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ABSTRACT:	  
This	  deliverable	  focuses	  on	  the	  work	  of	  building	  a	  visual	  data	  analysis	  suite	  to	  support	  data	  analysis.	  
This	  includes	  noisy	  data	  processing,	  data	  aggregation	  and	  interpretation	  from	  different	  sources	  (e.g.	  
wearable	  sensors,	  mobile	  phones,	  etc).	  A	  number	  of	  advanced	  data	  mining	  technologies	  have	  been	  
developed	  to	  extract	  useful	  information	  that	  is	  valuable	  to	  each	  individual.	  	  

We	  have	  implemented	  the	  prototype	  for	  estimating/predicting	  people’s	  overall	  daily	  active	  scoring	  
from	  low-‐level	  data/attributes	  (i.e.	  walking	  steps,	  travel	  duration,	  distance,	  etc).	  This	  provides	  user	  
a	  good	  summary/	  indication	  of	  general	  active	  status.	  The	  framework	  can	  be	  used	  to	  answer	  medical	  
questionnaires	  where	  categorical	  output	  is	  required.	  As	  an	  example,	  the	  current	  data	  analysis	  suite	  
also	  provides	  functionalities	  for	  visual	  assessment	  by	  assessing	   individual’s	  night	  driving	  capability	  
using	  mobile	  ‘s	  move	  data.	  	  
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1 Executive	  Summary	  

This document presents in details MHA data analysis suite for predicting individual’s daily active 
states from sequential life-logging data captured using wearable	  sensors,	  mobile	  phones,	  etc.	  	  

Multiobjective Genetic Programming hidden Markov model (MOGPHMM) is used as a supervised 
machine learning technique to assess and provide scoring for daily active states. According to both 
medical reference and real data characteristics, we generate a large amount of synthetic training data 
to extrapolate possible imbalances or missing data embedded in the read data, from which MOGP has 
trained classifiers to group high-dimensional sequential data (i.e.	  walking	  steps,	  travel	  duration,	  
distance,	  etc)	  into	  a	  number	  of	  one-‐dimensional	  discrete	  states	  in	  order	  to establish an effective 
emission matrix for HMM stage. We demonstrate that our method can accurately and robustly predict 
individual’s active states from sequential life-logging data.  

The	  framework	  can	  also	  be	  used	  to	  address	  medical	  questionnaires	  where	  categorical	  output	  is	  
required.	  As	  an	  example,	  the	  current	  data	  analysis	  suite	  also	  provides	  functionalities	  for	  visual	  
assessment	  by	  automatically	  assessing	  individual’s	  night	  driving	  capability	  using	  mobile	  ‘s	  move	  data.	  

This document is organized as follows: Section 3 introduces the methodologies how the HMM 
corporates with the classifier hybrid scheme, including the details of methods and data representation. 
We also introduce how this general framework is applied to night-driving prediction for VF-14 
questionnaires [4]. Finally, we conclude that MOGPHMM effectively predict daily active states for 
health care purpose with better generality in supervised learning from life-logging data. 
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2 Introduction	  

2.1 Sequential	  life-‐logging	  data	  analysis	  	  

Life-logging data has drawn great attention to monitoring people’s daily activity for health, fitness 

and a wide range of other purposes [1]. With the development of mobile devices and wireless 

communication, varieties of wearable devices has been developed and life-logging data increases 

exponentially with respect to data dimensions. To process and analyse these data for general health 

purpose remains an active research area. For instance, daily active level is one of the most important 

assessment for health and fitness for daily life. NHS has a public guide of minimum activity for 

general health, while there are also a range of research that indicate some other measurements, e.g., 

steps, distance, for maintaining a healthy daily active states. 

The conventional standard normally considers some statistical thresholds as minimum requirement 

and was used in the commercial wearable products for health and fitness monitoring, e.g., Fitbit, 

Withings. However, further processing on these data beyond simple statistical analysis has rarely been 

seen in those products. For instance, Fitbit only summarises, for example, step or distance, for each 

person weekly or monthly. So far, there is not a trivial way to use all the data provided to output a 

general active state for each day. 

In this document, we are analysing life-logging data in a sequential manner captured using wearable	  

sensors,	  mobile	  phones, and employing hidden Markov model (HMM) as a proved machine learning 

technique to predict individual’s daily active states and to provide visual assessment. Considering 

there are K active states from inactive to extremely active for each day, where K is predetermined, we 

can train personalised HMM model for each individual and predict his/her active states (e.g. K states) 

from all the collected data. Quantification of people’s daily activity in terms of K-state is more 

intuitive and the method can be extended to other applications in healthcare (e.g., medical surveys, 

medical questionnaires) 

HMM can be used for supervised, semi-supervised and unsupervised learning tasks with 

corresponding algorithms [2]. In the context of machine learning however, supervised learning is 

generally an easier task than and is better theoretically justified to the other two cases [3]. In this 

document, we have employed supervised learning scheme to achieve best possible results. Commonly 

methods in supervised HMM employ expectation maximisation (EM) for training the emission matrix 

while determining the prior 𝜋 and transition matrix directly by accounting the sequential tags 

(supervision) in the training data. To train the emission matrix, a Gaussian mixture model (GMM) is 

often used for continuous feature input or Bernoulli for categorical, followed by EM to optimise 
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parameters in the mixture model employed. However, the results are highly dependent on the model 

assumed, as well as on the initialisation due to the local optima EM can yield. To address this 

problem, in this document, we use a multiobjective Genetic Programming (MOGP) hidden Markov 

model as a multiclass classifier to transform the original high-dimensional continuous feature space 

(e.g. step, duration, distance from wireless sensors or mobile phone) into a new one-dimensional 

discrete class space using multiclass classification to construct a compact HMM for daily active state 

prediction.  

This report is constructed as follows: the next section will introduce the methodologies how the HMM 

corporates with the classifier hybrid scheme, including the details of methods and data representation. 

We also introduce how this general framework is applied to night-driving prediction for VF-14 

questionnaires [4]. Finally, we conclude that MOGPHMM effectively predict daily active states for 

health care purpose with better generality in supervised learning from life-logging data. 
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3 Methodology	  

3.1 General	  Framework	  

A conventional supervised learning HMM framework as in Figure 2.1. After having been labelled and 

assigned tags, the real data is partitioned into training and test sets for HMM stage. A Gaussian 

mixture model is commonly used as a parametric optimisation via expectation maximisation. The 

trained HMM is then used to perform a Viterbi decoding on test data for prediction assessment. 

 

	  
	  

Figure 2.1. General framework of supervised HMM 

Different from the conventional framework, in this report, we have proposed our new method 

optimised for daily activity state prediction task shown in figure 2.2. The main advantage of the new 

framework has avoided the pre-settings of training HMM via expectation maximisation. Instead, it 

maps the original high-dimensional continuous feature space into a one-dimensional finite discrete 

class space and constructs a compact HMM to solve the problem. 

 

Figure 2.2. Framework of daily active states prediction using supervised classifier-HMM. 

In our framework, we firstly extract some statistical characteristics from real data, which will be 

introduced in Section 4.1.1, to generate a large amount of synthetic data that covers all possible states. 

The synthetic data can be used to extrapolate possible imbalances or missing data embedded in the 

read data. We then label the synthetic and real data regarding medical reference, although we further 

consider variant noises for real data for assessment purposes. The labelled synthetic data will be then 

used for training multi-class classifiers that transform (classify) real data from continuous real space 

to a finite and discrete class space. We then use labels of part of the real data as prior knowledge, 
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together with the classes to empirically estimate a compact HMM, which will be used later for a 

Viterbi decoding on the real data to provide outputs for the prediction.  

3.2 Multiobjective	  Genetic	  Programming	  

3.2.1 GP	  and	  MOGP	  

Genetic programming (GP) is a non-parametric evolutionary optimisation algorithm that uses tree-

based syntax to represent models [5], as opposed to parametric optimisation algorithms like genetic 

algorithm (GA) to optimise a length of coefficients. Unlike other parametric optimisation methods, a 

key advantage of GP is that it does not need predetermined model structures and the tree-based syntax 

will commonly provide richer model candidates for the searching. We employ GP to generate 

discriminative classifiers that map the multidimensional continuous observation vectors to finite and 

discrete classes as HMM input. 

The multiobjective method aims to simultaneously optimise multiple tasks that are usually 

competitive. In this document, we employ MOGP to simultaneously minimises empirical 0/1 loss and 

the node count as syntactic complexity measure to evolve a Pareto-front that presents the trade-off 

between empirical error and model complexity. Minimizing tree size not only control bloat but also 

constrain a form of upper bound of model complexity [6]. MOGP is essentially a practical scheme to 

generate models with small expected risk in the statistical learning perspective.  

3.2.2 Details	  of	  MOGP	  

Genetic programming is a population based algorithm which is constructed by a group of candidate 

models. Offspring (new) models are generated by crossover and mutation process to inherit part of the 

structural characteristics, termed gene, from their parent models. Pareto-comparison is then employed 

to rank and sort all models and only the elitists are preserved. A rank based algorithm is employed for 

selecting parent models for breeding [7]. The evolutionary process terminates when certain criterion is 

met, for instance, target training error < 0.001 or reaching the computing limit. Figure 2.5 illustrate 

the brief evolutionary process. 
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Figure 2.5 Framework of GP algorithm 

In out algorithm, we have employed the steady-state evolutionary strategy to pursue a steadily-

converged Pareto-front, which is called Pareto converging genetic programming (PCGP) [8]. This 

methods select two models in the population, perform crossover and mutation, and generate two 

offspring models. The newly generated models are appended to the population for re-ranking, after 

which the bottom-ranked two models are discarded. This strategy is reported to have superior 

performance among a range of other strategies [9]. 

The GP parameter is summarised in Table 2.2. We have run up to 80 000 tree evaluations, each 

of which obtains the fitness vector of newly generated model. Or, the evolutionary process terminates 

when 0/1 loss is zero. 

Table 2.2 GP parameters 

Population size 100 

Initialisation Ramped [18]; 30 repetitions 

Termination criterion 80 000 evaluation or 0/1 loss = 0 

Crossover 

Mutation 

Point crossover [18] 

Point mutation [18];Tree depth = 4 

Node Type Unary minus 

Addition, Subtraction 

Multiplication 

Analytic Quotient [19] 
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3.2.3 Multiclass	  classification	  	  

To	  classify the observed input into L classes, we have adopted a form that is similar to one-vs-all 

scheme [10]. The main issue of multiclass classification is the ambiguous decision for the same 

pattern [10]. Taking advantage of the following HMM stage, the classification errors (classes vs. 

ground truth) can be characterized by the emission matrix, and further refined by the HMM process. 

A simple but consistent strategy is to train m independent classifiers f!  (i ∈ m) from the synthetic 

training data that provides equal priors for each class, either using MOGP or SVM; where m = 5 in 

our case. These classifiers are sorted in ascending order with respect to their training errors to obtain 

f!, f!…   f!, where f! has minimum training error and f! the maximum. These classifiers are used to 

label the real data, such that every current classifier always incurs the least risk/error for the later 

ones. An extra class for patterns without a positive class assignment is introduced. Thus, there are 

m+1 classes against m true states and an m+1 by m emission matrix is constructed instead of m 

continuous PDFs. 

3.3 Hidden	  Markov	  Model	  

A hidden Markov model Θ(π,A,B) is a probabilistic description of a series of observations X, where 

there are K variant hidden states z ∈ Z! and M variant observations x ∈ X! for the case observation 

being discrete and finite. π is a K dimensional vector that represents the prior of each hidden state z!, 

defined π! i = p(z!),   i ∈ K. The K by K matrix A represents the transition probability of hidden 

states from z! to z! and is a conditional probability defined by A!×! i, j = p(z!|z!), i ∈ K,   j ∈ K. The 

emission matrix B is a set of hidden-state conditional probabilities of observations. Each element in 

the M by K matrix is defined by B!×! i, j = p x! z! , i ∈ M,   j ∈ K. In a more generalized case 

where observation x is a n-dimensional continuous vector, as in our case, each column of the emission 

matrix is generalized to a continuous probability density function (PDF) for state-conditional 

probabilities, defined by B! x, k = p x z! , x ∈ ℛ!, k ∈ K. Conventional supervised learning for 

HMM assumes a Gaussian mixture model (GMM) with prefixed number of parameters to perform the 

density estimation via expectation maximization (EM) and locate a local optima for the emission 

matrix B, whereby the performance can vary from case to case.  
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Figure 2.3 hidden Markov model 

 

After having trained the emission matrix B, π and A are directly identified by the tags in the training 

data. A Viterbi decoding method is then used to predict hidden states, which is to find a Viterbi path 

(a sequence of hidden states) 𝑧∗ = 𝑚𝑎𝑥! 𝑃(𝑋, 𝑧|𝜃) that maximises the joint probability of observation 

and hidden states sequences given the model 𝜃. In other words, the output hidden states sequence 𝑧∗ 

is the most likely to be true among all the other possibilities.  

To briefly introduce Viterbi decoding, we have the simple implementation that  

𝑝 𝑧!,! = 𝜋! ∙ 𝐵 𝑥! 𝑧!,!  

and 

𝑝 𝑧!,! = max
!
(𝑝(𝑧!!!,!) ∙ 𝐴(𝑧!,! |𝑧!!!,!) ∙ 𝐵 𝑥! 𝑧!,! ). 

The solid line in Figure 2.4 represents the maximal likely routine for state 𝑧!,!, dot line the non-

optimal routine.  

 

Figure 2.4 Viterbi decoding 
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In the final column, we could determine which state to be chosen among k for all states 𝑧!!!,! by 

choosing the maximum. Then, the back-tracking procedure of the solid line will reconstruct the 

optima Viterbi path.  

Using Viterbi to translate the observational data to the hidden daily active states requires an explicit 

HMM as we previously mentioned. We have employed an empirical estimation using the true tags 

and the transferred classes to construct the compact HMM as we have employed classification 

methods to map 3-dimensional real input into M = K+1 classes, hence the HMM is more compact and 

easy to be empirically estimated. 

4 Life-‐logging	  data	  demos	  

4.1 Daily	  active	  state	  prediction	  

4.1.1 Datasets	  collections	  and	  synthetic	  training	  data	  

The real datasets were collected by “moves-app” using the accelerometer and GPS in the cell phone. 

The real dataset is constructed by a sequence of vectors, each of which consists of individual’s daily 

accomplishment of distance, duration and number of steps from physical activities. For instance, 

walking or running but excluding distance from transportation. There are ten people who contribute 

their daily activity data for this sstudy. The number of patterns of each dataset (per person) ranges 

from 118 (days) to 401 which covers around 4 months to more than 1 year.  

As the behavioural characteristics vary from person to person, some people live in an inactive life 

from which highly active pattern is hardly observed. To perform a supervised learning via MOGP 

requires all states explicitly existed in the training data for learning purpose. Hence, we generate 

synthetic data regarding one’s behavioural characteristics to construct a training dataset that contains 

all possible states with equal prior. The synthetic data can also be used to extrapolate possible 

imbalances or missing data embedded in the read data. Since the elements of each input vector – 

steps, duration, distance are highly correlates, we extract speed S and step frequency F as following,  

𝑆 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒/𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

,and 

𝐹 = 𝑠𝑡𝑒𝑝𝑠/𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛. 
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These are two main characteristics for generating the synthetic data. We compute the mean and 

standard deviation of both quantities for each person over all his/her real data. Then we use a uniform 

random generator to generate a random duration dr!. The steps and distance will be generated by 

𝑠𝑡𝑒𝑝! = 𝑑𝑟! ∙𝒩 𝜇! ,𝜎!! ,   

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒! = 𝑑𝑟! ∙𝒩(𝜇!,𝜎!!) 

where 𝒩 is Gaussian distribution with its mean 𝜇, variance 𝜎!. The synthetic data will be further 

tagged with its active states, details of which to be introduced in next section. We finalise the training 

set with 200 data pattern per active state which summed up to 1000 training data for each person. 

 

Figure 2.6. A sample of synthetic and real data distribution 

As shown in Figure 2.6, the real data are the black pots surrounded by the coloured plots. The five-

coloured plots are synthetic data with equal weight of each active state, which is presented by a 

different colour. This figure illustrates that our synthetic data provides a practical simulation to the 

real data and reasonable for training purpose. 
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4.1.2 Tagging	  Data	  

Daily activity level has been widely studied. The typical conclusion or health guidance is using 

some threshold to justify if one is active or not each day, for instance, 10,000 steps [12], alternatively 

8 km walking distance [13], or 30 minutes averagely per day [14]. We thus adopt 10,000 steps, 8km, 

and 60 minutes [15] as the median to justify the active states level. In our case, we consider five 

different active states. To tagging a datum with active states, we have employed a linear model that 

accounts the contribution from each of these three quantities.  

4.1.3 Case	  Study	  

Figure 2.7 and 2.8 show two examples of daily activity states from person 1 and person 3. 

 

 (a) daily activity states vs data sequence and steps 

1

2

3

4

5

0 20 40 60
0
2000
4000
6000
8000
10000
12000
14000
16000
18000S

ta
te

s 
pr

ed
ic

tio
n

Data Sequence

S
te

ps
 

(a
 re

pr
es

en
tit

iv
e 

of
 in

pu
t v

ec
to

r)

Daily Activity States
Sequence vs input vs states



	  

Page	  16	  of	  21	  
	  

 

(b) daily activity states vs steps and data sequence 
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(c) daily activity states vs duration and steps (view from top) 

Figure 2.6 an example of daily activity states using the first 60-days data from person 1 
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(a) daily activity states vs data sequence and duration 

 

(a) daily activity states vs duration and data sequence 

Figure 2.7 an example of daily activity states using the first 60-days data from person 3 
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4.2 Visual	  assessment-‐	  Night	  driving	  

The data analysis toolbox can be used to automatically predict discrete states from sequential 

observations. In addition to the daily active state prediction, the other potential applications include 

medical questionnaires or medical survey where categorical output is required. As an example, in this 

section, we present how this framework is used in predicting night-driving evaluation in VF-14 

questionnaire [4]. To adopt this framework in night-driving prediction, we only need to slightly 

redefine data as discussed in the following section. 

4.2.1 Tagging	  Data	  

From the data available in our platform, we use those labelled with “transport”, of which “duration” 

and “distance” are used as components of input vector. The output is one of the four states as in VF-

14 questionnaire. Since there is no reference for determining an active or inactive driving states, we 

have considered all data available to have an average daily driving duration of 1546.36 seconds and 

distance of 33392.68 meters, which are considered as our empirical standard rather than those 

standard from medical reference in daily active states. We have considered “night” as from 

“18:00:00” to “23:59:59”, although the “start” and “end” time can be changed to the hour to present 

any duration in one day with minimum scale of one hour. The duration and distance standard of the 

six-hour “night” time is assumed one quarter of the daily standard in 24-hour time. The standard of 

“night” can be further improved by characterising average completion of duration and distance in 

each hour in 24 hours a day and have more accurate empirical standard in “night” time. 



	  

Page	  20	  of	  21	  
	  

4.2.2 Case	  Study	  

	  

	  

	  
Figure 2.7 an example of night driving states using the data from person 1	    
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5 Conclusion	  

In this deliverable, we have implemented	  the	  prototype	   for	  estimating/predicting	  people’s	  overall	  

daily	  active	  scoring	  from	  low-‐level	  data/attributes	  (i.e.	  walking	  steps,	  travel	  duration,	  distance,	  etc).	  

We	  use	  MOGPHMM as a supervised classification-HMM method to predict daily active states from 

sequential life-logging data.	  This	  provides	  user	  a	  good	  summary/	  indication	  of	  general	  active	  status.	  

The	   framework	   can	   also	   be	   used	   to	   answer	   medical	   questionnaires	   where	   categorical	   output	   is	  

required,	   As	   an	   example,	   the	   current	   data	   analysis	   suite	   also	   provides	   functionalities	   for	   visual	  

assessment	  by	  assessing	  individual’s	  night	  driving	  capability	  using	  mobile	  ‘s	  move	  data. We conclude 

that MOGPHMM can effectively predict daily active states for health care purpose with generality 

and potential for other use in supervised learning from life-logging data. 
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