

Page 1 of 140

A Demonstration of 4D Digital Avatar

Infrastructure for Access of Complete

Patient Information

Project acronym: MyHealthAvatar

Deliverable No. D3.7 v2.0

Integrated Platform with an evaluation

report

Grant agreement no: 600929

Page 2 of 140

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: MyHealthAvatar

Project Full Name: A Demonstration of 4D Digital Avatar Infrastructure for Access of

Complete Patient Information

Deliverable No.: D3.7

Document name: Integrated platform with an evaluation report

Nature (R, P, D, O)1 R

Dissemination Level (PU, PP, RE,

CO)2

PU

Version: 2.0

Actual Submission Date: 2/06/2016

Editor:

Institution:

E-Mail:

Manolis Tsiknakis

TEI-C

tsiknaki@ie.teicrete.gr

1 R=Report, P=Prototype, D=Demonstrator, O=Other
2 PU=Public, PP=Restricted to other programme participants (including the Commission Services), RE=Restricted to a group
specified by the consortium (including the Commission Services), CO=Confidential, only for members of the consortium
(including the Commission Services)

Page 3 of 140

ABSTRACT:

This deliverable provide information about the integration of tools and services that support the 4D

digital avatar. More specifically, the infrastructure needs to support the integration of data/model

utilities, the ICT toolboxes and the model/data repository, and demonstrate capacities of linking

towards the external data resource. The integration will provide a front-end web interface for users

to access the system, e.g. use of the avatar toolboxes; and a back-end workflow mechanism that

manages data access and storage, model processing, and model composition. The integrated

platform pays special attention to the systems that reside in different geographic area and use

different implementation platforms, which mimics the real systems deployments. Also, links to

computing clusters and supercomputing facilities are also integrated to support the computing

demands of the avatar, e.g. running of the simulation models.

KEYWORD LIST:

Integration, API, User Requirements, Standards, Guidelines, Protocols, IT, State-Of-the-Art

The research leading to these results has received funding from the European Community's Seventh

Framework Programme (FP7/2007-2013) under grant agreement o 600929.

The author is solely responsible for its content, it does not represent the opinion of the European

Community and the Community is not responsible for any use that might be made of data appearing

therein.

Page 4 of 140

MODIFICATION CONTROL

Version Date Status Author

1.0 06/10/2015 Draft Manolis Tsiknakis

1.1 05/12/2015 Draft Stelios Sfakianakis, Kostas Marias

1.2 05/01/2016 Draft Emmanouil G. Spanakis, Stelios Sfakianakis

1.4 25/01/2016 Draft Feng Dong, Nikolaus Forgo, Sarah Jensen,
Zhikun Deng, Haridimos Kondilakis, Nikolaos
Christodoulou, Eleni Georgiadi, Nikolaos
Tousert, Georgios Stamatakos

1.0 15/02/2016 Final Manolis Tsiknakis , Emmanouil G. Spanakis,
Kostas Marias

2.0 2/06/2016 Final Manolis Tsiknakis , Emmanouil G. Spanakis,
Kostas Marias, Feng Dong, Stelios Sfakianakis,
Nikolaos Christodoulou, Haridimos Kondylakis

List of contributors

 Tsiknakis Manolis (TEI-CRETE)

 Ν. Bidakis (TEI-CRETE)

 V. Fragopoulou (TEI-CRETE)

 Emmanouil G. Spanakis (FORTH-ICS)

 Haridimos Kondilakis (FORTH-ICS)

 Kostas Marias (FORTH-ICS)

 Stelios Sfakianakis (FORTH-ICS)

 Nikolaus Forgó (LUH)

 Feng Dong (BED)

 Sarah Jensen (LUH)

 Zhikun Deng (BED)

 Nikolaos Christodoulou (ICCS-NTUA)

 Eleni Georgiadi (ICCS-NTUA)

 Nikolaos Tousert (ICCS-NTUA)

 Georgios Stamatakos(ICCS-NTUA)

Page 5 of 140

Contents

Table of Contents
1 EXECUTIVE SUMMARY ... 7

2 INTRODUCTION .. 8

2.1 PURPOSE OF THIS DOCUMENT ... 8

3 MYHEALTHAVATAR INTEGRATION METHODOLOGY ... 9

3.1 DESIGN .. 9
3.2 REQUIREMENTS ... 10
3.3 DEVELOPMENT .. 10
3.4 QUALITY METRICS .. 10
3.5 PLATFORM TESTING METHODOLOGIES .. 16

3.5.1 Software and platform testing .. 17
3.5.2 Software Testing and ISO Standards ... 18
3.5.3 Integration testing check list ... 21
3.5.4 Methodologies used for testing the MHA software components ... 21
3.5.5 MHA tests reports and results .. 24
3.5.6 Review of MyHealthAvatar architecture ... 54

3.6 MYHEALTHAVATAR STAKEHOLDERS ... 54
3.7 MYHEALTHAVATAR ARCHITECTURAL DESIGN AND VIEWS ... 55
3.8 MYHEALTHAVATAR DEMONSTRATION USE CASES ... 57

3.8.1 Diabetes and Emergency Demo .. 58
3.8.2 Personalized CHF Related Risk Profiles and "Real-Time Monitoring" (CHF) 58
3.8.3 Osteoarthritis (OST) .. 59
3.8.4 Nephroblastoma (Wilms Tumour) Simulation Model and Clinical Trial (UC-NEPH): In-silico Profiling
of Patients and Predictions .. 59

3.9 MYHEALTHAVATAR INTEGRATED PLATFORM ... 60
3.10 MYHEALTHAVATAR INTEGRATION/DEPLOYMENT ENVIRONMENT ... 63

4 MYHEALTHAVATAR TECHNICAL INTEGRATION AND EVALUATION ... 65

4.1 MYHEALTHAVATAR PORTAL .. 65
4.1.1 Dashboard ... 65
4.1.2 Diary .. 65
4.1.3 Timeline... 66
4.1.4 Clock View ... 66
4.1.5 Map ... 66

4.2 MYHEALTHAVATAR MOBILE APPLICATION .. 67
4.2.1 Overview on the mobile application ... 67
4.2.2 Statistics view on the mobile application .. 67
4.2.3 Day views on the mobile app .. 67
4.2.4 Chat interface ... 68
4.2.5 Profile summary and visualization .. 69

4.3 MYHEALTHAVATAR TOOLBOX / DATA COLLECTION UTILITIES .. 69
4.3.1 User Profile Data ... 69
4.3.2 Risk assessment in toolboxes .. 70
4.3.3 LifeTracker .. 71
4.3.4 Security, Authentication and Consent module .. 71

4.4 MYHEALTHAVATAR DATA REPOSITORIES .. 72
4.4.1 MHA central repository (Casandra) .. 72
4.4.2 DICOM repository ... 72
4.4.3 Model repository ... 73

Page 6 of 140

4.5 SEMANTIC INTEGRATION – DATA ACCESS/MODEL LAYER .. 73
4.5.1 MyHealthAvatar Ontology Suite ... 73
4.5.2 Semantic Data Warehouse ... 75
4.5.3 Exelixis - Semantic Integration Engine and Evolution Module .. 76
4.5.4 RDF Digest - Semantic Summarization Module .. 77
4.5.5 Semantic Search Engine (SSE) ... 78
4.5.6 Alerts Engine ... 79

4.6 AUDITING SERVICE ... 80
4.7 LINKING WITH EXTERNAL DATA SOURCES .. 80

4.7.1 Electronic Health Records ... 80
4.7.2 Data repositories (CHIC repository) .. 82
4.7.3 Drug data repositories .. 83
4.7.4 Personal Health Records ... 84
4.7.5 Link with Social Network Services ... 85

4.8 MYHEALTHAVATAR API .. 85
4.8.1 Overview ... 85
4.8.2 MHA API Endpoints ... 85
4.8.3 MHA Clinical API ... 88

4.9 USE CASE INTEGRATION AND EVALUATION ... 89
4.9.1 Diabetes .. 89
4.9.2 Personalized CHF Related Risk Profiles and "Real-Time Monitoring" (CHF) 101
4.9.3 Osteoathritis (oaCARE, oaCARE+) ... 108
4.9.4 Nephroblastoma ... 124

5 CONCLUSION .. 140

Page 7 of 140

1 Executive Summary

MyHealthAvatar proposes a solution for access, collection and sharing of long term and consistent

personal health status data through an integrated environment, which will allow more sophisticated

clinical data analysis, prediction, prevention and in silico treatment simulations tailored to the

individual citizen. The ambitious work programme of MyHealthAvatar presents great challenges

from the technological point of view in order for the produced system to be a coherent set of

interoperable software components. Therefore the aim of this deliverable is to specify the

guidelines that are needed for the integration of all MyHealthAvatar architectural elements into an

integrated, coherent and consistent platform. In addition, we describe the methodologies and the

tools that are required to monitor the specific architectural components and the integration process

as a whole.

This deliverable elaborates on the MyHealthAvatar architecture that is defined in deliverable D3.2

and presents the integration status of the platform using the select user scenarios and applications.

As stated in the Description of Work these guidelines will be created based on the integration

experiences and platform evolution based on the architecture definition of the platform. MHA

architecture description is refined on an iterative approach with annual updates and revisions thus

this deliverable present the final view of the platform design and final integration of MHA platform.

In the rest of this document we outline the relevant key points of the MyHealthAvatar architecture,

we examine practices and guidelines from related projects regarding integration procedures, we

elaborate on the quality management guidelines and how they affect the integration process, we

present a certification process to monitor and measure the compliance of architectural elements to

the integration guidelines, we propose best practices for the development of REST web services and

we propose guidelines on integrating the architectural elements with the privacy framework of p-

medicine.

Finally we present the results of the evaluation process of the high level functionalities and

applications of the platform both from the end-user point of view and from the technical perspective.

Page 8 of 140

2 Introduction

2.1 Purpose of this document

The purpose of the MyHealthAvatar project is to deliver an IT infrastructure, both as an open

architecture and as a set of architectural elements which realize this architecture. This

infrastructure enables and enhances the provision of personalized medical treatment, at all phases

such as diagnosis, treatment, patient empowerment, clinical decision support, etc. In order to be

able to provide MHA services are defined and implemented as a modular, extensible integrated

architectural platform able to adapt and incorporate the advances in science, cover the interactions

between different types of stakeholders and scientists, integrate health and health related data, to

actually provide a useful platform and not just a set of isolated and independent tools and services

which do not cooperate and interact as much as it would be desirable. The purpose of this document

is to provide the integration procedure and implementation from each developer of all architectural

elements, in order to deliver solid components that will be able to be integrated smoothly with the

rest of the architectural elements while taking into account the constraints and the

recommendations set by the reference architecture.

Page 9 of 140

3 MyHealthAvatar Integration Methodology

The methods for integration provides the required steps for integration & validation of informal

software engineering building blocks. The software design and development team and test engineers

developed a strategy for planning, design, execution, data collection, and testing for quality

evaluation. The integration activities are informal and flexible for software checkout to prepare for

the software and systems integration phase for the work product. MHA methodology for integration

describes the steps that were conducted as part of the implementation of necessary software

elements and integration activities to implement the final MHA system platform. The methodology

was flexible and promote an approach were all relevant partners conducted effective technical

reviews in each different step of the implementation and the final step of integration, presented

different integration techniques and software approaches through designers involved from the start

to the finish. The following picture presents a schematic of our approach. The technical manager with

the WP3 leader (responsible for the architecture design) and the coordinator guided the process

through the project. Below we analyse the most important issues for integration activities followed.

3.1 Design

External software interfaces are defined as part of derived software requirements. To support systems

design, graphical representations are prepared and take the form of data flow, collaboration and

communications, and component diagrams. Proper systems design is needed by the product team

and the requirements personnel that works with users to ensure an accurate and complete

understanding of the restrictions of a system or subsystem that affects work products. Systems design

allows you to analyse customer requirements, satisfy specified requirements, and develop a software

design and development migration plan for defining the architecture, components, modules,

interfaces, and necessary data3. This is important for communication, knowledge, the visibility into

the software life-cycle, and integration operations. The system and subsystem requirements reviewed

by program and project personal ensure accurate and complete understanding of the restrictions of

systems design and applied work products. If program or project plans include reusable software

interfaces, you can identify and evaluate the requirements. The term “reusable software” is a common

term used in military and aerospace programs and/or projects. External software interfaces are

defined as part of derived software requirements. To support systems design, graphical

representations are prepared and take the form of data flow, collaboration and communications, and

component diagrams. The requirements for a system design definition are reviewed with applicable

users to ensure an accurate and complete understanding of the restrictions of a system or subsystem

that affects work products. The external software interface is defined at those levels and verified for

completeness. The program and project plans at times include reusable software and identified

3 Summers BL. Effective methods for software and systems integration. CRC Press; 2012 Jun 1.

Page 10 of 140

interface requirements for use. The external interfaces based on software architecture definitions are

part of derived software requirements also.

3.2 Requirements

Defined and documented software requirements provide a systematic approach to developing

software requirements derived from multiple resources. The combination of functional software

interfaces, performance, verification, and production with required plans, documentation, and

procedures make up the basis for software design or development. This discipline can be applied to

the initial development of software requirements and any changes to requirement baselines.

3.3 Development

System development is a consistent approach and method to the development of software

requirements in defined designs of a work product. The software architecture definition provides a

framework for the creation of the product design and, at times, can provide constrictions. The

software design definition implements details about a software product architecture, components,

and interfaces. Software designers use element traceability of the design and the software

requirements are used by software designers. The traceability data and software design definitions

are documented according to program and project plans, ideas, processes, procedures, and applicable

internal work instructions.

3.4 Quality metrics

The ISO (International organization for standardization, http://www.iso.org/iso/home.html) SQuaRE

(Software product Quality Requirements and Evaluation) 4, will be used as reference model; it lists

standards in terms of: General Guidance: ISO/IEC 25000, Particular Guidance: ISO/IEC 25040 (ISO/IEC

9126-1 and ISO/IEC 14598-1) and Execution: ISO/IEC 25041 (ISO/IEC 14598-6), ISO/IEC 25042 (ISO/IEC

14598-3), ISO/IEC 25043 (ISO/IEC 14598-4).

We point out the different point of view for quality evaluation: Evaluation process for developers

(ISO/IEC 14598-3), to use when the evaluation is conducted in parallel with the development and

Evaluation process for acquirers (ISO/IEC 14598-4), to use during modifications to existing software

products. The general reference is contained in the evaluation reference model and guide (ISO/IEC

9126-1 and 14598-1) and structure and content of the documentation to be used is listed in (ISO/IEC

14598-6).

User needs specify also the required level of quality from the end user point of view. The defined

requirements have to be seen from an external and an internal view as defined below:

4 ISO/IEC 25000:2005 Systems and software engineering - Systems and software Quality Requirements and Evaluation

(SQuaRE) -- Guide to SQuaRE. Geneva, Switzerland: ISO/IEC.

Page 11 of 140

- External SW quality requirements: are used as the target for technical verification and

validation of the software product

- Internal SW quality requirements: quality from the internal view of the product, they are used

to specify properties of intermediate software products.

Figure 3-1: Adapted from ISO/IEC 14598 modules organization.
The numbers in the round brackets represent the modules: i.e. if (2), then ISO/IEC 14598-2, etc.

To assess quality levels, the end user and/or evaluator have to receive a list of metrics that she/he

can measure. Internal metrics are associated to the software product architecture and allow to

predict the final product quality; external metrics are measurable when the product is under

operation. The ISO standard identifies major quality characteristics, each one having some sub-

properties which specialize in more depth that characteristic. Below we outline their essential

purpose and properties5.

Figure 3-2: ISO/IEC 9126 metrics and the QUINT extension.

3.4.1.1 Functionality

Functionality is the core property of a system, which summarizes the essential functions that the

system must provide. The functionality depends on the requirements from that system and if the

5 http://www.sqa.net/iso9126.html

http://www.sqa.net/iso9126.html
http://www.sqa.net/iso9126.html

Page 12 of 140

system is not functional, then the rest of the characteristics, such as usability or reliability, do not

really matter. Functionality is measured by the degree of conformance to the user requirements, and

is better expressed by decomposing it to the following properties:

 Suitability. The appropriateness of the functions to the specification of the system Accuracy.

The correctness of the functions.

 Interoperability. The ability of a system or component to interact with other systems or

components.

 Compliance. The compliance with laws or guidelines, when such a requirement exists.

 Security. The ability to prevent unauthorized access or intervention with the system.

 Traceability. The ability to keep trace, for auditing purposes, of the operation of the system.

3.4.1.2 Reliability

Once the system is functional then the reliability characteristic defines and measures the capability

of the system to maintain its functionality under certain conditions. To further analyze the reliability

of the system, we define the following sub-characteristics:

 Maturity. The frequency of failure of the system.

 Fault tolerance. The ability to withstand a failure.

 Recoverability. The ability to recover a failed system to fill operation.

 Availability. The ability to maintain a prearranged level of operational performance.

Degradability. The ability to continue operating in case of a failure, with a graceful decrease of

operation proportional to the severity of failure.

3.4.1.3 Usability

Similar to the reliability characteristic, the usability of a system is meaningful once the system is

functional and it refers to the easiness to learn and perform a function. The sub-characteristics of

usability are:

 Understandability. The easiness to understand the system functions.

 Learnability. Learning effort required (for different users, such as novice, expert etc.)

 Operability. The ability to operate the system by a given user in a given environment.

3.4.1.4 Efficiency

The efficiency of a system concerns the needed resources to provide the required functionality, such

as memory, storage space, network, etc. The efficiency characteristic many times influences the

usability of a system. Sub-characteristics of efficiency are:

 Time behavior. The response time to a given action in certain conditions.

 Resource behavior. The resources used in certain conditions.

Page 13 of 140

3.4.1.5 Portability

The portability of a system refers to its ability to adapt to changes in its operational environment or

its requirements. Sub-characteristics of portability are:

 Adaptability. The ability of the system to change to new specifications or environments.

 Installability. The effort required to install the system.

 Conformance. A characteristic similar to compliance (functionality) in relation to portability.

 Replaceability. How easy it is to exchange or replace a specific component by another in a

specified environment.

3.4.1.6 Maintainability

The maintainability of a system refers to its ability to keep performing and the effort required to fix,

change, test, reuse it etc. Sub-characteristics of maintainability are:

 Analyzability. The ability to identify the cause of a failure in the software.

 Changeability. The effort required to change the system.

 Stability. The sensitivity to change of a system and the degree of negative impact that a change

may cause.

 Testability. The effort required to verify a system change.

 Manageability. The effort required to monitor the system and keep it performing.

 Reusability. The suitability of the system to be used again under slight or no modifications.

For each characteristic listed above, an appropriate measure which quantifies the corresponding

metric must be specified. For some of these metrics, a numerical or quantifiable measure is harder

to be applied than others because of their subjective nature. For this matter, an alternative scale has

been proposed by the ISO standard where each metric can be compared with a minimum level or

target range which sets the measured quality as acceptable or not.

Figure 3-3: Degrees of satisfaction and interpretation (ISO/IEC)

It is a hard task to set the satisfactory on unsatisfactory ranges of satisfaction for each architectural

element (AE) individually, and to measure them for all of the characteristics listed above, since that

would require close examination of the requirements of all components. So, what we propose is to

Page 14 of 140

require for each component to provide test clients and appropriate source code or test scripts,

which will enable developers and users to examine the above characteristics by their own.

Monitoring of services

3.4.1.7 Testing clients

An essential part of the integration process is the monitoring of all components. Monitoring involves

continuous tests in many different aspects such as stability, reliability, fault tolerance, efficiency,

security etc. In our view, most of these aspects are covered by the corresponding key domains of the

ISO 9126 metrics and its extensions. Thus, monitoring of the tools and services of MyHealthAvatar is

a process embedded in the quality management of the whole project and can be part of the same

procedure.

One of the quality management metrics of ISO 9126 is testability. There are various artefacts required

during the evaluation of the compatibility and interoperability of a system/component. These

artefacts include also test scripts, source code or example clients for the evaluated components,

along with any other relevant documentation. We propose that the same kind of artefacts be

required for the integration process of a various MyHealthAvatar component into the platform for

testability reasons.

Each component provider is responsible to provide the testing client, either in the form of source

code snippets or a complete client, depending on the nature of the evaluated component. The testing

clients can be provided in whatever format or language is considered appropriate by their developers,

but for interoperability and reusability reasons we strongly recommend that the testing clients be in

a form that can be easily integrated, without major revisions, to the MyHealthAvatar portal.

These clients will be used to support many different needs, both during and after the integration

process:

 To evaluate the functionality of a component during the integration process with other

components.

 To validate the conformance to protocols, standards or integration guidelines.

 To validate its compliance with the security guidelines.

 To evaluate the component in terms of efficiency and performance.

 To evaluate and monitor the component in terms of stability, reliability and fault tolerance. To

be used as exemplar use case while integrating with another component or service.

3.4.1.8 Testbed

For the needs of the integration process and for the monitoring of the components, we shall set-up

a test-bed infrastructure. This test-bed shall be composed either from physical or virtual (based on

virtualization software) computers, to provide for each use case the necessary environment and

configurations such as operating system, libraries, databases, firewalls, security mechanisms,

network configuration etc.

Page 15 of 140

The need for a test-bed results from the distributed nature of the participating components. Although

the development of the MyHealthAvatar components is distributed, due to the geographical

distribution of the involved partners, there is the need to test the components in a deterministic

process which can better be supported by a centrally installed system.

By using a test-bed:

 We shall reproduce and verify the documentation of a component, as to what are the necessary

installation and operation environment, and the step-by-step installation procedure.

 We shall use it as a Sandbox where we can test and validate the security of the components, in

terms of compliance with the security guidelines.

 We shall document the necessary steps, from installation to operation and maintenance, of a

use case.

 We shall replicate and demonstrate a use case / scenario.

 We shall use it to verify interconnectivity, interoperability and compliance between different

architectural components.

 We shall reproduce and debug reported errors or problems.

In order to set-up the test-bed, each component shall clearly state in its documentation its

requirements and its dependencies, such as the needed operating system, runtime environment,

network configuration, etc. with specific versions or releases with which it has been tested. The

private cloud of MHA has provided the test bed facilities. All details are presented in deliverables

D3.2, and D3.2 version 2.0 and shortly described in the Integration environment/infrastructure of this

deliverable.

Page 16 of 140

3.5 Platform testing methodologies

In this section we present the integration approach and the software testing methodologies for

the MyHealthAvatar platform. Typically the integration process deals with two distinct topics:

the integration tests and the results showing the outcome of the execution of the tests during

integration. Software testing is conducted to provide and objective, independent view about the

quality of the product or service under test. Software testing involves the execution of a

software component or system component to evaluate one or more properties of interest. In

general, these properties indicate the extent to which the component or system under test:

meets the requirements that guided its design and development, responds correctly to all kinds

of inputs, performs its functions within an acceptable time, is sufficiently usable, can be installed

and run in its intended environments, and achieves the general result its stakeholders desire. As

the number of possible tests for even simple software components is practically infinite, all

software testing uses some strategy to select tests that are feasible for the available time and

resources. As a result, software testing typically (but not exclusively) attempts to execute a

program or application with the intent of finding bugs errors or other defects. The job of testing

is an iterative process as when one bug is fixed, it can illuminate other, deeper bugs, or can even

create new ones.

Software testing management tools are used to store information on how testing is to be done,

plan testing activities and report the status of quality assurance activities. The tools have

different approaches and thus have different sets of features. Generally they are used to

maintain and plan manual testing, run or gather execution data from automated tests, manage

multiple environments and to enter information about found defects. These tools offer the

prospect of streamlining the testing process and allow quick access to data analysis,

collaborative tools and easy communication across multiple project teams. Many test

management tools incorporate requirements management capabilities to streamline test case

design from the requirements. Tracking of defects and project tasks are done within one

application to further simplify the testing. Test Management encompasses anything and

everything that we do as testers: creating and maintaining release /project cycle /component

information, test artifacts specific to each release /cycle; establishing traceability and coverage

between the test assets; test execution support – test suite creation, test execution status

capture, etc; metric collection/report-graph generation for analysis; and finally bug

tracking/defect management. The above are broadly some of the tasks that involve what we

call, the test management process. This process is critical, detail-oriented and instrumental is

making sure that the entire testing effort is successful.

https://en.wikipedia.org/wiki/Operating_environment
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Requirements_management

Page 17 of 140

Some of the most well known and used management tools are listed below (this is an indicative

list and we have to acknowledge that much more management tools – designed for specific

requirements exist6):

 Atera Remote Monitoring Management (RMM), Professional Service Automation (PSA)
and remote control - customer happiness in one place.

 Telecommunications Management Calero is a leading provider of IT Telecom
Management solutions with a deep commitment to innovation & customer service.

 JIRA Service Desk Redefine what IT means for your business with JIRA Service Desk

 Desktop Central Helps administrators to
automate, standardize, secure, and audit
their windows network. Desktop Central now
supports MDM also.

An extensive comparison of various similar tools can

be found here7. This study divides and categorizes a

big number of tools based on Design, GUI (Graphical

User Interface), Load and Performance,

Management, Implementation, Evaluation, Static

Analysis and outside of inspection: Defect Tracking,

Web Sites and Miscellaneous.

3.5.1 Software and platform testing

A definition of software testing can be given as “the process that is followed in order to verify

that the system being tested conforms to the requirements that have been specified”. We

followed several testing phases during the development of the final platform: unit and

component testing, integration testing and system (or user acceptance) testing and evaluation.

Unit and component tests mainly focus on functional testing, finding and eliminating bugs in the

components that comprise the system. The final integration was the process of successfully

putting together various components, assemblies, and subsystems to assemble all different

resources in to a complex system/platform making sure that all functionalities are operating

successfully. System integration in MyHelathAvatar followed the coding/implementation phase

in the development life cycle, starting with the requirement gathering phase, the design the

implementation and unit test, the integration and testing of the platform, the user validation

and the deployment of the final solution.

6 http://www.softwaretestinghelp.com/15-best-test-management-tools-for-software-testers/
7 http://www.cs.uef.fi/tutkimus/Teho/SoftwareTestingTools.pdf

http://www.capterra.com/external_slp_click/semlp-2-upgraded-product/1/2102046/144309/sysman/aHR0cDovL2JpdC5seS8xTkpBQmFl
http://www.capterra.com/external_slp_click/semlp-2-upgraded-product/2/2019243/140724/sysman/aHR0cDovL3d3dy5jYWxlcm8uY29tL2NsbS9leHBlbnNlcy9leHBlbnNlLW1hbmFnZW1lbnQtaXRlbS8*dXRtX2NhbXBhaWduPUlUJTIwVGVsZWNvbSUyME1hbmFnZW1lbnQmdXRtX21lZGl1bT1DYXB0ZXJyYSZ1dG1fc291cmNlPVBhaWQ=
http://www.capterra.com/external_slp_click/semlp-2-upgraded-product/3/2096585/138191/sysman/aHR0cHM6Ly93d3cuYXRsYXNzaWFuLmNvbS9zb2Z0d2FyZS9qaXJhL3NlcnZpY2UtZGVzaz91dG1fc291cmNlPWNhcHRlcnJhJnV0bV9tZWRpdW09cGFpZC1jb250ZW50JnV0bV9jb250ZW50PWl0LW1hbmFnZW1lbnRfdmlzaXQtd2Vic2l0ZS1idXR0b25fZW4mdXRtX2NhbXBhaWduPXNlcnZpY2UtZGVza19jYXB0ZXJyYS1saXN0aW5n
http://www.capterra.com/external_slp_click/semlp-2-upgraded-product/4/2008008/83968/sysman/aHR0cDovL3d3dy5tYW5hZ2VlbmdpbmUuY29tL3Byb2R1Y3RzL2Rlc2t0b3AtY2VudHJhbC8*dXRtX3NvdXJjZT1jYXB0ZXJyYSZ1dG1fbWVkaXVtPXBwYyZ1dG1fdGVybT1qdWwxMyZ1dG1fY29udGVudD1pbmRleCZ1dG1fY2FtcGFpZ249REM=
http://www.softwaretestinghelp.com/15-best-test-management-tools-for-software-testers/
http://www.cs.uef.fi/tutkimus/Teho/SoftwareTestingTools.pdf

Page 18 of 140

Integration tests usually deal

with functional and non-

functional system behaviour

identifying problems in the

relationships and interfaces

between incrementally

integrated components.

Finally, acceptance tests pay

explicit attention in

conformance to requirements at the fully integrated system. This section focuses mainly on unit

and integration tests and user acceptance tests. Since different components are developed by

different partners, integration plays an important role as each partner is able to test only the

individual component the partner is involved in, but not the integrated backend system. Some

typical component tests are carried out to verify that the various components have the expected

functionality, but component testing is considered to have already been done by the developer

of each component. Unit tests are not covered in the test plan at all, since they are specifically

valuable only during implementation (in fact, in agile software development methodologies unit

testing is at the centre of the implementation philosophy, which is thus appropriately named

“test-driven development”).

The diagram on the right

explains the plans for the

integration in conjunction

with the testing in detail.

Integration testing within

MHA was used to assure

developers that the

integrated product is

properly functional.

Integrated modules that fail

testing are sent back for debugging and rework.

During the final year of the project all tests results were analyzed to determine erroneous

situations components/services and software interfaces in order to be sent back for recoding by

the developing teams. The technical manager and WP3 leader were responsible for this. If a

problem appears with the design, the modules involved are sent back for redesign, in order to

resolve the problem. This process loop continued until all problems are solved. After rework, all

lower-level integration and test cycles are repeated prior to repeating the higher-level

integration. This is part of the regression testing process and is used to detect any new errors

that may slip in due to “fixing” other problems.

3.5.2 Software Testing and ISO Standards

Testing is the process of evaluating a system or its component(s) with the intent to find that whether

it satisfies the specified requirements or not. This activity results in the actual, expected and difference

Page 19 of 140

between their results. In simple words testing is executing a system in order to identify any gaps,

errors or missing requirements in contrary to the actual desire or requirements. According to

ANSI/IEEE 1059 standard, Testing can be defined as “A process of analyzing a software item to detect

the differences between existing and required conditions (that is defects/errors/bugs) and to evaluate

the features of the software item”. Many organizations around the globe are developing and

implementing different Standards to improve the quality needs of their Software.

The next section briefly describes some of the widely used standards related to Quality Assurance and

Testing. Here is a definition of some of them:

ISO/IEC 9126: This standard deals with the

following aspects to determine the quality

of a software application: Quality model;

External metrics; internal metrics; Quality in

use metrics.

This standard presents some set of quality

attributes for any Software such as:

Functionality; Reliability; Usability;

Efficiency; Maintainability; and Portability.

These quality attributes are further divided

into sub-factors. These sub characteristics

can be measured by internal or external

metrics as shown in the graphical depiction

on the right of ISO-9126 model.

ISO/IEC 9241-11: Part 11 of this standard deals with the extent to which a product can be used by

specified users to achieve specified goals with Effectiveness, Efficiency and Satisfaction in a specified

context of use. This standard proposed a framework which describes the usability components and

relationship between them. In this standard usability is considered in terms of user performance and

satisfaction. According to ISO 9241-11 usability depends on context of use and the level of usability

will change as the context changes.

ISO/IEC 25000: ISO/IEC 25000:2005 is commonly known as the standard which gives the guidelines

for Software product Quality Requirements and Evaluation (SQuaRE). This standard helps in organizing

and enhancing the process related to Software quality requirements and their evaluations. In reality,

ISO-25000 replaces the two old ISO standards i.e. ISO-9126 and ISO-14598. SQuaRE is divided into sub

parts such as: ISO 2500n - Quality Management Division; ISO 2501n - Quality Model Division; ISO

2502n - Quality Measurement Division; ISO 2503n - Quality Requirements Division; and ISO 2504n -

Quality Evaluation Division. The main contents of SQuaRE are: Terms and definitions, Reference

Models, General guide, Individual division guides and Standard related to Requirement Engineering

(i.e. specification, planning, measurement and evaluation process

Page 20 of 140

ISO/IEC 12119: This standard deals with Software packages delivered to the client. It does not focus

or deal with the client’s (the person/organization whom Software is delivered) production process.

The main contents are related to the following items: Set of Requirements for Software packages;

Instructions for testing the delivered Software package against the requirements;

ISO/IEC/IEEE 29119: The purpose of the ISO/IEC/IEEE 29119 series of software testing standards is to

define an internationally-agreed set of standards for software testing that can be used by any

organization when performing any form of software testing. This standard includes templates and

examples of test documentation. The templates are arranged within clauses reflecting the overall test

process description structure in ISO/IEC/IEEE 29119-2, i.e. by the test process in which they are being

produced. Annex A contains outlines of the contents of each document. Annex B contains mappings

of ISO/IEC/IEEE 29119-2. Annex C contains an overview of the examples. Annexes D to S contain

examples of the application of the templates. Annex T provides mappings to existing standards. The

Bibliography for ISO/IEC/IEEE 29119-3:2013 is at the end of the document. ISO/IEC/IEEE 29119-3:2013

supports dynamic testing, functional and non-functional testing, manual and automated testing, and

scripted and unscripted testing. The documentation templates defined in ISO/IEC/IEEE 29119-3:2013

can be used in conjunction with any software development lifecycle model.

Some of the other standards related to QA and Testing processes are:

IEEE 829: A standard for the format of documents used in different stages of software testing.

IEEE 1061: A methodology for establishing quality requirements, identifying, implementing, analyzing,

and validating the process and product of software quality metrics is defined.

IEEE 1059: Guide for Software Verification and Validation Plans.

IEEE 1008: A standard for unit testing.

IEEE 1012: A standard for Software Verification and Validation.

IEEE 1028: A standard for software inspections.

IEEE 1044: A standard for the classification of software anomalies.

IEEE 1044-1: A guide to the classification of software anomalies.

IEEE 830: A guide for developing system requirements specifications.

IEEE 730: A standard for software quality assurance plans.

IEEE 1061: A standard for software quality metrics and methodology.

IEEE 12207: A standard for software life cycle processes and life cycle data.

BS 7925-1: A vocabulary of terms used in software testing.

BS 7925-2: A standard for software component testing.

Page 21 of 140

3.5.3 Integration testing check list

In MyHealthAvatar we created a checklist to be used as a guideline for understanding general system

integration issues of the platform. If a question cannot be answered affirmatively, the associated issue

was carefully examined and appropriate action was taken.

Before starting

 Have you implemented your system taking into account the development life cycle approach?

 Do your test plans include and support integration efforts?

 Does your development plan allocate adequate time and resources for system integration efforts,
including rework time?

 Are the interfaces between components, assemblies, subsystems, and systems defined in adequate
detail?

 Will hardware be available for testing software during integration (i.e. activity sensor, mobile
phones)?

 Is there a contingency plan if the schedule slips or if the integration schedule is compressed?

 Are all elements of the system included in the integration plan?

 Is all necessary documentation current and available for reference?

During the integration phase

 Is there an efficient rework cycle in place to fix problems found during integration testing?

 Are “fixed” modules or components integrated and retested at all levels of integration up to the
level where the problem was found?

 Is the people element (operators, maintainers, logisticians, trainers, etc.) being prepared to work
with the system when it is deployed?

 Are you following an iterative, progressive integration process?

 Are experienced integrators involved with the integration?

 Are area/subject matter experts involved with the integration?

 Is adequate time being allowed for integration, testing, rework, reintegration, and retesting?

 Are all necessary resources being made available for integration?

 Is adequate testing being performed on integrated units (assemblies, subsystems, elements, system)
to ensure that there are no surprises during acceptance testing?

 Are you updating documentation during rework?

 Are integration and system test errors being traced back to requirements and design? And if so, are
the requirements and design being updated?

3.5.4 Methodologies used for testing the MHA software components

There are different methods which can be used for software testing. This section briefly describes

those methods and describes the ones employed for the testing of the SW componnets developed in

MyHealthAvatar.

Black Box Testing: testing without having any knowledge of the interior workings of the application is

Black Box testing. The tester is oblivious to the system architecture and does not have access to the

source code. Typically, when performing a black box test, a tester will interact with the system’s user

interface by providing inputs and examining outputs without knowing how and where the inputs are

worked upon. Advantages: Well suited and efficient for large code segments; Code Access not

Page 22 of 140

required; Clearly separates user’s perspective from the developer’s perspective through visibly

defined roles; and Large numbers of moderately skilled testers can test the application with no

knowledge of implementation, programming language or operating systems. Disadvantages: Limited

Coverage since only a selected number of test scenarios are actually performed; Inefficient testing,

due to the fact that the tester only has limited knowledge about an application; Blind Coverage, since

the tester cannot target specific code segments or error prone areas; but test cases are difficult to

design.

White Box Testing: the detailed investigation of internal logic and structure of the code. White box

testing is also called glass testing or open box testing. In order to perform white box testing on an

application, the tester needs to possess knowledge of the internal working of the code. The tester

needs to have a look inside the source code and find out which unit/chunk of the code is behaving

inappropriately. Advantages: As the tester has knowledge of the source code, it becomes very easy

to find out which type of data can help in testing the application effectively: in optimizing the code;

parts of code can be removed which can bring in hidden defects.; Due to the tester's knowledge about

the code, maximum coverage is attained during test scenario writing. Disadvantages: Due to the fact

that a skilled tester is needed to perform white box testing, the costs are increased; Sometimes it is

impossible to look into every nook and corner to find out hidden errors that may create problems as

many paths will go untested; It is difficult to maintain white box testing as the use of specialized tools

like code analysers and debugging tools are required.

Grey Box Testing: a technique to test the application with limited knowledge of the internal workings

of an application. In software testing, the term “the more you know the better” carries a lot of weight

when testing an application. Mastering the domain of a system always gives the tester an edge over

someone with limited domain knowledge. Unlike black box testing, where the tester only tests the

application’s user interface, in grey box testing, the tester has access to design documents and the

database. Having this knowledge, the tester is able to better prepare test data and test scenarios when

making the test plan. Advantages: Offers combined benefits of black box and white box testing

wherever possible; Grey box testers don’t rely on the source code; instead they rely on interface

definition and functional specifications; Based on the limited information available, a grey box tester

can design excellent test scenarios especially around communication protocols and data type

handling; The test is done from the point of view of the user and not the designer. Disadvantages:

Since the access to source code is not available, the ability to go over the code and test coverage is

limited; the tests can be redundant if the software designer has already run a test case; testing every

possible input stream is unrealistic because it would take an unreasonable amount of time; therefore,

many program paths will go untested.

Table 1: Comparison between the Three Testing Types

Black Box Testing Grey Box Testing White Box Testing

The Internal Workings of an
application are not required to

be known

Somewhat knowledge of the
internal workings are known

Tester has full knowledge of
the Internal workings of the

application

Page 23 of 140

Also known as closed box
testing, data driven testing and

functional testing

Another term for grey box
testing is translucent testing as

the tester has limited
knowledge of the insides of the

application

Also known as clear box
testing, structural testing or

code based testing

Performed by end users and
also by testers and developers

Performed by end users and
also by testers and developers

Normally done by testers
and developers

-Testing is based on external
expectations -Internal behavior
of the application is unknown

Testing is done on the basis of
high level database diagrams

and data flow diagrams

Internal workings are fully
known and the tester can

design test data accordingly

This is the least time
consuming and exhaustive

Partly time consuming and
exhaustive

The most exhaustive and
time consuming type of

testing

Not suited to algorithm testing Not suited to algorithm testing Suited for algorithm testing

This can only be done by trial
and error method

Data domains and Internal
boundaries can be tested, if

known

Data domains and Internal
boundaries can be better

tested

3.5.4.1 Functional Testing

Functional testing involves testing the application against the business/user/case requirements. It is

performed using the required functional specifications provided by the users of the application

(gathered during the design specifications phase). In MyHealthAvatar we had specific set of use cases

during the beginning of the project to collect the necessary user requirements of the system.

The functional testing can be broken down into four components

 Unit testing: testing of individual software modules or components that make up an application

or system.

 Integration testing: the testing of the different modules/components that have been successfully

unit tested when integrated together to perform specific tasks and activities (also known as

scenario testing). In MyHealthAvatar the platform has been tested and validated through

specific scenarios.

 System testing: testing the entire system for errors and bugs

 Acceptance testing: the final phase of functional software testing and involves making sure that

all the product/project requirements have been met and that the end-users and customers have

tested the system to make sure it operates as expected and meets all their defined

requirements.

3.5.4.2 Non-Functional Testing

Non-functional testing involves testing the platform against non-functional requirements, which

typically involve measuring/testing the system against defined technical qualities because for

example: vulnerability, scalability, usability. Some examples of non-functional testing are described

below:

Page 24 of 140

Performance, Load, Stress Testing: measuring how a system behaves under an increasing load (both

numbers of users and data volumes), load testing is verifying that the system can operate at the

required response times when subjected to its expected load, and stress testing is finding the failure

point(s) in the system when the tested load exceeds that which it can support.

Security, Vulnerability Testing: tests the platform for confidentiality, integrity, authentication,

availability, and non-repudiation. Individual tests are conducted to prevent any unauthorized access

to the software code. MHA has a security and legal framework which was followed during the

implementation and evaluation of the platform.

Usability Testing: looks at the end-user usability aspect of the software. The ease with which a user

can access the product forms the main testing point. Usability testing looks at five aspects of testing,

- learnability, efficiency, satisfaction, memorability, and errors. The usability testing is discussed in

Section XX in this deliverable for the four high end use case scenarios.

Compatibility Testing: tests that the platform is compatible with all the specified operating systems,

hardware platforms, web browsers, mobile devices, and other designed third-party programs (e.g.

browser plugins). Compatibility tests check that the product works as expected across all the different

hardware/software combinations and that all functionality is consistently supported.

3.5.5 MHA tests reports and results

Integration is an iterative, progressive process that has components integrated into assemblies,

then assemblies are tested for functionality and successful testing is followed by integration of

subsystems from assemblies, which are also tested for correct functionality to be able to

integrate subsystems into the complete platform that must be tested for functionality by the

end users. An absolute essential to the integration process is the detailed knowledge of the

interfaces among components, assemblies, subsystems, and between the system and other

external systems it will need to work with. Defining interfaces and maintaining those definitions

is a primary responsibility of the systems engineering and design process and is mandatory for

all developing partners and actors (all related info are include in deliverable D3.4). In addition

to the usability results a number of functional tests were also presented in D6.3, D6.4 and D8.2.

Successful system integration involved testing every module of the MHA platform and this was an on-

going procedure throughout the system’s development cycle. In MyHealthAvatar the starting point

for successful integration was the definition of the initial user requirement and the implementation

of the functional analysis (reported in D9.3 Report on the clinical acceptability and evaluation of

MyHealthAvatar and future recommendation), synthesis, user case studies, interface definition, etc.

In addition it is also necessary to be able to ensure activities such as configuration, design, and testing

that are essential to ensure all the pieces for integration.

The MyHeathAvatar’s partners responsible for the development of the platform selected different

approaches and ways of ensuring that the integrated platform is fully tested..

Page 25 of 140

MHA is a complex environment that includesa large number of different software components and

services that need to be tested and their functioning validated. It was thus important to follow a

robust testing methodology for making sure that software products/systems being developed have

been fully tested, to make sure they meet their specified requirements and guarantee that they can

successfully operate in all the anticipated environments with the required usability and security. As a

result the testing of the MHA platform’s software components encompass everything from unit

testing of individual modules, integration testing of the entire system to specialized forms of testing

such as security and performance. Below we present indicative results/reports on various software

testing performed within MyHealthAvatar

3.5.5.1 MyHealthAvatar Platform/API/Application-service tests

MHA web and API are coded in Java and automatically unit tested, mainly based upon following

libraries and frameworks:

 Maven: A build automation tool, which also manages project dependencies.

 JUnit: A popular Java unit-testing framework.

 REST-assured: A Java DSL for easy testing of REST services.

 Hamcrest: A framework for writing matcher objects allowing the rules to be defined declarively.

 Spring JUnit: Spring framework’s support for running unit-tests for Spring projects in JUnit.
Following is in everyday development of bug fixes, refactoring of existing codes and new features, unit

tests could be run directly from the development environment as part of the coding.

Figure 3-4: Run test during development from IDE’s context menu

Unit tests cases are mapped in a one to one relationship to the source code Java class file, for example

UserProfileController.java file from src/ folder will have its corresponding test

UserProfileControllerTests.java in test/ folder with same package names (for Java package access).

Page 26 of 140

We take one test case for example; in the first place meta-programming style annotations are used to

configure the test class:

// We need the SpringJUnit4ClassRunner so that an application context is created.

@RunWith(SpringJUnit4ClassRunner.class)

// The @SpringApplicationConfiguration annotation is similar to the @ContextConfiguration

// annotation in that it is used to specify which application context(s) that should be used in the test.

// Additionally, it will trigger logic for reading Spring Boot specific configurations, properties, and so on

@SpringApplicationConfiguration(classes = ApiApplication.class)

// @WebAppConfiguration must be present in order to tell Spring that a WebApplicationContext should be loaded

// for the test. It also provides an attribute for specifying the path to the root of the web application.

@WebAppConfiguration

// the value 0 has a special meaning. When specified,

// it tells Spring Boot to scan the ports on the host environment and start the server on a random, available port

@IntegrationTest("server.port:0")

public class UserProfileControllerTests {

 // …

}

Within the class, the stage for the test cases are set up, which configure the sample data files to be

used, as well as username to test, etc.

@Value("${local.server.port}")

int port;

String activitiesJson;

private String username = "demo1";

@Before

public void setUp() throws IOException, URISyntaxException {

 URI jsonFileURI = this.getClass().getResource("/moves-2015-02-02.json").toURI();

 activitiesJson = new String(

 Files.readAllBytes(

 Paths.get(jsonFileURI)

)

);

 RestAssured.port = port;

 RestAssured.registerParser("text/plain", String.class);

}

For unit test cases themselves, they are normally fairly short and self-explained by reading the source

code.

For example, following test cases will test post sample JSON profile to API will end with http status of

201 (created) and result of ‘ok’:

@Test

public void canT10PostProfile() {

 given()

 .contentType("application/json").body(fullProfileJson)

 .when().post(Configure.contextPath + "/user/full_profile?username=" + username)

Page 27 of 140

 .then()

 .statusCode(HttpStatus.SC_CREATED)

 .content(Matchers.containsString("ok"));

}

It is extremely important to unit test code written and MHA aim to cover the code as much as the

resource is able to reach. It currently has the line coverage of 45%, which is considered as fair amount

of coverage for its feasibility research nature.

MHA require the developers to make sure all tests passes before code are pushed to repository, so

that new changes from one organization and/or developer will not break the code of others.

Maven Surefire Plugin is used to generate report of test results for easier documentation and

observation. Take the API project for example, member of team can view which test cases takes the

most time by query the Surefire generated results from command line:

$ grep -h "<testcase" `find . -iname "TEST-*.xml"` | sed 's/<testcase name="\(.*\)"

classname="\(.*\)" time="\(.*\)".*/\3 | \1 | \2/' | sort –rn

 0.619 | canUploadActivities | uk.org.ccgv.resources.ActivitiesTests

 0.411 | canFetchActivities | uk.org.ccgv.resources.ActivitiesTests

 0.337 | canT20GetAlerts | uk.org.ccgv.resources.general.AlertsTests

 0.298 | canT15PostMomentsData | uk.org.ccgv.resources.MomentsNewTests

 0.296 | canT21GetForthAlerts | uk.org.ccgv.resources.general.AlertsTests

 0.133 | canT10InsertMeasurement | uk.org.ccgv.repository.MeasurementRepositoryTests

 0.103 | canT40GetProfile1108 | uk.org.ccgv.resources.ProfileTests

 0.062 | canUploadFile | uk.org.ccgv.resources.DiariesTests

 0.06 | canT23GetMeasurementByDateRange | uk.org.ccgv.resources.MeasurementsTests

 0.05 | canT22GetMeasurementFromDate | uk.org.ccgv.resources.MeasurementsTests

 0.048 | canT30PostProfile1108 | uk.org.ccgv.resources.ProfileTests

 0.043 | canT21GetMeasurementByDate | uk.org.ccgv.resources.MeasurementsTests

 0.037 | canT10PostAlerts | uk.org.ccgv.resources.general.AlertsTests

 0.036 | canT8DeleteDiariesByDate | uk.org.ccgv.resources.DiariesTests

 0.032 | canT22GetGeneralHealth | uk.org.ccgv.resources.general.VersionControlTests

 0.028 | canT20GetProfile | uk.org.ccgv.repository.MeasurementRepositoryTests

Page 28 of 140

 0.023 | canT2GetDiaries | uk.org.ccgv.resources.DiariesTests

 0.023 | canT23GetProfileInsurance | uk.org.ccgv.resources.ProfileTests

 0.022 | canFetchActivityList | uk.org.ccgv.resources.ActivityListTests

 0.02 | canT24GetLatestMeasurement | uk.org.ccgv.resources.MeasurementsTests

 0.02 | canT21GetProfilePersonalInformation | uk.org.ccgv.resources.ProfileTests

 0.02 | canT20GetMeasurement | uk.org.ccgv.resources.MeasurementsTests

 0.019 | canT10PostGoals | uk.org.ccgv.resources.GoalsTests

 0.019 |canT10GetGeneralHealthWithoutException | uk.org.ccgv.resources.ActivityStateLincolnTests

 0.018 | canT4GetUpdatedDiaries | uk.org.ccgv.resources.DiariesTests

 0.018 | canT23GetGeneralHealth | uk.org.ccgv.resources.GeneralHealthTests

 0.018 | canT20GetRisks | uk.org.ccgv.resources.general.RiskAssessmentsTests

 0.018 | canT11PostForthAlerts | uk.org.ccgv.resources.general.AlertsTests

 0.018 | canGetCorrectDateFormat | uk.org.ccgv.resources.DiariesTests

 0.016 | canT7GetDiaries | uk.org.ccgv.resources.DiariesTests

 0.016 | canT5DeleteDiaries | uk.org.ccgv.resources.DiariesTests

 0.016 | canT20GetGeneralHealth | uk.org.ccgv.resources.GeneralHealthTests

 0.016 | canT1PostDiaries | uk.org.ccgv.resources.DiariesTests

 0.015 | canT30GetLatestAlerts | uk.org.ccgv.resources.general.AlertsTests

 0.015 | canT20GetVersionControl | uk.org.ccgv.resources.general.VersionControlTests

 0.014 | canT6CreateDiariesFromEmptyLocId | uk.org.ccgv.resources.DiariesTests

 0.014 | canT3UpdateDiaries | uk.org.ccgv.resources.DiariesTests

 0.014 | canT10PostRisks | uk.org.ccgv.resources.general.RiskAssessmentsTests

 0.013 | canT30GetLatestRisks | uk.org.ccgv.resources.general.RiskAssessmentsTests

 0.013 | canT21GetVersionControl | uk.org.ccgv.resources.general.VersionControlTests

 0.013 | canT21GetGeneralHealth | uk.org.ccgv.resources.GeneralHealthTests

 0.013 | canT12PostMeasurement | uk.org.ccgv.resources.MeasurementsTests

 0.013 | canT11PostMeasurement | uk.org.ccgv.resources.MeasurementsTests

Page 29 of 140

 0.013 | canT10PostMeasurement | uk.org.ccgv.resources.MeasurementsTests

 0.012 | canT22GetProfileVitalSigns | uk.org.ccgv.resources.ProfileTests

 0.012 | canT15PostVersionControl | uk.org.ccgv.resources.general.VersionControlTests

 0.012 | canT11PostGeneralHealth | uk.org.ccgv.resources.GeneralHealthTests

 0.011 | canT22GetGeneralHealth | uk.org.ccgv.resources.GeneralHealthTests

 0.011 | canT10PostGeneralHealth | uk.org.ccgv.resources.GeneralHealthTests

 0.007 | canT20GetProfile | uk.org.ccgv.resources.ProfileTests

 0.004 | canT20GetProfile | uk.org.ccgv.repository.UserProfileRepositoryTests

 0.004 | canT10PostProfile | uk.org.ccgv.resources.ProfileTests

 0.002 | testDateFormat | uk.org.ccgv.resources.GoalsTests

 0.001 | canT4GetUpdatedDiaries | uk.org.ccgv.resources.DateFormatTests

 0 | canT20GetMomentsData | uk.org.ccgv.resources.MomentsTest

 0 | canT15PostMomentsData | uk.org.ccgv.resources.MomentsTest

 0 | canT11PostersonalInformation | uk.org.ccgv.resources.ProfileTests

 0 | canT10InsertProfile | uk.org.ccgv.repository.UserProfileRepositoryTests

MHA adopt the methodology of Continuously Integration and unit tests are part of the build process,

the build will only success if all unit tests pass. As mentioned previously all test cases can be executed

directly from within Java IDE of developer’s choice.

Page 30 of 140

Figure 3-5: All tests passed with code coverage analyses result of 47% classes and 45% lines

And during the build process, maven will also execute the test cases in the build server from command

line.

Figure 3-6: all tests are run during build process before deploy on server

For integration tests, following tools and frameworks are utilized:

Page 31 of 140

 Python: A programming language, which is quicker in writing and running integration tests.

 Selenium-WebDriver: A browser automation tools, using each browser’s native support for
automation.

 Firefox / Chrome: the browser drive by Selenium, which automatically executes integration
test tasks.

 Splinter: An open source tool for testing web application use Python, which run on top of
above tools.

 Selenium-Server: allows distribute integration tests over multiple machine.
Docker is an open platform, which could run same versions of applications from different development

environments, whether on laptop or desktop, Windows, Linux or Mac. In order to create a unified

environment for integration tests, Docker is utilized to allow developers and testers run the same

version of MySQL, Cassandra, and Tomcat etc. Following script are used for initial run of Docker

Cassandra and Tomcat images:

docker run -p 9042:9042 -v /home/ccgv/cassandra-data:/var/lib/cassandra --name api-cassandra -d cassandra:2.2.4

docker run -d -p 8080:8080 -p 8009:8009 --link api-cassandra:cassandra --name api-tomcat -v /home/ccgv/tomcat-

api:/opt/tomcat/webapps dordoka/tomcat

The Cassandra and Tomcat are linked by Docker to allow interactions in between. As you can see that

Cassandra 2.2.4 version is used in above scripts, which make sure everyone from development and

testing team are on the same page.

Figure 3-7: python script which test if the MHA home page will load with content

MHA has automated integration tests run by developers against development server to make sure

that essential functionalities are working as expected. Manual integration tests are also curries out by

individuals after new version is published.

Page 32 of 140

Following items are normally smoke tested when a staging version of integrated platform are

published online:

 Login page loads with all content, images and styles

 Login use demo user should success

 Dashboard page should load with all information and data

 Life->Diary page should load with correct content and route should be available when a
specific data is chosen

 Life->lifeTracker should load and interact the way expected

 Well-being -> Weight should load and tools should work properly

 Disease menu and models should execute

 Chart should work with drag and drop functional

 Tools menu should work with Nephroblastoma tools execute with result display properly

 Administrator menu should only visible to admin role users and functions

 Questionnaire should load and post answer should work

 3D Avatar model should load with all controls function

 Data Input should allow link to third party and social network

 Synchronization of data should work with linked devices and applications

 Profile should work and PDF generation should work

 Help menu should load help documents and videos normally, sound should play
When major changes happen more detailed tests are carried out with tasks distributed to different

people from the team and other researchers from within partner organizations.

3.5.5.1 MyHealthAvatar IAPETUS tests

Test #: IAPETUS Views/API Type: IAPETUS Views/API – unit test

Date: 25/5/2016-30/5/2016 Duration: 1 hour

Objective: IAPETUS application will be tested. This is achieved by testing potential user actions

against the application’s views (and by extension the related forms), and the API. The system is

tested with respect to the end user’s inputs and outputs per application function. This means that

the only criterion is determining whether the application responds to HTTP requests in the

appropriate way and delivers the requested data to the user.

Necessary hardware: Windows Server Machine

Necessary software: According to the python/Django/Tastypie testing procedures, separate

modules following the pattern tests_*.py are developed, in which the desired tests are

implemented. For the IAPETUS application, each possible response to the end user when making

requests via direct URL-typing in the browser, or navigating through the application’s GUI, are

tested. This is achieved by making GET/POST requests and simultaneously request or upload data.

As a data security measure applied by python/Django tests to keep the production version of the

database and the stored data secured, all tests and operations are tested across test databases,

Page 33 of 140

copying the schema of the original ones. This calls for creating test data to upload or retrieve, prior

to executing the test functions

Preconditions: As a Web application, IAPETUS’s testing a is a complex task, because a Web
application is made of several layers of logic – from HTTP-level request handling, to form validation
and processing, to template rendering. In addition, tests must not harm the already stored data.
Tests are implemented and executed by IAPETUS’s developer To produce and execute the tests for
IAPETUS, knowledge of basic Python coding skills and the Django framework is required, along with
knowledge of a command line interface (Windows command prompt, Linux bash shell, etc.) Tests
can be run even in a single laptop, since they usually take under 10 seconds per batch to execute.

Set-up: Tests are developed and implemented by calling the original views/URL’s of the application,

similar to the production version of IAPETUS. The responses and any accompanying results are

returned by the same mechanism as in the production version, as well. All the various data handling

between the different layers is carried out by the same Django server, which is used for the

production version. Finally, all data used in tests are created within the testing modules, prior to

running the test functions and the testing database is a copy of the original, keeping the same

schema with no stored data. Django testing framework inherently answers both key issues

Test Steps:

Step 1: Make an HTTP request (GET/POST) to the view’s URL with some accompanying

data for upload where necessary.

Step 2: Assume specific HTTP response codes and compare with the actual outcomes.

Assume specific values of variables or cardinality/kind/etc. of results

Expected Test Results:

Test Pass / Fail Criteria: In the tests_*.py files, a set of assertions are made for certain item values

pertaining to the outcome of the described actions. A test is successful if the assertion is true. This

means that the program behaves in the predicted and desirable way. Otherwise, the test is

considered to have failed.

Test Entry / Exit Criteria: Since test functions are grouped into separate python files callable from

within the Django framework, unit testing can be executed anytime with no special preparations. To

achieve maximum effectiveness, we have decided to run the tests after the completion of the first

prototype that covers all the desired user functions. Tests will stop before each IAPETUS upgrade

and resume afterwards, following the proper alterations.

Test Suspension / Resumption Criteria: A potential factor for suspending any testing is the implicit

application of test-driven software development procedures. Although IAPETUS is not build using

this approach, there is always the possibility that through running the tests, new user requirements

and/or ways to improve the implementations and the returning results may emerge. To incorporate

such new material into IAPETUS would call for the suspension of any testing. This is facilitated by the

way that the Django testing framework operates

Page 34 of 140

Test Results:

Due to the nature of testing in Django, the only results available to the tester are the command line

interface outputs of pass/fail for each of the functions included in the called testing module (python

source code file). Indicative examples are given in figures 1 and 2, which describe the testing of some

HTTP GET requests from the WP5 tool/model repository of IAPETUS.

Output of successful tests

Indicative output of failed tests.

Page 35 of 140

CONFORMITY:  OK

(test results in accordance

with expected results)

 NOK

(test results not in accordance with expected results)

Comments:

Test #: IAPETUS tool/model

repository

Type: IAPETUS tool/model repository– integration test

Date: 25/5/2016-30/5/2016 Duration: 1 hour

Objective: Being the starting point in the Nephroblastoma use case as well as the “core” of the

IAPETUS application, it is important to test the tool/model repository’s ability to interact with the

tool execution platform, and provide all pertinent data for a chosen model in order to create an ad-

hoc form on the IAPETUS wizard.

Necessary hardware: Windows Server Machine

Necessary software: The IAPETUS testing procedure in the context of the Nephroblastoma clinical

scenario was the source for the Use Case demonstration as described in D9.2. Combination of Unit

tests can provide an execution of the demonstrator through the Django Testing framework, but

with different end results (pass/fail, instead of viewing and retrieving stored data and execution

results). As an integration test, though, the end user can test the application by its visual outputs as

well.

Preconditions: The system is tested with respect to the end user’s inputs and outputs as a whole.
Depending on the approach of testing as described in the above section, the criteria to determine
the success are either the command line interface outputs as described in unit testing or the visual
outputs delivered to the user. In the case of directly user-testing via the execution of the
demonstrator, no significant computer skills are required, other than familiarity with web browsers.
In the case of individual combined unit testing, the same skills mentioned in the corresponding
section of unit testing are required.

Set-up: Both modules of IAPETUS were tested for the Nephroblastoma Use case. The Wilms

Oncosimulator is uploaded to the tool/model repository (basic descriptive information, a set of files

and a set of parameters). These data are used by IAPETUS’s tool execution platform, to produce the

necessary input form for the Oncosimulator.

Test Steps:

Step 1: Use IAPETUS GUIs to upload the Wilms Oncosimulator data and info.

Step 2: Retrieve files and data as needed for model execution by the tool execution

platform

Expected Test Results:

Page 36 of 140

After building a dedicated python file with a sequence of the individual unit tests, in the Django

testing console (Windows command prompt), a successful test screen should be produced. On their

side, the end users should be able to view their uploaded results and when calling the

Oncosimulation module of IAPETUS, the proper form must be created.

Test Pass / Fail Criteria

According to the scenario’s development and described demonstrator, the test is successful if the

following conditions are met:

1. The stored Oncosimulator data can be viewed by the user and retrieved by the tool execution

platform.

2. Upon choosing a patient, the proper input form is created from the model’s stored parameter

information

As it pertains to a combined unit testing, the standard assertion mechanism can be utilized.

Test Entry / Exit Criteria

Similar to the individual unit testing, the Nephroblastoma clinical scenario can be executed anytime

with no special preparations. To achieve maximum effectiveness, we have decided to run the tests

after the completion of the first prototype that covers all the desired user functions. Tests will stop

before each IAPETUS upgrade and resume afterwards, following the proper alterations.

Test Results:

Results of the stored Oncosimulator data in the tool/model repository

Page 37 of 140

 Input form for the Nephroblastoma Oncosimulator. The variable names (in the left column), are

retrieved from the tool/model repository

CONFORMITY:  OK

(test results in accordance

with expected results)

 NOK

(test results not in accordance with expected results)

Comments:

Page 38 of 140

Test #: IAPETUS tool execution

platform – Communication

with 3rd party APIs

Type: IAPETUS tool execution platform – Communication with 3rd

party APIs – integration test

Date: 25/5/2016-30/5/2016 Duration: 1 hour

Objective: For this step, integration was achieved by API communications between IAPETUS, the

MHA platform and the CHIC repository. Potential risks include the exchange of data which would

alter the stored data of all three parties and security issues n communications. These issues are

resolved by the involved application’s APIs, which make sure that the correct forms of data are

exchanged and their authentication mechanisms along with the use of the https protocol which

prevent unauthorized access.

Necessary hardware: Windows Server Machine

Necessary software: Django Testing framework, Tastypie, reportlab, ImageJ and Gnuplot (for result

visualization)

Preconditions: The system is tested with respect to the end user’s inputs and outputs as a whole.
Depending on the approach of testing as described in the above section, the criteria to determine
the success are either the command line interface outputs as described in unit testing or the visual
outputs delivered to the user. In the case of directly user-testing via the execution of the
demonstrator, no significant computer skills are required, other than familiarity with web browsers.
In the case of individual combined unit testing, the same skills mentioned in the corresponding
section of unit testing are required.

Set-up: Both modules of IAPETUS were tested for the Nephroblastoma clinical scenario. The

“border” between the two steps is the Oncosimulator input page. The user input data along with

information from the CHIC data repository and MHA platform are utilized to produce treatment

simulation results and store them back to the MHA platform.

Test Steps:

Step 1: Retrieve from CHIC repository the synthetic patient’s imaging data to be used for

the Oncosimulator’s execution

Step 2: Interact with the MHA platform to store and retrieve Oncosimulator execution

result reports

Expected Test Results:

Similar to the previous step, there is a python file which contains the composing unit tests. The

users can determine the test’s success from the visual results of the Oncosimulator and the storing

and download the report from MHA platform.

Test Pass / Fail Criteria

Page 39 of 140

According to the scenario’s development and described demonstrator, the test is successful if the
following conditions are met:
1. Having chosen a patient, the proper input files are delivered from the CHIC data repository and
shown in the GUI
2. After the Oncosimulator Execution the user can view the results
3. After storing the results to the MHA platform, the user should be able to download them and
view it with their PDF browser.
As it pertains to a potential combined unit testing, the standard assertion mechanism can be
utilized.

Test Entry / Exit Criteria

Similar to the individual unit testing, the Nephroblastoma clinical scenario can be executed anytime

with no special preparations. To achieve maximum effectiveness, we have decided to run the tests

after the completion of the first prototype that covers all the desired user functions. Tests will stop

before each IAPETUS upgrade and resume afterwards, following the proper alterations.

Test Results:

Input form for the Nephroblastoma Oncosimulator. The raw imaging files (in the red circle), are

downloaded from the CHIC repository, after providing the latter with the patient’s ID number

Page 40 of 140

Oncosimulator results

Page 41 of 140

Result report download

PDF result report

Result of running a testing sequence of multiple unit tests for IAPETUS

Page 42 of 140

CONFORMITY:  OK

(test results in accordance

with expected results)

 NOK

(test results not in accordance with expected results)

Comments:

Performance Testing

The most significant issue in the performance test of IAPETUS is that the final results have to be

correlated with the average patient-doctor session. Given that the average visit time ranges from 10

to 25 minutes, it is important that the doctor is left with plenty of time to evaluate the results, run

more executions and determine the proper treatment strategy.

Item to Test Test Description Test Date Responsibility

Wilms

Oncosimulator

Executable

Measurement of the Wilms Oncosimulator execution

time called by IAPETUS and the formulation of results.

Cross-reference with execution times in command line

interface

4/2016-

5/2016

Testing

conducted by

IAPETUS

developers

Tool execution

module

Measurement of the time from logging in to the

retrieval of the stored results from the MHA platform

Tool execution

engine

In the indicative case of up to three simultaneous

Oncosimulator executions, measurement of the

speed-up percentage against a set of serial executions

These tests are a simple case of time measurements. The developers can easily include a few lines of

code to determine the time duration of a component’s execution. These execution times are produced

in the result backend command line console (handles the django views output and by extension, the

output of the called Oncosimulator model).

A “loose” criterion mentioned above is that the execution times must be low enough to be only a small

fraction of the doctor-patient session duration (avg. 17,5 min). As these tests have to do with

execution times, there are no strictly defined pass/fail boundaries. The goal is to keep these times as

low as possible. These tests actually require the components to run as usual, so there are no specific

criteria to start/stop the tests.

Test results: the following table has been produced with all the above described measurements:

Number of executions

Execution mode

Single

execution

2 simultaneous

executions

3 simultaneous

executions

Page 43 of 140

Command prompt only 19.12s 20.43s 21.81s

Using the infrastructure (with execution

engine)

25.67s 28.05s 35.64s

Using the infrastructure (without execution

engine)

26.82s 53.62s 1min 20.88s

Workflow 2 overall time (login to report

retrieval, single execution only)

1min

16.74s

1min 19.12s

(estimated)

1min 26.71s

(estimated)

The average time to produce the graph and the gif image was measured to be 7.48 seconds. Looking

at the table, it can be deducted that the engine helps the infrastructure produce results 48% and 56%

faster for two and three simultaneous executions respectively

3.5.5.2 MyHealthAvatar Semantic Layer /Clinical data unit/integration tests

Test #: Alers1 Type: Alerts Engine - Integration test

Date: 20/10/2015 Duration: 5 minutes

Objective: To identify if the proper alerts are generated exploiting a) guideline rules specified and

b) the integrated patient profile.

Necessary hardware: Windows Server Machine

Necessary software: Virtuoso Triple Store, Jena Reasoning Engine, Alert’s Engine,

MyHealthAvatar app for visualization of clinical information

Preconditions: To have guideline rules specified. To have the integrated patient profile at the

Virtuoso

Page 44 of 140

Set-up: The components of the semantic layer participating in Alerts Test used in this scenario

Test Steps:

Step 1: Log in into the MyHealthAvatar portal

Step 2: Go to View of Clinical Information

Step 3: Identify the proper alert issued

Expected Test Results: An alert is issued visualized using the aforementioned alert.

Test Results: Each time executed, the proper alert

was generated in a timely fashion.

CONFORMITY: OK

(test results in accordance

with expected results)

 NOK

(test results not in accordance with
expected results)

Comments:

Test #: Evolution1 Type: Evolution Module - Integration test

Date: 20/10/2015 Duration: 5 minutes

Objective: To identify if the evolution module works appropriately answering queries over data

mapped with different ontology versions

Necessary hardware: Windows Server Machine

Necessary software: Virtuoso Triple Store, Evolution Module, Semantic Integration Module

Page 45 of 140

Preconditions: To have established the mappings with two example tables from the data lake (the

Cassandra data repository) using two different ontology versions

Set-up: The components of the semantic layer participating in Evolution test are :

Test Steps:

Step 1: Go to interface for querying the Semantic Data Warehouse (or use the corresponding

web service)

Step 2: Send a query to the evolution module involving two tables mapped with different

ontology version

Step 3: Identify that data from both these tables have been retrieved.

Expected Test Results: The results returned from all tables independent of the ontology version

they use.

Test Results: Each time executed, the proper

results were generated

CONFORMITY: OK

(test results in accordance

with expected results)

 NOK

(test results not in accordance with expected
results)

Comments:

Test #: ETL Type: ETL - Integration test

Date: 20/10/2015 Duration: 5 minutes

Page 46 of 140

Objective: To identify whether data can be extracted from the data lake (Cassandra repository)

transformed and loaded to the Triple Store

Necessary hardware: Windows Server Machine

Necessary software: Data Integration Module, Cassandra Data Repository, Semantic Data

Warehouse.

Preconditions: The proper mapping should be available describing data using terms from the

ontology

Set-up: The components of the semantic layer participating in ETL test are :

Test Steps:

Step 1: Go to Semantic Integration Module

Step 2: Load the generated mappings

Step 3: execute the ETL

Expected Test Results: Transformed linked data should be available at the triple store corresponding

to the data available at the Cassandra repository

Test Results: Each time executed, the proper

results were generated

CONFORMITY: OK

(test results in accordance

with expected results)

 NOK

(test results not in accordance with expected
results)

Comments:

Page 47 of 140

Test #: Clinical PS API Type: Epsos Gateway - Integration Test

Date: 20/10/2015 Duration: 5 minutes

Objective: To identify Clinical PS API is able to retrieve from the virtuoso patient clinical data for MHA

platform and services

Necessary hardware: Windows Server Machine

Necessary software: Clinical Information System, MHA Epsos Gateway, MHA Clinical Gateway event

bus

Preconditions: The user must consent to allow retrieval of data from a hospital health record giving his

SSN or other identifier

Set-up: The components for linking with clinical information systems tests are :

Test Steps:

Step 1: Go to the Clinical Information System and update patient information

Step 2: View that the even bus on MHA has received the information

Step 3: Update MHA repository with the updated patient summaries

Expected Test Results: Clinical data to retrieved, shown on MHA portal, and are accessible through

MHA API for third party applications

Test Results: Each time executed, the proper results

were generated

CONFORMITY: OK

(test results in accordance

with expected results)

 NOK

(test results not in accordance with expected
results)

Comments:

Page 48 of 140

Test #: SemanticSearchEngine Type: Semantic Search Engine - Unit test

Date: 20/10/2015 Duration: 5 minutes

Objective: To identify whether results are returned after user queries are issued.

Necessary hardware: Windows Server Machine

Necessary software: Semantic Search Engine

Preconditions: There should be available, indexed documents at the document repository.

Set-up: The components used of the semantic layer participating in Semantic Search Test are:

Test Steps:

Step 1: Log in to the MyHealthAvatar portal

Step 2: Go to Tools  Medical Documents Semantic Search

Step 3: Enter a search keyword

Expected Test Results: results relevant to the keywords used by the user

Test Results: Each time executed, the proper

results were generated

CONFORMITY: OK

(test results in accordance

with expected results)

 NOK

(test results not in accordance with expected
results)

Comments:

Page 49 of 140

Test #: SummarizationEngine Type: SummarizationModule - Unit test

Date: 20/10/2015 Duration: 5 minutes

Objective: To identify whether summaries can be created for input data efficiently and effectively

Necessary hardware: Windows Server Machine

Necessary software: Summarization Module

Preconditions:

Set-up: The components of the semantic layer participating in Summarization Test are :

Test Steps:

Step 1: Go to the Summarization Module

Step 2: Load an ontology or give the url of a SPARQL endpoint

Step 3: Select the size of the summary

Step 4: Generate summary

Expected Test Results: A summary should be generated in a timely fashion presenting an overview of

the input data

Test Results: Each time executed, the proper results

were generated

Page 50 of 140

CONFORMITY: OK

(test results in accordance

with expected results)

 NOK

(test results not in accordance with expected
results)

Comments:

Test #: EPSOS Gateway Type: Epsos Gateway - Unit test

Date: 20/10/2015 Duration: 10 minutes

Objective: To identify whether patients summaries can be retrieved through a clinical information

system whenever new information are available

Necessary hardware: Windows Server Machine

Necessary software: Clinical Information System, MHA Epsos Gateway, MHA Clinical Gateway event

bus

Preconditions: The user must consent to allow retrieval of data from a hospital health record giving his

SSN or other identifier

Set-up: The components for linking with clinical information systems tests are :

Test Steps:

Step 1: Go to the Clinical Information System and update patient information

Step 2: View that the even but on MHA has received the information

Step 3: Update MHA repository with the updated patient summaries

Expected Test Results: Clinical data to be updated on MHA portal

Page 51 of 140

Test Results: Each time executed, the proper results

were generated

CONFORMITY: OK

(test results in accordance

with expected results)

 NOK

(test results not in accordance with expected
results)

Comments:

Test #: Clinical Data View Test Type: Clinical Data View Test – unit test

Date: 26/5/2016

 Duration: 5 minutes

Objective: Test the view of Clinical Data in the MHA platform

Necessary hardware: PC/laptop or mobile device

Necessary software: HTML5 compatible web browser (Firefox, Chrome etc)

Preconditions: User must be connected to internet and have a user account to login to MHA platform

Set-up: Go to MHA page and go to the specific location of the clinical data to view them

Test Steps:

Step 1: Login with user credentials to MHA platform

Step 2: Click on the green “Data Input” Button on the top of the page.

Step 3: Click on the “Clinical Data” tab. Clinical API is called and returns the available clinical
data for the logged in user.

Step 4: View clinical data as Active problems, Vital Signs, Drugs, Alerts, Medical Images

Expected Test Results: User should see the clinical data with a search form to filter results by start date
and end date.

Test
Results:

User can view and filter his clinical
data.

User can view and filter his clinical data.

Page 52 of 140

CONFORMITY:  OK

(test results in
accordance with
expected results)

 NOK

(test results not in accordance with expected
results)
Comments:

Test #: Uploading DICOM Type: Uploading DICOM Images Test – unit test

Date: 26/5/2016

 Duration: 5 minutes

Objective: Test the DICOM Images Uploading in the MHA DICOM repository

Necessary hardware: PC/laptop or mobile device

Necessary software: HTML5 compatible web browser (Firefox, Chrome etc)

Preconditions: User must be connected to internet and have a user account to login to MHA platform,
has a DICOM image to upload to MHA DICOM repository

Set-up: Go to MHA page and go to the specific location of the DICOM data to view them

Test Steps:

Step 1: Login with user credentials to MHA platform

Step 2: Click on the green “Data Input” Button on the top of the page.

Step 3: Click on the “Medical Images Upload” tab.

Step 4: Drag and drop medical images series with DICOM files and upload the selected medical

images files. Clinical API is called and uploads the selected medical images files.

Expected Test Results: Uploading of medical images must complete.

Test

Results:

User can upload his medical

images examinations

CONFORMITY:  OK

(test results in accordance

with expected results)

 NOK

(test results not in accordance with expected results)

Comments:

Page 53 of 140

Test #: Viewing and

Downloading DICOM images

Type: Viewing and Downloading DICOM Images Test – unit test

Date: 26/5/2016

 Duration: 5 minutes

Objective: Test the DICOM Images Uploading in the MHA platform

Necessary hardware: PC/laptop or mobile device

Necessary software: HTML5 compatible web browser (Firefox, Chrome etc)

Preconditions: User must be connected to internet and have a user account to login to MHA platform

Set-up: Go to MHA page and specific location to view/download an image

Test Steps:

Step 1: Login with user credentials to MHA platform

Step 2: Click on the green “Data Input” Button on the top of the page.

Step 3: Click on the “Medical Images View” tab.

Step 4: A list with medical images appears. It has the functionality of viewing a preview

thumbnail for every study as well as downloading the wanted series. The Clinical API is being

called and returns the available medical images for the logged in user.

Expected Test Results: Viewing and downloading available medical images from the list.

Test

Results:

User can view/preview and

download his medical DICOM

images.

CONFORMITY:  OK

(test results in accordance

with expected results)

 NOK

(test results not in accordance with expected results)

Comments:

Page 54 of 140

3.5.6 Review of MyHealthAvatar architecture

MyHealthAvatar defined a solution for access, collection and sharing of long term and consistent

personal health status data through an integrated environment, which will allow more sophisticated

clinical data analysis, prediction, prevention and in silico treatment simulations tailored to the

individual citizen. The technical architecture of the MHA, described in Deliverable D3.2 and D3.2

version 2, is able to efficient support the collection of information for the short and long term

management of integrated citizen-specific data, effective access mechanisms for data sharing and

data analysis using specialized toolboxes. We have adopted the provisions of the IEEE 1471 standard

that defines an architecture as “…the fundamental organization of a system embodied in its

components, their relationships to each other and to the environment and the principles guiding its

design and evolution”.

MHA technical infrastructure provides mechanisms for data management in internal data repositories

storing individual data for the avatars; links to external sources for health and health related data (see

Deliverable D3.4); model repositories, information extraction from the web and data collection using

mobile apps; semantic data harmonization to support the data/model searching and reasoning.

MyHealthAvatar follows recommendations from relevant VPH activities on “Digital Patient”.

MyHealthAvatar architectural platform is designed as a multifunctional integrated facility. Its

distinctive features include: Data and model repositories to provide rich resources of data and models;

ICT services to support data collection with minimal user input, including web information extraction,

mobile apps, etc; ICT toolbox in support of clinical decision making by using multiscale models and

visual analytics; Ontology and RDF repositories to support data integration, search and reasoning; an

ICT architecture that allows for access to data from a range of different sources, and integration of the

repositories, the toolbox and the ICT utilities; private and public cloud solutions to support the storage

and computational requirements for the avatars without remote data transfer and specifications of

open MyHealthAvatar APIs for external, third-party developers.

3.6 MyHealthAvatar Stakeholders

A stakeholder is anyone who has an interest in or concerns about the system that we actually building.

In MyHealthAvatar the most important stakeholders are:

 Patients/Citizens. In MyHealthAvatar where personalized provision of health and patient
empowerment services are to be delivered, patients represent a prominent type of
stakeholders.

 Researchers/Medical personnel expert domain Users. These can be further classified in
bioinformaticians, clinicians, users of clinical trials management systems, etc.

 Software Engineers/Developers. The people who actually build the system.
 Administrators /Maintainers. The people that evolve and sustain and guarantee the good

operation and sustainability of the system.

During the project we focus on the domain users and the patients, and secondly on the developers

and similar stakeholders. Focusing on the expert users/patients means that we elaborate on their

concerns, which mostly have to do with the functionality, and some of its quality attributes such as

Page 55 of 140

security and usability. On the other hand, the developers’ concerns relate to the development process,

its phases (e.g. design, code, test), and various “satellite” issues like the choice of the programming

environment, the development tools, etc. The project has carried out analysis of detailed end-user

requirements, reported in D3.1, and needs by collecting an initial set of Scenarios / Use Cases (D2.2).

These cases were collected by consortium members through interaction with all MyHealthAvatar’s

system stakeholders, including citizens/patients, clinical doctors and clinical and IT researchers. From

the initial set of scenarios the consortium defined MHA high end clinical demos that were selected for

further implementation and evaluation. These demonstration scenarios are close related to the

prioritized and final set of Use Cases / Scenarios reported in D7.1 and D9.1. This user centered

approach allowed us to us to select and describe in more details the Scenarios / Use Cases and related

requirements / user need proposed for implementation and final demonstration for MyHealthAvatar.

Each of these cases addresses a use scenario from a particular user perspective, either as a patient, or

as a doctor, or as a clinical or IT researcher. For the evaluation we managed to attract many different

volunteers that tested the platform functionality and all related reports are within deliverable D9.3.

Figure 3-8: MyHealthAvatar platform as a unified system and its interactions with external entities

3.7 MyHealthAvatar Architectural design and views

A context diagram for the MHA system, when considered a single, unified system, can be seen in Figure

4-1. The main feature of this type of diagram is that it shows clearly the channels of communication

with all sub-systems and external systems. It clearly presents the key components that must be built

during our work plan. The key components of the related working task include: 1) user requirements

2) Internal data repositories and an internal model repository; 3) ICT architecture that support data

access to internal and external resources and data management; 4) Data collection utilities; 5)

Semantics and RDF repository to support data search and reasoning; 6) Simulation and data analysis

toolbox 6) Demo & evaluation; 7) Investigation of the legal and IPR aspects of the avatars; 8)

Page 56 of 140

Understanding of clinical acceptability; 9) Recommendations for the future work; 10) Dissemination

and exploitation of the results to influence the future healthcare system

The requirement analysis of MyHealthAvatar clearly described the borders of the system architecture

allowing the technical manager and the developing team to identify external entities that considered

necessary for the system development : HIS, EHR and PHR systems, Drug data, Social Networks and

other sources of online activity of the users, Model repositories that contains simulation models,

PubMed Repository, Clinical Trials information, news articles, etc., Clinical processed data and data

from external Warehouse (lab results, images etc.), Third party application (external to

MyHealthAvatar) data, Diabetes and Emergency Demo, Personalized CHF Related Risk Profiles and

"Real-Time Monitoring" (CHF), Osteoarthritis (OST), Nephroblastoma (Wilms Tumour) Simulation

Model and Clinical Trial (UC-NEPH): In-silico Profiling of Patients and Predictions. All these entities

were implemented and all related software components were integrated to MHA final integrated

platform prototype. A logical view of the architecture based on the required functionality already

defined in the project’s description of work can be found in D3.2 version 2. In this document we

describe the identified scenarios and the responsibilities of the components, their interactions, and

we try to elaborate through MyHealthAvatar platform’s computational nodes and heterogeneity of

components.

MyHealthAvatar deployment view diagrams are shown below:

Figure 3-9: MHA final deployment diagram for the system and external third party applications for the demos

Page 57 of 140

Figure 3-10: The main components of the system and their interactions

3.8 MyHealthAvatar demonstration Use cases

In this section we present the selected use cases for demonstration trying to identify the second phase

of the various requirements refining the updated set of requirement that will be used to describe and

design the architecture structure of MyHealthAvatar platform. A complete description of these use

cases is reported in Deliverable D9.1. In MyHealthAvatar two general categories of scenarios are

investigated: System use cases: these are the cases that describe the functionalities of the

MyHealthAvatar system from the perspectives of both clinicians and citizens/patients and Clinical use

Page 58 of 140

cases: these are the cases that describe how to use the data from the MyHealthAvatar system in real

clinical scenarios.

3.8.1 Diabetes and Emergency Demo

This use case is set to empower citizens by providing a supportive environment for the self-

management of lifestyles for general health and wellbeing. Particular focus will be cast on risk analysis

for diabetes, enabling more effective pre-diabetic care in terms of risk reduction through improving

compliance with healthy lifestyle recommendation. The demonstration will allow the users to play a

key role in monitoring and managing their own health. Allow multi-modal intervention of lifestyle in

a shared decision manner between the doctor and citizens/patients. In the case of pre-diabetes,

MyHealthAvatar will be able to demonstrate to the citizens/patients the relations between the

outcomes of the self-management/treatment using prediction models. “Behaviour prescription” will

be issued based on clinical guidelines and trusted sources (such as NICE), which is expected to include

a set of targets in terms of daily activities, calorie intake and energy consumption, etc.

3.8.2 Personalized CHF Related Risk Profiles and "Real-Time Monitoring"
(CHF)

Generally, cardiovascular disorders as chronic diseases require a continuous everyday record for

patient’s status. Congestive heart failure (CHF) is a state in which the heart cannot provide sufficient

cardiac output to satisfy the metabolic needs of the body. It is commonly termed congestive heart

failure (CHF) since symptoms of increase venous pressure are often prominent. Its pathogenesis

factors include: Age, Gender, Increased blood pressure, Smoking, Alcohol, Family and medical history,

Genetic predisposition, Diabetes, Diet habits and Atherosclerosis. It’s a pathophysiologic state in

which the heart, via an abnormality of cardiac function (detectable or not), fails to pump blood at a

rate commensurate with the requirements of the metabolizing tissues or is able to do so only with an

elevated diastolic filling pressure. Common causes include: coronary heart disease; hypertension;

valvular heart disease and the general symptoms a patient/citizen can observe are: shortness of

breath, leg swelling and exercise intolerance. The diagnosis is based on physical examinations and

echocardiography. The management of the disease primarily involves intervention in order to improve

the symptoms and the preventing disease progression mainly by altering the lifestyle (Diet, smoking,

alcohol, moderate physical activity) and in many cases by pharmacological interventions.

The proposed scenario is built on the following pillars:

 CHF Risk Assessment: In order to tailor the proposed system to the patient’s profile and assist
physicians in selecting people who are predisposed by coronary disease, hypertension, or
valvular heart disease; we build a CHF related risk profile based on a risk appraisal function
that is based on the diagnostic criteria [i.e. the Framingham Heart Study (486 heart failure
cases during 38 years of follow-up)]. The predictors used are based on Age, Coronary heart
disease and Valve disease status provided by the patient Electronic Health Record (EHR), as
well as on HR, on blood pressure and on Body Mass Index (BMI) provided by the pulse
oximeter, the blood pressure monitor and the weight scale, respectively. The calculated risk
probability may be used to alter the default threshold values (higher risk probability adds
more constraint on the physiological patterns). Furthermore, we present what else data

Page 59 of 140

regarding patients’ health status could be embed into the platform towards the creation of a
profile with necessary information for both patient and treating physicians. To this respect an
approach of presenting data regarding demographic, physiology, diagnostic test results and
disease management (i.e. prescribed drugs) is provided.

 Real-time patient monitoring: In addition to the above the dedicated clinical personnel
should be contacted immediately and possibly intervene in time before an acute state is
reached, by changing medication, or any other interventions, in order to ensure patient safety.
There is a need to support real-time remote monitoring of patients diagnosed with congestive
heart failure and MHA, enhanced with semantic technologies, may host personalized,
accurate and up-to-date clinical information. To this end we built a real-time patient/ doctor
alarming will be built according to rule-based alarms enabling intelligent alerting of the
dedicated physician in case of an emergency. The alarming process will be based on vital signs
monitoring and specifically Heart Rate (HR), Pulse Oximetry, and Blood Pressure acquisition,
adapted according each specific patient’s medical history and age, and even risk predictor’s
outcome.

3.8.3 Osteoarthritis (OST)

MHA offers a one-stop service for citizens for data collection and self-management such as monitor,

record and education. Precisely, the system will support the storage of behaviours and daily activities

of citizen. It will function as a supportive environment to empower normal citizens in looking after

their own health, raising their self-awareness of any potential risk of developing diseases while

encouraging their healthy lifestyles in terms of doing routine daily exercises, stopping smoking and

controlling their diet. Therefore, naturally many existing functionalities in MHA can be directly used

for the needs of osteoarthritis use case. In addition, we will incorporate genetic predisposition

evaluation services for examining if an increased risk of developing osteoarthritis exists, which will be

used by the citizens in order to understand their personal risk of developing osteoarthritis, and the

impact of their behaviour and lifestyles towards the risk.

3.8.4 Nephroblastoma (Wilms Tumour) Simulation Model and Clinical Trial
(UC-NEPH): In-silico Profiling of Patients and Predictions

The outcome of this high-end scenario is to provide a tool which produces the ‘in-silico profiling’ of

nephroblastoma patients and performs ‘in-silico’ predictions of therapeutic schemes outcome.This

can be used in a fourfold way:

1. To demonstrate to patients / or parents of patients how a given tumour will respond to
preoperative chemotherapy. This will help in explaining diagnosis and treatment of
nephroblastoma to patients and/or parents of patients. Such a demo will not use the actual
data of the given patient.

2. To give physicians treating a patient with a nephroblastoma the ability to check how this
specific nephroblastoma will respond to preoperative treatment with vincristine and
actinomycin-D.

3. To provide clinical researchers and modelers a powerful tool to define an in silico patient
profile and further exploit it in other modelling approaches and VPH projects. Moreover, it
could serve as a statistical tool to categorize patients (by associating their clinical and in silico

Page 60 of 140

profiles) and define ranges of model parameter values to guide the process of model
adaptation for new patient cases.

4. To demonstrate to citizen what ‘in silico’ models/tools can do today. This can serve as a
learning environment for ‘in silico’ models and will help to disseminate the importance of ‘in
silico’ models in medicine to the public, to medical stakeholders, industry and funding
agencies. It is pointed out that the purpose of the in silico experimentation functionality is
currently limited to the education of the public so that they can be prepared for the future
translation of thoroughly clinically validated models to clinical practice.

3.9 MyHealthAvatar Integrated Platform

A simplified view of the integrated platform can be seen below.

Figure 3-11: The integrated platform of MHA, as a composition of multiple domains of functionality.

The system as a whole consists of a number of services, data storage components, adapters/gateways,

and applications performing specific functionalities of the system that we have grouped and

categorized as follows:

 Data Management. This is the layer of the architecture addressing the data persistence
requirements of the system. The challenges for high availability, performance, and scalability
led to the adoption of the Apache Cassandra in order to ingest and store large-scale data.
Cassandra is an open-source, peer-to-peer and key value based store, where data are stored
in key spaces and it’s considered state of the art for real-time (big) data analysis with advanced
replication functions. In MHA platform the Cassandra repository is an instantiation of a “data

Page 61 of 140

lake” concept8 that stores the raw data supplied by the different information sources. Next to
Cassandra, there are additional specialized data stores like the DICOM Repository (Picture
Archiving and Communicating System, PACS9) and the Model Repository. The requirement for
increased availability and scalability in this architectural layer does not really affects the design
of these additional data storage components, for the following reasons: For the model
repository, its contents do not change frequently and additionally the limited number of
models do not necessitate extensive query and retrieve capabilities and computational power.
The situation is slightly different for the DICOM repository of medical images, where
depending on the use of the DICOM import functionality the space requirements for storing
these images can be really big. Nevertheless, the DICOM protocol that follows a hierarchical
data model, starting from the patient identifier, and the use of Cassandra as the primary data
repository in this layer allow us to horizontally scale even for this case. Currently, there’s no
such a need but if in the future the size of the image repository and the load of image retrieval
requests exceeds the capacity of a single deployment we can adopt a parallel DICOM storage
architecture in the cloud10.

 External Linking. The components laid in this layer are the “ports” and “adapters” for the
external data sources, which include hospital information systems and PHRs, social networks,
clinical trial management systems, etc. Specific gateways have been implemented for each of
these types of external sources that perform an “Extract Transform Load” (ETL)11 process in
order to feed the Data Persistence layer with the incoming data. In this process, the gateways
make use of available standard interfaces whenever is possible, such as the Clinical Document
Architecture (CDA12) guidelines and set of specifications for the retrieval of clinical data from
Hospital Information Systems (HIS), the Operational Data Model (ODM) of the Clinical Data
Interchange Standards Consortium (CDISC13) for clinical trial specific patient, whereas cross-
border healthcare provisioning is supported by the adoption of epSOS14 Patient Summary
interfaces. The main “sink” of the acquired data is the Cassandra repository so that is then
made available to the rest of the platform.

 Semantic harmonization. This is the semantic integration layer which is responsible for
summarizing, semantical integrating, and consolidating the information that is stored in the
Data Management layer. There are two main reasons for the introduction of this layer in the
architecture. First, in order to deal with the semantic and terminological heterogeneities of

8 Martin Fowler, Data Lake, http://martinfowler.com/bliki/DataLake.html
9 Choplin, R. H., Boehme 2nd, J. M., & Maynard, C. D. (1992). Picture archiving and communication systems: an
overview. Radiographics, 12(1), 127-129.
10 Yuan, Y., Yan, L., Wang, Y., Hu, G., & Chen, M. (2015). Sharing of Larger Medical DICOM Imaging Data-Sets in Cloud
Computing. Journal of Medical Imaging and Health Informatics, 5(7), 1390-1394.
11 Vassiliadis, P. (2009). A survey of Extract–transform–Load technology. International Journal of Data Warehousing and
Mining (IJDWM), 5(3), 1-27.
12 http://www.hl7.org/Special/committees/structure/index.cfm
13 http://www.cdisc.org/
14 European Patients Smart Open Services (epSOS) project, http://www.epsos.eu/

http://martinfowler.com/bliki/DataLake.html
http://www.hl7.org/Special/committees/structure/index.cfm
http://www.cdisc.org/
http://www.epsos.eu/

Page 62 of 140

the incoming data from the External Linking tier and to provide a unified, common, and
ontologies based schema of the available information. Secondly, to provide more domain
specific and expressive way to perform queries on the managed information. Cassandra is a
typical example of a NoSQL repository15 and this type of technologies have increased rapidly
in the recent years due to their ability to handle enormous data sets and the “schema-less”
nature. But the limitations of NoSQL databases in the flexibility of the query mechanisms are
a real barrier for any application that has not predetermined access use cases. The RDF
Triplestore in the MHA platform fills these gaps by effectively providing a semantically
enriched and search optimized index to the unstructured contents of the Cassandra
repository. Of course in order to alleviate any scalability issues in the Triplestore when
answering complex queries, its contents are actually a “digest” of the information stored in
Cassandra. The “recipe” for building the semantic content in the Triplestore is provided by the
mapping rules and the use of relevant ontologies in the Semantic Transformation process
performed by specific Semantic Services, as described in Deliverable D4.3. In conclusion the
Semantic Harmonization complements the Data Management layer and this design offers the
best of both worlds: efficient persistence and availability of heterogeneous data, and semantic
integration and searching of the “essence” of the ingested information.

 The so called MHA Toolbox consists of services and components to facilitate clinical data
analysis and knowledge discovery. It contains a set of integrative models and data analysis
tools to support clinical decisions by allowing the clinicians to take into account multiple
aspects that are influential to prognosis, diagnosis, and treatment selection. Examples of such
models and components are the Wilms Tumor Oncosimulator, the visual analytics
infrastructure, and the generation of important alerts for the patient’s wellbeing and health.
The functional components in this layer use both the semantic infrastructure services and the
“raw” data storage components. For example, the implementation of the alerting
functionality requires strong support for semantic harmonization and clinical decision support
rules expressed in the clinical ontologies and relevant terminologies. On the other hand, the
in silico simulation services require information from the model repository and the DICOM
medical images. Finally, the visual analytics and knowledge discovery components usually
necessitate the employment of “Map Reduce”16 tasks in the Cassandra repository to explore
the whole data space.

 Application Programming Interfaces (APIs). In order to actively engage the public and 3rd
party developers and systems, programming interfaces have been defined for sharing the
data, results, analytics, etc. gathered and managed in MHA. The APIs defined are made
available to anyone interested, and for example the Clinical API for retrieving the clinical data
of the MHA users is published as open source and its implementation can be found at
https://github.com/sgsfak/mha-clinica-api MHA APIs are implemented as “web
frontend/gateway” RESTful services that aggregate the information located in various places
in the platform, from the Data Management and Semantic Harmonization layers to the ICT
Toolbox components.

15 Han, J., Haihong, E., Le, G., & Du, J. (2011, October). Survey on NoSQL database. In Pervasive computing and applications
(ICPCA), 2011 6th international conference on (pp. 363-366). IEEE.
16 Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large clusters. Communications of the
ACM, 51(1), 107-113.

https://github.com/sgsfak/mha-clinica-api

Page 63 of 140

 Security. Protecting the privacy of the data against unauthorized access and modification is of
course of paramount importance. The security layer includes the services that address these
requirements and provide support for authentication and single-sign-on, authorization,
auditing, identity management, etc. This layer is therefore intercepting every access to the
services and interfaces of the platform. Furthermore, more domain specific requirements like
the management of patient consent (for importing and using her/his clinical data, for
example) are supported by specific infrastructure in this layer.

 Applications and Use Cases. As the upper layer and the user interfacing view of the system,
the Applications tier includes the value-added, specialized, end-users applications and
scenarios. Most of these applications are listed within above. These applications use mainly
the programming interfaces and the services offered by the Toolbox since they effectively hide
and abstract away much of the underlying data retrieval and management.

The above description of the MHA architectural elements and their interactions demonstrate the level

of integration achieved. This is of course a “20,000 feet overview” of the integrated platform that

shows the flow and transformations of the data and the information extracted from them by the

interacting MHA components. In section 5 we take a close look into specific software elements and

processes of the platform and we provide details on their integration to the whole system.

3.10 MyHealthAvatar Integration/deployment environment

This section shows the delivery models supported by MHA within the deployed cloud infrastructure.

Their scope is to provide resources, application platforms, common infrastructure and software as

services to consumer17. These service models also place different levels of security requirements upon

the deployed environment. As capabilities are inherited by successive models, so too are information

security issues and risks. The consideration of cloud technology was vital to ensure the long term

scalability and performance of MyHealthAvatar in data management and service management

architecture. The main approach is to work on a locally-deployed cloud infrastructure which can utilize

local computing power as well as maintain the ability to outsource the infrastructure to commercial

cloud computing facilities (e.g. Amazon EC2). This way we are able to provide and sustain stable and

production ready resources to support MHA needs regarding data preservation. The swift services are

highly autonomous so the whole architecture is flexible enough to allow different deployment

scenarios. The four main services are: Proxy Services, Object Services, Container Services and Account

Services. Proxy Service plays role of the contact point (API) with users and 3rd party services, while

other three kind of services manage files, containers and accounts so are used to manage physical

data and logical structure. The major difference between locally deployed cloud (also known as private

cloud) and public cloud is the control and access of the resource. In private cloud, resources are

controlled and accessed by the premise only. On the other hand, in public cloud, resources are

controlled by the cloud provider but are accessible for public users. Therefore, a hybrid cloud

infrastructure is adopted in MyHealthAvatar with both public and private cloud facilities available. In

17 Shey, H., R. Wang, J.P. Garbini and E. Daley, 2009. The State of Enterprise Software: 2009. Forrester Research, Inc.

Page 64 of 140

deliverable D3.2 2nd version we have included detailed information about the private and public cloud

deployment of MHA including all technical information of the supporting cloud software and services.

Physical Deployment

MHA platform is deployed in the premises of FORTH, in the form of a private computational and

storage cloud.

Figure 3-12: Physical installation

In terms of hardware resources, the cloud infrastructure allows for maximum elasticity and flexibility

by effectively adapting to the load of any given time. The current minimal specifications include: 300

GB of RAM, 9TB of storage and 16 cores Intel® Xeon® Processor E5-2690 and 4 cores Intel® Xeon®

Processor E7520 (Dell PowerEdge R720 and SC 1425 Servers series). In terms of the software the

OpenStack15 open source cloud computing software has been installed on the machines using the

Linux Ubuntu 12.04 operating system16. Fort MHA we can have one or more VMs for 4GB RAM and

100GB for storage (or any other different setting for each VM), according to MHA deployment

demands. We are able to serve MHA need as the project progress.

MHA is also installed and deployed physically on a public cloud namely Linode which a cloud hosting

service, the 8GB plan is chosen to deploy on Linode’s London based servers. The virtual machine has

6 CPU cores, 192GB SSD storage, 8GB RAM. Linode provides a web based panel to monitor the virtual

machine’s resource usage.

MyHealthAvatar utilize the power of both Forth cloud and Linode cloud services to form a hybrid cloud

which gives the platform the benefit of both world.

Page 65 of 140

4 MyHealthAvatar Technical integration and evaluation

4.1 MyHealthAvatar Portal

There are many components and data that can be accessed by the user from the web-based

MyHealthAvatar portal. However, as there are a variety of data sources and data types, it is very

difficult for a user to grasp an overview with important notifications from the scattered health status

information. Various components and visualisation are utilized to present the information to users in

a meaningful an intuitive manner.

4.1.1 Dashboard

To present the user a quick overview

of their health status, MHA provides

a dashboard on the front page. The

dashboard provides a summary of

the users’ latest health status and

present important notifications. It

may include several simple

visualization components to depict

data for a relatively recent period.

Following figure shows an example

dashboard with data tiles, map and a

timeline. The user can interact with

the map and the timeline to obtain

more detailed information.

4.1.2 Diary

MyHealthAvatar provides health data collection, storage and access

to end-users. The data could be either automatically collected or

manually input by users. For lifestyle and health tracking, the data

are often time-dependent, especially date-dependent. A natural

form of date-based data organisation, display and editing is a

calendar, which is a traditional way to visualise daily events. In

MyHealthAvatar, a calendar- based diary is used for daily data

display as well as daily event input, editing and planning. Following

figure shows an example view of the calendar with the event editor.

The calendar displays a brief summary of the fitness data such as

daily steps, walking and transportation distance, as well as calories

burned. With the event editor the user can add events, providing the

start and end time, location, and detailed descriptions. The user can

add tags for events to facilitate event categorization. The user can

plan by adding events. The events and planning will be shown in the calendar.

Page 66 of 140

4.1.3 Timeline

A timeline is a traditional method to

visualise time-varying data and

events in a linear layout. Compared

to a calendar, a timeline is more

suitable for visualising continuous

variables, which cover a relatively

long period, such as health

indicators and medical

measurements. Time dependent activity events can also be shown in a timeline if a longer time scale

is desired to view daily activity events and activities. In the current implementation, the timeline

supports interactive visualisation of Fitbit/Withings sensor data as well as Moves data. There are five

different visualisation styles including activity stack, 24-hour activity, activity cloud, activity bubbles

and movement-place. Activity stack shows activities directly on the timeline in a form similar to stack

bar charts. A 24-hour activity organises the activities on a daily basis for easier comparison of daily

activity changes. The activity cloud uses concentric disks of different radius to represent the activities;

activity bubbles use bubbles of different colour and radius. Movement-place shows the movement

and place in the users Moves data.

4.1.4 Clock View

For daily activities, timeline provides visualisation over a

relatively long period. Interactive timelines can provide

zooming to smaller scales. However, the linear layout may

make it di cult for the user to understand and compare

daily events. A ne-grained view of activities within one day

is better visualised in a radial layout. A natural, real-life way

of radial daily time representation is the clock.

MyHealthAvatar uses a similar radial layout called

ClockView to visualise daily events. Movements and places from Moves data are visualised in the

radial layout. Activity types are marked by icons and colours. When the user hovers the mouse over

the icons more detailed information will be displayed, as shown in following figure.

4.1.5 Map

While dairy, timeline and clock view are largely designed for visual analysis of temporal data, they can

hardly be used to visualise spatial locations. A map is a natural choice to provide intuitive spatio-

temporal visualisation and analysis of the user’s locations and routes for better understanding and

knowledge discovery of the lifestyle. The map implementation is based on Google Maps [6]. Currently,

in MyHealthAvatar the map is used for visualisation and analysis of the Moves data only but it is

Page 67 of 140

capable of supporting other location-sensor-based

apps. In addition, MyHealthAvatar uses an integrated

view which is called Life-Tracker to visualise and

analyse events and activities, including diary, map and

clock view, as shown in Figure 5. The advantage of this

compound view is that it provides integrated spatio-

temporal visualisation and analysis. The page itself

provides the user an extensive view of data collected

from di erent sources and the user does not need to

refer to multiple pages to view and analyse related

spatio-temporal data collected and stored on the

MyHealthAvatar platform.

4.2 MyHealthAvatar Mobile Application

4.2.1 Overview on the mobile application

This overview utility, developed in WP6 and WP8, shows your today’s

activity in a simple and understandable way. Users can set their own goals

(e.g. steps, walking distance, and active minutes) in consultant with their

careers. (see figure on the right

4.2.2 Statistics view on the mobile application

Statistics show you a time range of

activity data with goal achievement

indicators.

4.2.3 Day views on the mobile app

The event tab shows you a chronological break down

of a specific day (WP6, WP8). The chart tab allows you

to see all the day’s activity data in a simplified chart.

Page 68 of 140

4.2.4 Chat interface

A chat interface is to log food consumption, mood and other health-related

information using text, photo, icon and voice through a chat with

MyHealthAvatar. Through the chat interface, the MyHealthAvatar app can act

as an interactive Robot (&your buddy) to ask for your information at

appropriate time and location, for example, while you are waiting for bus. This

will hopefully help and encourage users to provide more of their information to

the app. The personalized cancer care information may come from UK NHS

websites, such as http://www.nhs.uk/pages/home.aspx - if there is any other

sites that are better and more cancer specific, please advice. From these sites,

the technology can extract information and deliver to the patients according to

their profiles. Throughout our discussions we feel that personalization is the

key here because we do not want patients to receive excessive amount of information about all types

of cancer. The app also informs the patients about their targets (e.g. daily targets in the morning) and

their performance (e.g. compared with goals) and the performance summary on a daily, weekly or

monthly basis. It also delivers you tips and reminders for healthy behaviors, for example, breakfast

recommendations, suggestions for a walk if you

have been sitting for too long.

Morning greeting from MyHealthAvatar, who asks

about your feelings and tell your daily goals. It also

reminds you about what you did in the same day

last week/month/year. Location based message

(left), The interface to enter your diet information

(center), The entered information visible on the

chat interface (right).

You can answer questionnaires via the chat interface (left

picture – right side), You can receive health information

from the app (right picture – right side).

You can also receive published news from NHS (below)

http://www.nhs.uk/pages/home.aspx

Page 69 of 140

4.2.5 Profile summary and visualization

Once logged in, you may update and

simultaneously view your general and health

profile by using the My Profile menu as shown

below (developed in WP6 and WP8). These

include:

 Demographics

 Immunization

 Allergies

 Medical history

 Medication summary and schedule

 Lab tests results

To edit your profile, click on the button with your account name on the top right of the page. Then

from the drop down menu, select My Profile.

4.3 MyHealthAvatar Toolbox / Data collection utilities

4.3.1 User Profile Data

4.3.1.1 Diary

The Diary, a web application developed

in WP8, shows your movement on a

daily basis. The calendar also shows the

information of your daily step counts,

travel distance, etc. By selecting one day

from the calendar (which is then

highlighted in yellow), the colour tiles on

the top of the page display your

information on the day, including step

count, non-transport travel distance,

transport travel distance, and the map

on the right of the page displays your

movement and activity of the selected

day. Heatmap and clock-views are used

to illustrate your movements and

activities on the map.

Page 70 of 140

4.3.1.2 3D avatar visual
Analytics

The web-based 3d avatar rendering

suite shows the web-based 3d

avatar (developed in WP8). This

shows the structure of human

anatomy and it is used for the

purpose of patient education.

4.3.1.3 User Data Visualization and Dashboard

The Dashboard is web application,

developed in WP8, showing your current

location, the weather of your location and

your overall activities – see below. The

interactive timeline on the Dashboard

allows you to view your activity data within

a selected time period.

4.3.2 Risk assessment in toolboxes

The toolbox includes 4 established

risk assessment models from the

Framingham study to predict your

risk of having cardiovascular disease,

hypertension, diabetes and stroke

according your profile, developed in

WP6 and WP8.

Page 71 of 140

4.3.3 LifeTracker

LifeTracker, a web app developed in

WP8, is a suite of techniques that

presents lifestyle data and allows

users to investigate it interactively. It

employs a range of visual analytics

techniques to make the outcomes of

data summarisation and ranking

available to the users, hence

allowing them to identify the

highlighted key events from the

data. This supports the users to

explore the data at different levels of

detail and at different time scales.

LifeTracker follows the principle of

"overview first, zoom and filter, then

details on demand" and offers an

integrated environment to present

information about individuals’ daily

activities in one place.

4.3.4 Security, Authentication and Consent module

In the exploitation stage, cConsent will not be sought by using a hardcopy written consent form, but

by an online registration because MyHealthAvatar can reach more interested people by using e-

consent forms. The drafted General Terms and Conditions explain the usual individual who wishes to

join the MyHealthAvatar platform will be at home rather than in a clinical environment. The individual

will not be able to enter the platform before he has granted consent. The consent form will explain

the purpose of the platform (section 2, including the explanation of and what data the user can upload

to the platform for using the different functionalities of MHA (section 4). and how the data will be

used. Furthermore, it will be explained how the user’s data will be protected and, following that, the

rights of the user pursuant to Article 10 of the Data Protection Directive will be explained and

described. To ensure that the user has understood all provided information a qualified member of the

platform administration team can be contacted to ask questions. Currently, this is the project

coordinator Professor Feng Dong. For the exploitation stage after the project’s end, a contact point

with qualified platform team members is desirable and a well-trained contact person will answer

questions. Since consent has to be given explicitly according to Article 8 (2) lit. a of the Data Protection

Directive, the consent form will not include a pre-ticked box. Instead, the user will have to take some

positive action to signify consent. Deliverable D3.3 Security measures and guidelines reports the work

done for building and maintaining the structure of the architecture platform by investigating and

reporting security issues and measures for infrastructure, resource management, data access and

Page 72 of 140

federation, computing resource (possible links with external HPC). It deals with all the security aspects

of the technological platform, ranging from user authentication, authorization, and auditing, to data

integrity and privacy, to pseudo anonymization and re identification of patient data. The security tools

and policies that are developed ensure and enforce the legal and regulatory compliance and

encompasses the appropriate auditing mechanisms that are needed by the legislation. This deliverable

includes guidelines on how to pose these security mechanism in MHA platform and examples on how

to use these guidelines for the MHA use cases. The objective of a secure system is to protect sensitive

information from unauthorized access, manipulation, misuse, etc. In MyHealthAvatar the information

to protect are, patients citizen personal data stored in MHA repositories, medical measurements,

private patient data, medical history, activity data, medical images, model repositories data etc. The

protection goals which define the requirements of a secure system are defined by the following

objectives18, 19. In Deliverable D3.3 we present in detail the security framework of MyHeathAvatar, its

principles, privacy and legal framework, trust and security mechanisms employed as well as the

technical details of the deployment framework for MHA cloud security. Security tools and policies that

are developed ensure and enforce the legal and regulatory compliance and encompasses the

appropriate auditing mechanisms that are needed by the legislation. This deliverable includes

guidelines on how to pose these security mechanism in MHA platform and examples on how to use

these guidelines for the MHA use cases.

4.4 MyHealthAvatar Data repositories

4.4.1 MHA central repository (Casandra)

The MHA central repository is used to store the data of the users of the MyHealthaVatar platform.

This includes a range of user activities, health status related information, health profile and medical

history. Cassandra is chosen for MHA data repository as described in D6.2 Design for Data and RDF

repositories. A two-datacenter Cassandra cluster is deployed in the MHA hybrid cloud.

4.4.2 DICOM repository

For the needs of the MyHealthAvatar project, DCM4CHEE20 was chosen to be used as a medical

imaging DICOM repository. DCM4CHEE is a free and open - source DICOM archive and image manager,

forming the server side of a PACS system. It is actively developed and updated, with modules including

HL7 and WADO, and is based on JEE, JMX and the JBOSS Application Server. Administration is through

a web-based interface and is compatible with a wide range of databases (PostgreSQL, MySQL, SQL

Server and Oracle). The DCM4CHEE server has been already installed on a LINUX virtual machine

18 Claudia Eckert. IT-Sicherheit – Konzepte, Verfahren, Protokolle. Oldenbourg Verlag, 5th edition, 2007. ISBN 978-3-486-
58270-3.
19 Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of applied cryptography. CRC Press series on
discrete mathematics and its applications. CRC Press, 1997. ISBN 0-8493-8523-7.
20 http://www.dcm4che.org/confluence/display/ee2/Home

http://www.dcm4che.org/confluence/display/ee2/Home

Page 73 of 140

(located at FORTH with IP address 139.91.210.41) and can be used directly by the partners for the

needs of the project.

4.4.3 Model repository

In order to further facilitate citizen and patient self-assessment and education through the use of

general models (such as diabetes risk, or educational oncosimulator implementations), the WP5

Tool/Model repository is divided into two parts. Within the MHA platform the Generic Tool/Model

Repository part will reside. It will store these models and communicate with the platforms other parts

such as the MHA central repository to utilize the collected data. The Nephroblastoma use case will

utilize the other part, named the Onco-simulation Tool/Model repository.

4.5 Semantic Integration – Data access/model Layer

The semantic conceptual substrate of the overall information system described all components

developed within WP4 and shown in the figure below (the highlighted ones in yellow). Bellow we will

describe in detail each one of them.

Figure 4-1: The interactions of components of WP4.

4.5.1 MyHealthAvatar Ontology Suite

This model has been developed for WP4 as a result of Task 4.1 and has been reported in D4.221.

21 MyHealthAvatar Consortium, D4.1 Requirements analysis for semantic core ontology, July 2013

Page 74 of 140

4.5.1.1 Functionality

A modular ontology was generated to describe the details of the MyHealthAvatar clinical domains,

the social life of the users and everyday activities. The ontology has been developed using RDF/S and

it is consisted of an upper layer ontology the extended Translational Medical Ontology (eTMO) and 34

sub-ontologies with about 300 equivalence relations between them. A screenshot of the object

property hierarchy of the eTMO is shown below whereas the all modules of the ontology22 are shown

in Figure 5-323.

4.5.1.2 Deployment Details

The ontology can be found online on the MyHealthAvatar (http://www.myhealthavatar.eu/) Ontology

Portal. In addition it is used by all tools, components and services of WP4 in order to model the

managed information.

4.5.1.3 Technical Evaluation

Since MHA Semantic Core Ontology is consisted of several subontologies, we have performed an

extensive evaluation on each one of the used modules which presented in D4.1. The interested reader

is forwarded to this deliverable for more information. In addition the ontology has shown its great

value in being able to represent and manage all information managed within the MyHealthAvatar

platform.

Figure 4-2: The object property hierarchy of eTMO Ontology

22 MyHealthAvatar Consortium, D4.2 Extension of the semantic core ontology, February 2015
23 Kondylakis, H., Spanakis, M. Sfakianakis, S., Sakkalis, V., Tsiknakis, M., Marias, K., Xia, Z., Yu, H.Q., Dong, F.: Digital Patient:
Personalized and Translational Data Management through the MyHealthAvatar EU Project, IEEE International Conference of
Engineering in Medicine and Biology Society (EMBC), Milan, Italy (2015)

http://www.myhealthavatar.eu/

Page 75 of 140

Figure 4-3: The modules of MyHealthAvatar Semantic Core Ontology24

4.5.2 Semantic Data Warehouse

This component has been developed for WP4 as a result of Task 4.3 and has been reported in D4.2.

4.5.2.1 Functionality

The responsibility of this component is to store the linked, integrated information of the citizens. It is

a central RDF Triple store relying on a Virtuoso instance. The main innovation of Virtuoso is that it

delivers a platform-agnostic solution for data management, access and integration. It supports the

management of various types of data, including relational, RDF, XML, text documents and others. This

way, the users can employ the hybrid server architecture of Virtuoso to get access to all these different

types of data. The component gets as input data from the PHR gateway and the Semantic Integration

Module which are stored. Then those data are provided as input to the Semantic Reasoning Module,

the Alerts Engine, the Semantic Search Engine and the Summarization and the Evolution Modules.

4.5.2.2 Deployment Details

Two Virtuoso Instances have been deployed on for development at FORTH’s local cloud

(139.91.210.41) and one stable at public cloud at the UK (178.79.142.72). Both instances offer a

SPARQL endpoint for answering SPARQL queries and inserting new data. A screenshot of the Virtuoso

Administration Environment is shown below.

24 ACGT: ACGT Master Ontology, BFO: Basic Formal Ontology, CHEBI: Chemical Entities of Biological Interest, CIDOC-CRM:
CIDOC Conceptual Reference Model, CTO: Clinical Trial Ontology, DO: Human Disease Ontology, DTO: Disease Treatment
Ontology, FHHO: Family Health History Ontology, FMA: Foundation Model of Anatomy, FOAF: Friend of a Friend Ontology,
GALEN: Galen Ontology, GO: Gene Ontology, GRO: Gene Regulation Ontology, IAO: Information Artifact Ontology, ICD:
International Classification of Diseases, ICO: Informed Consent Ontology, LOINC: Logical Observation Identifier Names and
Codes, MESH: Medical Subject Headings, NCI-T: NCI theraurus, NIFSTD: Neuroscience Information Framework
Standardized ontology, NNEW: New Weather Ontology, OBI: Ontology for Biomedical Investigation, OCRE: Ontology
for Clinical Research, OMRSE: Ontology of Medically Related Social Entities, PATO: Phenotypic Quality Ontology, PLACE:Place
Ontology, PRO: Protein Ontology, RO: Relation Ontology, SBO: Systems Biology Ontology, SNOMED-CT: SNOMED
linical terms, SO: Sequence Ontology, SYMP: Symptom Ontology, TIME: Time Ontology, UMLS:Unified Modeling
Language System.

Page 76 of 140

Figure 4-4: The Virtuoso Administration Environment

4.5.3 Exelixis - Semantic Integration Engine and Evolution Module

This component has been developed for WP4 as a result of Task 4.3 and has been reported in D4.2. In

addition this component included algorithms for the integrating data under multiple ontology

versions. These algorithms have been developed as a result of T4.4 and have been reported in D4.325.

4.5.3.1 Functionality

exelixis26 is a data integration engine that a) achieves query answering by accepting SPARQL queries

and b) extracts, transforms and loads underlying data to the semantic triple store. In the former case

the input queries are then rewritten according to the source schemata and forwarded to the sources

to be answered whereas in the latter cases the selected data are transformed and loaded to the

Virtuoso triple store. In both cases the proper mappings should be established between the source

schemata and the ontology. Although query rewriting always ensures accessing the latest information

it suffers from efficiency problems and as such the ETL process is preferred. However, we have

implemented a messaging notification queue allowing near real-time access to the latest information

even in ETL scenarios. In such a case, as soon as a new information arrives to the underlying Cassandra

databases, the corresponding service notifies the ETL process that new information should be

extracted and loaded to the Virtuoso.

4.5.3.2 Deployment Details

Two versions of the semantic integration module have been deployed. One stable at public cloud in

the UK (178.79.142.72) and one development version at (http://139.91.183.29:8080/exelixis/) for

25 MyHealthAvatar Consortium, D4.3 Technical evaluation report of ontology including ontology evolution and
summarization, November 2015
26 Kondylakis, H., Plexousakis, D.: Ontology Evolution without Tears, Journal of Web Semantics (2013), 19, pp. 42-58, Elsevier

Page 77 of 140

demonstration and development purposes. A screenshot of an exemplary interface showing query

rewriting under different ontology versions is shown in below.

Figure 4-5: The exelixis system

4.5.3.3 Technical Evaluation

The exelixis system was evaluated using two sub-ontologies of the MHA Ontology Suite, namely the

CIDOC CRM and the Gene Ontology. The potential impact of our approach is witnessed by being able

to successfully provide rewritings on the worst case for the 88% of the CIDOC-CRM queries (after 711

change operations) and for the 97% of the GO queries (after 3482 change operations) among ontology

versions. On the other hand if our system was not used, only a small percentage of the initial queries

would be successful. For most of the queries, query answering is achieved within 5sec using a simple

workstation, which also shows the usability and the scalability of our approach. The great benefit of

our approach is the simplicity, modularity and the short deployment time it requires. It is only a matter

of providing a new ontology version to our system to be able to use it to formulate queries that will

be answered by data integration systems independent of the ontology version used. For the detailed

technical evaluation of exelixis the interested reader is forwarded to the D4.4 and the corresponding

publications.

4.5.4 RDF Digest - Semantic Summarization Module

This component has been developed for WP4 as a result of Task 4.4 and has been reported in D4.3.

4.5.4.1 Functionality

RDF Digest constructs high quality summaries as valid RDF/S graphs that include the most

representative concepts of the schema, adapted to the corresponding instances. To construct this

graph our algorithm exploits the semantics and the structure of the schema and the distribution of

the corresponding data/instances. A screenshot of the interface of the system is shown below.

Page 78 of 140

Figure 4-6: The RDF Digest system

4.5.4.2 Deployment Details

RDF Digest has been deployed as a web app in an Apache Tomcat Server at FORTH’s local cloud ip

(139.91.210.38). It is visible using the following url: www.ics.forth.gr/isl/rdf-digest/. In the same server

a web service is running accepting as input the remote url of an ontology and returning the

corresponding summary

4.5.4.3 Technical Evaluation

To create high quality summaries our algorithm exploits the semantics and structure of the schema

and the distribution of the data by combining all these information using the relevance and the

coverage properties. The performed evaluation verifies the feasibility of our solution and

demonstrates the advantages gained by efficiently producing good summaries. Compared to other

similar systems, our approach produces better results, further improved by exploiting knowledge

about the instance distribution. Moreover, although most of the systems just select nodes or paths as

the result summary, our result is a valid RDFS graph/document out of the initial RDF schema graph

and can be used for query answering as well. For the detailed technical evaluation of RDF Digest the

interested reader is forwarded to the D4.4 and the corresponding publications27,28.

4.5.5 Semantic Search Engine (SSE)

This component has been developed for WP4 as a result of Task 4.5 and has been reported in D4.429.

27 Troullinou, G., Kondylakis, H., Daskalaki, E., Plexousakis, D.: RDF Digest: Efficient Summarization of RDF/S KBs, Extended
Semantic Web Conference (ESWC), pp 119-134, Portoroz, Slovenia (2015) (top 3 rated paper)
28 Troullinou, G., Kondylakis, H., Daskalaki, E., Plexousakis, D.: RDF Digest: Ontology Exploration Using Summaries,
International Semantic Web Conference (ISWC), Bethlehem, Pennsylvania (2015)
29 MyHealthAvatar Consortium, D4.4 Semantic reasoning utilities for decision support, December 2015

Page 79 of 140

4.5.5.1 Functionality

The semantic search engine (SSE) allows end-users to search in useful, selected, high-quality

information. Medical experts can select useful web documents targeting patients that they can

register to the engine using the semantic annotator app. Then an NLP annotator parses those

documents using the MHA Ontology Suite and the annotations are stored in the internal database of

the SSE. When end-users send a query to the SSE the query is annotated again using the same

ontology, the annotated terms are expanded using the semantic reasoning module and the matched

results are returned to the user.

Figure 4-7: The interface if the Semantic Search Engine

4.5.5.2 Deployment Details

The aforementioned app has been deployed as a web application at the stable version of the

MyHealthAvatar portal at https://myhealthavatar.org/mha/.

4.5.5.3 Technical Evaluation

(Evaluation Pending)

4.5.6 Alerts Engine

This component has been developed for WP4 as a result of Task 4.5 and has been reported in D4.4.

4.5.6.1 Functionality

This engine is actually a service that gets as input a) the patient integrated profile within Virtuoso and

b) rules described by clinical experts and identifies possible alerts and recommendations that should

be presented to end-users such as possible drug interaction, side-effects etc. The semantic reasoning

module that is used using the defined rules can produce new knowledge through inference using the

integrated patient profile.

4.5.6.2 Deployment Details

The aforementioned app has been deployed as a web application at the stable version of the

MyHealthAvatar portal at https://myhealthavatar.org/mha/.

Page 80 of 140

4.5.6.3 Technical Evaluation

(Evaluation Pending)

Figure 4-8: Visualizing an alert

4.6 Auditing Service

A successful auditing system requires high quality information on events with potential hazardous

security risks. The provision of this information is primarily the responsibility of the service provider,

but well-coordinated cooperation between the developers of service providers, and audit engineers

is necessary to enrich the audit messages with enough data to provide clear and sufficient audit

trails in a production environment. The preferred audit data model is based on openXDAS230 for

MHA. In deliverable D3.3 we provide a detailed description of the main elements of an audit

elements and auditing concept architecture.

4.7 Linking with External Data Sources

4.7.1 Electronic Health Records

The “EPSOS Gateway” component enables MHA linking with a hospital information system to allow

the exportation of the health related data of the patients into MHA platform. Although the abundance

of standardized technologies accommodate the support of a large number of uses cases, due to the

time constraints and the primary objectives of the project we focus on the use of epSOS Patient

Summary for the retrieval of clinical data. The predominant issues relate to the security and

transformation of the data followed by the proper annotation in order to be compliant with the

syntactic and semantic principles of the system. This component described the technical

implementation in respect to the legal work presented in WP11. The integration with the Hospital

30 http://openxdas.sourceforge.net/architecture.html

http://openxdas.sourceforge.net/architecture.html

Page 81 of 140

information systems and other clinical data sources is described in Deliverable 3.4. The

implementation of the services was done in WP3. The implementation is based on the EPSOS

architecture and specifications and it consists of the following components:

 EPSOS-MHA “Gateway”: the component of the External Linking layer of the MHA
architecture that provides the bridge with the EPSOS infrastructure. It basically contacts the
EPSOS “National Contact Points” (NCPs) in order to retrieve the “patient summaries” of the
users of MHA.

 MHA “Clinical API” service: it provides a RESTful programmatic interface for delivering user
related clinical information to other MHA components, such as the Portal, or third party
applications that have been linked with the MHA platform.

 MHA “Event Bus”: a message queue supporting the one-to-many communication in the
platform based on the “publish-subscribe” message exchange pattern. This functionality is
based on the MQTT31 (formerly MQ Telemetry Transport), which is an ISO standard
(ISO/IEC PRF 20922), and the actual broker used is mosquito32

 MHA PACS Server: the Data Management component that is responsible for the storage of
clinical images in the DICOM format. We are using the open source DCM4CHEE PACS
Server33 for the storage and retrieval of the DICOM files.

The following picture depicts the integration of these components.

Figure 4-9: The main components that are responsible for the import, management, and the access of clinical data in the
MHA platform

31 Banks, Andrew, and Rahul Gupta. "MQTT Version 3.1.1" OASIS Standard (2014).
32 http://mosquitto.org (accessed on February 25, 2016)
33 http://www.dcm4che.org (accessed on February 25, 2016)

http://mosquitto.org/
http://www.dcm4che.org/

Page 82 of 140

The incorporation of a messaging infrastructure (event bus) allows the efficient transfer of the data to

the semantic layer where the semantic transformation, summarization, and harmonization take place.

4.7.2 Data repositories (CHIC repository)

MyHealthAvatar has created a link to the CHIC project, by utilizing its Clinical Data Repository as an

external data source.34 The CHIC repository hosts all medical data produced or collected by the CHIC

project and has interfaces to import or export its contents. The collected data are intended to be

reusable by other projects. For each patient all the relevant medical data, including imaging data,

clinical data, histological data and genetic data are stored.

Under the signed CHIC-MyHealthAvatar agreement, the CHIC repository will be involved in the

following workflow pertaining to the Nephroblastoma Use Case:i) MyhealthAvatar partners will create

a set of synthetic data for use as input for the Nephroblastoma Oncosimulator.

i) The CHIC project will create a section in the CHIC repository where these synthetic data will be

stored. In addition it will provide credentials for access and application programming interfaces

(access API) for data storage and retrieval, which will be used from MyHealthAvatar to log in and store

their synthetic data

iii) For a Nephroblastoma Oncosimulator Execution, MyHealthAvatar will log to the CHIC repository

via its API and chose the necessary data. Then the Nephroblastoma Oncosimulator will log to the CHIC

repository, retrieve the data and proceed with its execution.

iv) The execution results will be stored back to the MyHealthAvatar Platform by the Nephroblastoma

Oncosimulator, by using the platform’s API.35

The figure on the right demonstrates

the connections taking place in the

aforementioned workflow. For the

implementation of the described

workflow, the Nephroblastoma

Oncosimulator Application, which

encases the simulation model, is build

using python’s Django. Therefore,

libraries such as urllib2 and/or pycurl

(where necessary), are used to make

requests to the MHA platform and the

CHIC repository API’s, using the

necessary credentials as headers. Through these requests, files are exchanged via streams

34 Please see D11.4, section 5.6, pp. 66 ff. for the legal aspects.
35 Please see D11.4, pp. 67 f. for more legal details.

Page 83 of 140

(content_type='application/octet-stream) and the descriptive data are exchanged via JSON. The API

documentations for the MHA platform and the CHIC repository are given through the corresponding

links: https://myhealthavatar.org/api/doc/v2/index.html and https://cdr-chic.ics.forth.gr/api/help

(production version). Since the CHIC project is still ongoing, there is also a development version of the

repository’s API: https://cdr-dev-chic.ics.forth.gr/api/help.

4.7.3 Drug data repositories

Personal health systems try to deal with issues of well-being, prevention and management of diseases

and thus enhance patient empowerment and self-care management. To this respect a major challenge

for patients –especially for chronic diseases where comorbidities may co-exist –is the optimum

prescription of administered drugs in order to avoid any adverse drug reactions (ADRs), drug –drug

interactions (DDIs) as well as patient’s compliance with physician's instructions for lifestyle (i.e. alcohol

consumption and smoking) and optimum drug administration. DDIs describe the modulation of action

of one or more concurrently administered medications due to prescriptions errors or due to self –

medication36. The problem is becoming complex taking into account patient’s lifestyle and the use of

alternative therapies (i.e. herbal medicines), alcohol consumption and smoking37, 38. The interaction

mechanism can be related either with synergistic or antagonistic effects in the site of action

(pharmacodynamic, PD) or with alteration of absorption, distribution, metabolism and elimination

pathways (pharmacokinetic, PK).

In this section, a DDIs tool that was generated in the context of MyHealthAvatar (MHA) is described.

The DDI tool in MHA platform was developed using the following programming languages and

frameworks: RESTWeb services, Spring MVC 3 framework, Twitter Bootstrap, HTML5, Java server

pages, JQuery, CSS, Apache Tomcat server. The information source in the case of MHA was through

the Drugbank39 bioinformatics and cheminformatics database which was provided via an XML file

online. , it is parsed and stored in query optimized relational schema (in Postgresql). The complete

functionality of the application is provided by two autonomous web services. The first service gives

feedback regarding information for a specific drug when a full text search” in order to support non-

exact string searching is typed. The feedback includes the name and the synonyms for the compound,

a brief description of the pharmacological action along with the therapeutic category, route of

administration and the DDIs that are known for this compound. Through this approach MHA manage

36 P. D. Hansten, and J. R. Horn, Drug Interactions: Analysis and Management: Wolters Kluwer Health, 2006.
37 I. Vizirianakis, M. Spanakis, A. Termentzi, I. Niopas, and E. Kokkalou, “Clinical and pharmacogenomic assessment of herb-
drug interactions to improve drug delivery and pharmacovigilance,” Plants in Traditional and Modern Medicine: Chemistry
and Activity, pp. 978-81, 2010.
38 . R. G. Smith, “An appraisal of potential drug interactions in cigarette smokers and alcohol drinkers,” J Am Podiatr Med
Assoc, vol. 99, no. 1, pp. 81-8, Jan-Feb, 2009.
39 http://www.drugbank.ca/

https://myhealthavatar.org/api/doc/v2/index.html
https://cdr-chic.ics.forth.gr/api/help
https://cdr-dev-chic.ics.forth.gr/api/help
http://www.drugbank.ca/

Page 84 of 140

to provide information for a patient-user regarding drugs that he/she may be receives. Using the MHA

Semantic Core ontology40, a modular ontology developed within MHA, we can describe prescribed

drug information, and how these drugs can, harmfully or not, interact among each other. This

integration is achieved by reusing terms from the sub-ontologies of the MHA Semantic Core Ontology.

There are 34 sub-ontologies within MHA Sematic core ontology linked between to the eTMO ontology

and via relations of equivalence (using owl:equivalentClass) and subsumption (rdfs:subClassof). One

of these sub-ontologies is the DrugBank Ontology41 with an equivalent link between the eTMO:Drug

with the DrugBank:Drug. As such the entire ontology and information available in the DrugBank can

directly be exploited and used. Some specific classes and used to represent patient medication

information, DDIs and DFIs are shown in (figure 5-11). The second service that is provided through

MHA is a DDIs checker. Through this service information for potential interactions between two drugs

can be retrieved and provided to the user. The table below (Table 1) summarizes some characteristic

paradigms of drug interactions that were retrieved from the implementation of the tool.

Figure 4-10: Classes from the MHA Semantic Core Ontology related medication DFIs and DDIs.

4.7.4 Personal Health Records

This component has been developed for WP4 as

a result of Task 4.3 in order to demonstrate

linkage to external data sources such as the

IndivoX PHR system.

4.7.4.1 Functionality

The PHR gateway is actually an app of the

MyHealthAvatar platform. As soon as the

MyHealthAvatar user enters his IndivoX and

presses the export button, his entire profile from

the PHR is exported from IndivoX, transformed to

40 D4.2 Extension of the semantic core ontology, D4.3 Technical evaluation report of ontology including ontology evolution
and summarization
41 https://datahub.io/dataset/bio2rdf-drugbank

Figure 4-11 The interface

Page 85 of 140

RDF/S and loaded to his integrated profile at the Virtuoso Triple Store. A screenshot of the

aforementioned interface is shown in 5-12.

4.7.4.2 Deployment Details

The aforementioned app has been deployed as a web application at the stable version of the

MyHealthAvatar portal at https://myhealthavatar.org/mha/.

4.7.5 Link with Social Network Services

MHA infrastructure supports linking to social networks. MHA provides social web mechanisms and

encourage the patients/citizens to adopt those in order to define their digital avatar. This requires

integration with the social web accounts that the patients maintain already and the extraction of the

social graph and other information. MHA is able to collect data from online patient diary using the

utilities provided by T6.1. Volunteers will be organized to participate the research in this task. The task

will continue towards the end of the project, leading to a considerable collection of information from

the participants. The popularity of social media allows users to link their account profiles from social

networks like Twitter, Facebook or PatientsLikeMe with MHA platform that become a communication

hub for collecting people’s personal stories and life experiences. MHA will then be able to contain a

large volume of potential personal health information. The use of data mining techniques in the

exploration of personal health information from these social networking services is the goal of this

specific research task. The key problem we identified and focus on is on how to extract meaningful

information from a large volume of data from popular social media services like Facebook, Twitter,

etc. Details on the storage of these information have already been reported in D6.1.

We have explored and implemented the connection to the main social networks including Facebook,

Twitter and Google +, we support connect the social network by their API (through OAuth 1 and 2).

The detail of how it is connected and architecture graphic is described in previous deliverables. We

have taken into consideration of Identity Federation with social networking, namely Login with

Facebook/Twitter/Google, which would ease the user in terms of manage their credentials (this is

work in progress). With users’ explicit authorisation, MHA is able to read user’s post, friend list, etc.

and also able to post information back to the social network. E.g. Their daily activities from MHA. The

post back to social network will increase the MHA exposure to general public, and potentially attracts

new users to MHA. MHA also consider to allow users to invite friends from his social network, contact

lists to MHA.

4.8 MyHealthAvatar API

4.8.1 Overview

MyHealthAvatar APIs can be accessed by implicit grant and authorization code grant. Client id and

secret may be required for access.

4.8.2 MHA API Endpoints

The complete description of the MHA API can be found in D3.6 Report on the Review of Open Source

APIs for MHA. This section lists the available endpoints for each API.

Page 86 of 140

Activities

1) [GET] http://myhealthavatar.org/mha/api/v2/user/activities

2) [GET] http://myhealthavatar.org/mha/api/v2/user/activities?from={yyyy-mm-
dd}

3) [GET] http://myhealthavatar.org/mha/api/v2/user/activities?to={yyyy-mm-dd}

4) [GET] http://myhealthavatar.org/mha/api/v2/user/activities?from={yyyy-mm-
dd}&to={yyyy-mm-dd}

5) [GET] http://myhealthavatar.org/mha/api/v2/user/activities?date={yyyy-mm-
dd}

6) [POST] http://myhealthavatar.org/mha/api/v2/user/activities?source=[fitbit,
moves, withings]

Activity Daily Summary

1) [GET] http://myhealthavatar.org/mha/api/v2/user/activities/summary

2) [GET]
http://myhealthavatar.org/mha/api/v2/user/activities/summary?from={yyyy-mm-
dd}

3) [GET]
http://myhealthavatar.org/mha/api/v2/user/activities/summary?to={yyyy-mm-
dd}

4) [GET]
http://myhealthavatar.org/mha/api/v2/user/activities/summary?from={yyyy-mm-
dd}&to={yyyy-mm-dd}

5) [GET]
http://myhealthavatar.org/mha/api/v2/user/activities/summary?date={yyyy-mm-
dd}

Activity Segments

1) [GET] http://myhealthavatar.org/mha/api/v2/user/activities/segments

2) [GET]
http://myhealthavatar.org/mha/api/v2/user/activities/segments?from={yyyy-
mm-dd}

3) [GET]
http://myhealthavatar.org/mha/api/v2/user/activities/segments?to={yyyy-mm-
dd}

4) [GET]
http://myhealthavatar.org/mha/api/v2/user/activities/segments?from={yyyy-
mm-dd}&to={yyyy-mm-dd}

5) [GET]
http://myhealthavatar.org/mha/api/v2/user/activities/segments?date={yyyy-
mm-dd}

6) [GET]
http://myhealthavatar.org/mha/api/v2/user/activities/segments?start_time={y
yyy-mm-dd hh:mm:ss}

Page 87 of 140

[GET]

http://myhealthavatar.org/mha/api/v2/user/activities/segments?start_time={yyyy-mm-

dd hh:mm:ss}&end_time={yyyy-mm-dd hh:mm:ss}

Diary

1) [POST] http://myhealthavatar.org/mha/api/v2/user/diary

2) [GET] http://myhealthavatar.org/mha/api/v2/user/diary

3) [GET] http://myhealthavatar.org/mha/api/v2/user/diary?time=[yyyy-MM-
dd'T'HH:mmssZ]

4) [GET] http://myhealthavatar.org/mha/api/v2/user/diary?from=[yyyy-MM-
dd'T'HH:mmssZ]

5) [GET] http://myhealthavatar.org/mha/api/v2/user/diary?from=[yyyy-MM-
dd'T'HH:mmssZ]&to=[yyyy-MM-dd'T'HH:mmssZ]

6) [POST] http://myhealthavatar.org/mha/api/v2/user/diary/delete?id=[local_id]

Measurements

1) [GET] http://myhealthavatar.org/mha/api/v2/user/measurements

2) [GET] http://myhealthavatar.org/mha/api/v2/user/measurements?from={yyyy-mm-
dd}

3) [GET] http://myhealthavatar.org/mha/api/v2/user/measurements?to={yyyy-mm-
dd}

4) [GET] http://myhealthavatar.org/mha/api/v2/user/measurements?from={yyyy-mm-
dd}&to={yyyy-mm-dd}

5) [GET] http://myhealthavatar.org/mha/api/v2/user/measurements?date={yyyy-mm-
dd}

6) [POST] http://myhealthavatar.org/mha/api/v2/user/measurements?source=[*]

General Health

1) [POST] http://myhealthavatar.org/mha/api/v2/user/general

2) [GET] http://myhealthavatar.org/mha/api/v2/user/general

3) [GET] http://myhealthavatar.org/mha/api/v2/user/general?from={yyyy-mm-dd}

4) [GET] http://myhealthavatar.org/mha/api/v2/user/general?to={yyyy-mm-dd}

5) [GET] http://myhealthavatar.org/mha/api/v2/user/general?from={yyyy-mm-
dd}&to={yyyy-mm-dd}

6) [GET] http://myhealthavatar.org/mha/api/v2/user/general?date={yyyy-mm-dd}

User Profile

1) [POST] http://myhealthavatar.org/mha/api/v2/user/full_profile

2) [GET] http://myhealthavatar.org/mha/api/v2/user/full_profile

3) [GET] http://myhealthavatar.org/mha/api/v2/user/personal_information

4) [GET] http://myhealthavatar.org/mha/api/v2/user/insurance

5) [GET] http://myhealthavatar.org/mha/api/v2/user/allergy

Page 88 of 140

6) [GET] http://myhealthavatar.org/mha/api/v2/user/diagnosis

7) [GET] http://myhealthavatar.org/mha/api/v2/user/medication

8) [GET] http://myhealthavatar.org/mha/api/v2/user/vital_sign

General Insurance Contact

1) [GET] http://myhealthavatar.org/mha/api/v2/insurance_contact

2) [GET] http://myhealthavatar.org/mha/api/v2/insurance_contact?id=[uuid]

Vital Sign Codes

[GET] http://myhealthavatar.org/mha/api/v2/vital_sign_codes

Sharing

1) [POST]
http://myhealthavatar.org/mha/api/v2/user/followers/request?user_name=**

2) [POST]
http://myhealthavatar.org/mha/api/v2/user/followees/request?user_name=**

3) [POST]
http://myhealthavatar.org/mha/api/v2/user/followers/accept?user_name=**

4) [POST]
http://myhealthavatar.org/mha/api/v2/user/followees/accept?user_name=**

5) [POST]
http://myhealthavatar.org/mha/api/v2/user/followers/update?user_name=**

6) [POST]
http://myhealthavatar.org/mha/api/v2/user/followees/update?user_name=**

7) [POST]
http://myhealthavatar.org/mha/api/v2/user/followers/delete?user_name=**

8) [POST]
http://myhealthavatar.org/mha/api/v2/user/followees/delete?user_name=**

9) [GET] http://myhealthavatar.org/mha/api/v2/user/followers

10) [GET] http://myhealthavatar.org/mha/api/v2/user/followees

11) [GET] http://myhealthavatar.org/mha/api/v2/user/followers/request

12) [GET] http://myhealthavatar.org/mha/api/v2/user/followees/request

4.8.3 MHA Clinical API

The Clinical API allows the retrieval of patient related clinical data using a RESTful (HTTP based)

interface. A graphical depiction of its collaborators and interactions can be seen in Figure 5-12. The

main functionalities and HTTP URIs supported are:

 Retrieve information about a DICOM series using GET at the /series endpoint with the

series instance UID supplied in the series_id query parameter. The server contacts the

backend DICOM server (using C-FIND) and returns information about the patient id, the study

instance UID, and the list of images ("SOP instance UIDs") in JSON format.

http://myhealthavatar.org/mha/api/v2/user/followers/request
http://myhealthavatar.org/mha/api/v2/user/followees/request

Page 89 of 140

 Retrieve the whole DICOM series as a ZIP file using GET at the /dcm endpoint with the series

instance UID supplied in the series_uid query parameter. The images comprising the

series are retrieved from the backend DICOM server using the C-FIND and C-GET commands.

 Retrieve a preview (JPEG image) of an instance (image) of a DICOM series using GET at

the /wado endpoint given an "instance UID" in the instance_uid query parameter. The

endpoint actually "proxies" the backend DICOM server using the WADO protocol42.

 Finally, retrieve a patient's clinical summary in JSON format using GET at

the /patsum endpoint. The data are retrieved from the backend TripleStore using the

SPARQL query language. Additional query string parameters exist for specifying a date

range: from is for the start of the date period, and to for the end for the period. The format

of these dates should be compliant with the ISO format, e.g. "2008-04-21".

Additionally, the API supports the upload of a zip of DICOM images. The files are then sent to the

backend DICOM server using the C-STORE command. The endpoint for this is the /upload using

the POST HTTP method.

Figure 4-12: The integration of the Clinical API service with the data storage and harmonization components

4.9 Use case integration and evaluation

4.9.1 Diabetes

Diabetes is a lifelong condition problem which causes the level of a person's blood sugar to become

too high. There are two main types of diabetes: Type 1 diabetes and Type 2 diabetes. Type 1 means

that the pancreas doesn't produce any insulin and Type 2 means that the pancreas doesn't

produce enough insulin or the body’s cells don't react to insulin.

Diabetes is one of the popular disease in the world [WHO]. As the research of WHO (World Health

Organization), there are about 60 million people with diabetes in the European Region in 2015. It

includes about 10.3% of men and 9.6% of women aged 25 years and over. Moreover, the prevalence

42 http://www.research.ibm.com/haifa/projects/software/wado/

https://www.diabetes.org.uk/Guide-to-diabetes/What-is-diabetes/What-is-Type-1-diabetes/
https://www.diabetes.org.uk/Guide-to-diabetes/What-is-diabetes/What-is-Type-2-Diabetes/
http://www.research.ibm.com/haifa/projects/software/wado/

Page 90 of 140

of diabetes is increasing among all ages in the European Region. The mostly reason is that the

population increases in overweight and obesity, unhealthy diet and physical inactivity.

Diabetes is a higher risk disease to cause death. As the research [WHO], in Worldwide, high blood

glucose kills about 3.4 million people annually. Especially, almost 80% of these deaths occur in low-

and middle-income countries, and almost half are people aged under 70 years. WHO projects diabetes

deaths will double between 2005 and 2030. By suffering the diabetes, the people may be in danger of

some series disease [Diabetes, Disease], such as:

1. Heart Disease – People with diabetes have a higher risk for heart attack and stroke.

2. Eye Complications – People with diabetes have a higher risk of blindness and other vision
problems.

3. Kidney Disease – Diabetes can damage the kidneys and may lead to kidney failure.

Therefore, it is important for the people who has been diagnosed with diabetes to change their

lifestyle with a confidence way. This section provides information about how diabetes can be fit

around you and your life by using our Diabetes Program.

Diabetes Program is a native function that build in mobile application (MHA-pro) for Android operating

system using android SDK versions 19-23. The application was developed in Android Studio. The MHA-

pro is the extend version of current MHA application that provides program as shown in the following

figure.

Figure 4-13: Structure of Diabetes Program in MyHeathAvatar Application Pro-version

In figure 5-13, the left side components are the default functions which already exist in MHA regular

application. The HNS News can provide different topic health news and the diet control can offer users

Page 91 of 140

useful food information, e.g. calories, protein, sugar etc.; the right side components are the basic

functions for the Diabetes Program. Diabetes daily report records all the monitoring data for every

day. Diabetes recommendation tips record all the Helpful information for diabetes. Diabetes

questionnaire and monitoring page inquiries the user’s details to fill up the diabetes report. Therefore,

the diabetes daily report is the main goals of the given program. The other components are assist the

users to fill up the report.

In terms of the diabetes daily report, there are three different data type in the report, such as short-

term, mid-term and long-term data as shown in Figure 5-14.

Figure 4-14: Data Collection Structure for Diabetes Daily Report

• Long-term feature means that the data is valid in long time period, e.g. gender, height,
weight, family diabetes history etc. As shown in Figure 5.9.2, the Diabetes Program will
obtain the data from the user profile first. If the profile does not include the required
features, the program then inquiries the information through questionnaire method.

• Mid-term features means that the data will be updated every day, but only updated once
a day, e.g. high sensitivity C-Reacting Protein (hsCRP), blood pressure and cholesterol etc.
The mid-term features are obtained through questionnaire method which will be
described in Section 5.9.1.2.

• Short-term features means that the data will be real-time updated in a day, e.g. glucose
and insulin etc. the short-term feature are monitored through monitoring page which will
be descript in Section 5.9.1.1.

4.9.1.1 Insulin and Glucose Monitoring and Visualisation

Monitoring your diabetes conditions is crucial to preventing some of the possible complications

associated with diabetes. According to the above description, the insulin and glucose level are the

important features to cope with diabetes.

https://en.wikipedia.org/wiki/Insulin

Page 92 of 140

Insulin is the hormone produced by the pancreas that allows glucose to enter the body’s cells, where

it is used as fuel for energy so we can work, play and generally live our lives. It is vital for life. Glucose

comes from digesting carbohydrate and is also produced by the liver.

The monitoring function aims to monitor the users’ fasting and 2 hours later blood glucose and insulin.

Since eating is the important feature which affect users’ blood glucose and insulin, it is very important

to monitoring these values before and after eating. This function is built in Journal page as shown in

Figure 5-15.

Figure 4-15: Glucose and Insulin Real-time Monitoring

 111

In Figure 5-15, the first picture shows the control menu in Journal page. Since the current mobile

application cannot detect the users's activity like eating or drinking, the users need to manually

measure their glucose and insulin (In the future work, we can predict user start to eat according to

their lifestyle and location). The users can press the diabetes button in control menu and trigger the

glucose and insulin monitoring page (Diabetes Blood Components Report) as shown in second picture.

The Users can add a new record, edit or delete a exist record. Once, the users submit the record, an 2

hours later alarm will be setup as well. This insure to remind users to measure the 2 hours later glucose

and insulin.

Moreover, all these records will be saved in the daily report for future analysis purpose. The Users

also can check their glucose and insulin records in the statistics in a time period as shown in Figure 5-

16.

Page 93 of 140

Figure 4-16: Insulin and Glucose Visualisation

In Figure 5-16, the purple curve represents the fasting insulin and glucose, the green curve represents

the 2 hours later values and the red curve represents the average values. The figure shows that during

a week period and the changes of your glucose and insulin. It is very easy to check how you improve

your lifestyle quality through the changes of read curve, in order to overbear diabetes.

4.9.1.2 Diabetes Questionnaire

Diabetes Program aims not only to monitor the user’s blood component but also to build a diabetes

daily report for the future analysis. As mentioned before, in diabetes report, there are several

conditions (features), such as weight, age, family diabetes history and blood cholesterol etc. Since

most of the features are long-term and mid-term conditions, these conditions will be inquired by using

questionnaires in the Journal page as shown in Figure 5-17.

In Figure 5-17, the first picture shows that user can manually to trigger the diabetes questionnaire.

The second picture shows that user can update the conditions in Journal page. Moreover, MHA also

support the time-based method to trigger the questionnaire as shown in Figure 5.9.6.

Page 94 of 140

Figure 4-17: Diabetes Questionnaire

Figure 4-18: Diabetes Program and Time-based Questionnaire in Settings Page

Page 95 of 140

Figure 5-18 shows that the users can turn on the Diabetes Program in the settings page and then set

the time-based questionnaire depends on their lifestyle.

4.9.1.3 Diabetes Tips and Diet

The diabetes tips can be triggered as same as the questionnaire, the users can easily let tips

display in the Journal page through the control menu. If user has filled up all the conditions for

diabetes report, the tips will be triggered instead of the questionnaire as shown in Figure 5-

19.

Figure 4-19: Diabetes Tips in Journal Page

Users also can check all the tips in Data page as shown in Figure 5-20.

Page 96 of 140

Figure 4-20: Diabetes Tips in Data Page

A diabetes diet is simply a healthy eating plan that is high in nutrients, low in fat and added

sugar, and moderate in calories [Diabetes, Diet]. The Diet control function can help the users

choose the proper food (most notably the carbohydrates) and avoid the danger.

To use the diet control function, user can enter a food name through Journal page, then

choose the proper food item and enter the counter for eating as shown in Figure 5-21.

Page 97 of 140

Figure 4-21: Diet Control in Journal Page for Diabetes

In Figure 5-21, the user can easily to check the composition of the given food. This is very

easy for person who suffering with diabetes to choose the proper food and control the glucose

level.

4.9.1.4 Diabetes Daily Report

Diabetes daily report is crucial to preventing the conditions of your current diabetes situation. As

mentioned before, this report includes many different type of conditions, user should give accurate

information due to it is relative with your health. The more detail of the report, the more confident

you will become and the easier you manage your diabetes. The detail of diabetes report is shown in

Figure 5-22.

Page 98 of 140

Figure 4-22: Diabetes Daily Report

The diabetes report is a daily report, the user can check the all the report through the Data page in

application as shown in Figure 5-23.

Figure 4-23: Diabetes Daily Records in Data Page

Page 99 of 140

4.9.1.5 Diabetes NHS News

The diabetes NHS news is quite similar to the diabetes tips. It uses to give the suggestion to

the user who suffering with diabetes. Once the user has turn on the Diabetes Program in

settings page as shown in Figure 5.9.6, the application will set the NHS news topics to

diabetes. Therefore, the system will automatically obtain the data from NHS website and the

user can easily to check the diabetes news from the Journal page. The NHS news is shown

in Figure 5-24.

Figure 4-24: NHS News for Diabetes

4.9.1.6 Testing and Evaluation

Feature Expected Functionality Actual

Glucose and insulin Real-
time monitoring

Users can easily report the
Glucose and Insulin values

Users can easily report their fasting
and 2 hours later glucose and
insulin values.

Glucose and insulin Real-
time monitoring

2 hours reminder alarm works
properly

The reminder works fine

Glucose and insulin Real-
time monitoring

Data has completely and
accurately display in the statistic
page

Data correctly displays in the
statistic page

Page 100 of 140

Glucose and insulin Real-
time monitoring

Data has completely and
accurately saved in the diabetes
report

Data correctly saves in the diabetes
report

Diabetes Questionnaire Questions completely and
accurately display in the Journal
page

Questions correctly display in the
Journal page

Diabetes Questionnaire Data has completely and
accurately saved in the diabetes
report

Data correctly saves in the diabetes
report

Diabetes Questionnaire Questions has completely and
accurately display in the Journal
page according to the time-
based triggering method

Questions correctly display in the
Journal page

Diabetes Tips Tips has completely and
accurately display in the Journal
page

Tips correctly displays in the
Journal page
ISSUE: on devices with a small
screen, it is difficult to see the
entire information of a
recommendation tips, due to the
large detail of the tips

Diabetes Tips Tips has completely and
accurately display in the Journal
page according to the time-
based triggering method

Tips correctly displays in the
Journal page

Diabetes Diet Control Food information has
completely and accurately
display in the food search page

Data correctly displays in the food
search page

Diabetes Diet Control Food information has
completely and accurately
display in Journal page

Data correctly displays in the
Journal page
ISSUE: the user has to search the
several food, it may cost a bit long
time.
Solution: the application support
the users to save their favourite
food, in order to improve the
efficiency of using this function

Diabetes Daily Report Data has completely and
accurately display and stored in
the diabetes report

Data correctly displays and stores
in the diabetes report

Diabetes Daily Report Data has correctly recorded in
every day

Diabetes report record function
works fine

Diabetes Daily Report Data can be updated depends on
the Profile

Data can be correctly updated
depends on the Profile

Diabetes NHS News NHS news page has completely
and accurately display the
diabetes information

NHS news works fine

Page 101 of 140

4.9.2 Personalized CHF Related Risk Profiles and "Real-Time Monitoring"
(CHF)

Congestive heart failure (CHF) is a state in which the heart cannot provide sufficient cardiac output to

satisfy the metabolic needs of the body. It is commonly termed congestive heart failure (CHF) since

symptoms of increase venous pressure are often prominent. Its pathogenesis factors include: Age,

Gender, Increased blood pressure, Smoking, Alcohol, Family and medical histor, Genetic predisposition,

Diabetes, Diet habits and Atherosclerosis. It’s a pathophysiologic state in which the heart, via an

abnormality of cardiac function (detectable or not), fails to pump blood at a rate commensurate with

the requirements of the metabolizing tissues or is able to do so only with an elevated diastolic filling

pressure. Common causes of the disease include coronary heart disease, hypertension and valvular

heart disease. Diagnosis can be achieved through physical examination (i.e. blood pressure, body mass

index, blood tests) and echocardiography. A major challenge related to caring for patients with chronic

conditions is the early detection of exacerbations of the disease that may be of great significance.

In this use case and demonstration scenario we focus on methodologies that would facilitate the early

detection and monitoring of CHF exacerbation, enabling prevention on a daily basis.

Especially, early detection is of upmost importance; hence remote health monitoring systems are in

the research focus so as to provide to a doctor the ability to monitor the progress of a patient on a

daily basis and issue alerts in case of potential health risks. The objective thus is to create a service

able to empower citizens, patients and doctors by providing a supportive environment for the self-

management of patients/ citizens with cardiovascular disease risks. To do so we incorporate a pool

of verified risk assessment models for cardiovascular diseases into the MyHealthAvatar platform and

an external to MyHealthAvatar mobile application for real time monitoring and intelligent rule-based

alerting in case of an eminent CHF episode.

We define the “CHF Real-time patient monitoring” and the “CHF Risk Assessment” service in order to:

assist individualized out self-monitoring of their own health-status, provide risk analysis for personal

risk monitoring for developing a cardiovascular related episode in the future, provide comorbidities

and drug interaction information in both the treating physicians, but also the patient him/ herself

regarding negative drug interactions (optional).

CHF real-time patient monitoring is realized by a mobile application that monitors and records the

vital signs (such as heart rate, oxygen saturation, systolic blood pressure and diastolic blood pressure)

of patients with CHF or prone to develop CHF. It exploits sensor technologies to obtain data via

Bluetooth, and wireless communications to share data with back-end databases. Vital signs are

recorded every second locally in SQLite, and in case of an abnormal measurement detection, an alert

record is created accompanied by a notification (

Page 102 of 140

Figure 4-25). Moreover, the application provides useful charts for visual display of the vital signs’

measurements (Figure 4-26). Data are sent to the MyHealthAvatar platform at the request of the user/

patient, and namely the list of alerts including the type of the alert, the value and the time it occurred

(Figure 4-27).

Figure 4-25: Vital signs' monitoring

Page 103 of 140

Figure 4-26: List of Alerts, Notifications and Vital Signs' Charts

Figure 4-27: Synchronize data with MyHealthAvatar platform

In addition to the real-time monitoring, the CHF Risk Assessment application provides to the patient

self-health status assessment services based on validated risk evaluation algorithms (Figure 4-28). In

particular, three risk assessment models have been implemented providing longer (3-, 4-year) and

shorter (1-, 2- year) heart failure risk assessment. Figure 4-2828 to Figure 4-30 display the algorithms’

questionnaires with the respective results’ screens, whereas Figure 4-31 shows the list of all the

calculated risk scores. The bellow color conventions are followed: green for “low risk”, yellow for

“slight risk” and orange for “considerable risk”. Data can be retrieved from the MyHealthAvatar

platform upon the request of the user/ patient so as to be used in the algorithms, such as

Page 104 of 140

measurements, general health, profile and clinical data. Moreover, the list of risk scores is sent to

MyHealthAvatar.

Figure 4-28: Risk Assessment Algorithms, Framingham CHF risk assesment (picture on the right)

Figure 4-29: Framingham Hypertension

Figure 4-30: MAGGIC HF

Page 105 of 140

Figure 4-31: List of calculated risk scores

4.9.2.1 Technical Details

CHF Alarm is a native mobile application for Android operating system using android sdk versions 14-

23. The application was developed in Eclipse for Android. It stores data locally in an SQLite database.

Regarding features that the application needs access to, these include internet, network state and

bluetooth. In order to obtain authorization to MyHealthAvatar so as to synchronize data, CHF Alarm

uses OAuth 2.0 protocol.

4.9.2.2 Platform integration (through the MHA API)

CHF mobile application communicates with MHA through specific published API calls

“CHF Real-time patient monitoring” service sending data

 Send a list of alerts

o https://myhealthavatar.org/mha/api/v2/user/general_alert

“CHF Risk Assessment” service receiving data

 Get measurements, such as bmi and left ventricular hypertrophy on ECG

o https://myhealthavatar.org/mha/api/v3/measurements/latest

 Get general health data, such as diabetic, current smoker and parental hypertension

o https://myhealthavatar.org/mha/api/v3/user/general/latest

 Get profile data, such as age and gender

o https://myhealthavatar.org/mha/api/v3/profile/full

 Get clinical data, such as valve disease, diagnosis of chronic obstructive pulmonary disease,

heart failure diagnosed within the last 18 months, receives beta blockers and receives

ACEI/ARB

Page 106 of 140

o https://myhealthavatar.org/mha/api/chf

“CHF Risk Assessment” service sending data

 Send a list of risk scores

o https://myhealthavatar.org/mha/api/v2/user/general_risk

4.9.2.3 Evaluation Results

This use case scenario was evaluated from 22 volunteers. The evaluation procedure is described in

D9.3 deliverable. The following table present the results from the evaluation reports summarizing the

mean score values for each individual question. In general we see that the users believe that the

platform has very good functionality and can efficiently respond to all tasks utilizing all necessary

resources without harming them. According to the users evaluation, the system is able to reliably and

efficiently share information with MHA (process of syncing is transparent and secure) and has a

friendly and usable interface since users found easy to use it with not much effort. They found easy

the way there were able to navigate from one screen to the other and monitor alerts. Security was of

great concern and portability as expected wasn’t an issue since this is a web based application. Lastly

most of the users reported that the software can deliver the intended goals and be used without

harming people. They feel this tool allows them to be able to use validated models for risk assessment

both in real time (short term) and in long term. One comment (stated by many) was the possibility of

porting (and creating) similar applications to other types of mobile operating systems (like Apple in

iPhone iOS).

Question Mean Value

Functionality

Can software perform the tasks required? 4,7

Can software perform "Real-time monitoring and recording of
patient's vital signs" (i.e. heart rate and oxygen saturation)?

 4,5

Can software perform the detection of abnormal measurements? 4,5

Can software perform the provision of risk assessment models for
self-health status assessment?

 4,5

Is the result as expected? 4,4

Does the application records, detects and displays alert events? 4,6

Does the application notify the user every time an alert event occurs? 4,7

Does the application calculates and displays risk probabilities based
on the models?

 4,7

Can the system interact with MyHealthAvatar platform, sending and
receiving data?

 4,6

Does the application uses OAuth 2.0 protocol to access
MyHealthAvatar APIs?

 4,7

Efficiency

How quickly does the system respond? 4,7

Does the system utilize resources efficiently? 4,7

Page 107 of 140

Compatibility

Can the system share resources without loss of its functionality? 4,6

Can the system share information/data with other MyHealthAvatar
components?

 4,5

Usability

Does the user comprehend how to use the system easily? 4,7

Is the navigation through pages straightforward and smooth? 4,6

Is it straightforward to install the app on a supported system? 4,7

Can the user learn to use the system easily? 4,6

Can the user use the system without much effort? 4,7

Does the interface look good? 4,7

Reliability

Have most of the faults in the software been eliminated over time? 4,3

Is the software capable of handling errors? 4,5

Can the software resume working & restore lost data after failure? 4,3

Security

Does the system provide identification access wherever is needed? 4,5

Are data accessible only to authorized users? 4,7

Can the system trace actions uniquely? 4,5

Does the system prevent unauthorized access? 4,4

Maintainability

Can faults be easily diagnosed? 4,6

Can the software be easily modified? 4,4

Can the software continue functioning if changes are made? 4,4

Can the software be tested easily? 4,5

Portability

Can the software be moved to other environments? 4,3

Can the software be installed easily? 4,4

Does the software comply with portability standards? 4,4

Can the software easily replace other software? 4,4

Quality in Use

How accurate and complete is the software for the intended use? 4,6

Does the software improve the time or reduce resources for the
intended goal?

 4,5

Does the software satisfy the perceived achievements of pragmatic
goals?

 4,6

Can the software harm people in the intended contexts of use? 1,5

The figures below shows the opinion of the users in terms of the quality metrics presented in section

3.1.4 of this deliverable. As it is shown the application was able to deliver its goals according to the

user’s assessments. The users were concerned with the interaction of MHA but they found that the

Page 108 of 140

system can perform the described tasks in good quality of use and the general acceptance, on all of

the different metrics, was high.

Figure 4-32: Evaluation scores CHF use case

4.9.3 Osteoathritis (oaCARE, oaCARE+)

Osteoarthritis is the most common form of arthritis, affecting millions of people worldwide. It is a

degenerative condition of joints and is characterized by loss of the articular cartilage that acts as a

protective cushion between bones within a joint and by growth of a new bone in affected joints,

causing stiffness and pain. Osteoarthritis affects mainly the knee, hip, hand, spine and less often, the

feet. Its symptoms often develop slowly and worsen over time. Osteoarthritis usually affects more

women than men, and tends to turn up as people get older but is also common amongst people of

working age. Other common factors that may increase the risk of developing osteoarthritis are

obesity, previous joint injuries, certain occupations, genetics, bone deformities and other diseases.

A patient visits Primary Care or GP complaining for knee problems and knee pain symptoms. The

clinician proceeds with the diagnosis of the osteoarthritis condition by physical exam in conjunction

with imaging test (radiographs and MRIs) and lab tests (blood tests and joint fluid analysis). As there

is no known cure for osteoarthritis, clinician advices the patient for lifestyle interventions i.e., mild

daily exercise, reduction of body weight and proper medication for reducing the pain and improving

Page 109 of 140

the patient’s overall condition. If these conservative treatments don't help, other procedures may be

applied (e.g. surgical, lubrication injections etc.).

However, these healthy behaviors are difficult to be achieved in practice despite the fact that their

value is understood by patients. Moreover, medical professionals cannot usually ascertain if the

patients follow their guidelines for a healthier lifestyle, which would be helpful for better follow-up.

The OAcare app was designed for empowering both clinicians and patients for the long-term

management of the knee osteoarthritis condition utilizing the functionalities of the MyHealthAvatar

platform. The design of the app is responsive i.e., it can be seamlessly displayed in different screen

resolutions from smartphones to tablets and personal computers. The OAcare app delivers two

different versions satisfying the patients and clinicians requirements and needs.

4.9.3.1 oaCARE for patients

Figure 4-33: Through the dashboard of the OAcare app, the patient has an overview of his activity, weight and pain data.

The patients’ version offers a supportive environment for empowering patients in looking after their

own health, raising their self-awareness of the osteoarthritis risk factors while encouraging for a

healthier lifestyle. The app presents (Figure 5-33) and utilizes activity, weight and pain data and is able

to advise the patient properly if he does not manage to meet the special medical guidelines issued by

the care plan that was previously set up by his physician. Through the app, the patient can also update

his profile data, such as allergies, medications, weight (Figure 5-34) and fill out questionnaires for

extracting pain and quality of life (QoL) information (Figure 5-35).

Page 110 of 140

Figure 4-34: Patient’s profile data

Page 111 of 140

Figure 4-35: Pain evaluation questionnaire

Page 112 of 140

Figure 4-36: Patient’s imaging data and radiographic scores

Page 113 of 140

Furthermore, the patient can view his imaging data (ragiographs and MRIs), the radiographic scores

entered by the clinician after examining the radiographic data (Figure 5-36), and some useful charts

regarding the variances of activity, weight and pain data over the time (Figure 5-37). In addition, the

patient can view his current care plan that is set up by the physician (Figure 5-38), as well as view and

update his weight and height (Figure 5-39).

Figure 4-37: Activity, weight and pain data charts

Figure 4-38: Patient’s care plan

The patient can also use the app in order to directly communicate with his physician (Figure 15).

Moreover, the patient can search over the educational material for the osteoarthritis condition and

may be informed about the nature of the condition, the symptoms, the causes, the risk factors, the

treatments and drugs, the lifestyle remedies etc (Figure 16). It is expected that a good knowledge of

the condition will lead to enhanced patient behavior, allowing him to play a key role in managing his

Page 114 of 140

own health. Finally, OAcare app provides synchronization with MyHealthAvatar platform retrieving

data from the patient’s account at his request (Figure 5-41).

Figure 4-39: Update weight and height

Page 115 of 140

Figure 4-40: Patient can exchange messages with his physician directly

Figure 4-41: Educational material for the osteoarthritis condition

Page 116 of 140

Figure 4-42: Synchronizing data with MyHealthAvatar platform

Page 117 of 140

4.9.3.2 oaCARE for the clinicians (OAcare+)

The clinicians’ view has been developed in order to provide a useful input to clinicians regarding the

current patient’s health status, as the related data will be properly visualized and presented.

At first, the clinician selects a patient to view their data (Figure 18) and then the app provides the main

menu for easy navigation (Figure 5-43). The clinician can view the patient’s imaging data (radiographs

and MRIs) and up-date or edit the two radiographic scoring metrics (Figure 5-44). Moreover, the

clinician can examine patient’s lifestyle and pain data (Figure 5-45), as well as their profile (Figure 5-

46) and update or send advice messages to patients (Figure 5-47).

Furthermore the clinician can set up a new care plan (Figure 5-48,5-49) and view the history of

previously set up plans and their level of “success” based on the corresponding pain data. In addition,

the clinician can upload educational material (links or files) that may be helpful for patients for better

understanding the nature of their condition, or for further learning about recent advances in

osteoarthritis management.

To summarize, the scope of the OAcare app is to provide patients an easy-to-use way of managing and

monitoring their medical data related to the knee osteoarthritis, from the emerging of the condition

until today, with the goal to enhance patients’ engagement. On the other side, the OAcare app will

benefit clinicians as they will be able to view the patient’s medical data over the time, assisting them

to better understand the patients’ current health status and the progression of the condition. Next

releases of the app may contain a genetic evaluation service for examining if an increased risk of

developing osteoarthritis exists.

Figure 4-43: List of Patients

Page 118 of 140

Figure 4-44: Main menu of OAcare+ app

Figure 4-45: View the patient’s imaging data and/or edit the two radiographic scoring metrics

Figure 4-46: Patient’s lifestyle and pain data

Page 119 of 140

Figure 4-47: Patient’s profile data

Figure 4-48: Sending advice messages to patients

Page 120 of 140

Figure 4-49: The clinician can set up a new care plan) and view the history of previously set up plans

4.9.3.3 oaCARE, oaCARE+ integration (through the MHA API)

MHA API calls

 Get account information, such as username

o https://myhealthavatar.org/mha/api/me

Page 121 of 140

 Get (all or after date) activities data, such as source, steps, duration, distance, calories,

calories_bmr, calories_out, elevation, soft_activity_minutes, moderate_activity_minutes,

intense_activity_minutes, sedentary_minutes

o https://myhealthavatar.org/mha/api/v2/user/activities/

o https://myhealthavatar.org/mha/api/v2/user/activities?from={yyyy-mm-dd}

 Get (all or after date) measurements, such as height and weight

o https://myhealthavatar.org/mha/api/v2/user/measurements/

o https://myhealthavatar.org/mha/api/v2/user/measurements?from={yyyy-mm-dd}

 Get (all or after date) medications, such as medicine_name, medicine_code, dose_quantity,

dose_unit, dose_frequency_value, dose_frequency_unit,start_time and end_time

o https://myhealthavatar.org/mha/api/v2/user/medication/

o https://myhealthavatar.org/mha/api/v2/user/medication?from={yyyy-mm-dd}

 Get (all or after date) allergies, such as agent, description, onset_date

o https://myhealthavatar.org/mha/api/v2/user/allergy/

o https://myhealthavatar.org/mha/api/v2/user/allergy?from={yyyy-mm-dd}

 Get (all or after date) diagnoses, such as description, problem_id, onset_time

o https://myhealthavatar.org/mha/api/v2/user/diagnosis/

o https://myhealthavatar.org/mha/api/v2/user/diagnosis?from={yyyy-mm-dd}

 Get (all or after date) general health data, such as smoking, alcohol, diabetes,

 parental_diabetes, parental_hypertension, prior_cardiovascular, entertainment,

 physical_activity, mood, social_engagement,

o https://myhealthavatar.org/mha/api/v2/user/general

o https://myhealthavatar.org/mha/api/v2/user/general?from={yyyy-mm-dd}

4.9.3.4 Technical Details

OAcare and OAcare+ are dynamic web application projects, developed in Eclipse that run on Tomcat

Server 7 and store data in MySQL database. In order to obtain authorization to MyHealthAvatar so as

to synchronize data, OAcare uses OAuth 2.0 protocol.

Page 122 of 140

4.9.3.5 Evaluation Results

This use case scenario was evaluated from 18 in total volunteers. The evaluation procedure is

described in D9.3 deliverable. Below we present the results from the evaluation reports summarizing

the mean values for each individual question. In general we see that the users believe that the

platform has very good functionality and can efficiently respond to all tasks utilizing all necessary

resources. The system is able to reliable and efficiently share information with MHA (including imaging

data) and has a friendly and usable interface since users found easy to use it with not much effort.

Security of great concern and portability (as expected is not an issue since this is a web based

application). Lastly most of the users say that the software can deliver the intended goals and use

without harming the people.

Question Mean Value

Functionality

Can software perform the tasks required? 4,6

Can software perform the tasks of providing to patients an easy-to-use
way of managing and monitoring their medical data related to the knee
osteoarthritis?

 4,7

Can software perform the tasks of providing to clinicians the required
functionality to view the patient’s medical data over the time?

 4,7

Is the result as expected? 4,7

Does the system present activity, weight, pain and imaging data of the
patient?

 4,8

Does the system allow patients to update their profile and directly
communicate with their physician via messages?

 4,5

Does the system allow patients to fill out questionnaires for extracting
pain and quality of life information?

 4,5

Does the system allow physicians to view their patients' medical data? 4,4

Does the system allow physicians to set up new care plans and view
history of existing care plans?

 4,3

Does the system allow physicians to send messages to their patients? 4,4

Does the system allow physicians to upload educational material? 4,1

Can the system interact with MyHealthAvatar platform, sending and
receiving data?

 4,4

Does the system uses OAuth 2.0 protocol to access MyHealthAvatar
APIs?

 4,2

Efficiency

How quickly does the system respond? 4,5

Does the system utilize resources efficiently? 4,3

Compatibility

Can the system share resources without loss of its functionality? 4,7

Can the system share information/data with other MyHealthAvatar
components?

 4,6

Usability

Does the user comprehend how to use the system easily? 4,5

Can the user learn to use the system easily? 4,5

Page 123 of 140

Can the user use the system without much effort? 4,4

Does the interface look good? 4,7

Reliability

Have most of the faults in the software been eliminated over time? 4,1

Is the software capable of handling errors? 4,5

Can the software resume working & restore lost data after failure? 4,3

Security

Does the system provide identification access wherever is needed? 4,5

Are data accessible only to authorized users? 4,4

Can the system trace actions uniquely? 4,5

Does the system prevent unauthorized access? 4,5

Maintainability

Can faults be easily diagnosed? 4,2

Can the software be easily modified? 4,5

Can the software continue functioning if changes are made? 4,6

Can the software be tested easily? 4,6

Portability

Can the software be moved to other environments? 4,6

Can the software be installed easily? 4,7

Does the software comply with portability standards? 4,6

Can the software easily replace other software? 4,3

Quality in Use

How accurate and complete is the software for the intended use? 4,6

Does the software improve the time or reduce resources for the
intended goal?

 4,5

Does the software satisfy the perceived achievements of pragmatic
goals?

 4,5

Can the software harm people in the intended contexts of use? 1,7

The figures below shows the opinion of the users in terms of the quality metrics presented in section

3.1.4 of this deliverable. As it is shown the application was able to deliver its goals according to the

user’s assessments. The users were concerned with the interaction of MHA but they found that the

system can perform the described tasks in good quality of use and the general acceptance, on all of

the different metrics, was high.

Page 124 of 140

Figure 4-50: Evaluation scores Osteoarthritis use case

4.9.4 Nephroblastoma

This use case has been split up into two scenarios. The Nephroblastoma Educational Scenario is

located within the MHA platform and is supported by the internal Generic Tool/Model Repository,

whereas the Clinical Scenario is been implemented by the IAPETUS application built by ICCS and

described in Deliverable 5.2.

4.9.4.1 Nephroblastoma Educational Scenario – Generic Tool/Model Repository

The Nephroblastoma Educational Module is supported in its operation by the Generic Tool/Model

repository. The latter is built with Python’s Django, which allows a variety of functionalities via its

model-view-template system. In this case, a single template is responsible of serving as Graphical User

Interface. In this template, the user has only to enter a set of values pertaining to the treatment

schema and hit the “Run Simulation” button. The views in the backend, will contact the repository,

automatically retrieve the model executable file, pass the template input to the model and execute it

using a subprocess.call() command, which takes as an argument, the command that would be used in

a command prompt environment. The results are finally collected and presented to the user.

Page 125 of 140

Both of these modules are a part of the platform. The Generic Tool/Model repository resides within a

virtual machine, created in the MHA private cloud part, residing at partner FORTH’s premises. The

repository is callable by using the URL http://139.91.210.38:9000/mhatools/index/ . The model for

the Nephroblastoma educational Module has been uploaded into the repository by the platform

administrators. The Django template that serves as its GUI is located at the URL

http://139.91.210.38:9000/mhatools/wilms/. The platform users, however, do not have to enter this

URL to access the module. It is accessible through the “Toolbox” menu in the MHA platform, which

means that a user has only to log in to their account, and choose “Nephroblastoma Educational” from

that menu. The platform will call the GUI’s URL and present its content to the user using an IFrame

tag.

Figure 4-51: Choosing the Nephroblastoma Educational Module from within MHA platform

Figure 4-52: Nephroblastoma Educational Module interface

http://139.91.210.38:9000/mhatools/index/
http://139.91.210.38:9000/mhatools/wilms/

Page 126 of 140

The Generic Tool/Model is currently available to the platform administrators and/or modelers with

special clearance to upload their work. It is accessed directly through its URL, and its use follows the

guidelines and procedures described in deliverable 5.2, albeit in a “lighter” and simpler form than

IAPETUS. After uploading a model, a template can be constructed that can handle the inputs and the

execution results, similar to the Nephroblastoma Educational Scenario

4.9.4.2 Nephroblastoma Clinical Scenario – IAPETUS

Introduction

IAPETUS is a prototype application built by ICCS that includes a Tool/Model repository, and a module

with functionalities for executing Oncosimulator and other VPH models. It is described in D5.2 and

carries the implementation of the Nephroblastoma Clinical Scenario, where a clinician and their

patient and/or parents of a patient are involved. The inherent Tool/Model repository serves as the

Onco-simulation Tool/Model repository described in section 5.4.3

Integration with MHA platform

IAPETUS is a standalone web application that resides outside the MHA platform and acts as a third-

party external application. All of IAPETUS’s communications are done through API calls. The

integration of the Nephroblastoma Clinical Scenario to the MyHealthAvatar platform is connected to

the integration with the CHIC repository, as described in section 5.7.2. Since the data used in the

Clinical Scenario’s execution are chosen from within the CHIC repository, using the MHA platform,

then, according to figure 5-10, IAPETUS communicates with the platform in two occasions. First, a

message is passed from the platform to the application, which informs the latter to begin the scenario

execution by fetching the proper data from the CHIC repository. This is done using the CHIC repository

API with the credentials created for the MyHealthAvatar project, as part of the CHIC-MyHealthAvatar

agreement. The retrieved information is presented to the clinician, on the IAPETUS Oncosimulation

wizard, as presented in D9.3.

After the Oncosimulator execution, the results are consolidated from the model’s output files into a

PDF report. This report is sent to the platform using the URL

https://myhealthavatar.org/mha/api/file/upload , which is part of the MHA API, through python with

a CURL command of the following form:

curl -X POST -H "Authorization: Bearer <oath_token>" "Content-Type: multipart/form-data" -F

"data=@<file_path>" https://myhealthavatar.org/mha/api/file/upload

where <file_path> is the full path of the report file and <oath_token> is the MHA access token. This

token is obtained when the application is launched via a link from MHA platform. The result of this

action is a JSON string, containing information about the uploaded file, along with a unique ID, that

can be used to download it

In case the application wants to store additional string data (e.g. sets of result values), which are tied

to a file, then a similar curl command is given through python

https://myhealthavatar.org/mha/api/file/upload
https://myhealthavatar.org/mha/api/file/upload

Page 127 of 140

curl -X POST -H "Authorization: Bearer <oath_token>" "Content-Type: application/json" -F

"data=<JSON_data>" https://myhealthavatar.org/mha/api/result

where <JSON_data> is a valid JSON string, containing the values to be uploaded.

To retrieve data, IAPETUS uses the following web services, in similar curl commands:

 List all files stored within MHA platform for a patient:
https://myhealthavatar.org/mha/api/file/list

 Get the information of a selected file: https://myhealthavatar.org/mha/api/file/get/ID
where ID is a number used to identify the file.

 Download a selected file: https://myhealthavatar.org/mha/api/file/download/ID where ID is
a number used to identify the file.

 List all additional JSON information: https://myhealthavatar.org/mha/api/result/list

 Get additional JSON information about a file:
https://myhealthavatar.org/mha/api/result/get/ID where ID is a number used to identify
the file.

Scenario Implementation - workflow

For the scenario implementation and, the user will first log in to the MHA platform and click a link to

enter IAPETUS. Then a confirmation message will appear (Figure 5-53). Upon, accepting, the user will

enter IAPETUS, and an access token will be created and passed to the application.

Figure 4-53: Authorizing IAPETUS to access a patient’s data.

After that, the initial screen of IAPETUS will be brought up, and the clinician, who is sitting next to the

patient, will log in. Then, the clinician will use IAPETUS, to choose the cancer type, the Oncosimulator

model that will be used and enter the necessary input. At a certain point, IAPETUS will connect with

the CHIC repository and fetch the patient related files that will be fed to the Oncosimulator. The

https://myhealthavatar.org/mha/api/result
https://myhealthavatar.org/mha/api/file/list
https://myhealthavatar.org/mha/api/file/get/ID
https://myhealthavatar.org/mha/api/file/download/ID
https://myhealthavatar.org/mha/api/result/list
https://myhealthavatar.org/mha/api/result/get/ID

Page 128 of 140

execution is carried out, the results are produced to the screen and the clinician can store the report

as a pdf file, back to the MHA platform.

If the patient wants to download and view the pdf report from the MHA platform and view it via

IAPETUS, this can be achieved by the Oncosimulation Module. Using the MHA API, as described above,

the report can be downloaded and saved locally to the computer that is running the scenario.

Figure 4-42: IAPETUS initial screen

Figure 4-54: Clinician logging in

Figure 4-55: Successful login

Page 129 of 140

Figure 4-56: IAPETUS main page

Figure 4-57: IAPETUS Oncosimulator module main screen

Figure 4-58: Choosing a cancer type

Page 130 of 140

Figure 4-59: Choosing a simulation model (Wilms Oncosimulator)

Figure 4-60: Choosing a patient.

Figure 4-61: Giving the treatment scheme as input

Page 131 of 140

Figure 4-62: Confirmation of input

Figure 4-63: Model execution.

Page 132 of 140

Figure 4-64: IAPETUS result screen

Page 133 of 140

Figure 4-65: Choosing a patient to download their report

Figure 4-66: Choosing a report to download

Page 134 of 140

Figure 4-67: Downloading the report

Page 135 of 140

Figure 4-68: Oncosimulator report (in pdf)

Evaluation

In D9.3, the workshops and the evaluation procedure followed for the two Nephroblastoma Modules

was described. In the following tables and figures, the mean values of the answers and pie charts

showing the percentages of the answers, are presented. The scale is 1 to 5, 5 stands for “High” (best

result) and 1 for “Low” (worst result).

Nephroblastoma Educational module

Educational Module of Nephroblastoma high-end scenario has been performed by 10 respondents

(researchers and healthcare professionals) familiar with cancer models.

Question Mean Value

Functionality

Can the toolbox interact with the MHA platform? 4,1

Can the user set model input through the application? 5

Can the user submit an execution of the Nephroblastoma
Oncosimulator model through the tool?

 4,9

Page 136 of 140

Is the user interface for execution submission of Oncosimulator user
friendly?

 4,4

Is the presentation of the results satisfying? 4,7

Is the use case educational? 4,3

Efficiency

Is the tool comprehensible? 4,5

Can you learn how to use the system easily? 4,7

Is support of a technical person needed in order to use this tool? 1,6

Compatibility

Is the tool running and the results presented independently of the
software (windows version/web browsers) available on user’s pc?

 4,5

Do you know other similar tools? If yes is this tool better than the
other you know?

 2,2

Usability

Is the execution of the model easy? 4,8

Is the execution time consuming? 2,3

Can the tool resume working & restore lost data after failure? 2,3

Does the interface provide all required information? 3,8

Reliability

How accurate and complete is the software for the intended use? 4,1

Is the output trustful? 4,5

Are the results presented sufficient for educational purposes? 4,2

Quality in Use

Does the software improve the time or reduce resource for the
intended goal?

 3,8

Does the software satisfy the perceived achievement of pragmatic
goals?

 4,1

Can the software harm people in the intended contexts of use? 1,4

Page 137 of 140

Figure 4-69: Results by percentages of the Nephroblastoma Educational Module evaluation

Nephroblastoma Clinical Module

Clinical Module of Nephroblastoma high-end scenario has been performed by 9 respondents

(healthcare professionals) familiar with cancer models.

Question Mean Value

Functionality

Can the web application call the Nephroblastoma Oncosimulator? 4,8

Can the web application perform an execution of the
Nephroblastoma Oncosimulator successfully?

 4,9

Can the application fetch the clinical data (image files) from an
outside source (CHIC data repository) successfully?

 4,8

Can the user set model input through the application? 4,8

Can the user submit an execution of the Nephroblastoma
Oncosimulator model through the web service?

 4,8

Is the user interface for execution submission of Oncosimulator user
friendly?

 4,4

Page 138 of 140

Is the presentation of the results satisfying? 4,1

Is the NEPH-UC clinically relevant? 4,4

Efficiency

Is the application comprehensible? 4,4

Can you learn how to use the system easily? 4,7

Is support of a technical person needed in order to use this tool? 3

Compatibility

Is the model running and the results presented independently of the
software (windows version/web browsers) available on user’s pc?

 4,3

Can the system exchange data fluently with external modules? 4,1

Do you know other similar tools? If yes is this tool better than the
other you know?

 2,4

Usability

Is the execution of the model easy? 4,9

Is the execution time consuming? 2

Can the tool resume working & restore lost data after failure? 3,9

Does the interface provide all required information? 4,2

Is the produced report useful? 4

Reliability

How accurate and complete is the software for the intended use? 4

Is the output trustful? 3,9

Are the results presented sufficient for clinical purposes? 4

Portability

Can the tool be easily accessed from any pc? 4,9

Security

Do you think your data are secure? 4

Are data accessible only to authorized users? 4,1

Does the system prevent unauthorized access? 4

Quality in Use

How accurate and complete is the software for the intended use? 4,3

Does the software improve the time or reduce resource for the
intended goal?

 4,7

Does the software satisfy the perceived achievement of pragmatic
goals?

 4,4

Can the software harm people in the intended contexts of use? 2,1

Page 139 of 140

Figure 4-70: Results by percentages of the Nephroblastoma Clinical Module evaluation

Page 140 of 140

5 Conclusion

The complexity of the MHA infrastructure and the corresponding software system is challenging.

Complexity is a key concern that we addressed in providing intellectual intractability to make the

system understandable and intellectually manageable by a) providing abstractions that hide

unnecessary detail, b) providing unifying and simplifying concepts, c) decomposing the system into

its elementary parts so as to allow for reasoning about its structural properties; and Management

intractability. Our integration activities intend to make the development and deployment of the

system easier to manage by enhancing communication, providing better work partitioning with

decreased and/or more manageable dependencies. The evaluation of the integrate platform

ensures that we have all the necessary pieces, supporting the functionality or services required and

satisfying user requirements and that the pieces fit together in terms of interface and relationships

between the pieces. This deliverable described the latest architectural consideration, integration

activities towards a final platform formulation and a short evaluation.

