

Page 1 of 51

A Demonstration of 4D Digital Avatar

Infrastructure for Access of Complete

Patient Information

Project acronym: MyHealthAvatar

Deliverable No. 5.1

Model and clinical data repositories

design

Grant agreement no: 600929

Page 2 of 51

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: MyHealthAvatar

Project Full Name: A Demonstration of 4D Digital Avatar Infrastructure for Access of

Complete Patient Information

Deliverable No.: D5.1

Document name: Model and clinical data repositories design

Nature (R, P, D, O)1 R

Dissemination Level (PU, PP,
RE, CO)2

PU

Version: 1

Actual Submission Date: 28/04/2014

Editor:
Institution:
E-Mail:

Fay Misichroni
ICCS
faymisi@mail.ntua.gr

ABSTRACT:
The aim of this deliverable is to present the initial versions of the tool/model repository and the
data repository to support the execution of tools/models. The main aspects of the repositories
addressed are the following: the user management, the access management, the tool/model
repository, the data repository, the engine to facilitate tool execution and several implementation
issues.

KEYWORD LIST:
Tools, models, tool/model repository, data repository, authentication, authorization, engine, tool
execution, task processing

This project has received funding from the European Union’s Seventh Programme for research,
technological development and demonstration under grant agreement No 600929.

1 R=Report, P=Prototype, D=Demonstrator, O=Other
2 PU=Public, PP=Restricted to other programme participants (including the Commission Services), RE=Restricted to a group
specified by the consortium (including the Commission Services), CO=Confidential, only for members of the consortium
(including the Commission Services)

Page 3 of 51

The author is solely responsible for its content, it does not represent the opinion of the European
Community and the Community is not responsible for any use that might be made of data appearing
therein.

MODIFICATION CONTROL

Version Date Status Author

0.1 26/mm/yy Draft Fay Misichroni

0.2 27/04/2014 Revision Dimitra Dionysiou

1.0 28/04/2014 Final Georgios S. Stamatakos

Page 4 of 51

Contents

TABLE OF FIGURES ... 5

1 EXECUTIVE SUMMARY .. 6

2 INTRODUCTION ... 7

2.1 PURPOSE OF THIS DOCUMENT ... 7
2.2 STRUCTURE OF THIS DOCUMENT .. 7

3 TOOL AND DATA REPOSITORY .. 8

3.1 TOOL DESCRIPTION AND CLASSIFICATION ... 8
3.2 FILES RELATED TO TOOLS .. 10
3.3 TASK MANAGEMENT (TOOL EXECUTION) ... 11
3.4 SESSIONS AND LOGGING .. 13
3.5 CLINICAL DATA (USED IN TOOL EXECUTION) ... 13

4 USER AND ACCESS MANAGEMENT ... 16

4.1 INTRODUCTION .. 16
4.2 BASIC AUTHENTICATION AND AUTHORIZATION ... 16
4.3 OAUTH 2.0 .. 20

5 IMPLEMENTATION PRINCIPLES AND SOFTWARE CHOICES .. 22

5.1 PRINCIPLES AND CRITERIA .. 22
5.2 SOFTWARE COMPONENTS .. 23

6 TOOL EXECUTION – THE ENGINE .. 30

6.1 THE MESSAGE BROKER... 30
6.2 THE TASK PROCESSING MECHANISM ... 30

REFERENCES ... 33

APPENDIX 1 – ABBREVIATIONS AND ACRONYMS .. 34

APPENTIX 2 – DATABASE DESCRIPTION ... 35

DATABASE: MHA_TOOL_REPOSITORY .. 35
TABLES .. 35
Table: auth_group ... 35
Table: auth_group_permissions .. 36
Table: auth_permission ... 37
Table: auth_user ... 37
Table: auth_user_groups .. 38
Table: auth_user_user_permissions ... 39
Table: django_admin_log .. 39
Table: django_content_type ... 40
Table: django_session ... 41
Table: mha_auth_group_permissions ... 41
Table: mha_auth_permission ... 42
Table: mha_auth_user_user_permissions ... 43
Table: mha_file.. 43
Table: mha_instance_parameter .. 44
Table: mha_parameter .. 45
Table: mha_property .. 45
Table: mha_task.. 46
Table: mha_tool.. 47
Table: mha_tool_property .. 47

Page 5 of 51

Table: oauth2_accesstoken .. 48
Table: oauth2_client .. 49
Table: oauth2_grant .. 49
Table: oauth2_refreshtoken ... 50

Table of Figures

Figure 1: ER diagram of tables of the tool repository ... 12

Figure 2: ER diagram of tables of the tool repository related to logging and sessions. 13

Figure 3: Table "mha_instance_parameter". .. 15

Figure 4: ER diagram of tables associated with authentication and authorization 18

Figure 5: ER diagram of tables associated with authentication and authorization 19

Figure 6: Basic flow of communication in OAuth 2.0. .. 20

Figure 7: ER diagram of tables associated with OAuth 2.0 service provider. 21

Figure 8: Model -View - Controller (MVC) paradigm. ... 22

Figure 9: Asynchronous task processing mechanism by asynchronous message queuing and

brokering. .. 31

Figure 10: Task processing mechanism. ... 32

Page 6 of 51

1 Executive Summary

Owing to the highly fragmented health systems in European countries, gaining access to a consistent

record of individual citizens that involves cross-border activities is very difficult. MyHealthAvatar is a

proof of concept for the digital representation of patient health status. It is designed as a lifetime

companion for individual citizens that facilitates the collection of, and access to, long-term health-

status information. This is extremely valuable for clinical decisions and offers a promising approach

to acquire population data to support clinical research, leading to strengthened multidisciplinary

research excellence in supporting innovative medical care.

The VPH initiative has led to the collection and integration of predictive models and heterogeneous

data to interpret and predict the progress of diseases and the effectiveness of treatments, which

have laid down the foundation for new knowledge discovery. The use of these tools can show the

quantified progress of the patient and promote a better modulation of treatment and a faster

recovery. These are expected to improve the reliability, repeatability and timeliness of medical

decisions and interventions. In addition to data access, MyHealthAvatar is also an interface to access

integrative models and analysis tools, utilizing resources already created by the VPH community.

Overall, it can contribute to individualized disease prediction and prevention and support healthy

lifestyles and independent living.

Personalisation is one of the key features of the MyHealthAvatar representation. These avatars are

like personal bags of individual citizens. Given a set of long term and consistent health information,

data analysis and simulations supporting clinical decisions can be made based entirely on the

individualized information from specific patients. This can allow the healthcare system to be tailored

for individual care and personalised prevention.

Work package 5, “Models & Repositories”, focuses on the development of clinically oriented

repositories that cover the needs of the MyHealthAvatar project. This involves the development of:

 A repository of tools/models, including among others models of special biomechanisms and

tumour growth and response to treatment.

 A data repository of multiscale data exploitable by the tools/models.

The aforementioned repositories will be tailored to the needs of the project. At the same time they

will be generic enough to be usable by several different medical scenarios.

Page 7 of 51

2 Introduction

2.1 Purpose of this document

The present document, corresponding to the deliverable “Model and clinical data repositories

design” of the MyHealthAvatar (A Demonstration of 4D Digital Avatar Infrastructure for Access of

Complete Patient Information) project, describes:

 The design of a tool/model repository.

 A data repository to support the execution of the tools/models.

 The initial phase of implementation of the engine that will facilitate the execution of the

tools/models, hosted in the aforementioned repository.

For simplicity we will call the tool/model repository as tool repository throughout this document.

2.2 Structure of this document

Chapter three describes the tool repository and the data repository to support the execution of

tools. The description of the entities involved and the tables that store the relative information are

presented. The fields of each table are explained in detail and the corresponding Entity-Relationship

(ER) diagrams are presented at the end of each subsection.

The fourth chapter of this document describes the authentication and authorization mechanisms of

the tool and data repositories. Both basic authentication/authorization and OAuth 2.0 are

considered. The principles of each approach are described and the corresponding Entity-Relationship

(ER) diagrams are presented at the end of each subsection.

Chapter five focuses on the concepts and the software components used in the implementation,

both backend and frontend, of the repositories and the tool execution engine. In the last chapter of

this document the initial phase of implementation of the engine that will facilitate the execution of

the tools/models, hosted in the aforementioned repository, is presented. Finally, the complete

documentation of the database used in the implementation of the initial version of tool and data

repositories can be found in Appendix 2.

Page 8 of 51

3 Tool and data repository

3.1 Tool description and classification

The basic principles of the tool repository are:

 Each tool has basic descriptive information, stored in table “mha_tool”.

 Each tool can have one or more properties that further describes or/and classifies it.

 The descriptive information of properties is stored in table “mha_property”. It must be

noted that this table does not contain the value of the property in case of a specific tool, but

only the description of the property.

 The value that a property takes in case of a specific tool is stored in table

“mha_tool_property”.

 Each tool has various parameters, serving as input parameters or output parameters, which

are stored in table “mha_parameters”.

Table: mha_tool

 id: Primary key. Used to uniquely identify each table row.

 title: The name of the tool.

 description: The (short) textual description of the tool.

 comment: Any comment that the creator/uploader of the tool wants to include.

Table: mha_property

 id: Primary key. Used to uniquely identify each table row.

 name : The name of the property.

 description: The (short) textual description of what this property represents.

 comment: Any comment that the creator of the property wants to include.

 semtype: A url representing semantic information about this property.

Page 9 of 51

Table: mha_tool_property

 id: Primary key. Used to uniquely identify each table row.

 tool_id: Reference. The id of the tool. Linked to the table “mha_tool”.

 property_id: Reference. The id of the property. Linked to the table “mha_property”.

 value: The value that the property (property_id) takes in case of a specific tool (tool_id).

Table: mha_parameter

 id: Primary key. Used to uniquely identify each table row.

 tool_id: The id of the tool that this parameter is associated with.

 name : The name of the parameter.

 description: The (short) textual description of what this parameter represents.

 data_type: The type of the parameter. Possible value can be “number”, “string” or “file”.

 unit: The units in which the parameter is represented. Only applicable if the parameter is a

number.

 data_range: The range of the parameter values separated by “-“. Only applicable if the

parameter is a number.

 default_value: The value that will be used if a parameter value is not provided to the tool.

 is_mandatory: True if this is a mandatory parameter.

 is_output: True if this parameter is an output parameter.

 comment: Any additional comment concerning this parameter.

 semtype: A url representing semantic information about this parameter.

Page 10 of 51

3.2 Files related to tools

Every tool can be accompanied by a set of files. The information about the aforementioned files is

stored in table “mha_file”. The actual file (data) is stored internally in a file based repository. If a file

is an implementation of a tool, then a suitable engine is specified for running the file.

Table: mha_file

 id: Primary key. Used to uniquely identify each table row.

 tool_id: Reference. Linked to the tool that this file is associated with. Linked to the table

“mha_tool”.

 title: The name of the file.

 description: The (short) textual description of what this file represents.

 kind: Defines what this file is. Example values: “document”, “source code”, “binary” etc.

 source: The location where this file is internally stored.

 version: The version of the file. Multiple versions of the same file can be stored in the

repository.

 license: The license associated with this file. It can be the name of a well-known license

(Apache, MIT etc) or the detailed description of the license.

 sha1sum: The sha1 checksum of this file (data). It is used in order to check the consistency of

the file.

 comment: Any additional comment.

 engine: The engine that is suitable for executing this file. Only applied in case that the file

can be executed/run.

Page 11 of 51

3.3 Task management (tool execution)

Table: mha_task

 id: Primary key. Used to uniquely identify each table row.

 title: The name of the task.

 user_id: Reference. Linked to the user that created the task. Linked to the table “auth_user”.

 tool_id: Reference. Linked to the tool that this task is associated with. Linked to the table

“mha_tool”.

 file_id: Reference. Linked to the file that this task is associated with. Linked to the table

“mha_file”.

 date: Timestamp. The time and date that the task is created.

 status: The status of the task (pending, running, finished, etc.)

Page 12 of 51

Figure 1: ER diagram of tables of the tool repository

(excluding tables related to authentication, authorization and logging).

Page 13 of 51

3.4 Sessions and logging

A session token is a unique identifier that is generated and sent from a server to a client to identify

the current interaction session. The client usually stores and sends the token as an HTTP cookie

and/or sends it as a parameter in GET or POST queries. The reason to use session tokens is that the

client only has to handle the identifier. All session data is stored on the server, usually in a database,

to which the client does not have direct access.

Figure 2: ER diagram of tables of the tool repository related to logging and sessions.

3.5 Clinical data (used in tool execution)

Prior to executing a tool, appropriate clinical data must be retrieved in order to be provided to the

tool when it is needed. There are three potential ways to retrieve the aforementioned data:

 Directly from the user that wants to run a tool. The user can provide values or can upload

files, depending on the specifications of the tool under consideration.

 From the MyHealthAvatar data repository. For example, if the parameter is the weight of

the citizen and a tool needs this information, then the value of the weight may automatically

be retrieved from MyHealthAvatar data repository, by providing the necessary information

(patient_id, time, parameter name).

 From the OBTIMA clinical trial management system. For example, if the parameter is the

initial tumour volume of a patient and a tumour evolution prediction tool needs this

information, then the value of initial tumour volume of a patient may automatically be

retrieved, by providing the necessary information (patient_id, parameter name,

time(optional))

Page 14 of 51

Table: mha_person_parameter

 id: Primary key. Used to uniquely identify each table row.

 person_id: The id of the person that this parameter is associated with.

 instance_id: The id of the instance of the person that this parameter is associated with. A

patient may have many instances of the same parameter. For example the weight of a

person may vary in different time points of his/her life.

 name : The name of the parameter.

 description: The (short) textual description of what this parameter represents. Usually used

when the data is provided directly from the user. If the parameter is retrieved by

MyHealthAvatar or OBTIMA, then a note is added in this field, mentioning the origination of

the data.

 data_type: The type of the parameter. Possible value can be “number”, “string” or “file”.

 unit: The units in which the parameter is represented. Only applicable if the parameter is a

number. Proper transformation of units may be needed before executing a tool, for example

if the weight is provided in pounds and the tool accepts kg.

 value: The value that the parameter takes (empty in case that the parameter is a file).

 source: Only applicable in case the parameter is a file. The location where this file is

internally stored.

 sha1sum: Only applicable in case the parameter is a file. The sha1 checksum of this file

(data). It is used in order to check the consistency of the file.

Page 15 of 51

Figure 3: Table "mha_instance_parameter".

Page 16 of 51

4 User and access management

4.1 Introduction

One of the key requirements of the tool repository is to be able to:

 Verify (authenticate) that a user is who he or she claims to be (usually by checking a

username and password against a database of users)

 Verify that the user is authorized to perform a given operation (usually by checking against a

table of permissions)

The tool repository incorporates two authentication and authorization mechanisms:

 A classic username/password mechanism in which the user provides directly his/her

credentials to the system.

 An OAuth 2.0 mechanism which facilitates the interaction of the tool repository with other

components of MyHealthAvatar platform and vice versa.

4.2 Basic authentication and authorization

 The tool repository is built on top of the Django application framework. Consequently, the

build-in authentication and authorization mechanism of Django has been adopted and extended

appropriately.

The authentication/authorization system consists of a number of parts:

 Users: People registered with the tool repository.

 Permissions: Binary (yes/no) flags designating whether a user may perform a certain task.

 Groups: A generic way of applying labels and permissions to more than one user.

Users

 User objects have the standard username, password, e-mail and real name fields, along with

a set of fields that define what the user is allowed to do in the admin interface. First, there’s a set of

three boolean flags:

 The “active” flag controls whether the user is active at all. If this flag is off and the user tries

to log in, he/she won’t be allowed in, even with a valid password.

Page 17 of 51

 The “staff” flag controls whether the user is allowed to log in to the admin interface. Since

this same user system can be used to control access to public (i.e., non-admin) domain, this

flag differentiates between public users and administrators.

 The “superuser” flag gives the user full access to add, create and delete any item in the

admin interface. If a user has this flag set, then all regular permissions (or lack thereof) are

ignored for that user.

Groups

 Groups are a generic way of categorizing users so that permissions, or other labels, can be

applied to those users. A user can belong to any number of groups. A user in a group automatically

has the permissions granted to that group. A group is simply a set of permissions to apply to all

members of that group. Groups are useful for granting identical permissions to a subset of users.

The tool repository has two kinds of permissions mechanisms.

 The first one, derived from the Django application framework, is used for controlling who

has access to create, edit, and delete any object. This permissions system is used to give

specific users access only to the portions of the interface that they need. For example,

“superusers” have full access to every resource. “Tools administrators” can create, edit and

delete tools. “Common users” can only access tools.

 The second permissions system is designed explicitly for MyHealthAvatar and controls who

has access to which tools. For example, there are tools that may be accessed by all users, but

there might be tools that should be accessed only by clinicians.

Figures 4 and 5 present the tables participating in the aforementioned permissions mechanism.

Page 18 of 51

Figure 4: ER diagram of tables associated with authentication and authorization

 (tools specific permissions).

Page 19 of 51

Figure 5: ER diagram of tables associated with authentication and authorization

(interface permissions).

Page 20 of 51

4.3 OAuth 2.0

 After a thorough investigation on authentication protocols that can be used for the

communication of the tool repository with other systems, we decided to use OAuth 2.0 protocol.

OAuth provides a method for users to grant third-party access to their resources without sharing

their passwords. It also provides a way to grant limited access (in scope, duration, etc.).

 OAuth 2.0 provides a cryptography-free option for authentication which is based on existing

cookie authentication architecture. Instead of sending signed requests using HMAC and token

secrets, the token itself is used as a secret sent over HTTPS. This allows making API calls using URL

and other simple scripting tools without having to canonicalize the request and sign it. Instead of

issuing a long lasting token (typically good for a year or unlimited lifetime), the server can issue a

short-lived access token and a long lived refresh token. This allows clients to obtain a new access

token without having to involve the user again, but keeps access tokens limited. OAuth 2.0 separates

the role of the authorization server, responsible for obtaining user authorization and issuing tokens,

from that of the resource server handling API calls. The following figure shows the basic flow of

communication taking place.

Figure 6: Basic flow of communication in OAuth 2.0.

 An OAuth 2.0 service provider and a OAuth 2.0 client are being implemented on the side of

the tool-repository . The following figure presents the tables used in the implementation of OAuth

2.0 service provider:

Page 21 of 51

Figure 7: ER diagram of tables associated with OAuth 2.0 service provider.

Page 22 of 51

5 Implementation principles and software choices

5.1 Principles and Criteria

Before starting implementing the tool and data repositories and the engine that will support the use

of these tools, a thorough investigation was performed on the available software that could be used

as a basis. The targeted software had to:

• Be free and open source.

• Have an active community that supports it by building plug-ins and extensions.

• Support MySQL.

• Follow the Model-View-Controller (MVC) paradigm.

Figure 8: Model -View - Controller (MVC) paradigm.

Taking into account the aforementioned criteria, we have chosen Django application framework to

act as the “heart” of our implementation. Additional software components were chosen to be used

for the implementation of several features and functionalities of the system. The software

components and the conferred advantages that dictated their choice are presented in the following

section.

Page 23 of 51

5.2 Software components

MySQL

MySQL is the world's most popular open source database.

Key features of MySQL are:

 Scalability and Flexibility. The MySQL database server provides the ultimate in scalability,

sporting the capacity to handle deeply embedded applications with a footprint of only 1MB

to running massive data warehouses holding terabytes of information. Platform flexibility is

a stalwart feature of MySQL with all flavors of Linux, UNIX, and Windows being supported.

And, of course, the open source nature of MySQL allows complete customization for those

wanting to add unique requirements to the database server.

 High Performance. With high-speed load utilities, distinctive memory caches, full text

indexes, and other performance-enhancing mechanisms, MySQL offers all the right

ammunition for today's critical business systems.

 High Availability. MySQL offers a variety of high-availability options from high-speed

master/slave replication configurations, to specialized Cluster servers offering instant

failover, to third party vendors offering unique high-availability solutions for the MySQL

database server.

 Robust Transactional Support. MySQL offers one of the most powerful transactional

database engines. Features include complete ACID (atomic, consistent, isolated, durable)

transaction support, unlimited row-level locking, distributed transaction capability, and

multi-version transaction support where readers never block writers and vice-versa. Full

data integrity is also assured through server-enforced referential integrity, specialized

transaction isolation levels, and instant deadlock detection.

 Web and Data Warehouse Strengths. Features like main memory tables, B-tree and hash

indexes, and compressed archive tables that reduce storage requirements by up to eighty-

percent make MySQL a strong standout for both web and business intelligence applications.

 Strong Data Protection. In terms of database authentication, MySQL provides powerful

mechanisms for ensuring only authorized users have entry to the database server. SSH and

SSL support are also provided to ensure safe and secure connections. Backup and recovery

utilities provided through MySQL and third party software vendors allow for complete logical

and physical backup as well as full and point-in-time recovery.

 Comprehensive Application Development. Within the database, support can be found for

stored procedures, triggers, functions, views, cursors, ANSI-standard SQL, and more. For

embedded applications, plug-in libraries are available to embed MySQL database support

into nearly any application. MySQL also provides connectors and drivers (ODBC, JDBC, etc.)

that allow all forms of applications to make use of MySQL as a preferred data management

server.

Page 24 of 51

Django

Django is a free and open source web application framework, written in

Python, which follows the model–view–controller (MVC) architectural

pattern. It encourages rapid development and clean, pragmatic design.

It allows high-performing, elegant Web application building.

Django's primary goal is to ease the creation of complex, database-driven websites. Django

emphasizes reusability and “pluggability” of components, rapid development, and the principle of

don't repeat yourself (DRY). Python is used throughout, even for settings, files, and data models.

The core Django framework consists of:

 An object-relational mapper which mediates between data models (defined as Python

classes) and a relational database (“Model”).

 A system for processing requests with a web templating system (“View”).

 A regular-expression-based URL dispatcher (“Controller”).

 An optional automatic administrative create, read, update and delete interface that is

generated dynamically through introspection and configured via admin models.

 A lightweight, standalone web server for development and testing.

 A form serialization and validation system which can translate between HTML forms and

values suitable for storage in the database.

 A template system that utilizes the concept of inheritance borrowed from object-oriented

programming

 A caching framework which can use any of several cache methods.

 Support for middleware classes which can intervene at various stages of request processing

and carry out custom functions.

 An internal dispatcher system which allows components of an application to communicate

events to each other via pre-defined signals.

 An internationalization system, including translations of Django's own components into a

variety of languages.

 A serialization system which can produce and read XML and/or JSON representations of

Django model instances.

 A system for extending the capabilities of the template engine.

 An interface to Python's built in unit test framework.

Page 25 of 51

Celery

Celery is an asynchronous task queue/job queue based on distributed

message passing. It is focused on real-time operation, but supports scheduling

as well. Celery is a library written in Python and it is licensed under the New

BSD License.

The execution units, called tasks, are executed concurrently on a single or

more worker servers using multiprocessing. Tasks can execute asynchronously

(in the background) or synchronously (wait until ready). Celery communicates via messages, usually

using a broker to mediate between clients and workers. To initiate a task a client puts a message on

the queue and the broker then delivers the message to a worker. A Celery system can consist of

multiple workers and brokers, giving way to high availability and horizontal scaling. Celery can run on

a single machine, on multiple machines, or even across datacenters.

Key features of Celery are:

 Simplicity

Celery is easy to use and maintain, and does not need configuration files. It has an active,

friendly community, including a mailing-list and an IRC channel.

 Highly Availability

Workers and clients will automatically retry in the event of connection loss or failure, and

some brokers support Highly Availability in way of Master/Master or Master/Slave

replication.

 Speed

A single Celery process can process millions of tasks a minute, with sub-millisecond round-

trip latency.

 Flexibility

Almost every part of Celery can be extended or used on its own, custom pool

implementations, serializers, compression schemes, logging, schedulers, consumers,

producers, autoscalers, broker transports and much more.

Celery supports:

 Message Transports

RabbitMQ, Redis, MongoDB (experimental), Amazon SQS (experimental), CouchDB

(experimental), SQLAlchemy (experimental), Django ORM (experimental), IronMQ, etc.

 Concurrency

Prefork, Eventlet, gevent, threads/single threaded

Page 26 of 51

 Result Stores

AMQP, Redis, memcached, MongoDB, SQLAlchemy, Django ORM, Apache Cassandra,

IronCache

 Serialization

pickle, json, yaml, msgpack, zlib, bzip2 compression, Cryptographic message signing.

RappidMQ

RabbitMQ is an open source message broker software

(sometimes called message-oriented middleware) that

implements the Advanced Message Queuing Protocol

(AMQP). The RabbitMQ server is written in the Erlang

programming language and is built on the Open Telecom Platform framework for clustering and

failover. Client libraries to interface with the broker are available for all major programming

languages.

RabbitMQ is a messaging broker - an intermediary for messaging. It gives your applications a

common platform to send and receive messages, and your messages a safe place to live until

received.

Key Feautures

 Reliability

RabbitMQ offers a variety of features to let you trade off performance with reliability,

including persistence, delivery acknowledgements, publisher confirms, and high availability.

 Flexible Routing

Messages are routed through exchanges before arriving at queues. RabbitMQ features

several built-in exchange types for typical routing logic. For more complex routing you can

bind exchanges together or even write your own exchange type as a plugin.

 Clustering

Several RabbitMQ servers on a local network can be clustered together, forming a single

logical broker.

 Federation

For servers that need to be more loosely and unreliably connected than clustering allows,

RabbitMQ offers a federation model.

 Highly Available Queues

Page 27 of 51

Queues can be mirrored across several machines in a cluster, ensuring that even in the event

of hardware failure your messages are safe.

 Multi-protocol

RabbitMQ supports messaging over a variety of messaging protocols.

 Many Clients

There are RabbitMQ clients for almost any language you can think of.

 Management UI

RabbitMQ ships with an easy-to use management UI that allows you to monitor and control

every aspect of your message broker.

 Tracing

If your messaging system is misbehaving, RabbitMQ offers tracing support to let you find out

what's going on.

 Plugin System

RabbitMQ ships with a variety of plugins extending it in different ways, and you can also

write your own.

 Large Community

There's a large community around RabbitMQ, producing all sorts of clients, plugins, guides,

etc.

The project consists of:

 The RabbitMQ exchange server itself

 Gateways for HTTP, Streaming Text Oriented Messaging Protocol (STOMP), and MQ

Telemetry Transport (MQTT) protocols

 AMQP client libraries for Java, .NET Framework, and Erlang. (AMQP clients for other

languages are available from other vendors)

 A plug-in platform for custom additions, with a pre-defined collection of supported plug-ins,

including:

 a “Shovel” plug-in that takes care of copying (replicating) messages from one broker

to another

 a “Federation” plug-in that enables efficient sharing of messages between brokers

(at the exchange level)

Page 28 of 51

 a “Management” plug-in that enables monitoring and control of brokers and clusters

of brokers.

Tastypie

Tastypie is a webservice API framework for Django. It provides a convenient, yet powerful and highly

customizable abstraction for creating REST-style interfaces. Tastypie makes exposing models easy,

but gives full control over what it is exposed, letting abstract away the database as much as needed.

Tastypie also makes it easy to integrate with non-ORM data sources. Tastypie is BSD licensed & plays

nicely with third-party apps without needing to modify their sources.

Features:

 Full GET/POST/PUT/DELETE/PATCH support

 Reasonable defaults

 Designed to be extended at every turn

 Includes a variety of serialization formats (JSON/XML/YAML/bplist)

 Hypermedia as the Engine of Application State (HATEOAS) by default

 Well-tested & well-documented

MongoDB

MongoDB (from “humongous”) is a cross-platform

document-oriented database system. Classified as a NoSQL

database, MongoDB eschews the traditional table-based

relational database structure in favor of JSON-like

documents with dynamic schemas (MongoDB calls the format BSON), making the integration of data

in certain types of applications easier and faster. Released under a combination of the GNU Affero

General Public License and the Apache License (language drivers), MongoDB is free and open source

software.

Features:

 Document-Oriented Storage

JSON-style documents with dynamic schemas offer simplicity and power.

Page 29 of 51

 Full Index Support

Index on any attribute.

 Replication & High Availability

 Mirror across LANs and WANs for scale and peace of mind.

 Auto-Sharding

Scale horizontally without compromising functionality.

 Querying

Rich, document-based queries.

 Fast In-Place Updates

Atomic modifiers for contention-free performance.

 Map/Reduce

Flexible aggregation and data processing.

 GridFS

Store files of any size without complicating your stack.

Page 30 of 51

6 Tool execution – The engine

6.1 The message broker

The message broker is an intermediary program which translates the language of a system from one

globally acceptable language into another by way of a telecommunications medium.

Messaging enables software applications to connect and scale. Applications can connect to each

other, as components of a larger application, or to user devices and data. Messaging is

asynchronous, decoupling applications by separating sending and receiving data.

A message broker is an architectural pattern for message validation, message transformation and

message routing. It mediates communication amongst applications, minimizing the mutual

awareness that applications should have of each other in order to be able to exchange messages,

thereby effectively implementing decoupling.

The purpose of a broker is to take incoming messages from applications and perform some action on

them. The following are examples of actions that might be taken in the broker:

 Route messages to one or more of many destinations.

 Transform messages to an alternative representation.

 Perform message aggregation, decomposing messages into multiple messages and sending

them to their destination, then recomposing the responses into one message to return them

to the user.

 Interact with an external repository to augment a message or store it.

 Invoke Web services to retrieve data.

 Respond to events or errors.

 Provide content and topic-based message routing using the publish–subscribe pattern.

6.2 The task processing mechanism

The execution of tools considered can take from few seconds to few minutes, or even hours. This is

the main reason why we have decided to adopt an asynchronous task processing mechanism by

asynchronous message queuing and brokering. The mechanism is presented in Figure 9.

Page 31 of 51

Figure 9: Asynchronous task processing mechanism by asynchronous message queuing

and brokering.

Figure 10 presents the task processing mechanism. More specifically:

 Django is used as web application framework. Tastypie is used for the RESTful web services.

 RabbitMQ is used as message broker.

 Celery is used as task manager.

 MongoDB is used as result storage.

Page 32 of 51

Figure 10: Task processing mechanism.

Django sends a task to the task queue in RabbitMQ. Then Celery retrieves the task and spawns

workers to complete the task. When the worker is finished with its task, it sends the results to

Django for storage (MongoDB), analysis and presentation to the end user.

Page 33 of 51

References

 http://code.google.com/p/oauth2-php/

 http://tools.ietf.org/html/draft-ietf-oauth-v2-25

 http://tools.ietf.org/html/rfc5849

 https://www.mysql.com

 https://www.djangoproject.com/

 http://en.wikipedia.org/wiki/Django_%28web_framework%29

 https://github.com/celery/celery

 http://www.celeryproject.org/

 http://en.wikipedia.org/wiki/Message-oriented_middleware

 http://en.wikipedia.org/wiki/RabbitMQ

 http://en.wikipedia.org/wiki/HATEOAS

 http://tastypieapi.org/

 http://en.wikipedia.org/wiki/MongoDB

 http://www.mongodb.org/

 http://hueniverse.com/category/oauth/

http://tools.ietf.org/html/rfc5849
https://www.djangoproject.com/
http://en.wikipedia.org/wiki/Django_%28web_framework%29
https://github.com/celery/celery
http://www.celeryproject.org/
http://en.wikipedia.org/wiki/Message-oriented_middleware
http://en.wikipedia.org/wiki/RabbitMQ
http://en.wikipedia.org/wiki/HATEOAS
http://tastypieapi.org/
http://en.wikipedia.org/wiki/MongoDB
http://www.mongodb.org/

Page 34 of 51

Appendix 1 – Abbreviations and acronyms

ACID Atomic, Consistent, Isolated, Durable

AMQP Advanced Message Queuing Protocol

BSD Berkeley Software Distribution

DRY Don't Repeat Yourself

ER Entity-Relationship

HATEOAS Hypermedia as the Engine of Application

HMAC keyed-Hash Message Authentication Code

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

JDBC Java Database Connectivity

JSON JavaScript Object Notation

MQTT MQ Telemetry Transport

MVC Model-View-Controller

ODBC Open Database Connectivity

ORM Object-Relational Mapping

REST Representational State Transfer

SoC Separation of concerns

SSL Secure Sockets Layer

SSH Secure Shell

STOMP Streaming Text Oriented Messaging Protocol

UI User Interface

VPH Virtual Physiological Human

XML Extensible Markup Language

Page 35 of 51

Appentix 2 – Database Description

Database: mha_tool_repository

Tables

Name Engine

auth_group InnoDB

auth_group_permissions InnoDB

auth_permission InnoDB

auth_user InnoDB

auth_user_groups InnoDB

auth_user_user_permissions InnoDB

django_admin_log InnoDB

django_content_type InnoDB

django_session InnoDB

mha_auth_group_permissions InnoDB

mha_auth_permission InnoDB

mha_auth_user_user_permissions InnoDB

mha_file InnoDB

mha_instance_parameter InnoDB

mha_parameter InnoDB

mha_property InnoDB

mha_task InnoDB

mha_tool InnoDB

mha_tool_property InnoDB

oauth2_accesstoken InnoDB

oauth2_client InnoDB

oauth2_grant InnoDB

oauth2_refreshtoken InnoDB

Total: 22 table(s)

Tables

Table: auth_group

Columns

Name Data Type NULL Identity Default

id int(11) FALSE TRUE

name varchar(80) FALSE FALSE

Total: 2 column(s)

Indexes

Name Primary Unique Type

name FALSE FALSE BTREE

PRIMARY TRUE FALSE BTREE

Total: 2 indexes(s)

Page 36 of 51

Referenced tables

No referenced tables exists

Referencing tables

Foreign Key Table Columns Referencing

Columns

group_id_refs_id_

274b862c

auth_user_groups `group_id` ̀ id`

group_id_refs_id_

f4b32aac

auth_group_permissions `group_id` ̀ id`

group_id_refs_id_

f4b32aac1

mha_auth_group_permissions ̀ group_id` ̀ id`

Total: 3 referencing table(s)

Table: auth_group_permissions

Columns

Name Data Type NULL Identity Default

id int(11) FALSE TRUE

group_id int(11) FALSE FALSE

permission_id int(11) FALSE FALSE

Total: 3 column(s)

Indexes

Name Primary Unique Type

auth_group_permissions_5f412f9a FALSE TRUE BTREE

auth_group_permissions_83d7f98b FALSE TRUE BTREE

group_id FALSE FALSE BTREE

PRIMARY TRUE FALSE BTREE

Total: 4 indexes(s)

Referenced tables

Foreign Key Columns Table Referenced

Columns

group_id_refs_id_f4b32

aac

`group_id` auth_group `id`

permission_id_refs_id_

6ba0f519

`permission_id`

auth_permission ̀ id`

Total: 2 referenced table(s)

Referencing tables

No referencing tables exists

Page 37 of 51

Table: auth_permission

Columns

Name Data Type NULL Identity Default

id int(11) FALSE TRUE

name varchar(50) FALSE FALSE

content_type_id int(11) FALSE FALSE

codename varchar(100) FALSE FALSE

Total: 4 column(s)

Indexes

Name Primary Unique Type

auth_permission_37ef4eb4 FALSE TRUE BTREE

content_type_id FALSE FALSE BTREE

PRIMARY TRUE FALSE BTREE

Total: 3 indexes(s)

Referenced tables

Foreign Key Columns Table Referenced

Columns

content_type_id_

refs_id_d043b34a

`content_type_id`

django_content_type `id`

Total: 1 referenced table(s)

Referencing tables

Foreign Key Table Columns Referencing

Columns

permission_id_refs_

id_35d9ac25

auth_user_user_permis

sions

`permission_id`

`id`

permission_id_refs_

id_6ba0f519

auth_group_permission

s

`permission_id`

`id`

Total: 2 referencing table(s)

Table: auth_user

Columns

Name Data Type NULL Identity Default

id int(11) FALSE TRUE

password varchar(128) FALSE FALSE

last_login datetime FALSE FALSE

is_superuser tinyint(1) FALSE FALSE

username varchar(30) FALSE FALSE

first_name varchar(30) FALSE FALSE

last_name varchar(30) FALSE FALSE

email varchar(75) FALSE FALSE

is_staff tinyint(1) FALSE FALSE

is_active tinyint(1) FALSE FALSE

Page 38 of 51

date_joined datetime FALSE FALSE

Total: 11 column(s)

Indexes

Name Primary Unique Type

PRIMARY TRUE FALSE BTREE

username FALSE FALSE BTREE

Total: 2 indexes(s)

Referenced tables

No referenced tables exists

Referencing tables

Foreign Key Table Columns Referencing

Columns

user_id_refs_1 mha_task `user_id` ̀ id`

user_id_refs_id_

40c41112

auth_user_groups `user_id` ̀ id`

user_id_refs_id_

4dc23c39

auth_user_user_permissions

`user_id` ̀ id`

user_id_refs_id_

4dc23c391

mha_auth_user_user_permiss

ions

`user_id` ̀ id`

user_id_refs_id_

71306ac9

oauth2_accesstoken `user_id` ̀ id`

user_id_refs_id_

8a95efb3

oauth2_grant `user_id` ̀ id`

user_id_refs_id_

b463b928

oauth2_client `user_id` ̀ id`

user_id_refs_id_

c0d12874

django_admin_log `user_id` ̀ id`

user_id_refs_id_

e0af9726

oauth2_refreshtoken `user_id` ̀ id`

Total: 9 referencing table(s)

Table: auth_user_groups

Columns

Name Data Type NULL Identity Default

id int(11) FALSE TRUE

user_id int(11) FALSE FALSE

group_id int(11) FALSE FALSE

Total: 3 column(s)

Indexes

Name Primary Unique Type

auth_user_groups_5f412f9a FALSE TRUE BTREE

auth_user_groups_6340c63c FALSE TRUE BTREE

PRIMARY TRUE FALSE BTREE

Page 39 of 51

user_id FALSE FALSE BTREE

Total: 4 indexes(s)

Referenced tables

Foreign Key Columns Table Referenced

Columns

group_id_refs_id_274b862c `group_id` auth_group `id`

user_id_refs_id_40c41112 `user_id` auth_user `id`

Total: 2 referenced table(s)

Referencing tables

No referencing tables exists

Table: auth_user_user_permissions

Columns

Name Data Type NULL Identity Default

id int(11) FALSE TRUE

user_id int(11) FALSE FALSE

permission_id int(11) FALSE FALSE

Total: 3 column(s)

Indexes

Name Primary Unique Type

auth_user_user_permissions_6340c63c FALSE TRUE BTREE

auth_user_user_permissions_83d7f98b FALSE TRUE BTREE

PRIMARY TRUE FALSE BTREE

user_id FALSE FALSE BTREE

Total: 4 indexes(s)

Referenced tables

Foreign Key Columns Table Referenced

Columns

permission_id_refs_

id_35d9ac25

`permission_id` auth_permission ̀ id`

user_id_refs_id_4dc

23c39

`user_id` auth_user `id`

Total: 2 referenced table(s)

Referencing tables

No referencing tables exists

Table: django_admin_log

Columns

Name Data Type NULL Identity Default

Page 40 of 51

id int(11) FALSE TRUE

action_time datetime FALSE FALSE

user_id int(11) FALSE FALSE

content_type_id int(11) TRUE FALSE

object_id longtext TRUE FALSE

object_repr varchar(200) FALSE FALSE

action_flag smallint(5) unsigned FALSE FALSE

change_message longtext FALSE FALSE

Total: 8 column(s)

Indexes

Name Primary Unique Type

django_admin_log_37ef4eb4 FALSE TRUE BTREE

django_admin_log_6340c63c FALSE TRUE BTREE

PRIMARY TRUE FALSE BTREE

Total: 3 indexes(s)

Referenced tables

Foreign Key Columns Table Referenced

Columns

content_type_id_

refs_id_93d2d1f8

`content_type_id` django_content_type

`id`

user_id_refs_id_

c0d12874

`user_id` auth_user `id`

Total: 2 referenced table(s)

Referencing tables

No referencing tables exists

Table: django_content_type

Columns

Name Data Type NULL Identity Default

id int(11) FALSE TRUE

name varchar(100) FALSE FALSE

app_label varchar(100) FALSE FALSE

model varchar(100) FALSE FALSE

Total: 4 column(s)

Indexes

Name Primary Unique Type

app_label FALSE FALSE BTREE

PRIMARY TRUE FALSE BTREE

Total: 2 indexes(s)

Referenced tables

No referenced tables exists

Page 41 of 51

Referencing tables

Foreign Key Table Columns Referencing

Columns

content_type_id_refs

_id_93d2d1f8

django_admin_log

`content_type_id`

`id`

content_type_id_refs

_id_d043b34a

auth_permission ̀ content_type_id`

`id`

Total: 2 referencing table(s)

Table: django_session

Columns

Name Data Type NULL Identity Default

session_key varchar(40) FALSE FALSE

session_data longtext FALSE FALSE

expire_date datetime FALSE FALSE

Total: 3 column(s)

Indexes

Name Primary Unique Type

django_session_b7b81f0c FALSE TRUE BTREE

PRIMARY TRUE FALSE BTREE

Total: 2 indexes(s)

Referenced tables

No referenced tables exists

Referencing tables

No referencing tables exists

Table: mha_auth_group_permissions

Columns

Name Data Type NULL Identity Default

id int(11) FALSE TRUE

group_id int(11) FALSE FALSE

permission_id int(11) FALSE FALSE

Total: 3 column(s)

Indexes

Name Primary Unique Type

group_id FALSE FALSE BTREE

mha_auth_group_permissions_5f412f9a FALSE TRUE BTREE

mha_auth_group_permissions_83d7f98b FALSE TRUE BTREE

PRIMARY TRUE FALSE BTREE

Total: 4 indexes(s)

Page 42 of 51

Referenced tables

Foreign Key Columns Table Referenced

Columns

group_id_refs_id_

f4b32aac1

`group_id` auth_group `id`

permission_id_ref

s_id_6ba0f5191

`permission_id` mha_auth_permission

`id`

Total: 2 referenced table(s)

Referencing tables

No referencing tables exists

Table: mha_auth_permission

Columns

Name Data Type NULL Identity Default

id int(11) FALSE TRUE

name varchar(50) FALSE FALSE

tool_id int(11) FALSE FALSE

codename varchar(100) FALSE FALSE

Total: 4 column(s)

Indexes

Name Primary Unique Type

mha_auth_permission_37ef4eb4 FALSE TRUE BTREE

PRIMARY TRUE FALSE BTREE

tool_id FALSE FALSE BTREE

Total: 3 indexes(s)

Referenced tables

Foreign Key Columns Table Referenced

Columns

tool_id_refs_id_d043b34a `tool_id` mha_tool `id`

Total: 1 referenced table(s)

Referencing tables

Foreign Key Table Columns Referencing

Columns

permission_id

_refs_id_35d9

ac251

mha_auth_user_user

_permissions

`permission_id`

`id`

permission_id

_refs_id_6ba0

f5191

mha_auth_group_per

missions

`permission_id`

`id`

Total: 2 referencing table(s)

Page 43 of 51

Table: mha_auth_user_user_permissions

Columns

Name Data Type NULL Identity Default

id int(11) FALSE TRUE

user_id int(11) FALSE FALSE

permission_id int(11) FALSE FALSE

Total: 3 column(s)

Indexes

Name Primary Unique Type

mha_auth_user_user_permissions_6340c63c FALSE TRUE BTREE

mha_auth_user_user_permissions_83d7f98b FALSE TRUE BTREE

PRIMARY TRUE FALSE BTREE

user_id FALSE FALSE BTREE

Total: 4 indexes(s)

Referenced tables

Foreign Key Columns Table Referenced

Columns

permission_id_refs

_id_35d9ac251

`permission_id`

mha_auth_permission

`id`

user_id_refs_id_4d

c23c391

`user_id` auth_user `id`

Total: 2 referenced table(s)

Referencing tables

No referencing tables exists

Table: mha_file

Columns

Name Data Type NULL Identity Default

id int(11) FALSE TRUE

tool_id int(11) FALSE FALSE

title varchar(100) TRUE FALSE

description text TRUE FALSE

kind varchar(20) TRUE FALSE

source varchar(250) TRUE FALSE

version varchar(10) TRUE FALSE

license text TRUE FALSE

sha1sum varchar(40) TRUE FALSE

comment text TRUE FALSE

engine varchar(40) TRUE FALSE

Total: 11 column(s)

Page 44 of 51

Indexes

Name Primary Unique Type

PRIMARY TRUE FALSE BTREE

title FALSE FALSE BTREE

tool_id_refs_id_1_idx FALSE TRUE BTREE

Total: 3 indexes(s)

Referenced tables

Foreign Key Columns Table Referenced

Columns

tool_id_refs_id_1 `tool_id` mha_tool `id`

Total: 1 referenced table(s)

Referencing tables

Foreign Key Table Columns Referencing

Columns

file_id_refs_if_1 mha_task `file_id` `id`

Total: 1 referencing table(s)

Table: mha_instance_parameter

Columns

Name Data Type NULL Identity Default Comment

id int(11) FALSE TRUE

person_id int(11) FALSE FALSE

instance_id int(11) FALSE FALSE

name varchar(100) TRUE FALSE

description text TRUE FALSE

data_type varchar(100) TRUE FALSE

unit varchar(100) TRUE FALSE

value varchar(100) TRUE FALSE

source varchar(250) TRUE FALSE

sha1sum varchar(40) TRUE FALSE

Total: 10 column(s)

Indexes

Name Primary Unique Type Comment

name FALSE FALSE BTREE

PRIMARY TRUE FALSE BTREE

Total: 2 indexes(s)

Referenced tables

No referenced tables exists

Referencing tables

No referencing tables exists

Page 45 of 51

Table: mha_parameter

Columns

Name Data Type NULL Identity Default

id int(11) FALSE TRUE

tool_id int(11) FALSE FALSE

name varchar(100) TRUE FALSE

description text TRUE FALSE

data_type varchar(100) TRUE FALSE

unit varchar(100) TRUE FALSE

data_range varchar(100) TRUE FALSE

default_value varchar(100) TRUE FALSE

is_mandatory tinyint(1) TRUE FALSE

is_output tinyint(1) TRUE FALSE

comment text TRUE FALSE

semtype text TRUE FALSE

Total: 12 column(s)

Indexes

Name Primary Unique Type

name FALSE FALSE BTREE

PRIMARY TRUE FALSE BTREE

tool_id_refs_id_2_idx FALSE TRUE BTREE

Total: 3 indexes(s)

Referenced tables

Foreign Key Columns Table Referenced

Columns

tool_id_refs_id_2 `tool_id` mha_tool `id`

Total: 1 referenced table(s)

Referencing tables

No referencing tables exists

Table: mha_property

Columns

Name Data Type NULL Identity Default

id int(10) FALSE TRUE

name varchar(100) TRUE FALSE

decription text TRUE FALSE

comment text TRUE FALSE

semtype text TRUE FALSE

Total: 5 column(s)

Indexes

Name Primary Unique Type

Page 46 of 51

name FALSE FALSE BTREE

PRIMARY TRUE FALSE BTREE

Total: 2 indexes(s)

Referenced tables

No referenced tables exists

Referencing tables

Foreign Key Table Columns Referencing

Columns

property_id_refs_

id_6

mha_tool_property

`property_id`

`id`

Total: 1 referencing table(s)

Table: mha_task

Columns

Name Data Type NULL Identity Default

id int(11) FALSE FALSE

title varchar(100) TRUE FALSE

user_id int(11) FALSE FALSE

tool_id int(11) FALSE FALSE

file_id int(11) FALSE FALSE

date datetime TRUE FALSE

status varchar(45) TRUE FALSE

Total: 7 column(s)

Indexes

Name Primary Unique Type

file_id_refs_if_1_idx FALSE TRUE BTREE

PRIMARY TRUE FALSE BTREE

tool_id_refs_id_4_idx FALSE TRUE BTREE

user_id_refs_1_idx FALSE TRUE BTREE

Total: 4 indexes(s)

Referenced tables

Foreign Key Columns Table Referenced

Columns

file_id_refs_if_1 `file_id` mha_file `id`

tool_id_refs_id_4 `tool_id` mha_tool `id`

user_id_refs_1 `user_id` auth_user `id`

Total: 3 referenced table(s)

Referencing tables

No referencing tables exists

Page 47 of 51

Table: mha_tool

Columns

Name Data Type NULL Identity Default

id int(11) FALSE TRUE

title varchar(80) TRUE FALSE

description text TRUE FALSE

comment text TRUE FALSE

Total: 4 column(s)

Indexes

Name Primary Unique Type

PRIMARY TRUE FALSE BTREE

title FALSE FALSE BTREE

Total: 2 indexes(s)

Referenced tables

No referenced tables exists

Referencing tables

Foreign Key Table Columns Referencing

Columns

tool_id_refs_id_1 mha_file `tool_id` ̀ id`

tool_id_refs_id_2 mha_parameter `tool_id` ̀ id`

tool_id_refs_id_4 mha_task `tool_id` ̀ id`

tool_id_refs_id_6 mha_tool_property `tool_id` ̀ id`

tool_id_refs_id_d043b34a mha_auth_permission `tool_id` ̀ id`

Total: 5 referencing table(s)

Table: mha_tool_property

Columns

Name Data Type NULL Identity Default

id int(11) FALSE TRUE

tool_id int(11) FALSE FALSE

property_id int(11) FALSE FALSE

value varchar(100) TRUE FALSE

Total: 4 column(s)

Indexes

Name Primary Unique Type

PRIMARY TRUE FALSE BTREE

property_id_refs_id_6_idx FALSE TRUE BTREE

tool_id_refs_id_6_idx FALSE TRUE BTREE

Total: 3 indexes(s)

Page 48 of 51

Referenced tables

Foreign Key Columns Table Referenced

Columns

property_id_refs_id_6 `property_id` mha_property `id`

tool_id_refs_id_6 `tool_id` mha_tool `id`

Total: 2 referenced table(s)

Referencing tables

No referencing tables exists

Table: oauth2_accesstoken

Columns

Name Data Type NULL Identity Default

id int(11) FALSE TRUE

user_id int(11) FALSE FALSE

token varchar(255) FALSE FALSE

client_id int(11) FALSE FALSE

expires datetime FALSE FALSE

scope int(11) FALSE FALSE

Total: 6 column(s)

Indexes

Name Primary Unique Type

oauth2_accesstoken_4fea5d6a FALSE TRUE BTREE

oauth2_accesstoken_6340c63c FALSE TRUE BTREE

PRIMARY TRUE FALSE BTREE

Total: 3 indexes(s)

Referenced tables

Foreign Key Columns Table Referenced

Columns

client_id_refs_id_dffc817d ̀ client_id` oauth2_client ̀ id`

user_id_refs_id_71306ac9 `user_id` auth_user `id`

Total: 2 referenced table(s)

Referencing tables

Foreign Key Table Columns Referencing

Columns

access_token_id_

refs_id_b5577697

oauth2_refreshtoken

`access_token_id`

`id`

Total: 1 referencing table(s)

Page 49 of 51

Table: oauth2_client

Columns

Name Data Type NULL Identity Default

id int(11) FALSE TRUE

user_id int(11) TRUE FALSE

name varchar(255) FALSE FALSE

url varchar(200) FALSE FALSE

redirect_uri varchar(200) FALSE FALSE

client_id varchar(255) FALSE FALSE

client_secret varchar(255) FALSE FALSE

client_type int(11) FALSE FALSE

Total: 8 column(s)

Indexes

Name Primary Unique Type

oauth2_client_6340c63c FALSE TRUE BTREE

PRIMARY TRUE FALSE BTREE

Total: 2 indexes(s)

Referenced tables

Foreign Key Columns Table Referenced

Columns

user_id_refs_id_

b463b928

`user_id` auth_user `id`

Total: 1 referenced table(s)

Referencing tables

Foreign Key Table Columns Referencing

Columns

client_id_refs_id_

098c2f19

oauth2_grant `client_id`

`id`

client_id_refs_id_

3730d4ce

oauth2_refreshtoken

`client_id`

`id`

client_id_refs_id_

dffc817d

oauth2_accesstoken `client_id`

`id`

Total: 3 referencing table(s)

Table: oauth2_grant

Columns

Name Data Type NULL Identity Default

id int(11) FALSE TRUE

user_id int(11) FALSE FALSE

client_id int(11) FALSE FALSE

code varchar(255) FALSE FALSE

expires datetime FALSE FALSE

redirect_uri varchar(255) FALSE FALSE

Page 50 of 51

scope int(11) FALSE FALSE

Total: 7 column(s)

Indexes

Name Primary Unique Type

oauth2_grant_4fea5d6a FALSE TRUE BTREE

oauth2_grant_6340c63c FALSE TRUE BTREE

PRIMARY TRUE FALSE BTREE

Total: 3 indexes(s)

Referenced tables

Foreign Key Columns Table Referenced

Columns

client_id_refs_id_098c2f19 ̀ client_id` oauth2_client ̀ id`

user_id_refs_id_8a95efb3 `user_id` auth_user `id`

Total: 2 referenced table(s)

Referencing tables

No referencing tables exists

Table: oauth2_refreshtoken

Columns

Name Data Type NULL Identity Default

id int(11) FALSE TRUE

user_id int(11) FALSE FALSE

token varchar(255) FALSE FALSE

access_token_id int(11) FALSE FALSE

client_id int(11) FALSE FALSE

expired tinyint(1) FALSE FALSE

Total: 6 column(s)

Indexes

Name Primary Unique Type

access_token_id FALSE FALSE BTREE

oauth2_refreshtoken_4fea5d6a FALSE TRUE BTREE

oauth2_refreshtoken_6340c63c FALSE TRUE BTREE

PRIMARY TRUE FALSE BTREE

Total: 4 indexes(s)

Referenced tables

Foreign Key Columns Table Referenced

Columns

access_token_id_

refs_id_b5577697

`access_token_id`

oauth2_accesstoken

`id`

client_id_refs_i

d_3730d4ce

`client_id` oauth2_client `id`

Page 51 of 51

user_id_refs_id_

e0af9726

`user_id` auth_user `id`

Total: 3 referenced table(s)

Referencing tables

No referencing tables exists

