MyHealthAvatar

A Demonstration of 4D Digital Avatar
Infrastructure for Access of Complete
Patient Information

Project acronym: MyHealthAvatar

Deliverable No. 6.3
Data and RDF repository and
evaluation report

¥®| MyHealthAvatar

Grant agreement no: 600929

Dissemination Level

PU Public X
PP | Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission

Services)
C Confidential, only for members of the consortium (including the Commission
(0] Services)

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: MyHealthAvatar

Project Full Name: A Demonstration of 4D Digital Avatar Infrastructure for
Access of Complete Patient Information

Deliverable No.: D6.3

Document name: Data and RDF repositories and evaluation report

Nature (R, P, D, O)’ R

Dissemination Level (PU, PU

PP, RE, CO)?

Version: 1

Actual Submission Date: 07/03/2016

Editor: Zhikun Deng

Institution: University of Bedfordshire

E-Mail: zhikun.deng@beds.ac.uk

ABSTRACT:

This deliverable focuses the implementation and evaluation data and RDF repositories that

the data access and management of the MyHealthAvatar project. The report initially

introduce the implementation and technology for data and RDF repositories, then report the

evaluation of the repositories in the MyHealthAvatar peoject.

KEYWORD LIST:

Data repository, RDF repository, Repository implementation, Evaluation, Cassandra.

! R=Report, P=Prototype, D=Demonstrator, O=Other

> PU=Public, PP=Restricted to other programme participants (including the Commission Services),

RE=Restricted to a group specified by the consortium (including the Commission Services), CO=Confidential,
only for members of the consortium (including the Commission Services)

Page 2 of 36

The research leading to these results has received funding from the European Community's
Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 600929.

The author is solely responsible for its content, it does not represent the opinion of the
European Community and the Community is not responsible for any use that might be made
of data appearing therein.

‘ MODIFICATION CONTROL

Version Date Status Author

0.1 15/01/2016 Draft Zhikun Deng
Hong Qing Yu

0.2 31/01/2016 Draft Zhikun Deng
Hong Qing Yu

0.3 07/02/2016 Draft Zhikun Deng
Hong Qing Yu

0.4 21/02/2016 Draft Zhikun Deng
Hong Qing Yu

1 29/02/2016 Final Zhikun Deng

List of contributors
- Zhikun Deng (BED)
- Hong Qing Yu (BED)
- Youbing Zhao (BED)
- Enijie Liu (BED)
- Feng Dong (BED)

Page 3 of 36

Table of Contents

1 Executive Summary

2 Introduction
2.1 Structure of this document

3 Implementation of Data Repositories
3.1 Consistency of Apache Cassandra Database
3.2 Apache Cassandra Architecture
3.2.1 Relation Model vs. Cassandra Databases
3.2.2 Architecture of Cassandra
3.2.3 CommitLog, Memtable and SSTable of Canssandra
3.2.4 Data Repository Architecture in MyHealthAvatar

4 RDF Data Collection and Integration
4.1 Data collection and integration
4.2 Semantic ontology update
4.3 RDF repository implementation: Virtuoso
4.4 Repository implementation
4.4.1 Installation Requirements
4.4.2 Operational Requirements
4.4.3 Operating System

5 Overall infrastructure of repositories for MyHealthAvatar

6 Repositories Implementation and Testing
6.1 Configuration and Implementation details
6.2 User Profile Data Repository

7 Evaluation Strategy and Report
7.1 Evaluation Strategy
7.2 Evaluation Environment and Configuration
7.3 Evaluation Results

8 Conclusion
9 References

Appendix 1 — Abbreviations and acronyms

Page 4 of 36

()]

© G o™ N N

10
10
11
11

14
14
15
17
18
18
19
19

20

22
22
22

27
27
29
30

32
33
34

MyHealthAvatar

Table of Figures

Figure 1 Cassandra and the CAP ThEOIEMii i iiiii ittt e e s e e s saere e e s ssanraeeeens 9
Figure 2 CommitLog Memtable and SSTable........cuiiiiiiiiiiiee e e 11
Figure 3 overall structures of MyHealthAvatar repoSitoriesoccvveveirciieee i 12
Figure 4 data flow to Cassandra in MyHealthAVAtar......ccccocveiiiiiiiii e 12
Figure 5 Cassandra ClUSTEr Cross ClOUDSciiiiiiiiieiiiiiieee ettt et e e e e e e e sabee e e s enaneeeas 13
=V o Y - I <YYo 10 ol Y- PRSP 14
Figure 7 NOSQL data STrUCTUIE...ciiiiiiiieeiiiitieeceiteee et e e st e e s e e e st e e e s s abae e e e esnsbeeeeesnbeeeessnnneeens 15
Figure 8 MyHealthAvatar ONtOIOZYccuiciiiiiiiiiiie ettt e e e e e e sabee e e s saaeeeas 15
Figure 9 Virtuoso general arChit@CIUIEuuiii i e e e s naeeeas 18
Figure 10 Virtuoso SPARQL ENAPOINT ..eevieiiiiiiiiiiie ettt sieee s e e s st e e s et e e s e sabeee e s snnnneeas 19
Figure 11 Linode CPU Usage MoNItoring Graphcccuieieiiiiiiieiiiiiee e ceiiee e ssiiee e ssiee e e sree e e s snveeeas 20
Figure 12 Linode Main Management INterfaceccuviiiiiiiiiiiie i 21
Figure 13 Cassandra Configuration Inheritance Hierarchiescccccceveiiieiiiiiiiiee e, 22
Figure 14 Main Data Repository Class Relationshipcoooiciiiiiiiiiiiii e 23
Figure 15 Unit Tests for Technique EValuationcccveiiiiiiiiieiiiiiee et 25
Figure 16 COde COVErage DY TeSTS ..uuiiiiiiiiiiieiiiiiieeeeritieeeesiireeeessreeeessabeeeessssateeeessnsbeeesesnnseeeessnnnsees 26
Figure 17 Cassandra advantage in balanced Read/Write [7].....ccccoeeiiiieiciie e 27

Page 5 of 36

MyHealthAvatar

1 Executive Summary

MyHealthAvatar is an attempt at a proof of concept for the digital representation of patient health
status. It is designed as a lifetime companion for individual citizens that will facilitate the collection
of, and access to, long-term health-status information. This will be extremely valuable for clinical
decisions and offer a promising approach to acquire population data to support clinical research,
leading to strengthened multidisciplinary research excellence in supporting innovative medical care.
The data and RDF repository is a crucial part of the system, and it is implemented utilise cutting edge
technologies with maintainability, reliability and scalability in mind.

This document reports on the data and RDF repository and evaluation of the repositories. Further to
D6.2 design for data and RDF repository, this documents includes the implementation details of the
repository as well as the technical evaluations.

Data repository is mainly based on Apache Cassandra cluster; the selection of Cassandra is based on
previously investigation in D3.1 User Requirements and D6.2 design document.

RDF repository implements on top of Virtuoso, which is a change from D6.2’s choice of OWLIM, this
change is due to OWLIM rename to GraphDB [1][2] and withdraw free edition during project
development (although at end of 2015 GraphDB released a free version [3], which however come
with limitations that the free version cannot handle more than two queries in parallel, which make
OWLIM/GraphDB not suitable to this project), we research the RDF repository technologies again
and Virtuoso is chosen instead.

Page 6 of 36

2 Introduction

Data collection, access, management and share play a crucial role in MyHealthAvatar project, basic
healthcare related data are important to both individuals who manage their own health and also
very useful to clinicians and other healthcare workers in patient monitoring and providing suitable
in-time care.

The implementation of repositories takes into account the scalability requirements of life logging
data as well as reliability of the data storage in disaster events, e.g. hard drive failure. Since large
amount of data is constantly coming lots of users’ various data sources, it is fair to treat the data
repository in the context of Big Data. Bearing in mind the number of users is increasing and the
guantity and types of the information are emerging that will be stored on daily basis for the duration
of a person’s entire life, the repository implementation tackles this ever increasing data with the
ability to scale horizontally.

2.1 Structure of this document

This document describes the implementation of data and RDF repositories, then reports the
infrastructure for data and RDF repositories for MyHealthAvatar, finally the evaluation of repositions
and evaluation results.

The structure of this document is organised as follows. Section 3 and 4 describe the reason of the
way implementation and architecture of data repository and RDF repository, respectively. Section 5
describes the infrastructure of repositories for MyHealthAvatar. Following that, Section 6 discusses
the implementation and testing of the data repository access/API, section 7 describes the technical
evaluation strategy and result on data repository. Section 8 concludes the report and outlines the
future work.

Page 7 of 36

¥®| MyHealthAvatar

3 Implementation of Data Repositories

NoSQL database solution Cassandra is selected for data repository according to the project
requirements and nature of the data. Please refer to deliverable 6.2 for details of the database
selection process.

3.1 Consistency of Apache Cassandra Database

Apache Cassandra implementations put high performance, high availability and scalability as its
priorities for large volume data storage and query. Rather than traditional RDBMS database’s ACID
properties [4], Cassandra databases seek eventual consistency and apply Brewer's CAP theorem [5].

Theoretically it is nearly impossible to fulfil all three requirements of the CAP-Theorem and suggests
that only two of the three different aspects of scaling out are can be achieved fully at the same time.

* Availability: All of the servers will always return data they have (even if it's not the latest
data or consistent across the system).

* Partition Tolerance: The system continues to operate as a whole even if individual servers
fail or can't be reached

* Consistency: All the servers in the system will have the same data so anyone using the
system will get the latest data regardless of any updates happening.
The current NoSQL database implementation for repositories follow different combination of the C,
A, P from the CAP theorem.

* CA: Single site cluster, in which all nodes are always in contact. When a partition is required,
the systems will block.

¢ CP: Part of the data might not always be available, however all the rest of data is always
consistent and accurate.

* AP: System is still accessible under condition of portioning, but the returned data might not
be consistent from different nodes.
In general Cassandra is typically classified as an APl system, which means that partition tolerance
and availability are considered to be more important aspect than the consistency factor. However,
Cassandra can also be tuned with replication factor as well as consistency level to more or less meet
the consistency (C) [6].

Cassandra’s AP characteristic means it is a week consistent structure, which eventually reaches a
consistent state during data replication. When the latest version of data initially reaches on node in
the whole Cassandra cluster, the older versions of the data are still available on other nodes (which
means access Cassandra might not return consistent result at this point of time), but eventually all
nodes will get the latest version and reach consistency.

Page 8 of 36

ilthAvatar

RDBMS MongoDB

Consistency :Bg.se
edis

CcpP

Partition

Availabili
valabliity R Tolerance

Cassandra CouchDB DynamoDB Riak

Figure 1 Cassandra and the CAP Theorem

To be more specific on the consistency, let:
R = Read replica count

W = Write replica count

N = Replication factor

Q=QUORUM (Q=N/2+1)

Cassandra provides consistency when R + W > N, and in configuration of Cassandra, you have
different level of consistency level:

ONE: meansRorWisl (W=1orR=1)

QUORUM: means R or W is ceiling (W=QorR=0Q)

ALL: meansRor Wis N (W =NorR=N)

So if we want to write with a consistent level of ONE and then get the same data from nodes when
read, we will need to read Cassandra with consistent level ALL. Typical consistency configurations:
e W=1,R=N
e W=N,R=1
* W=Q,R=Q

In MyHealthAvatar configuration, the last situation is considered suitable, and implemented in the
cluster environment as described in the architecture deliverable.

3.2 Apache Cassandra Architecture

This chapter mainly describes the Cassandra Architecture, which explains the implementation
decisions of data repository of MyHealthAvatar.

Page 9 of 36

| MyHealthAvatar

3.2.1 Relation Model vs. Cassandra Databases

Cassandra is a distributed, highly scalable, eventually consistent, structured key-value stores use a
hash table where a unique key is used to refer to a particular item of data. Cassandra provides a
column family based data model, which is richer than typical key-value systems.

Cassandra data model is a schema-optional, column-oriented, which means that we do not need to
model all of the columns required by the MyHealthAvatar project up front. Each row is not required
to have exactly set of columns.

Table 1 provides a summary on RDBMS and Cassandra databases model, Cassandra keyspaces is an
analogous to database, and column families is an analogous to the tables in relational database

model.
Relational Model Cassandra Model
Database Keyspace
Table Column Family (CF)
Primary key Row key
Column name Column name/key
Column value Column value

Table 1: RDBMS vs. Cassandra Model

3.2.2 Architecture of Cassandra

The table’s meta-data information of RDBMS is normally stored and maintained in system tables;
table creation and column name information are stored in system tables only. Analogue to this
RDBMS, in Cassandra system key space is used to store the meta-data of other key spaces. The
stored information includes cluster, local node information as well as operational data and hinted
handoff information. It mainly consists of following:

* The nodes token — If node is supposed to take the value from 1 - 10. The node token is
something like 1.

* The cluster name — It is not possible to bring nodes of two cluster names together, the
cluster name defines to which the node belongs to.

* Key space and schema definitions to support dynamic loading — The metadata about
different columns so Cassandra can support dynamic loading.

* Migration data — Key space configuration changes are normally stored in this category. E.g. if
the replication factor is changed from 2-3 and 1-2, the information is stored under migration
data

* The node is bootstrapped or not — When new node joins a cluster, the process of the new
node get information about the cluster is called bootstrapping. Once a node is bootstrapped,
it then starts copying the data from other nodes.

System key space cannot be modified or edited, and a system key space has two families:

* Schema column family: holds the schema definition and the other user key space data.

* Migration column family: records changes made to the key space.

Page 10 of 36

3.2.3 CommitLog, Memtable and SSTable of Canssandra

This section focus on the internals of Cassandra storage implementations, to support Cassandra’s
fast write and durability requirements, the storage architecture of Cassandra is consiste of
CommitLog, Memtable and SSTable. The CommitLog is a crash recovery mechanism and Cassandra
writes to CommitLog first before writing to the Memtables.

There is a threshold of Memtable, when there is enough writes in the Memtables, the contents of
the Memtable are flushed to disk files, which is called SSTable.

To indicate if data needs flushed or not within CommitLog, there is a internal bit flag for this
purpose. Please note that once a Memtable is flushed to the SSTable, it becomes immutable which
cannot be changed.

Write/Update
Commit Log

MemTable

Figure 2 CommitLog Memtable and SSTable

3.2.4 Data Repository Architecture in MyHealthAvatar

As describe in D6.2 MyHealthAvatar overall data and RDF repositories design can be viewed as the
figure below. As you can see that the Cassandra data repository sits in the middle, which not only
stores incoming data and also provide data to other MyHealthAvatar module through the Restful
APIs. The Restful API allows different modules to communicate in a distributed manner and allow
different modules to use different programming languages.

Page 11 of 36

A_lnin ™

MyHealthAvatar APIs

Y

Query Engines MyHealthAvatar Repositories Extraction Engine

SPARQL e Ontologies
Relationship
index
Reasoning
NoSQL Rule

Schemas

Social networks Sensors Citizen inputs Hospitals Medical knowledge

Figure 3 overall structures of MyHealthAvatar repositories

The data is coming from various data sources of MyHealthAvatar through the data repository
interface into Cassandra data store. The data source to Cassandra looks like follows:

Legacy Data Source

Provide public API interface

Allows user to export data

ilntemetl
—

< gacy data collection

Actively Pushes Data through MHA’s public APl————|

HA Fetch Data ically (user

Data Source (Fitbit, Google Drive, etc.) MHA Server

User input/update

MHA mobile app
& other sensor

1

Figure 4 data flow to Cassandra in MyHealthAvatar

Page 12 of 36

MyHealthAvatar

MyHealthaAvatar project has built a Cassandra cluster cross private and public cloud as a proof of
concept of MyHealthAvatar data repository capability, which also servers the purpose of evaluation
of Cassandra as the data store. The detailed infrastructure information can be found in Chapter 5 of
this deliverable, and for most detailed information regarding the cloud service of MyHealthAvatar,
please refer to the submitted architecture deliverable.

The main structure of the Cassandra deployment is depicted in following figure:

Linode Public Cloud FORTH Private Cloud

R2

Rack1 Rack2 Rackl Rack2

| Replica for a column family row key

Figure 5 Cassandra cluster cross clouds

As you can see from above figure, the Cassandra nodes are distributed in both public and private
cloud, while within respective cloud environment itself, nodes are deliberately distributed on
different server racks. The configuration allows 3 replications of every piece of information come
into the system, as we can see from above figure, R1, R2, R3 are on separate cloud (physical
environment, network connection, etc.) and separate server rack (separate physical server and
separate hard drive). All the deployment is to cope with the potential disaster situation, if power cut
in one city, MyHealthAvatar’s data repository should be still working as we have distributed the
cluster in different geographical locations. In case of hardware failure of a server rack within one
data centre, it should not affect the operational of the data repository since we have replications on
different server racks.

Page 13 of 36

MyHealthAvatar

4 RDF Data Collection and Integration

4.1 Data collection and integration

Collecting and meaningfully integrating of heterogeneous data resources is a longstanding problem

in data management and engineering research area. In our research, we collect desired data from

multiple data resources including mobile applications (e.g Moves), wearable sensors or digital

measuring devices (Fitbit and Withings) and MHA platform. Each different data resource provides

different and useful data information as Table Ill.A shows. The data collection process applies Web

API technologies following OAuth security protocol. Whenever the user login to the MHA platform,

the data from other devices can be synchronized into the system.

Data Collection
Steps Fitbit/Moves/ MHA app Count

Travelling & Fitbit/Moves/ MHA app Minutes & transport
activity type type

Location Moves/ MHA app Coordination

Diet MHA app Calories & food category
Health Profile MHA app — profile input PHR like records

Weight Withings scale Grams

Body fat Withings scale Grams

Blood pressure Withings BPM mmHg

Slept hours Fitbit/Withings minutes

Awoken times Fitbit/Withings Count

Social activity MHA app - calendar Description

Figure 6 data resources

In Deliverable 6.2, we already discussed the advantages of using NoSQL databases for data

integration. In MHA, the column-based NoSQL database (Cassandra) has been developed to mashup

the heterogeneous data as whole. The Figure 7 shows the detail designed NoSQL database structure

that bases on the column and key query data storing mechanism.

Page 14 of 36

/,// NoSQL repository N

P — N
/7 KeySpacel: MHA NN
f ‘/ Column Family: activities \.\. Column Family: profile \ "-,'
v' 'vl "‘ |‘l

il Activity | Steps il User Date
group name birth
Key: Key:
UD*D Time Time Ul Time Time
Sl piace Location bl Email | Address
name
Key:) Key: Time Time)
| UID*D Time Time uiD |
B /| | ||
(RN /N ; |
O\ A A
\ \\-\,__ ~ "‘-// \\x - _"’/,/// ’/_.,-
\\'\\ — - »//

Figure 7 NoSQL data structure

Each Column family stores a group of rows that contains a set of individual columns in a specific
data-structuring requirement. For example, one row in “activities column” groups all the data
columns that stores activity type, step counting and duration data elements. The other row in the
family can store the places information that the user has been travelled to or planned to visit. The
“profile” column family completely focuses on managing user basic profile information such as name
and contact.

4.2 Semantic ontology update

foaf:Person time;:TemporalEntity

vat

TMO:has, risk

hasEvent time | to “,s‘(
P | . ““,“
TMO:Processual_entity }a, y
(sameAs: event:Event)) "‘\glg\z{@d ,-

TMO:is ‘ about ’ j-0:SpatialRegion

suijaéSOf\ '[: bClassOf
g subClassOf | subtlass

(TMO: Disease_) /
progression

subCi"assOf

< J
Inﬁggé"égggﬁ& treatment sideEffect
TMO:
mbha:lifeStyle symptom Symptom
foaf: xmlns.com/foaf
rmowla:intention time: www.w3.org/TR/owl-time/
(lifeStyle) ao: http://purl.org/ao/core/

event:purl.org/NET/c4dm/event.owl

pl: purl.org/ontology/places

ico: ico-ontology.googlecode.com/svn/trunk/src/ontology/ico.owl
mwla: aber-owl.net/ontology/MWLA

Figure 8 MyHealthAvatar Ontology

Page 15 of 36

| MyHealthAvatar

The core concepts of MHA H-event ontology includes 10 major terms as Figure xxx represents. The
ontology extends TMO terminologies with some existing semantic concepts from well-known
domain ontologies and our defined personal activity and treatment terms.

Event defined as same as TMO.Processual_entity is a super concept to classify an
interesting event that related to the health of an individual user. The event is the supper
class of (discover a) Symptom, (taking a) Treatment, (diagnosed a)
TMO.Disease_progression and (Having a) significant activity. Each event associates to a
particular time point on user’s time.TemporalEntity. In addition, Event is the central point of
the whole ontology, which can be detected from data mining layer.

Person is the concept to describe a MHA user using FOAF ontology. The FOAF ontology
includes all possible aspects about a general profile of a person such as health history,
gender and height. In our proposed framework, the semantic layer will nominalize user’s
name and address information that will be stored in lower level NoSQL database with more
secured data management infrastructure and we will not discuss the security topic in this

paper.

Significant activity is a subclass of Event concept to identify the activity that is more
significant to the user rather than includes all daily activities. In general, all the significant
event should be related to understand user’s health situation or life style. The activity type
can be grouped by the exercise type such as “Running”, “Driving”, and “Shopping” but also
can be categorized by the places and social activity type. Each significant activity should also
record the time duration, places and possibly with distances, calories consumptions and

steps.

Symptom imported from TMO is a subclass of Event concept to present the unusual health
related condition that are detected and concluded from the user’s data. As same as all other
events, the symptoms have to have a time stamp and places. Currently, the subclasses of
Symptom include low/high blood pressure, unusual heart rate, unwell sleeping and
significant weight/fat changes. Other unsenserable symptoms can also be added but have to
rely on user’s manually inputs.

Annotation defined in AO (Annotation Ontology) is used as a semantic vocabulary link to an
event. The annotations should use controlled vocabularies or semantic identifiers to define
the meaning. The annotation can be automatically added through linked data annotation
engine e.g. DBpedia spotlight or can be added by users via annotation tools from MHA
platform.

Treatment is a subclass of Event concept for recording the treatments that have been taken
by the user from medical health organization or user-self. The treatment refers to any
medical actions that have been done to the user such as taking dugs, operation and physical
and mind therapies. In addition, the treatment requires identifying the exact time point on
user’s timeline.

Disease_progression reused from TMO is a subclass of Event concept and presents the
medical situations that were diagnosed in pass according the user’s timeline or will be a
potential risk for the user. The Health Condition, Treatment and Symptom concepts
structure a triangle relation that could be a very valuable knowledge for individual user or a
group of users.

Risk defined by ICO is used as a concept to evaluate the possibility or progress levels to a
particular health condition.

Page 16 of 36

¢ Lifestyle is imported using intention concept in MWLA [] ontology that defined 25 lifestyle
instances. Since MWLA is still a live EC project (CARRA []), the numbers of the lifestyle
definitions can be enriched in the future.

4.3 RDF repository implementation: Virtuoso

A triple store is the data warehouse to store and query RDF data. A triple store should provide a
mechanism and a set of APIs for persistent storage and access of RDF graphs. In order to decide and
design the most suitable RDF repository solution, the comparing of different existing RDF repository
technologies will be evaluated in this section.

According to the user requirements presented in Section of 5.1.4 and 5.1.5 of Deliverable 3.1, 4
important criteria have been identified:

(1) RDF, RDFS and OWL-based data reasoning and inference capabilities.
(2) Support SPARQL query

(3) Support large data set loading

(4) Query efficiency

In D6.2, we argued that OWLIM OWLIM-SE may be the ideal choice, but it can be obtained free of
charge for evaluation purposes only. Therefore, the practice process requires to be divide into 2
steps. However, OWLIM product has been re-brand to GraphDB and fully commercialised in late
2015. Therefore, our original plan to use OWLIM is very cost on both time and financial terms. By
further research, Virtuoso becomes the best repository that we can use to implement RDF triple
store. The most recently comparing scores for GraphDB and Virtuoso are 0.08 and 2.82, which
means the Virtuoso performs better than GraphDB. Virtuoso is a native triple store APl provided by
Openlink Software. It is available in both open source and commercial licenses and provides
command line loaders, a connection API, and support for SPARQL and web server to perform
SPARQL queries and uploading of data over HTTP. Virtuoso is scalable to the region of 15.4 Billion
triples. In addition to this, it provides bridges to be used with other RDF Data frameworks such as
Jena and Sesame.

Since the Virtuoso can directly connect to the Jena framework, the semantic reasoning can be
efficiently performed by combining Virtuoso and Jena APIs.

Page 17 of 36

A_lnin ™

4.4 Repository implementation

Network
(Internet/intranet/Extranet) Oracle
[s1<1+}]
[+
o
-SQL Server
oDBC HTTP | WebDAV °
JDBC SOAP ooo)
OLEDB GData Z
.NET SPARQL o Progress
o
[elele] ﬂ
3 o
Application o
Logic So o Sybase

(Exsting Applics

Extensions

o Informix
o
OOO
o
o
o DB2
o ﬂ
Qoo
o 3
o
SPARQL Moveable Type HTTP / WebDAV o Others
GData Blogger

¥ SOAP Servicee °
A REST Services %00

Atom Publighing

OHTML, Microfo:
Googlebase, Amazo
Flickr, del.icio.us,

Weblogs, Wikis, Disc
Bookmarks, Feed Sube

Figure 9 Virtuoso general architecture®

4.4.1 |Installation Requirements

A typical installation will require a minimum of 400Mb of hard disk space to install the code,
samples, documentation and sample database. The database will need additional space for
data inserted, backups, logs and reports, web pages, etc.

The size of the database .db file will not reduce when data is removed. The spare space will
however be reclaimed for later use.

* http://virtuoso.openlinksw.com/images/varch625.jpg

Page 18 of 36

Ay A_lninv

4.4.2 Operational Requirements

The Virtuoso database requires a minimum of 64Mb of system memory for each instance to
operate in. Each connection will take between 70kb and 130kb of memory.

e ServerThreads

e ServerThreadSize
e MainThreadSize
* FutureThreadSize
¢ NumberOfBuffers

4.4.3 Operating System

We setup the Virtuoso server runs on Linux operation system which is a part of our cloud
infrastructure.

SPARQL | Sponger | Statistics | Graphs | Schemas ‘ Namespaces ‘ Views | Quad Store Ug
SPARQL Execution

Query Saved Queries |

Default Graph IRl |

Query

| Execute H Save H Load “ Clear |

Figure 10 Virtuoso SPARQL Endpoint

Page 19 of 36

MyHealthAvatar

5 Overall infrastructure of repositories for MyHealthAvatar

As previously describe in Chapter 3 of data repository, the repositories are deployed cross Linode
public cloud infrastructure and FORTH private cloud infrastructure. In terms of hardware resources,
the cloud infrastructure allows for maximum elasticity and flexibility by effectively adapting to the
load of any given time. For availability and disaster resistance, MyHealthAvatar tends to utilise
different server racks/hardware to host the data and RDF repository nodes. Please refer to following
table for the main hardware of VMs MyHealthAvatar are using:

Type Linode Public Linode Public FORTH Private FORTH Private
Location London London Crete Crete

CPU 6 Core 4 Core Xeon E5-2690 Xeon E7520
RAM 8G 4G 4G 4G

HARD DRIVE 192G SSD 96G SSD 100G 100G

Table 2 hardware summary of infrastructure

In terms of capacity of hosting provider, FORTH private cloud’s current minimal specifications
include: 300 GB of RAM, 9TB of storage and 16 cores Intel® Xeon® Processor E5-2690 and 4 cores
Intel® Xeon® Processor E7520 (Dell PowerEdge R720 and SC 1425 Servers series). The software the
OpenStack open source cloud computing software has been installed on the machines using the
Linux Ubuntu 12.04 operating system. Linode as a public cloud provider, which is very capable of
expand the VMs on demand, Linode virtual machines are mainly based on KVM technologies and
Ubuntu 14.04 LTS 64bit operation system is the one MyHealthAvatar uses from Linode’s choice of
operation systems.

linode.com - linode536533 (linodeS536533) - CPU - day (5 min avg)

2°°l

190

180

170

160

150
. 140
S 130
§ 120

110

100

%0

80

70

60

303000 0200 0400 0600 0800 1000 1200 1400 1600 1800 2000 22:00
W CPU Pct Max: 127.91% Avg: 92.02% Last: 116.16%

Fri Feb 12 23:35:07 2016

Figure 11 Linode CPU Usage Monitoring Graph

Page 20 of 36

MyHealthAvatar

As you can see from above figure, that MyHealthAvatar are utilizing the capacity of the services
properly, so that the VMs are not over kill for our purpose nor are too week for the demand, as you
can see from above CPU usage graph.

Linode provides a web interface, which allows remote control of the VM’s configuration through
browser. The main panel looks like following graph, which provides normal operations in an intuitive
manner. While the interface does not look very fancy compared to other provider (e.g. Microsoft
Azure), it serves its purpose for MyHealthAvatar project well.

Linodes » linode536533

Dashboard
Select Configuration Profiles Options
o CCGV Ubuntu 14.04 LTS Profile (Latest 64 bit (4.4.0-x86_64-linode63)) Edit | Remove
Reboot Rebuild | Deploy an Image | Create a new Configuration Profile
Disks
2 Ubuntu 14.04 LTS Disk Image (94208 MB, ext4) Edit | Remove
g 4GB Swap Image (4096 MB, swap) Edit | Remove

Create a new Disk
Host Job Queue (more)
Lassie initiated boqt: CCGV Ubuntu 14.04 LTS Profile
§ystem Boot - CCGV Ubuntu 14.04‘ LTS Profile
Firfc{de Migration Cleanup

m Migrate Filesystem - 4GB Swap Image from london1066.linode.com 100.0% done, 0:00 to go, 196.71 MB/s

Figure 12 Linode Main Management Interface

While building the Cassandra cluster cross two regions, the connection legacy and speed are one of
the concerns, the evaluation shows that fast connection within Europe continental make the cluster
works very well. The speed test from MyHealthAvatar using speedtest.net service is:

mha@ccgv:~/mha/ccgv-social-javaS speedtest-cli

Retrieving speedtest.net configuration...

Retrieving speedtest.net server list...

Testing from Linode (178.79.142.72)...

Selecting best server based on latency...

Hosted by Vorboss Limited (London) [2.52 km]: 5.57 ms

Testing download speed............ccccccceeveeecccrvvvnnnnnn. Download: 630.94 Mbit/s
Testing upload SPeed............cccccvvvvvvveneaaaeeeeeciceciinnn, Upload: 153.61 Mbit/s

With above network speed, which transfers data more than 15M bytes per second both ways, our
infrastructure is sufficient for our cluster.

Page 21 of 36

6 Repositories Implementation and Testing

Since most of MyHealthAvatar is implemented on top of Java Technology and Spring Framework, the
data repository part is chosen to utilise compatible technology stack in order for better cooperation
and easier integration.

Spring Data Cassandra offers a familiar interface as other Spring Data libraries, which makes it easier
to get start with. The Spring Data Cassandra supports high level annotated POJOS for model the data
while provide high performance data ingestion capacities. The main features of Spring Data
Cassandra include:

* Support both synchronous and asynchronous data operations

* Support asynchronous call-back

* Support JavaConfig for all cluster and session capabilities

* Based on the latest DataStax Enterprise CQL Java Driver

6.1 Configuration and Implementation details
JavaConfig is used to configure Cassandra for the data repository access and APl module, main

configuration as follows:

@ Configuration

@PropertySource(value = {"classpath:application.properties"})
@EnableCassandraRepositories(basePackages = { "uk.org.ccgv.repository" })
public class CassandraConfig extends AbstractCassandraConfiguration { ... }

O Aware ® Configuration

© BeanClassLoaderAware & AbstractClusterConfiguration

@ AbstractCassandraConfiguration © EnableCassandraRepositories © PropertySource

@ CassandraConfig

Figure 13 Cassandra Configuration Inheritance Hierarchies

6.2 User Profile Data Repository

The whole source code of the data repository implementation will be made available through open
source license and in this report we will take user profile as an example to explain how the things
work together in the context of MyHealthAvatar.

First of all, CQL query is used to create the main profile table in Cassandra:

Page 22 of 36

MyHealthAvatar

// Note that many columns definitions are omitted to be concise
CREATE TABLE mha.user_profile (
user_name text,
last_update timestamp,
timestamp timestamp,
description text,
diabetes boolean,
dob text,
gender text,
height decimal,
surname text,
title text,
weight decimal,

PRIMARY KEY (user_name, last_update)
) WITH CLUSTERING ORDER BY (last_update DESC);

® RestController © RequestMapping

O UserProfileController

«créate»

@ UserProfile

@ UserProfileRepository

Figure 14 Main Data Repository Class Relationship

The above figure displays the relationship of the main class for data repository access, which is loss
coupled from each other by utilize dependency injection techniques. Pure plain Java object (POJO) is
preferred for the data repository implementation, one which is created to map between Cassandra
table and Java object looks like follows:

@Table("user_profile")

public class UserProfile {

Page 23 of 36

@PrimaryKey

private KeyUsernameTime update;

}

A repository class is created which utilize the POJO above and talks to the Cassandra:
public interface UserProfileRepository extends CrudRepository<UserProfile, KeyUsernameTime> {

}

@Query("select * from user_profile where user_name=?0")
Iterable<UserProfile> findAlIByUsername(String username);

@Query("select * from user_profile where user_name=?0 order by last_update desc limit 1")
UserProfile findLatestByUsername(String username);

Object oriented programming language Java is designed to abstract to allow code sharing and

reduce duplications; the project implementation uses latest best practice and design patterns to

achieve high quality code. Following service layer class is a good example of our abstraction using
generics:

public class UserProfileltemService<T extends UserProfileltem, S extends

UserProfileltemRepository<T> & CrudRepository<T, KeyUsernameTime>> {

@Autowired
protected S repository;

public T saveForUser(T item, String username) {
if (null I=item) {
if (null == item.getUpdate()) {
KeyUsernameTime update = new KeyUsernameTime(username);
item.setUpdate(update);
}

if (lusername.equals(item.getUpdate().getUsername())) {
item.getUpdate().setUsername(username);

}

item = repository.save(item);

}

return item;

}

The above service class then get injected to controller which handles incoming GET, POST, DELETE,

PUT requests:
@RestController

Page 24 of 36

IthAvatar

@RequestMapping("/profile")
public class UserProfileController { ... }

In order to make sure that the API services works as design and according to the user requirements
analysis, unit tests and integration tests are written to help make sure that crucial parts of the
system always work the way they supposed to. As you can see from following figure, that all test
cases are run and make sure 100% success before artifact (war files in Java) is generated.

Q%

v @ <default package>
» € MeasurementRepositoryTests
@ UserProfileRepositoryTests
@ ActivitiesTests
@ ActivityListTests
@ ActivityStateLincolnTests
€ DateFormatTests
@ DiariesTests
@ GeneralHealthTests
@ GoalsTests
@ MeasurementsTests
& MomentsNewTests
& MomentsTest
@ ProfileTests
€ AlertsTests
€ RiskAssessmentsTests
@ VersionControlTests

>
|
I»
>
|
|
I»
>
|
|
I
>
|
|
>

Figure 15 Unit Tests for Technique Evaluation

Software engineering best practice aims to have 100% code coverage from the testing cases,
however due to the nature of the project, lots of effort is on the main functionality and features of
the system. All core parts of the repositories are covered by unit tests, and the data repository
project has code coverage of around 45% lines. If resources are to be allocated for further
development, the project will aim to have a hundred percent code coverage for data repository.

In order to evaluate the data repository’s functionality and performance, most of the test cases are
writing as integration test manner rather than pure unit tests. Which means that at beginning of
each test class set up stage, a connection to the testing full Cassandra instance is made, the
sequential tests are run against live instance of Cassandra database rather than mocked Java
services. This allows the best compatibility between development, evaluation platform and public
facing production platform. The only drawback is that this process slows down the build speed of the
data repository project; however, the benefit outweighs this little more time spend.

Page 25 of 36

I'I

ithAvatar

46% classes, 45% lines covered in 'all classes in scope'

Element Class, % Method, % Line, %
uk.org.ccgv 100% (1/1) 50% (2/4) 55% (10/18)
uk.org.ccgv.beans
uk.org.ccgv.beans.g...
uk.org.ccgv.beans.g...

uk.org.ccgv.beans.m...

uk.org.ccgv.beans.s...
uk.org.ccgv.beans.v...
uk.org.ccgv.beans.vi...
uk.org.ccgv.beans.vi...
uk.org.ccgv.beans.vi...
uk.org.ccgv.beans.vi...

uk.org.ccgv.beans.vi...

uk.org.ccgv.beans.vi...

uk.org.ccgv.config

uk.org.ccgv.controller

uk.org.ccgv.domain

uk.org.ccgv.repository 09

uk.org.ccgv.resources (77/ 1382/2494)
uk.org.ccgv.resource... (8/ 6(91/117)
uk.org.ccgv.resource... 5]) 6(49/169)

uk.org.ccgv.service 9/59)

uk.org.ccgv.util

Figure 16 Code Coverage by Tests

Most of the class for data repository implementation and evaluation is under uk.org.ccgv.*
namespace, as you can see from above running result, the code coverage from these tests are
around 45% at time of writing this documents.

Page 26 of 36

7 Evaluation Strategy and Report

The main focus of the evaluation is to find out if the design and implementation of the data and RDF
repository has satisfied the user requirements of MyHealthAvatar projects. There are user
evaluations and feedbacks of using the system (data and RDF repositories) in a separate deliverable
(D9.4). This chapter’s main focus is on technique evaluation, which verifies the repositories by
functionality questionnaires, integration tests feedback (automatically and manually), and also
benchmarks of the repositories.

7.1 Evaluation Strategy and Tools

The evaluation of the repositories can be roughly looked from mainly four aspects capability,
functionality, stability and usability. Four different methods are used to evaluate the repositories
from a top down approach, from overview into details.

* Third party testing results for parallel compare with other NoSQL
* Unit tests to cover functionalities

* Cassandra-stress tool to load test and benchmarking

* Questionnaire for simple user evaluations

There are plenty of third parties tests result [7] compare Cassandra with other NoSQL databases
which is designed for similar purpose. All tests we believe are bias in one way or another, and those
tests are more or less tailored for one specific database. However due to limited capability and
resources allocated, it is not quite possible for the project to run all the tests against major NoSQL
solutions. Rather third party with similar user scenario to MyHealthAvatar’s prospect future, and
details of the configuration looks more or less fair to all the databases are chosen as a reference of
the capability of MyHealthAvatar repository.

Balanced Read/Write Mix

350,000

300,000
© 250,000 |
o
2
2 200,000
K-
=1
& 150,000
o
2,
© 100,000

50,000

0,.___-__.__.__I__ -
1 2 4 8 16 32
Nodes
K Cassandra “Couchbase ~ Hbase “MongoDB

Nodes Cassandra Couchbase HBase MongoDB

1 13,929.58 1,654.14 527.47 1,278.81
2 28,078.26 2,985.28 1,503.09 1,441.32
4 51,111.84 3,755.28 4,175.8 1,801.06
8 95,005.27 10,138.80 7,725.94 2,195.92
16 172,668.48 11,761.31 16,381.78 1,230.96
32 302,181.72 21,375.02 20,177.71 2,335.14

Figure 17 Cassandra advantage in balanced Read/Write [7]

Page 27 of 36

althAvatar

We briefly described about Unit tests in previous chapter of this documents, and following is a
specific example of how the test is set up for evaluate the repositories functionality.

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = ApiApplication.class)

@ WeblintegrationTest({"server.port=0", "server.context-path=/api"})
@FixMethodOrder(MethodSorters. NAME_ASCENDING)

public class AlertsTests { ... }

As above code piece shows that annotation based meta-programming is the key for the Spring Junit
tests, it is written as web integration test, which allows real data go through the whole data
repository process logic and then operate against real Cassandra instances.

@Value("S{local.server.port}")
int port;

@Before
public void setUp() throws IOException, URISyntaxException {
URI jsonFileURI = this.getClass().getResource("/alerts-2015-11-02.json").toURI();
alertsJson = new String(
Files.readAllBytes(
Paths.get(jsonFileURI)

)
RestAssured.port = port;

}

Each test class has a set up phase, which has the data repositories temporary port passed in as
variable, at the set up stage, testing JSON data is read in as Java String to be reused across different
test cases. Test case themselves uses fluent Java API, which make the code readable as if they are
the description of the functionality of MyHealthAvatar to be tested.

@Test
public void canT30GetLatestAlerts() {
expect()
.body(
"update_time", hasSize(1)
).
when()
.get(Configure.contextPath + "/user/general_alert/latest?username=" + username)
.then()
.content(Matchers.not(Matchers.containsString("[{"))) // return result is not array, to update
.content(Matchers.containsString("update_time"))

Page 28 of 36

‘(/ My!’»ﬁs"\é‘fﬂ!%!"ﬁ Avatur

.statusCode(HttpStatus.SC_OK);
}

Tools are used to stress test and benchmark the repositories, for data repository Cassandra, a tool
named cassandra-stress from official Cassandra source repository is used. Cassandra-stress is a tool
for benchmarking and load testing a Cassandra cluster, it supports testing arbitrary CQL tables and
queries to allow benchmark of MyHealthAvatar data model in several operation types:

* write-only, read-only and mixed workloads of standard data
¢ user configured workloads, running custom queries on custom schemas
* write-only and read-only workloads for counter columns

Example of running the tool against one node looks like following:

tools/bin/cassandra-stress write n=10000000 -node 192.168.1. 1 # 10M inserts to given host
tools/bin/cassandra-stress read n=10000000 -node 192.168.1.1 -o read # 10M reads

Technique peers have filled in the questionnaire regarding the usability of the repository within
MyHealthAvatar environment as well as directly through APl interface (as third party applications),
the results are listed in 7.3 below.

7.2 Evaluation Environment and Configuration

The evaluations are done in the environment of virtual machines mainly in Linode public cloud
environment, the hardware is described in Chapter 5 of this document. Ubuntu Linux Server 14.04
LTS 64bit is the operation system for repositories, Tomcat 7/8 over Java 8 64bit is the runtime
environment for repository interface. Operation system has all latest security patches applied, and
Cassandra we are evaluation is version 2.1.5 with CQL spec 3.2.0 and native protocol v3. And
Virtuoso Open Source Edition v7.10.3207 (see figure 10 for details) is the RDF repository installed.
Details of the environment are queried as follows:

mha@ccgv:~S uname —a
Linux ccgv 4.4.0-x86_64-linode63 #2 SMP Tue Jan 19 12:43:53 EST 2016 x86_64 x86_64 x86_64
GNU/Linux

mha@ccgv:~S cqlsh
Connected to Test Cluster at 127.0.0.1:9042.
[cqlsh 5.0.1 | Cassandra 2.1.5 | CQL spec 3.2.0 | Native protocol v3]

mha@ccgv:~S java —version

java version "1.8.0_45"

Java(TM) SE Runtime Environment (build 1.8.0_45-b14)

Java HotSpot(TM) 64-Bit Server VM (build 25.45-b02, mixed mode)

mha@ccgv:~S /usr/share/tomcat7/bin/version.sh
Server version: Apache Tomcat/7.0.52 (Ubuntu)
Server built: Jun 19 2015 08:54:46

Page 29 of 36

MyHealthAvatar

Server number: 7.0.52.0
OS Name:
OS Version:

Linux
4.4.0-x86_64-linode63
Architecture: amd64

JVM Version: 1.8.0 45-b14

JVM Vendor: Oracle Corporation

7.3 Evaluation Results

Integration functionality tests all successfully run (please refer to figure 15) each build of the
repository code; this is set as default. This evaluation is running very frequently as part of
repositories continuously integration process, it guarantees that all functionality is working as
expected by integration test cases. Not only the existing test cases are required to run and success
each build, MyHealthAvatar also adopted the software engineering techniques of Test Driven
Development (TDD). For new features, test cases are written first as functionalities description,
according to the way that new functionalities are supposed to work. Since the new features are not
yet implemented, the newly written test cases will initially fail to run. Then new features are
implemented according to the test cases, and when it fulfils all test cases and make all test cases
successfully run, at this point that all desired functionalities are implemented properly.

Functionality and usability is a short questionnaire for peer technicians/programmers who used the
MyHealthAvatar repository and/or the repositories directly through Restful APl interfaces. Due to
the nature of the small targeting group, there is not much statistical analyses for the results, rather
useful and import findings are listed as follows:

Feature

Expected Functionality

Actual

Store Activity Data

User can store activity data import from Move,
Fitibt, Withings, etc. through Synchronise
button of MyHealthAvatar interface

The storage works find, no error found during
the synchronise process

Retrieve Activity Data

Stored activity data should be able to view on
MyHealthAvatar interface, including diary and
life tracker panel.

The activity can be displayed on the interface
correctly, the rendering sometimes can be slow

Set goals data through API

Third party application developer should be
able to post data to data repository, including
goals API

Goals stored successfully when post data with
OAuth 2 token

Get goals data through API

Third party application developer should be
able to retrieve data from data repository,
including goals API

Retrieve goals data stored in repository
successfully with user authorisation

Repositories APl documents

All features of public repositories APl are
documented and available to developers

Documents are available to read online,
however some of endpoints description is out of
date and need update

Table 3 repositories functionality evaluation results

Page 30 of 36

As mentioned in previous chapter, that due to resource limitations, it is not feasible to cross
benchmark all NoSQL solutions professionally and fairly. Instead third party organisations’ testing
result is adopted as reference of how the repositories performs in comparison to other similar

solutions on markets.

Cassandra stress tests are run against the evaluation platform which is single node Cassandra in
Linode London, this is due to legal requirements according to data protection regulations. During
evaluation phase, user data need to be gather and store within UK. The tests are running use
following command:

Write: cassandra-stress write duration=15min -mode native cql3 -rate threads=700 -node
192.168.1.1

Read: cassandra-stress mixed 'ratio(read=1)' duration=15min -pop
'dist=gauss(1..10000000,5000000,500000)' -mode native cql3 -rate threads=700 -node 192.168.1.1
Mixed: cassandra-stress mixed 'ratio(read=1,write=1)' duration=15min -pop
'dist=gauss(1..10000000,5000000,500000)' -mode native cql3 -rate threads=700 -node 192.168.1.1

And the results are as follows:

Workload Average CQL tps | Min CQL tps Max CQL tps
write 201,428 183,698 219,823
read 76,698 61,511 89,556
mixed 87,265 72,433 91,484

Table 4 Cassandra benchmark results

Open Source JMX for Enterprise Computing (mx4j) [8] plugin is used together with the StorageProxy
MBean for above test results. As you can see from above testing result diagram, on the evaluation
node, the data repository would support current user base (hundreds) without any problem.

Page 31 of 36

MyHealthAvatar

8 Conclusion

This deliverable focused on the implementation and evaluation of MyHealthAvatar data and RDF
repositories. The repositories are already implemented and supporting the various MyHealthAvatar
evaluations activities for past months, the detailed results of repositories within the system could be
found in relevant deliverables. Cassandra and Virtuoso are evaluated in this deliverable under the
context of MyHealthAvatar. From the results gathered, the repositories design and implementation
meet the MyHealthAvatar user requirements, and the scalability is suitable for the platform user
base growth.

The flexible and hybrid approach of repositories in MyHealthAvatar, which combine the pros of
NoSQL database Cassandra as well as benefits of RDF store Virtuoso. The best of both worlds’ ability
support the heterogeneous data of MyHealthAvatar well and enables future developments and
researches on this firm foundation of platform.

Page 32 of 36

9 References

[1] “Ontotext GraphDB FAQ” -
https://confluence.ontotext.com/display/GraphDB6/GraphDB+FAQ

[2] “Sones GraphDB” - https://en.wikipedia.org/wiki/Sones GraphDB

[3] “ GraphDB ver. 6.6 Release Features New GraphDB Free Edition” -
http://ontotext.com/company/news/graphdb-ver-6-6-released-introducing-new-graphdb-
free-edition/

[4] T.Haerder and A. Reuter, “Principles of transaction-oriented database recovery," ACM
Computing Surveys (CSUR), vol. 15, no. 4, pp. 287-317, 1983.

[5] S. Gilbert and N. Lynch, “Brewer's conjecture and the feasibility of consistent, available,
partition-tolerant web services," ACM SIGACT News, vol. 33, no. 2, pp. 51-59, 2002.

[6] “Cassandra Wiki” - http://wiki.apache.org/cassandra/

[7] “Benchmarking Top NoSQL Databases” - http://www.datastax.com/wp-
content/themes/datastax-2014-08/files/NoSQL Benchmarks EndPoint.pdf

[8] “Open Source JMX for Enterprise Computing” - http://mx4j.sourceforge.net/

Page 33 of 36

MyHealthAvatar

Appendix 1 — Abbreviations and acronyms

ACID Atomicity, Consistency, Isolation, Durability
AO Annotation Ontology

APIs Application Interfaces

ARQ A SPAQRL Processor for Jena

BMI Body Mass Index

BSON Binary JavaScript Object Notation

CAP Consistency, Availability, Partition Tolerance
CFS Cassandra File System

CHI Consolidated Health Informatics

CT Computed Tomography

CTO Clinical Trial Ontology

DICOM Digital Imaging and Communications in Medicine
DTO Disease Treatment Ontology

DO Disease Ontology

ECG Electrocardiography

EEG Electroencephalography

EHR Electronic Health Record

EKG Electrocardiography

EO Event Ontology

FOAF Friends of a Friend

GO Gene Ontology

GridFS Grid File System

Page 34 of 36

HDFS Hadoop Distributed File System

HTTP Hyper Text Translation Protocol

iTQL Interactive Tucana Query Language

J2EE Java 2 Platform Enterprise Edition

JDBC Java Database Connector

JSON JavaScript Object Notation

KB Knowledge Base

KBN Knowledge Base Network

MeSH Medical Subject Heading

MRI Magnetic Resonance Imaging

MRSI Magnetic Resonance Spectroscopy Imaging
MvCC Multiversion Concurrency Control

NCI The National Cancer Institute

NCIt The National Cancer Institute Thesaurus
NoSQL No only SQL

NSAID Nonsteroidal Anti-inflammatory

NSCLC Non-Small Cell Lung Cancer

OAuth Open Authentication

OBl The Ontology for Biomedical Investigations
OCRe Ontology of Clinical Research

OWwL The Web Ontology Language

OWL-DL The Web Ontology Language — Description Logic
PATO Phenotypic Quality Ontology

Page 35 of 36

PET

PRO

PROEVO

RESP

REST

RDBMS

RDF

RDFS

SCLC

SNOMED CT

SOA

SPARQL

SPECT

SQL

T™MO

VPH

XML

Positron emission tomography

PRotein Ontology

Protein Evolutionary Classes

Redis Serialization Protocol
Representation State Transfer

Relational Database Management System
Resource Description Framework
Resource Description Framework Schema
Small Cell Lung Cancer

SNOMED Clinical Terms

Service Oriented Architecture

SPARQL Protocol and RDF Query Language
Single Photon Emission Computed Tomography
Structured Query Language

Translational Medicine Ontology

Virtual Physiological Human

Extensible Markup Language

Page 36 of 36

