identification components. Therefore this deliverable will elaborate on the authentication and
de-identification components defined in D5.1. It then lays out how all services within p-
medicine should integrate with the authentication components.

As the de-identification components are part of the p-medicine workbench and tools, the
integration guidelines with the privacy framework are described in "D8.6.1 Integration
guidelines and monitoring of tools and services".

Later iterations of this document will further define the authorisation and auditing components
and the respective integration guidelines.

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 9 of 42

3 Security Framework Overview

3.1 Introduction

As described in deliverable 5.1 the p-medicine security framework is designed around a
lightweight dynamic architecture, allowing it to evolve over time according to newly arising
requirements. It consists of modular re-usable components dealing with e.g. authentication,
authorisation, auditing, de-identification based on widely used industry standards such as
SAML, XACML.

3.2 Security Architecture

Figure 1 Security Architecture Overview

Major components in the architecture are:

 Authentication components:

o The Identity Provider (IdP) is a service provider within a federation responsible
for authentication. It provides identity assertions to other service providers.

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 10 of 42

o An Identity Consumer is a software component that is part of a service
provider. It consumes the assertions provided by the Identity Provider. It will
verify the received assertion and pass it to the service provider's application
layer.

o A User Enrolment & Management Service where users can be enrolled,
revoked, edited, etc. (part of the user and access management in the above
figure).

 Authorisation components:

o A Policy Enforcement Point (PEP) is a software component which requests
and enforces authorisation decisions.

o A Policy Decision Point (PDP) is an entity that makes authorisation decisions.
A PDP accepts authorisation requests and will make a decision based on
policies fetched from a Policy Administration Point (PAP).

o A Policy Information Point is an endpoint which provides missing information
to a PDP i.e. attribute information. For example if a policy requires information
on a specific attribute which has not been provided with the authorisation
request, a PDP might request a PIP for information on that attribute.

o A Policy Administration Point (PAP) is an endpoint which manages policies.
The PAP provides a PDP with all policies required to produce an authorisation
decision.

o An Authorisation Rule (Policy) Management Service where authorisation rules
can be configured generating authorisation policies (part of the user and
access management in the above figure).

3.3 Brokered Authentication and SSO
Direct authentication of the user on each service is not practical or advisable (e.g.
authentication would have to be implemented on each service or a user would have to
authenticate on each service). In case of front-end services calling back-end services in
name of the end user, direct authentication is even impossible. P-medicine will therefore
provide brokered authentication in which a central identity provider (or authentication broker)
is responsible for authenticating the users and issuing identity tokens. The user can then use
such identity tokens to access the project's services. To avoid that the user needs to provide
his credentials each time he accesses a different service, the identity provider can keep the
authenticated session open. This results in new identity tokens being issued automatically
(Single Sign-on) for each service the user accesses as long as the IdP's authenticated (SSO)
session is still active.

Therefore when a client accesses a p-medicine service provider (SP) (e.g. the p-medicine
portal) where he has no local active authenticated session, the client will not directly
authenticate on the portal, but instead he will be requested to pass a p-medicine identity
assertion (token). The client should then request such an assertion from the p-medicine
Identity Provider (IdP). If he is already authenticated, the Idp will provide the identity
assertion (SSO), if not, the client will first have to authenticate himself. The client will then
pass that assertion to the SP he originally wished to access, which will then verify the
assertion and give the client access if it is valid.

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 11 of 42

Figure 2 Brokered authentication

Within p-medicine this identity information (assertions) is exchanged through SAML 2.0
tokens. The Security Assertion Markup Language defines an XML-based protocol, making it
possible to exchange authorisation and authentication data between one or more security
domains. It is a commonly used, well implemented, stable OASIS standard.

3.3.1 Web Sites

Web single sign-on is supported by SAML 2.0 through the Web Browsers SSO Profile.

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 12 of 42

Figure 3 Web SSO flow

1. The profile is initiated by a HTTP user agent that attempts to access a secured
resource at the service provider (SP) without active security context.

2. The service provider will then attempt to determine what identity provider (IdP) to use.
Initially there will be only one central IdP within p-medicine.

3. The SP issues an authentication request which should be delivered by the user agent
to the IdP. Several bindings are defined to accomplish this, e.g. HTTP Redirect.

4. The IdP then needs to identify the principal (end user or service) by reusing an
existing authenticated session or by requiring some form of authentication. How this
is done is outside the scope of the SAML specification.

5. Once the principal is identified, the IdP issues a response through the user agent by
using e.g. the HTTP POST binding. This response will contain an authentication
assertion if no errors occurred.

6. The service provider then verifies the authentication assertion. When verification
succeeds, the SP might establish a security context and return the requested
resource.

3.3.2 Web Services

For clients that are not browsers, e.g. clients that are calling a web service, SAML provides
the ECP (Enhanced Client or Proxy) profile. Similarly to the Web Browser SSO Profile, ECP
does not authenticate on each HTTP request. Instead it assumes session-based security
where the SAML login establishes a security context between the client and the web server.
Web services though are typically stateless. Therefore message level security is preferred.
Especially for clients (e.g. proxies) that act in name of several users through delegation, a
session based security context is not really useful as each message can typically be sent in
name of a different user and therefore requires a different security context.

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 13 of 42

Figure 4 Flow of secured web service calls

There are two major types of web services: SOAP web services and REST services. These
types are described in following sections.

3.3.2.1 SOAP Web Services

For SOAP Web services there is the whole set of WS-* (WS-Security and WS-Trust
especially), specifications handling message level security and brokered authentication. WS-
* is a collective noun for a variety of specifications associated with web services. Together
these specifications form the basic framework for web services build on the first-generation
standards of SOAP and WSDL.

WS-Security3 defines how web service messages can be exchanged in a secure way by
guarding the integrity, confidentiality and the sender's identity of the messages. To enforce
this, WS-Security uses XML signature (for integrity), XML encryption (for confidentiality) and
various security token formats, such as SAML, Kerberos, X.509 (for sender authentication),
to provide end-to-end security.

WS-Trust4 is an extension of WS-Security providing methods for issuing, renewing and
validating security tokens and providing ways to establish, assess the presence of, and
broker trust relationships. Using the extensions defined in WS-Trust, applications can
participate in secure communication designed to work within the web service framework. A
main concept in WS-Trust is the Security Token Service (STS). This is a special web service
that issues security tokens conforming to the WS-Security specification.

3 OASIS, WS-Security specification, version 1.1, 2004, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wss
4
 OASIS, WS-Trust specification, version 1.4, 2009, http://docs.oasis-open.org/ws-sx/ws-

trust/v1.4/os/ws-trust-1.4-spec-os.pdf

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.pdf

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 14 of 42

WS-SecureConversation5 defines extensions that include session key derivation and
security context establishment/sharing.

WS-SecurePolicy6 defines XML based policies that are called security policy assertions.
These policies allow web services to express their constraints and requirements. Policies can
be used to drive development tools to generate code with certain capabilities, or may be
used at runtime to negotiate the security aspects of web service communication. The intent is
to provide enough information for compatibility and interoperability to be determined by web
service participants.

WS-Federation7 aims to simplify the development of federated services through cross-realm
communication and management of federation services by re-using the WS-Trust Security
Token Service model and protocol.

P-medicine does not plan to have any SOAP but rather REST web services. Therefore this
document will not go into specific details of the WS-* specification. As brokered
authentication in REST though, laid down in the next chapter, will be based on WS-Trust, the
next paragraphs will go deeper in the interfaces defined in WS-Trust.

When doing brokered authentication through WS-* a service will typically publicize through
policies defined in its WSDL that it requires a token from a given Secure Token Service
(STS). The web service client should then request a token from that specific STS and then
pass it together with the service call to the web service.

An STS is a SOAP Web Service with the following operations (non exclusive):

1) Issue: this operation issues a new security token based on the credential provided or
proven in the request. The operation accepts a request security token (RST) and returns
a request security token response (RSTR).

<wst:RequestSecurityToken Context="..." xmlns:wst="...">

 <wst:TokenType>...</wst:TokenType>

 <wst:RequestType>...</wst:RequestType>

 <wst:SecondaryParameters>...</wst:SecondaryParameters>

 ...

 <wsp:AppliesTo>...</wsp:AppliesTo>

 <wst:Claims Dialect="...">...</wst:Claims>

 <wst:Entropy>

 <wst:BinarySecret>...</wst:BinarySecret>

 </wst:Entropy>

 <wst:Lifetime>

 <wsu:Created>...</wsu:Created>

 <wsu:Expires>...</wsu:Expires>

 </wst:Lifetime>

</wst:RequestSecurityToken>

<wst:RequestSecurityTokenResponse Context="..." xmlns:wst="...">

 <wst:TokenType>...</wst:TokenType>

 <wst:RequestedSecurityToken>...</wst:RequestedSecurityToken>

</wst:RequestSecurityTokenResponse>

2) Cancel: this operation cancels a token so that it cannot be used anymore when it is no
longer needed. After cancellation the STS will not renew or validate the token anymore.

5
 OASIS, WS-SecureConversation specification, version 1.4, 2009, http://docs.oasis-

open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.pdf
6
 OASIS, WS-SecurePolicy, version 1.3, 2009, http://docs.oasis-open.org/ws-sx/ws-

securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.pdf
7
 OASIS, WS-Federation specification, version 1.2 , 2009, http://docs.oasis-

open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.pdf

http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.pdf
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.pdf
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.pdf

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 15 of 42

<wst:RequestSecurityToken>

 <wst:RequestType>

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Cancel

 </wst:RequestType>

 <wst:CancelTarget>

 ...

 </wst:CancelTarget>

</wst:RequestSecurityToken>

<wst:RequestSecurityTokenResponse>

 <wst:RequestedTokenCancelled/>

</wst:RequestSecurityTokenResponse>

3) Renew: a previously issued possible expired token is presented and the same token is
returned with new expiration semantics. The requestor must either prove authorized use
of the token or be trusted by STS to issue third-party renewal requests.

<wst:RequestSecurityToken xmlns:wst="...">

 <wst:TokenType>...</wst:TokenType>

 <wst:RequestType>

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Renew

 </wst:RequestType>

 <wst:RenewTarget>

 ... reference to previously issued token ...

 </wst:RenewTarget>

 <wst:AllowPostdating/>

 <wst:Renewing Allow=”...” OK=”...”/>

</wst:RequestSecurityToken>

<wst:RequestSecurityTokenResponse xmlns:wst="...">

 <wst:TokenType> ... </wst:TokenType>

 <wst:RequestedSecurityToken>...</wst:RequestedSecurityToken>

 <wst:Lifetime>...</wst:Lifetime>

</wst:RequestSecurityTokenResponse>

4) Validate: this operation evaluates the specified token. The result can be a status, a new
token or both.

<wst:RequestSecurityToken xmlns:wst="...">

 <wst:TokenType>...</wst:TokenType>

 <wst:RequestType>...</wst:RequestType>

 <wst:ValidateTarget>... </wst:ValidateTarget>

</wst:RequestSecurityToken>

<wst:RequestSecurityTokenResponse xmlns:wst="..." >

 <wst:TokenType>...</wst:TokenType>

 <wst:RequestedSecurityToken>...</wst:RequestedSecurityToken>

 <wst:Status>

 <wst:Code>...</wst:Code>

 <wst:Reason>...</wst:Reason>

 </wst:Status>

</wst:RequestSecurityTokenResponse>

WS-Trust does not specify the format of the token issued. Within p-medicine SAML V2.0
tokens should be requested and issued. A SAML profile for WS-Security exists: SAML
Token Profile 1.1. This profile defines, amongst other things, how a SAML token can be
passed to a web service by using SOAP headers.

<--SAML token issued by STS for "End User" targetted to "Service A"-->

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 16 of 42

<saml2:Assertion xmlns:saml2="..."

 ID="uuid-ec80226b-0a2e-43bd-a98b-54b071407edd"

 IssueInstant="2012-05-09T09:43:00.292Z" Version="2.0">

 <saml2:Issuer>STS</saml2:Issuer>

 <saml2:Subject>

 <saml2:NameID>End User</saml2:NameID>

 </saml2:Subject>

 <saml2:Conditions NotBefore="..." NotOnOrAfter="...">

 <saml2:AudienceRestriction>

 <saml2:Audience>http://serviceA.com</saml2:Audience>

 </saml2:AudienceRestriction>

 </saml2:Conditions>

 <saml2:AttributeStatement>

 ...

 </saml2:AttributeStatement>

</saml2:Assertion>

3.3.2.1 REST Web Services

For REST Web Services there is no standard specifying how to do message level security
and brokered authentication yet. As described in 3.3.2.1 the SAML ECP profile can be used
for authentication in REST. REST services though are typically stateless while the ECP
profile requires a session based security context.

As REST Web Services are actually also web services, a more natural, practical solution
would therefore be to look at the WS-* specifications. The Secure Token Service (STS) as
defined in WS-Trust can actually also be used with REST. Before calling the REST service a
client would then send a SOAP request containing an RST (RequestSecurityToken) to the
STS. The STS then returns the identity assertion as a SAML token, embedded in a RSTR
(RequestSecurityTokenResponse). In SOAP this SAML token is passed to the calling service
through a SOAP header. This is not possible in REST though as there are no SOAP
headers. In REST, the HTTP headers and request line are part of the message. An HTTP
header is therefore the REST equivalent of a SOAP header. A SAML token can then be
passed to a REST service through the HTTP authorization header. The authorization header
value should be formatted as follows: "SAML <Base 64 encoded compressed SAML token>".
The SAML token is hereby compressed with the zlib compression algorithm. This to ensure
that the token fits in the typical 4kb header size limit.

So, to secure a REST service, basically the same SOAP STS service is used as with SOAP
services as defined in WS-Trust. REST clients are responsible for retrieving a SAML token
from the STS and then passing it through a HTTP authorization header to the REST service.
The client somehow needs to find out what the REST service's security policies are (i.e what
STS to call). In WS-* a web service publicises its security policies through WS-Policy
annotations on the service's WSDL metadata. Such a WSDL file annotated with security
policies (by using the WSDL HTTP binding) could actually also be used for REST services.
As REST is resource based while SOAP and the WSDL metadata format are action based, it
is not an exact match. There is a metadata format, called WADL, which is specifically
designed to describe a REST service. No known specification that defines how to add
security policies to a WADL metadata file, is available yet. Therefore, in the context of p-
medicine, research should be done on whether WS-Policy metadata annotations can be
used to add security annotations to a WADL metadata file.

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 17 of 42

A drawback of using a SOAP STS is that clients are forced to use SOAP to request security
tokens. Therefore the secure token service could be better integrated into REST services by
restifying it8. Such an STS will be specified in a next iteration of this deliverable.

The next step is to guarantee the integrity and confidentiality of REST message. Signing and
possibly encrypting the message body is not sufficient though as the HTTP request line and
headers are also part of a REST message. There are also no standards yet that specify how
to sign a body, the HTTP headers and request line. This will therefore also be an interesting
research topic within p-medicine.

3.4 Authorisation

The data protection in p-medicine is based on two pillars.

1. All sensitive patient information imported within p-medicine is de facto anonymised so
that patients cannot be re-identified.

2. Access to the de facto anonymised patient data stored in p-medicine is restricted to
authorised persons.

P-medicine will technically enforce and govern access control to the de facto anonymised
patient data by relying on policy-based authorisation services. These authorisation services
are build upon the eXtensible Access Control Markup (XACML) Language. XACML is an
OASIS XML-based standard for authorisation and access control for which multiple, both
open source and commercial, implementations are available. XACML implements the
attribute-based access control (ABAC) model. Attributes associated with a user, action or
resource serve in ABAC as input to the decision of whether a given user is allowed to
perform a specific action on a given resource. ABAC is capable of meeting "modern" access
control demands such as data dependant or environment dependant access policies.

In XACML, an access request is modelled as a “subject” who wants to perform an “action” on
a “resource” (subject/action/resource triplet). A policy enforcement point (PEP) intercepts this
request and queries the policy decision point (PDP) on whether the user is allowed to
perform this action on the resource. The PDP makes a decision based on the request
parameters and the available policies. These policies (in the form of XML files) are created
and managed by the policy administration point (PAP). The PDP decision goes back to the
PEP which is responsible for enforcing it (allowing or denying access).

8
 http://weblogs.asp.net/cibrax/archive/2009/03/06/brokered-authentication-for-rest-active-clients-with-

saml.aspx

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 18 of 42

Figure 5 XACML Access Control Model

Although XACML is able to meet many of the "modern" access control demands, XACML
also has its share of limitations. There are for example no mechanisms for expressing links
(e.g. hierarchy) between different attributes in a convenient way in a XACML policy.
Approaches for solving such problems include e.g. use of a strict structural profile in
authored policies (e.g. RBAC profile for XACML) or the use of semantic reasoners as policy
decision engines with linked to that the use of a security ontology as policy language9.

Solutions for p-medicine will be based on work done in the INTEGRATE10 project. The
INTEGRATE project will provide the base authorisation security fabric compatible with the P-
medicine identity management structure. INTEGRATE tries to solve the XACML limitations,
not by proposing language alternatives to XACML, but rather by introducing supporting
components complementary to a standard XACML engine. The advantages of this solution
are that:

1. the final solution is mainly standard based allowing drop-in replacement of different
implementations of the core XACML components.

2. it separates the concern of maintaining the policy decision logic from the
development of more advances features.

9
 Rodolfo Ferrini and Elisa Bertino. 2009. Supporting RBAC with XACML+OWL. In Proceedings of the

14th ACM symposium on Access control models and technologies (SACMAT '09). ACM, New York,
NY, USA, 145-154.
10

 http://www.fp7-integrate.eu/

http://www.fp7-integrate.eu/

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 19 of 42

This approach has been previously11
 tested with success in the context of attribute translation

between XACML policy decision points (PDP’s) in different security domains (with a different
attribute vocabulary).

3.5 User Management

The user management component in the p-medicine security framework is responsible for
user enrolment, user identity and credential management. This component consists of

1. administration pages where user administrators can register new users, manage
existing users, manage and create organisations, manage organisation membership
and enable, disable and remove users.

2. a user profile page where users can manage their own identity attributes such as
first name, last name, email address.

3. a public registration page where users can register themselves. A user who
registers himself through the public registration pages first needs to be accepted by a
user administrator before he can create credentials.

4. an activation page where users can choose a username and password. After a user
is registered and, in case of public registration, accepted by a user administrator, the
user receives an activation mail. Through a link in this mail the user is guided to the
activation page where he can chose his username and password.

5. credential management pages where users can request username or password
recovery.

3.6 Delegation

Through delegation an end user U can allow a service A to access a service B on his/her
behalf in a limited context (i.e. limited in time, limited in action, etc.). To support this a service
A can request a delegation assertion from the STS or IdP. This delegation assertion will then
state the identity of the current client (service A) and the identity of the user on whose behalf
the client is acting (end user U).

Figure 6 Credential Delegation

11

 I. Ciuci, B. Claerhout, L. Schilders, R. Meersman. 2011. Ontology-Based Matching of Security
Attributes for Personal Data Access in e-Health

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 20 of 42

3.6.1 Delegation in REST

Normally when a REST client calls a REST service, it will present a SAML token identifying
the client. Before calling a service, a client will therefore request such an identity token from
the STS by sending a WS-Trust RequestSecurityToken request, as described in 3.3.2. The
STS will respond with a RequestSecurityTokenResponse containing the SAML identity
token.

When doing delegation though, the client should not represent a token identifying itself but
instead a token identifying the end user with the client as intermediate. To get such a token
the client (in this example called 'Service A') sends to the STS a RequestSecurityToken for
'Service B' with a SAML token identifying the end user embedded in an ActAs element as
defined in WS-Trust.

<trust:RequestSecurityToken xmlns:trust="http://docs.oasis-open.org/ws-

sx/ws-trust/200512" xmlns:sc="http://docs.oasis-open.org/ws-sx/ws-

secureconversation/200512"

xmlns:wsa="http://www.w3.org/2005/08/addressing"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-secext-1.0.xsd"

xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd">

 <trust:RequestType>

 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue

 </trust:RequestType>

 <wsp:AppliesTo>

 <wsa:EndpointReference>

 <wsa:Address>http://serviceB.com</wsa:Address>

 </wsa:EndpointReference>

 </wsp:AppliesTo>

 <wst14:ActAs xmlns:wst14="http://docs.oasis-open.org/ws-sx/ws-

trust/200802">

 <saml2:Assertion

xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

xmlns:exc14n="http://www.w3.org/2001/10/xml-exc-c14n#"

xmlns:wsse11="http://docs.oasis-open.org/wss/oasis-wss-wssecurity-secext-

1.1.xsd" xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

xmlns:xs="http://www.w3.org/2001/XMLSchema" ID="uuid-ec80226b-0a2e-43bd-

a98b-54b071407edd" IssueInstant="2012-05-09T09:43:00.292Z" Version="2.0">

 <saml2:Issuer>IdP</saml2:Issuer>

 <saml2:Subject>

 <saml2:NameID>End User</saml2:NameID>

 </saml2:Subject>

 <saml2:Conditions NotBefore="..." NotOnOrAfter="...">

 <saml2:AudienceRestriction>

 <saml2:Audience> http://serviceA.com</</saml2:Audience>

 </saml2:AudienceRestriction>

 </saml2:Conditions>

 <saml2:AttributeStatement>

 ...

 </saml2:AttributeStatement>

 </saml2:Assertion>

 </wst14:ActAs>

</trust:RequestSecurityToken>

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 21 of 42

The STS responds with a RequestSecurityTokenResponse containing the SAML token which
identifies the end user with the REST client "Service A" as intermediate. As the newly issued
token is targeted to "Service B" the audience is restricted to that "service B".

<saml2:Assertion xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

xmlns:del="urn:oasis:names:tc:SAML:2.0:conditions:delegation" ID="..."

IssueInstant="..." Version="2.0">

 <saml2:Issuer>STS</saml2:Issuer>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 ...

 </ds:Signature>

 <saml2:Subject>

 <saml2:NameID>End User</saml2:NameID>

 </saml2:Subject>

 <saml2:Conditions NotBefore="..." NotOnOrAfter="...">

 <saml2:AudienceRestriction>

 <saml2:Audience>ServiceB</saml2:Audience>

 </saml2:AudienceRestriction>

 <saml2:Condition xmlns:ns7="http://www.w3.org/2001/XMLSchema-

instance" ns7:type="del:DelegationRestrictionType">

 <del:Delegate>

 <del:NameID>ServiceA</ns1:NameID>

 </del:Delegate>

 </saml2:Condition>

 </saml2:Conditions>

 <saml2:AttributeStatement>

 ...

 </saml2:AttributeStatement>

</saml2:Assertion>

The specification "SAML V2.0 Condition for Delegation"12 extends SAML with a condition
statement through which an intermediate service which acts in name of the end user can be
defined.

12

 http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-delegation-cs-01.pdf

http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-delegation-cs-01.pdf

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 22 of 42

4 Privacy Framework

4.1 Introduction

The goal of the privacy framework or pseudonymisation platform is to pseudonymise the

data13, before delivering it to the p-medicine research domain. All data that is passed to the

p-medicine platform must therefore pass through a state of the art pseudonymisation

platform. This implies that all tools and software components that import data to the research

platform must integrate with the pseudonymisation platform.

There are two rounds of pseudonymisation. A first round is performed within the boundaries

of the treatment domain. Afterwards the data is passed to a Trusted Third Party (TTP) that

performs a second round of pseudonymisation before delivering it to the p-medicine research

domain. CATS (Custodix Anonymisation Tool) will be used as default pseudonymisation tool;

however hospitals are free to choose whatever pseudonymisation tool they want to use, as

long as it has been approved by the Center for Data Protection (CDP)14.

Figure 7 p-medicine data warehouse architecture

13

 de facto anonymous as defined in deliverable 5.1
14 see deliverable 5.1

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 23 of 42

The figure above depicts the conceptual architecture of the p-medicine data warehouse and
its key components. Data (clinical, molecular, DICOM, etc) from the hospitals flows to the
data warehouse, passing through the anonymisation domain. Data files are uploaded to
CATS which pseudonymise the files. CATS closely interacts with PIMS, the patient
information management system. In short PIMS' responsibility is twofold:

 to store a link between the personally identifiable information and the patient pseudonym

 to match and link patient records representing the same real-world person, coming from
different sources, to one index. This is called building an Master Patient Index (MPI)

After CATS processed a data file it will be send to the TTP for a second round of
pseudonymisation to complete the de facto anonymisation. The TTP will transform all
pseudonyms in a given data file to a p-medicine specific pseudonym. Re-identification of this
pseudonym is only possible by passing through the TTP again.

Figure 8 Schematic representation of the two pseudonymisation rounds.

4.2 CATS

CATS is a tool, developed by Custodix, responsible for the de-identification or anonymisation
of (clinical) data files. Based on the mime type of the data files and a pre-configured set of
transformation rules (privacy profiles), data files are anonymised or pseudonymised. Key
transformation rules are:

 scan for patient identifying data and replace with a pseudonym. The reference between
the patient data and the pseudonym can be stored at PIMS or locally.

 clear patient identifying data.

 encrypt (parts of) the result file.

4.3 PIMS

PIMS core task is twofold:

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 24 of 42

 issuing pseudonyms and storing the link between the issued pseudonyms and the patient
identifying data.

 patient record linkage, meaning that records that represent the same real-world person
are linked to the same index (Master Patient Index or MPI).

While CATS is processing a data file, it will request pseudonyms from PIMS, providing PIMS
with patient identifying data. The patient data is stored as a patient record in a secured,
PIMS-dedicated database. The issued pseudonym is valid within the domain of the source
from which the file originate, a so called "source pseudonym". Afterwards PIMS will try to
match the new patient record with previously stored records possibly originating from other
sources (hospitals). If a match is found patient records are linked and a global pseudonym
valid over multiple sources may be issued, a so called treatment pseudonym.

So to conclude:

 A source pseudonym uniquely identifies a patient record within its originating source. A
real life patient may have multiple source pseudonyms in the same source. Source
pseudonyms are linked to one patient record only.

 A treatment pseudonym uniquely identifies a patient record within the whole treatment
domain. A real life patient has only one treatment pseudonym in the treatment domain.
Treatment pseudonyms are linked to multiple patient records originating from multiple
sources.

Figure 9 diagram which clarifies the concept of source and treatment pseudonyms

In the diagram above the CATS platform is split in a "source CATS" and a treatment CATS.

Each hospital (or source) has its own instance of source CATS installed. Within the treatment

domain there is only one instance of the treatment CATS. There is only one instance of PIMS

as well, which makes sense because PIMS must issue source pseudonyms as well as

treatment pseudonyms and needs to link patient records originating from different hospitals.

There are three hospitals, each with their own source CATS instance. The source CATS

instances will de-identify data files, feeding patient identifying data to and receiving source
pseudonyms from PIMS. PIMS will build an internal MPI by matching all patient records

coming from the three sources. After file processing, the source CATS will upload its files to

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 25 of 42

the treatment CATS. This CATS server will reprocess all files and replace the source

pseudonyms with treatment pseudonyms for the whole treatment domain. As such, the same

real life patient present in all three hospitals receives the same global pseudonym. The

treatment CATS will then upload its processed files to the TTP.
Types of pseudonyms:

 A source pseudonym: is issued by a source CATS and is only valid within the source
(or hospital).

 A treatment pseudonym: is always issued by the treatment CATS and is valid over the
whole treatment domain and its participating sources.

 A p-medicine pseudonym: is issued by the TTP. In fact this is an encrypted treatment
pseudonym. It is only valid within the research domain of p-medicine.

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 26 of 42

5 Integration with Authentication Framework

Any service which is full SAML 2.0 compliant can seamlessly integrate itself into the p-
medicine authentication framework by registering itself to the IdP. Through this registration
process the service will provide the IdP its SAML metadata. The exact registration protocol
and flow has not yet been defined. Therefore initially a service can register itself by mailing
its SAML metadata to pmedicine-support@custodix.com. Custodix will then configure the IdP
to accept this service.

A website can be integrated as a service provider (SP) in p-medicine if it supports the
following SAML V2.0 Profiles:

1) The website must support the following bindings of the Web Browser SSO Profile:
a) for <AuthnRequest> from SP to IdP:

i) HTTP redirect
ii) HTTP POST

b) for IdP <Response> to SP:
i) HTTP POST
ii) HTTP artifact

2) The website must support at least the following bindings of the Single Logout Profile:
a) for IdP-initiated single logout the HTTP redirect and SOAP binding must be

supported.
b) for SP-initiated single logout the HTTP redirect and SOAP binding must be

supported.
3) The website must publish its SAML metadata.

<!-- Sample metadata of a compatible service provider -->

<?xml version="1.0" encoding="UTF-8"?>

<md:EntityDescriptor entityID="..."

 xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata">

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 ...

 </ds:Signature>

 <md:SPSSODescriptor AuthnRequestsSigned="true"

 WantAssertionsSigned="true"

protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">

 <md:KeyDescriptor use="signing">

 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:X509Data>

 <ds:X509Certificate>...</ds:X509Certificate>

 </ds:X509Data>

 </ds:KeyInfo>

 </md:KeyDescriptor>

 <md:KeyDescriptor use="encryption">

 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:X509Data>

 <ds:X509Certificate>...</ds:X509Certificate>

 </ds:X509Data>

 </ds:KeyInfo>

 </md:KeyDescriptor>

 <md:SingleLogoutService

 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"

 Location="..." />

 <md:SingleLogoutService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP"

 Location="..." />

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 27 of 42

 <md:NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-

format:persistent</md:NameIDFormat>

 <md:AssertionConsumerService

 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

 Location="..."

 index="0" isDefault="true" />

 <md:AssertionConsumerService

 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Artifact"

 Location="http..."

 index="1" isDefault="false" />

 </md:SPSSODescriptor>

</md:EntityDescriptor>

To integrate a REST Web Service as a service provider (SP) in p-medicine:

1) the REST service should be able to process a SAML v2.0 identity token passed to it with
each REST call through the HTTP authorization header.

2) the REST service should initially publish its security policies in a WSDL metadata file.
Later on in the project the REST services might be able to publish those security policies
through a WADL metadata file.

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 28 of 42

6 Service Provider Implementation

6.1 Example: Java Spring Security

A website secured by Spring Security can be made SAML complaint by using and
configuring the Spring Security SAML extension15.

6.1.1 Configure your project to use Spring and Spring Security

1) Add the required Spring and Spring Security dependencies to your project.

a) bouncy castle provider 145

b) commons codec 1.3

c) commons collections 3.1

d) commons httpclient 3.1

e) commons lang 2.4

f) commons logging 1.1

g) joda time 1.6.2

h) jstl 1.2

i) not yet commons ssl 0.3.9

j) opensaml 2 2.4.1

k) openws 1.4.1

l) spring framework 3.0.5

m) slf4j api 1.6.1

n) spring security 3.0.7

o) spring security saml extension (trunk or Custodix Modified Extension)

p) velocity 1.5

q) xalan 2.7.0

r) xerces impl 2.9.0

s) xml-apis 2.0.2

t) xml security 1.4.4

u) xml tooling 1.3.1

2) Configure your web project to use spring by adding:

a) a context parameter to WEB-INF/web.xml defined the location of the spring
configuration files.

<context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>

 WEB-INF/applicationContext.xml

 WEB-INF/applicationContext-security.xml

 WEB-INF/applicationContext-security-saml.xml

 </param-value>

15

 http://static.springsource.org/spring-security/site/extensions/saml/index.html

http://static.springsource.org/spring-security/site/extensions/saml/index.html

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 29 of 42

</context-param>

b) the spring security filter to WEB-INF/web.xml.

<filter>

 <filter-name>springSecurityFilterChain</filter-name>

 <filter-

class>org.springframework.web.filter.DelegatingFilterProxy</filter-

class>

</filter>

<filter-mapping>

 <filter-name>springSecurityFilterChain</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

c) the spring context listener

<listener>

 <listener-

class>org.springframework.web.context.ContextLoaderListener</listener

-class>

</listener>

3) Create the following configuration files in the project's WEB-INF folder:

a) the spring global configuration file 'applicationContext.xml'.

<?xml version="1.0" encoding="UTF-8" ?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:context="http://www.springframework.org/schema/context"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context.xsd">

 <!-- Enable autowiring -->

 <context:annotation-config/>

 <!-- Load in the security properties with SAML Service Provider

Configuration -->

 <bean id="daoPropertyConfigurer"

class="org.springframework.web.context.support.ServletContextProperty

PlaceholderConfigurer">

 <property name="locations">

 <list>

 <value>/WEB-INF/security.properties</value>

 </list>

 </property>

 <property name="contextOverride" value="true"/>

 <property name="fileEncoding" value="UTF-8"/>

 </bean>

</beans>

b) the spring security configuration file 'applicationContext-security.xml'.

<?xml version="1.0" encoding="UTF-8" ?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:security="http://www.springframework.org/schema/security"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:context="http://www.springframework.org/schema/context"

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 30 of 42

 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/security

http://www.springframework.org/schema/security/spring-security-

3.0.xsd

 http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context.xsd">

 <security:http entry-point-ref="samlEntryPoint">

 <!-- Spring security interceptors -->

 <security:intercept-url pattern="/**"

 access="IS_AUTHENTICATED_FULLY"/>

 <security:intercept-url pattern="/favicon.ico"

 filters="none"/>

 <!-- Custom filters for SAML -->

 <security:custom-filter before="PRE_AUTH_FILTER"

 ref="metadataFilter"/>

 <security:custom-filter position="PRE_AUTH_FILTER"

 ref="samlEntryPoint"/>

 <security:custom-filter after="BASIC_AUTH_FILTER"

 ref="samlProcessingFilter"/>

 <security:custom-filter after="LOGOUT_FILTER"

 ref="samlLogoutFilter"/>

 <security:custom-filter before="LOGOUT_FILTER"

 ref="samlLogoutProcessingFilter"/>

 </security:http>

 <!-- Handler deciding where to redirect user after successful

login -->

 <bean id="successRedirectHandler"

class="org.springframework.security.web.authentication.SavedRequestAw

areAuthenticationSuccessHandler">

 <property name="defaultTargetUrl"

value="${security.successRedirectHandler.defaultTargetUrl}"/>

 </bean>

 <!-- Handler for successful logout -->

 <bean id="successLogoutHandler"

class="org.springframework.security.web.authentication.logout.SimpleU

rlLogoutSuccessHandler">

 <property name="defaultTargetUrl"

value="${security.successLogoutHandler.defaultTargetUrl}"/>

 </bean>

 <!-- Register authentication manager with SAML provider -->

 <security:authentication-manager alias="authenticationManager">

 <security:authentication-provider

 ref="samlAuthenticationProvider"/>

 </security:authentication-manager>

 <!-- Logout handler terminating local session -->

 <bean id="logoutHandler"

class="org.springframework.security.web.authentication.logout.Securit

yContextLogoutHandler">

 <property name="invalidateHttpSession" value="false"/>

 </bean>

</beans>

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 31 of 42

c) the SAML security configuration file 'applicationContext-security-saml.xml'.

<?xml version="1.0" encoding="UTF-8" ?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:security="http://www.springframework.org/schema/security"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:context="http://www.springframework.org/schema/context"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/security

http://www.springframework.org/schema/security/spring-security-

3.0.xsd

 http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context.xsd">

 <!-- Logger for SAML messages and events -->

 <bean id="samlLogger"

class="org.springframework.security.saml.log.SAMLDefaultLogger"/>

 <!-- Central storage of cryptographic keys -->

 <bean id="keyManager"

class="org.springframework.security.saml.key.JKSKeyManager">

 <constructor-arg value="${security.saml.keystore}"/>

 <constructor-arg type="java.lang.String"

value="${security.saml.keystore.password}"/>

 <constructor-arg>

 <map>

 <entry key="${security.saml.keystore.key.alias}"

value="${security.saml.keystore.key.password}"/>

 </map>

 </constructor-arg>

 <constructor-arg type="java.lang.String"

value="${security.saml.keystore.defaultKey}"/>

 </bean>

 <!-- Entry point to initialize authentication, default values

taken from properties file -->

 <bean id="samlEntryPoint"

class="org.springframework.security.saml.SAMLEntryPoint">

 <property name="filterSuffix"

value="${security.saml.entryPoint.filterSuffix}"/>

 <!-- OPTIONAL property: In case idpSelectionPath property is

not set the user will be redirected to the default IDP -->

 <!--property name="idpSelectionPath" value="/WEB-

INF/security/idpSelection.jsp"/-->

 <property name="defaultProfileOptions">

 <bean

class="org.springframework.security.saml.websso.WebSSOProfileOptions"

>

 <property name="includeScoping" value="false"/>

 <property name="binding"

value="${security.saml.entryPoint.binding}"/>

 </bean>

 </property>

 </bean>

 <!-- OPTIONAL bean: The filter is waiting for connections on URL

suffixed with filterSuffix and presents SP metatdata there -->

 <bean id="metadataFilter"

class="org.springframework.security.saml.metadata.MetadataDisplayFilt

er">

 <property name="filterSuffix"

value="${security.saml.metadata.filterSuffix}"/>

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 32 of 42

 </bean>

 <!-- Class is capable of generating SP metadata describing the

currently running environnment -->

 <bean id="metadataGenerator"

class="org.springframework.security.saml.metadata.MetadataGenerator">

 <property name="entityId" value="${security.saml.sp.id}"/>

 <property name="entityBaseURL"

value="${security.saml.sp.url}"/>

 <property name="entityAlias"

value="${security.saml.sp.alias}"/>

 <property name="signingKey"

value="${security.saml.sp.signingKeyAlias}"/>

 <property name="encryptionKey"

value="${security.saml.sp.encryptionKeyAlias}"/>

 <property name="tlsKey" value="${security.saml.sp.tlsKey}"/>

 <property name="requestSigned" value="true"/>

 <property name="signMetadata" value="true"/>

 <property name="wantAssertionSigned" value="true"/>

 <property name="includeDiscovery" value="true"/>

 </bean>

 <!-- SAML Authentication Provider responsible for validating of

received SAML messages -->

 <bean id="samlAuthenticationProvider"

class="org.springframework.security.saml.SAMLAuthenticationProvider">

 <!-- OPTIONAL property: can be used to store/load user data

after login -->

 <!--

 <property name="userDetails" ref="bean" />

 -->

 </bean>

 <!-- Provider of default SAML Context -->

 <bean id="contextProvider"

class="org.springframework.security.saml.context.SAMLContextProviderI

mpl"/>

 <!-- Override default authentication processing filter with the

one processing SAML messages -->

 <bean id="samlProcessingFilter"

class="org.springframework.security.saml.SAMLProcessingFilter">

 <property name="authenticationManager"

ref="authenticationManager"/>

 <property name="authenticationSuccessHandler"

ref="successRedirectHandler"/>

 </bean>

 <!-- Override default logout processing filter with the one

processing SAML messages -->

 <bean id="samlLogoutFilter"

class="org.springframework.security.saml.SAMLLogoutFilter">

 <constructor-arg ref="successLogoutHandler"/>

 <constructor-arg ref="logoutHandler"/>

 <constructor-arg ref="logoutHandler"/>

 </bean>

 <!-- Filter processing incoming logout messages -->

 <!-- First argument determines URL user will be redirected to

after successful global logout -->

 <bean id="samlLogoutProcessingFilter"

class="org.springframework.security.saml.SAMLLogoutProcessingFilter">

 <constructor-arg ref="successLogoutHandler"/>

 <constructor-arg ref="logoutHandler"/>

 </bean>

 <!-- Class loading incoming SAML messages from httpRequest stream

-->

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 33 of 42

 <bean id="processor"

class="org.springframework.security.saml.processor.SAMLProcessorImpl"

>

 <constructor-arg>

 <list>

 <ref bean="redirectBinding"/>

 <ref bean="postBinding"/>

 <ref bean="artifactBinding"/>

 <ref bean="soapBinding"/>

 <ref bean="paosBinding"/>

 </list>

 </constructor-arg>

 </bean>

 <!-- SAML 2.0 Assertion Consumer -->

 <bean id="webSSOprofileConsumer"

class="org.springframework.security.saml.websso.WebSSOProfileConsumer

Impl"/>

 <!-- SAML 2.0 Web SSO profile -->

 <bean id="webSSOprofile"

class="org.springframework.security.saml.websso.WebSSOProfileImpl"/>

 <!-- SAML 2.0 ECP profile -->

 <bean id="ecpprofile"

class="org.springframework.security.saml.websso.WebSSOProfileECPImpl"

/>

 <!-- SAML 2.0 Logout Profile -->

 <bean id="logoutprofile"

class="org.springframework.security.saml.websso.SingleLogoutProfileIm

pl"/>

 <!-- Bindings, encoders and decoders used for creating and

parsing messages -->

 <bean id="postBinding"

class="org.springframework.security.saml.processor.HTTPPostBinding">

 <constructor-arg ref="parserPool"/>

 <constructor-arg ref="velocityEngine"/>

 </bean>

 <bean id="redirectBinding"

class="org.springframework.security.saml.processor.HTTPRedirectDeflat

eBinding">

 <constructor-arg ref="parserPool"/>

 </bean>

 <bean id="artifactBinding"

class="org.springframework.security.saml.processor.HTTPArtifactBindin

g">

 <constructor-arg ref="parserPool"/>

 <constructor-arg ref="velocityEngine"/>

 <constructor-arg>

 <bean

class="org.springframework.security.saml.websso.ArtifactResolutionPro

fileImpl">

 <constructor-arg>

 <bean

class="org.apache.commons.httpclient.HttpClient"/>

 </constructor-arg>

 <property name="processor">

 <bean id="soapProcessor"

class="org.springframework.security.saml.processor.SAMLProcessorImpl"

>

 <constructor-arg ref="soapBinding"/>

 </bean>

 </property>

 </bean>

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 34 of 42

 </constructor-arg>

 </bean>

 <bean id="soapBinding"

class="org.springframework.security.saml.processor.HTTPSOAP11Binding"

>

 <constructor-arg ref="parserPool"/>

 </bean>

 <bean id="paosBinding"

class="org.springframework.security.saml.processor.HTTPPAOS11Binding"

>

 <constructor-arg ref="parserPool"/>

 </bean>

 <!-- Initialization of OpenSAML library-->

 <bean class="org.springframework.security.saml.SAMLBootstrap"/>

 <!-- Initialization of the velocity engine -->

 <bean id="velocityEngine"

class="org.springframework.security.saml.util.VelocityFactory"

 factory-method="getEngine"/>

 <!-- XML parser pool needed for OpenSAML parsing -->

 <bean id="parserPool"

class="org.opensaml.xml.parse.BasicParserPool" scope="singleton"/>

 <!-- IDP Metadata configuration - paths to metadata of IDPs in

circle of trust is here -->

 <!-- Do no forget to call iniitalize method on providers -->

 <bean id="metadata"

class="org.springframework.security.saml.metadata.CachingMetadataMana

ger">

 <constructor-arg>

 <null/>

 </constructor-arg>

 <property name="providers">

 <list>

 <bean

class="org.opensaml.saml2.metadata.provider.HTTPMetadataProvider">

 <!-- URL containing the metadata -->

 <constructor-arg>

 <value

type="java.lang.String">${security.saml.idp.metadataURL}</value>

 </constructor-arg>

 <!-- Timeout for metadata loading in ms -->

 <constructor-arg>

 <value type="int">5000</value>

 </constructor-arg>

 <property name="parserPool" ref="parserPool"/>

 </bean>

 <bean

class="org.springframework.security.saml.metadata.ExtendedMetadataDel

egate">

 <constructor-arg>

 <bean

class="org.springframework.security.saml.metadata.MetadataMemoryProvi

der">

 <constructor-arg>

 <bean factory-

bean="metadataGenerator" factory-method="generateMetadata"/>

 </constructor-arg>

 </bean>

 </constructor-arg>

 <constructor-arg>

 <bean

class="org.springframework.security.saml.metadata.ExtendedMetadata">

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 35 of 42

 <property name="local" value="true"/>

 <property name="alias"

value="${security.saml.sp.alias}"/>

 <property name="securityProfile"

value="metaiop"/>

 <property name="signingKey"

value="${security.saml.sp.signingKeyAlias}"/>

 <property name="encryptionKey"

value="${security.saml.sp.encryptionKeyAlias}"/>

 <property name="tlsKey"

value="${security.saml.sp.tlsKey}"/>

 <property

name="requireArtifactResolveSigned" value="true"/>

 <property

name="requireLogoutRequestSigned" value="true"/>

 <property

name="requireLogoutResponseSigned" value="true"/>

 </bean>

 </constructor-arg>

 </bean>

 </list>

 </property>

 <!-- OPTIONAL used when one of the metadata files contains

information about this service provider -->

 <!-- <property name="hostedSPName" value=""/> -->

 <!-- OPTIONAL property: can tell the system which IDP should

be used for authenticating user by default. -->

 <!-- <property name="defaultIDP"

value="http://localhost:8080/opensso"/> -->

 </bean>

</beans>

d) the property configuration files 'security.properties' in which all property templates
used in above configuration files are configured.

#URL to redirect to after succesful authentication

security.successRedirectHandler.defaultTargetUrl=/

#URL to redirect to after succesful logout

security.successLogoutHandler.defaultTargetUrl=/

#Whether sessions should be invalidated after logout

security.logout.invalidateHttpSession=true

#Suffix of the login filter, saml authentication is initiated when

user browses to this url

security.saml.entryPoint.filterSuffix=/saml/login

#SAML Binding to be used for above entry point url.

security.saml.entryPoint.binding=urn\:oasis\:names\:tc\:SAML\:2.0\:bi

ndings\:HTTP-POST

#Suffix of the Service Provider's metadata, this url needs to be

configured on IDP

security.saml.metadata.filterSuffix=/saml/metadata

#Alias of the Service Provider

security.saml.sp.alias=SampleService

#ID of the Service Provider

security.saml.sp.id=SampleService

#Alias of the Service Provider's signing key

security.saml.sp.signingKeyAlias=apollo

#URL of the service provider

security.saml.sp.url=http\://127.0.0.1\:8080/SP

#URL to the IDP's metadata

security.saml.idp.metadataURL=http\://dev-pmed-

vm.custodix.com/idp/shibboleth

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 36 of 42

#Alias of the Service Provider's tls key

security.saml.sp.tlsKey=apollo

#Alias of the Service Provider's encryption key

security.saml.sp.encryptionKeyAlias=apollo

#path to keystore which contains keys used by the Service Provider

security.saml.keystore=classpath\:resources/samlKeystore.jks

#keystore's storepass

security.saml.keystore.password=nalle123

#keystore's default key

security.saml.keystore.defaultKey=apollo

#Alias of a key in the keystore

security.saml.keystore.key.alias=apollo

#Password of that the key with above alis in the keystore

security.saml.keystore.key.password=nalle123

#Note that it's only possible to configure one key alias through

property file

#If different keys are used for encryption, signing, ...

#the applicationContext-spring-security-saml needs to be updated.

6.1.2 Register website's metadata

The above configuration results in a website which publishes its metadata on
'http://localhost:8080/SP/saml/metadata.

<?xml version="1.0" encoding="UTF-8"?>

<md:EntityDescriptor entityID="http://127.0.0.1:8080/SP"

 xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata">

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

 <ds:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

 <ds:Reference URI="">

 <ds:Transforms>

 <ds:Transform

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" />

 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-

exc-c14n#" />

 </ds:Transforms>

 <ds:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

 <ds:DigestValue>...</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>...</ds:SignatureValue>

 <ds:KeyInfo>

 <ds:X509Data>

 <ds:X509Certificate>...</ds:X509Certificate>

 </ds:X509Data>

 </ds:KeyInfo>

 </ds:Signature>

 <md:SPSSODescriptor AuthnRequestsSigned="true"

 WantAssertionsSigned="true"

protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">

 <md:Extensions>

 <idpdisco:DiscoveryResponse

 Binding="urn:oasis:names:tc:SAML:profiles:SSO:idp-

discovery-protocol"

http://localhost:8080/SP/saml/metadata.

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 37 of 42

Location="http://127.0.0.1:8080/SP/saml/login/alias/SampleService_Localhost

?disco=true"

 xmlns:idpdisco="urn:oasis:names:tc:SAML:profiles:SSO:idp-

discovery-protocol" />

 </md:Extensions>

 <md:KeyDescriptor use="signing">

 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:X509Data>

 <ds:X509Certificate>...</ds:X509Certificate>

 </ds:X509Data>

 </ds:KeyInfo>

 </md:KeyDescriptor>

 <md:KeyDescriptor use="encryption">

 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:X509Data>

 <ds:X509Certificate>...</ds:X509Certificate>

 </ds:X509Data>

 </ds:KeyInfo>

 </md:KeyDescriptor>

 <md:SingleLogoutService

 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

Location="http://127.0.0.1:8080/SP/saml/SingleLogout/alias/SampleService_Lo

calhost" />

 <md:SingleLogoutService

 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"

Location="http://127.0.0.1:8080/SP/saml/SingleLogout/alias/SampleService_Lo

calhost" />

 <md:SingleLogoutService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP"

Location="http://127.0.0.1:8080/SP/saml/SingleLogout/alias/SampleService_Lo

calhost" />

 <md:NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-

format:emailAddress</md:NameIDFormat>

 <md:NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-

format:transient</md:NameIDFormat>

 <md:NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-

format:persistent</md:NameIDFormat>

 <md:NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-

format:unspecified</md:NameIDFormat>

 <md:NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-

format:X509SubjectName</md:NameIDFormat>

 <md:AssertionConsumerService

 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

Location="http://127.0.0.1:8080/SP/saml/SSO/alias/SampleService_Localhost"

 index="0" isDefault="true" />

 <md:AssertionConsumerService

 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Artifact"

Location="http://127.0.0.1:8080/SP/saml/SSO/alias/SampleService_Localhost"

 index="1" isDefault="false" />

 <md:AssertionConsumerService

 Binding="urn:oasis:names:tc:SAML:2.0:bindings:PAOS"

Location="http://127.0.0.1:8080/SP/saml/SSO/alias/SampleService_Localhost"

 index="2" isDefault="false" />

 </md:SPSSODescriptor>

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 38 of 42

</md:EntityDescriptor>

The next step is to register this service's metadata by mailing it to pmedicine-

support@custodix.com. This medata defines:

 that the SP requires assertions to be signed.

 that the SP will issue signed authentication requests.

 the certificate used to verify the PS's signature.

 the key that the IdP can/should use to encrypt its responses.

 the SP's single logout end points for the HTTP-POST, HTTP-REDIRECT and SOAP
binding.

 the name id formats supported by the SP.

 the assertion consumer endpoints for the HTTP_POST and HTTP-Artifact binding of the
SSO Profile and the PAOS binding of the ECP Profile.

6.2 Example: Liferay

Liferay is the implementation choice for the portal within p-medicine16. As the portal is the
entry point for p-medicine, integration of Liferay into the p-medicine security architecture is
an import use case.

As Liferay uses Spring, using Spring Security as defined in 6.1, is the easiest way to
integrate Liferay into the security architecture. Therefore the first step is to create a Liferay
extension which adds a Spring Security SAML entry point (as explained in 6.1),. The result of
this is that when someone goes to the URL "saml/login" SAML authentication is initiated.
Once SAML authentication succeeds an authenticated Spring Security context will be active.

As Liferay itself does not use Spring Security an authenticated Spring Security context does
not result in an authenticated Liferay session. For this Liferay provides an interface
<AutoLogin> which should be implemented to add support for custom authentication
mechanisms. All configured instances of the <AutoLogin> interface will run in consecutive
order for all unauthenticated users. Once one of them returns a valid user id and password
combination, the portal automatically authenticates that user.

Table 1 AutoLogin interface

package com.liferay.portal.security.auth;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

/**

All configured instances of this interface will run in consecutive order

for all unauthenticated users until one of them returns a valid user id

and password combination. If no valid combination is returned, then the

request continues to process normally. If a valid combination is returned,

then the portal will automatically login that user with the returned user

id and password combination.

16

 D8.1.2 Design and prototype implementation of the p-medicine portal

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 39 of 42

*/

public interface AutoLogin {

 public String[] login(

 HttpServletRequest request, HttpServletResponse response)

 throws AutoLoginException;

}

Therefore the interface <AutoLogin> needs to be implemented to extract the user's unique p-
medicine identifier from the saml token available through the authenticated Spring Security
context. Through this identifier the Liferay user can be looked up and its username and
password can be queried and returned. Note that this requires the user's Liferay password to
be available in unencrypted form.

If no user exists for the given identifier a new user could be created. All identifying
information needed for automatic user creation (such as email address, first name, last
name) can be extracted from the SAML token.

Table 2 Example implemenation of AutoLogin interface for SAML authentication with Spring Security

package com.custodix.liferay.ext.saml;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.springframework.security.core.context.SecurityContext;

import org.springframework.security.core.context.SecurityContextHolder;

import org.springframework.security.saml.SAMLCredential;

import com.liferay.portal.NoSuchUserException;

import com.liferay.portal.kernel.exception.PortalException;

import com.liferay.portal.kernel.exception.SystemException;

import com.liferay.portal.model.User;

import com.liferay.portal.security.auth.AutoLogin;

import com.liferay.portal.security.auth.AutoLoginException;

import com.liferay.portal.service.UserLocalServiceUtil;

public class SAMLAutoLogin implements AutoLogin {

 public String[] login(HttpServletRequest req, HttpServletResponse res)

 throws AutoLoginException {

 //Get the saml token from the authenticated spring security context.

 SecurityContext context =SecurityContextHolder.getContext();

 if(context!=null) {

 SAMLCredential credential = (SAMLCredential)SecurityContextHolder

 .getContext().getAuthentication().getCredentials();

 String uid = credential.getNameID().getValue();

 try {

 User user;

 try {

 user = UserLocalServiceUtil.getUserByUuid(uid);

 } catch(NoSuchUserException e) {

 //user doesn't exist in Liferay database

 user = null;

 }

 if(user==null) {

 //if the user doesn't exist, automatically create him.

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 40 of 42

 }

 if(user!=null) {

 //user =UserLocalServiceUtil.updateUser(user);

 //get the the user id and password.

 long userId = user.getUserId();

 String userPwd = user.getPasswordUnencrypted();

 return new

String[]{String.valueOf(userId),userPwd,Boolean.TRUE.toString()};

 }

 } catch (PortalException e) {

 throw new AutoLoginException("Authn failed: "+e);

 } catch (SystemException e) {

 throw new AutoLoginException("Authn failed: "+e);

 }

 }

 throw new AutoLoginException("Invalid context");

 }

}

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 41 of 42

7 Conclusion

This deliverable started by elaborating on the technical details of the data security
framework. The authentication components were the main focus. Brokered authentication
and SSO can be implemented on web sites by using the standard SAML profiles and
bindings. For REST services there are no existing standard specifications yet. Therefore the
conclusion was that REST services can use a Secure Token Service as specified in the
SOAP WS-Trust specification. Such a Secure Token Service can also issue a delegation
token more specifically a SAML token that identifies the end user. This token contains a
condition that states the intermediate delegating services as specified in "SAML V2.0
Condition for Delegation".

The second part of the deliverable further extended the privacy framework. A global high
level overview of the import of sensitive patient data into p-medicine was given.

The final part of the deliverable explained through some examples how services can easily
integrate with the authentication components by using Spring Security.

– Grant Agreement no. 270089

D3.4 – Service Integration Guidelines

 Page 42 of 42

Appendix 1 - Abbreviations and acronyms

ABAC Attribute-Based Access Control

CATS Custodix Anonymisation Tool Services

IdP Identity Provider

PAP Policy Administration Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PIMS Patient Identity Management System

REST REpresentational State Transfer

SAML Security Assertion Markup Language

SOAP Simple Object Access Protocol

SP Service Provider

STS Secure Token Service

WADL Web Application Description Language

WSDL Web Services Description Language

XACML eXtensible Access Control Markup Language

