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1 Definitions and Abbreviations 

  

BIG Breast International Group 

pCR Pathological Complete Response 

VPH Virtual Physiological Human 

FDG Fluorodeoxyglucose  

PET Positron Emission Tomography 

GEO Gene Expression Omnibus 

ESR1 Estrogen Receptor 1 

ERBB2 v-erb-b2 erythroblastic leukemia viral oncogene homolog 
2, neuro/glioblastoma derived oncogene homolog (avian) 

mAb Monoclonal Antibodies 

TKI Tyrosine Kinase Inhibitors 

HER Human Epidermal Growth Factor Receptor 

DFS Disease Free Survival 

OS Overall Survival 

CI Confidence Interval 

FISH Fluorescent in situ Hybridization 

OR Odds Ratio 

CT Computed Tomography 

DICOM Digital Imaging and Communications in Medicine 

GEP Gene Expression Profiling 

SNP Single Nucleotide Polymorphism 

PCA Principal Component Analysis 

TP True Positives 

TN True Negatives 

FP False Positives 

FN False Negatives 

ROC Receiver Operating Characteristic 

AUC Area under ROC curve 

FS Feature Selection 

DEDS Differential Expression via Distance Synthesis 

SVM-RFE Support Vector Machine-Recursive Feature Elimination 

SVMs Support Vector Machines 

RBF Radial Basis Function 

ER Estrogen Receptor 
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2 Introduction 

Mathematical and computational modelling of cancer-related natural phenomena has 
been studied extensively over the last decades leading to a large number of either 
single scale or multi-scale models of cancer growth and/or response to therapy. The 
usual approach is the “bottom-up” approach i.e. starting from the molecular or cellular 
level and then trying to invoke higher levels. In addition to cellular proliferation and 
death which are at the core of most models, additional biological processes can be 
taken into consideration, including mutation and selection, angiogenesis [1] and 
invasion [2].  
 
The Virtual Physiological Human (VPH) [3] is an initiative of the European Union that 
aims to support the development of integrative models of human physiology. Its central 
tenet is that fragmentation of research in physiology in different sub-disciplines is 
inefficient and ultimately does not allow building the realistic models that are needed in 
biomedicine. To be maximally useful, in silico physiological models have to be 
descriptive, integrative and predictive [4]. 
 
VPH-type models of human cancer can span several scales from the gene to the 
biological pathway, the cell, the tissue and finally the tumor in its environment. They 
take into account the three-dimensional organization of the tumor and its dynamics [5]. 
Building and validating integrative dynamical models of human cancer that encompass 
all the relevant biological processes is not yet feasible and only selected sub-systems 
are modeled. Moreover, it is difficult for technical and ethical reasons to obtain from 
human subjects the multi-scale repeated measurements that are needed, and 
parameters have been obtained mostly from model systems such as tissue culture, 
spheroids, or tumor xenographs.    
 
Within INTEGRATE, we will initially focus on statistical models for cancer classification 
and for prediction of cancer prognosis and treatment response. These statistical 
models of cancer are very relevant in their own right from a clinical point of view. But 
they will also be useful for VPH-type modeling because they will provide clues about 
the identity of the relevant components and sub-systems. For example, the fact that a 
gene signature predictive of cancer prognosis incorporates an important immune 
component [6] suggests that a realistic physiological model of this type of cancer 
should incorporate this component. 
 
Modeling at the molecular/genetic level aims to understand the cellular and genetic 
factors that play significant roles in oncogenesis and response to therapy (e.g. drugs). 
The research at this level takes into consideration key genes, cellular kinetics, 
pharmaco/ radiosensitivity dependence on the cell cycle phase etc. In this context, 
predicting therapy sensitivity from individual patient molecular profiles (e.g. 
microarrays) is a very challenging task [7]. At the tissue level the challenge is to 
simulate growth over time and response to various therapeutical regimes, aiming at 
the a priori definition of the optimal individual therapy for the patient [8-10]. The 
challenge in this field is the gradual coupling of models from various scales (related to 
the corresponding complex biological processes), which will lead to a better 
understanding of oncogenesis [11]. 
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The main objectives of this work package (WP) are to propose an approach and a 
methodology and to build a framework enabling the development of multi-scale 
predictive models of response to therapy in breast cancer, making use of multi-level 
heterogeneous data provided by clinical trials in the neoadjuvant setting. The models 
developed in this work package (WP) will be based on realistic clinical research 
scenarios, in which have been developed based on the neoBIG research program, and 
on comprehensive data sets from rigorously conducted breast cancer clinical trials. 
The model-building tools may later be applied to other data sets, for example those 
resulting from prospective molecular screening, or from follow-on translational 
research studies using data and samples collected in the context of clinical trials. The 
models will also be used to validate the INTEGRATE approach and the 
appropriateness of the INTEGRATE infrastructure.  
 
By proposing a methodology and building a framework for predictive models 
development within clinical trials we will support more efficient development and 
validation of such models and contribute to their faster adoption into clinical practice. 
We will make use of existing solutions, tools and standards whenever available and 
suitable for our scenarios. On the other hand, we will develop novel methods and 
computational approaches whenever existing methods evaluated as inadequate for the 
tasks at hand. 

2.1 Breast cancer modelling and going beyond the state-of 
the art 

The main modeling efforts related to breast cancer concern biostatistical models of risk 
of cancer, prognosis and relapse [12]. In the context of large scale clinical trials, 
prediction of outcome and individualization of therapeutic strategies are crucial when 
trying to improve prognosis and reducing patient suffering due to unnecessary 
treatment [13]. Therefore, a more realistic effort adopted within INTEGRATE is to 
exploit the unique opportunity of its NeoBIG empowered collaborative environment and 
combine multi-scale biomarkers (from genetic level to tissue level including imaging 
biomarkers) in order to define a methodology for improving the prognostic power of 
currently used practices for assessing neoadjuvant therapies. Figure 1 depicts the 
synergy between the BIG and NeoBIG research and Figure 2 shows the envisioned 
workflow of development and validation of predictive biomarkers in NeoBIG trials. This 
will eventually empower the clinician to predict/define early the responsiveness of the 
chosen chemotherapy regimens. 
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Figure 1 The synergy between BIG and NeoBIG 

 
Figure 2 The Development and Validation of Predictive Biomarkers 

The neoadjuvant setting, where therapy is administered prior to surgery, is a promising 
new arena for addressing many of the challenges in both clinical and translational 
research faced by clinicians today. There are a number of reasons and advantages for 
employing the neoadjuvant approach:  
 

 Neoadjuvant systemic therapy produces outcomes equivalent to adjuvant 
systemic therapy, with an increased likelihood of breast conserving surgery and 
hence is a safe and viable option for breast cancer patients [14]. 

 Breast cancer is a common disease usually diagnosed in healthy women who 
do not have other co-morbidities that might preclude participation in clinical 
trials; 

 The primary tumor is readily accessible for serial biopsies during treatment; 
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 Surrogate short-term endpoints such as pathological complete response rate 
(pCR) have been proven to be strongly predictive of long-term survival for 
treatment modalities such as chemotherapy and are rapidly available within a 
short time frame; 

 
This allows for obtaining multiple serial biopsies and images, to characterize at 
biological multiple levels response to new agents. Furthermore, the existence of a 
surrogate clinical endpoint allows clinicians to rapidly evaluate if the new drug is more 
efficacious than the currently used standard of care ones. 
This will take the form of a ‘use-case’ VPH scenario emanating from and being 
deployed within the INTEGRATE environment. The goal is to demonstrate that the 
predictive power of responsiveness can be enhanced by using multi-scale biomarker 
signatures. 
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3 SUMMARY 

This report is based on some of the clinical scenarios elaborated so far in WP1, 
focusing on the VPH aspect of the project. 
 
The report first summarises the multi-modal data that will be utilised in the context of 
developing predictive models. This is an ongoing effort for the project since it’s crucial 
for developing predictive models. In this phase all data used will be retrospective data. 
 
Then, clinically relevant questions are defined in the context of VPH predictive 
scenarios. The aim is to develop within the scenarios prediction models that given a 
set of characteristics will be able to predict in an accurate way the response to a drug 
and/or the response/resistance to a specific preoperative drug. 
 
Last, the main techniques that will be exploited are reported in detail.  
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4 Data description 

In this section, we describe the INTEGRATE data that will be used for cancer 
modelling. Data from the TOP clinical trial will be the first data to be shared on the 
INTEGRATE platform and use for modelling and thus we will start this section by 
describing them. After this, we will present other data types that are likely to be shared 
on the INTEGRATE platform and will be useful for cancer modelling. 

4.1 Available data from TOP clinical trial 

4.1.1 Clinical Data 
These data are available for all patients from the TOP clinical trial. The clinical data, 
presented in Table 1,  comprise information on tumour size, axillary lymph node status, 
tumor grade, biomarker expression status (estrogen receptor, progesterone receptor, 
HER2, TOP2A), and several clinical endpoints such as pathological complete 
response, distant metastasis-free survival and overall survival.  
 

Variable Supplementary Information  

geo_accn GEO accession numbers. 

age.bin 0: ≤ 50 years old, 1: > 50 years old. 

T 𝑇1: ≤ 2𝑐𝑚, 2𝑐𝑚 < 𝑇2: ≤ 5𝑐𝑚, 𝑇3: > 5𝑐𝑚, 𝑇4:tumor of any size 
with direct extension to the chest wall or skin. 

N Axillary lymph node status: N0: no axillary lymph node 
metastasis, N1: metastasis in movable ipsilateral axillary lymph 
node(s), N2: metastasis in fixed ipsilateral axillary lymph node(s) 
or in clinically apparent ipsilateral internal mammary lymph 
node(s) in the absence of clinically evident axillary lymph node 
metastasis, N3=metastasis in ipsilateral infraclavicular lymph 
node(s) with or without axillary lymph node involvement; or in 
clinically apparent* ipsilateral internal mammary lymph node(s) in 
the presence of clinically evident axillary lymph node metastasis; 
or metastasis in ipsilateral supraclavicular lymph node(s) with or 
without axillary or internal mammary lymph node involvement. 

Grade Tumor grade (1, 2, 3) 

HER2.bin HER2 status by fluorescent in situ hybridization (FISH): 0: not 

amplified (𝑟𝑎𝑡𝑖𝑜 < 2), 1: amplified (𝑟𝑎𝑡𝑖𝑜 ≥ 2). 

TOP2A.tri TOP2A status by FISH: -1: deleted (𝑟𝑎𝑡𝑖𝑜 ≤ 0.8), 0: not amplified     

(𝑟𝑎𝑡𝑖𝑜 < 2), 1: amplified (𝑟𝑎𝑡𝑖𝑜 ≥ 2). 

topo.IHC Topo by immunohistochemistry (%). 

ESR1.bimod ER status identified by bimodality of ESR1 gene expression. 

ERBB2.bimod HER2 status identified by bimodality of ERBB2 gene expression. 

FINAL_ANALYSIS Eligible patients included in the prediction analyses [15].  

pCR Pathological complete response. 0: no pCR, 1: pCR 

DMFS_event Distant metastasis free survival event. 

DMFS_time Distant metastasis free survival (days). 

OS_event Overall survival (event) 
Table 1 Clinical TOP Trial dataset 
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4.1.2 Radiology Imaging Data 
Mammography data (x-ray radiography of the breast) are available for a handful of 
patients from the TOP trial. The resolution of these images, stored in the DICOM 
format, is 70μm. They don’t have associated annotations (e.g. tumour contours). 
 

4.1.3 Genomic Data 

4.1.3.1  Gene Expression Data 

Affymetrix U133 plus 2.0 contains probes for more than 38,500 transcripts 
corresponding to well-characterized genes and Unigene genes, giving a full-genome 
view of gene expression. The raw information is stored in “.CEL” files and a number of 
pre-processing steps is required to retrieve it and produce gene expression estimates. 
These steps involving background correction, normalization, and summarization are 
often combined into a single all-in-one pre-processing algorithm that takes raw probe 
intensities as input and produces gene expression estimates as output.  

4.1.3.2 Affymetrix SNP and CNV data 

Single nucleotide polymorphisms (SNPs) are the most common type of genetic 
variation and represent over 80% of the genetic variation between individuals. SNPs 
are ideal candidates for research correlating phenotype and genotype. Since some 
SNPs predispose individuals to a certain disease or a trait or cause an altered reaction 
to a drug, they are proving to be highly useful in diagnostics and drug development. 
With more than 1.8 million genetic markers, Affymetrix’ SNP 6.0 array provides high-
performance, high-powered and low-cost genotyping. It is now available from 
Asuragen. In combination with Asuragen’s service expertise you have the tools to 
carry out a whole-genome study and bring power to your research. 
 
SNP array 6.0 contains probes for more than 906,600 single nucleotide 
polymorphisms (SNPs) and more than 946,000 probes for the detection of copy 
number variation (CNV). This corresponds to a median inter-marker distance in the 
genome of less than 700 nucleotides. Again, the analysis will start from the “.CEL” 
files, which allows maximum flexibility in the choice of the algorithms for CNV 
genotyping. 

4.1.3.3 Illumina Methylation Data 

This array allows interrogating the methylation status of 27,578 highly informative CpG 
sites located in the proximal promoters of 14,475 protein coding genes. This 
corresponds to an average of two interrogated CpGs per genes although a subset of 
more than 200 cancer-related genes has 3-20 interrogated CpGs. The Infinium assay 
uses a pair of probes for every CpG, with one probe measuring the level of the 
methylated CpG and the other probe measuring the level of the unmethylated CpG. 
The methylation of the CpG is then often expressed as a beta value, which is the ratio 
of the methylated signal on the sum of the methylated and unmethylated signal. Thus, 
beta values vary from 0.0 for a fully unmethylated CpG to 1.0 for a fully methylated 
CpG. These data are available for 34 patients from the TOP trial. 
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4.2 Expected data from other clinical trials 

4.2.1 Radiology Imaging Data 
For some of the trials, radiology images will be generated, in particular PET/CT 
images. PET-CT (Positron Emission Tomography – Computed Tomography) images 
are acquired in a device that combines detectors for the two modalities. The two 
images are then fused during co-registration. The FDG-PET part of the composite 
image allows the detection of anatomical regions with high metabolic activity, most 
prominently primary tumours and metastases, while the CT part of the composite 
image allows precise localisation of the anatomical structures and the tumours and 
metastases. PET/CT images are stored in the DICOM format. In some cases the 
contours of the primary tumour and other anatomical regions and landmarks of interest 
will have been delineated by a doctor (stored as a DICOM Structured Report). 
 

4.2.2 Digital Pathology Images 
Digital pathology images (scanned images of pathology microscope slides) will also be 
available on the platform and could be used for modelling. Many pathology slide 
scanners routinely used today have a magnification of 40X, although models with oil 
immersion of the objectives achieve a magnification of 100X. 
 
Images with different techniques of tissue staining will be available. The most common 
stain in histology is the unspecific hematoxylin and eosin stain, which is suited to study 
the morphology of the cells and tissues. In addition to hematoxylin and eosin straining, 
immunohistochemistry will also be used. In this technique, antibodies binding to 
specific antigens in the tissue (e.g. a particular protein) are used to obtain a targeted 
colouring of the regions containing this antigen.  
 
A large number of microscopy slide scanners exist, from different vendors, and the 
image file formats that they use are often proprietary. Many of these formats, however, 
are extensions of the TIFF image format with annotation metadata. 
 

4.2.3 High-throughput Sequencing Data 
A recent alternative to gene expression profiling with microarrays is RNA-seq, in which 
RNA is sequenced with one the new high-throughput sequencing (HTS) platforms. 
Typically, several hundred millions of short sequence reads are generated in such an 
experiment, which allows an unbiased estimate of the number of copies for each 
transcript. An advantage of RNA-seq compared to microarrays is that they can detect 
previously uncharacterized transcripts (small non-coding RNAs, microRNAs,…) 
because it doesn’t rely on predefined sets of probes. Additionally, the sequence itself 
can be used to detect potentially oncogenic mutations or other functionally important 
sequence variants. Some complications with these data are their sheer volume and 
the relatively short length of the sequence that sometimes makes unambiguous 
mapping of their position in the genome impossible. Targeted sequencing is a related 
technique that uses selection of specific genomic regions or genes before sequencing, 
allowing focusing on these regions.  
 
A representative platform for high-throughput sequencing is the Illumina HiSeq 2000 
platform which can generate in about ten days up to 600GB of sequence data 
consisting of paired-end reads of 100bp. 
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5 Clinical Scenarios 

The clinical scenarios that are going to be utilised in WP5 are given in the following 
chapters. In each chapter, the objectives, the steps required and the final results given 
by the examined scenario are briefly presented in a table format. A detailed 
presentation of the methodology required to achieve each scenario is also provided 
along with examples, template figures and tables. 

5.1 Predictive Modelling Methodologies 

The scenarios below highlight the need for a prediction model that given a set of 
characteristics, predicts in an accurate way the response to a drug X, the toxic effects 
of an investigational class of drugs and the response/resistance to a specific 
preoperative drug (i.e. epirubicin). Biomedical data coming from different domains (e.g. 
microarray, clinical and proteomics) aim to provide enhanced information that leads 
robust operational performance (i.e. increased confidence, reduced ambiguity and 
improved classification) enabling evidence based management. Building a prediction 
model from different data sources is not an easy task. Its architecture is divided in 
several stages, including: 
 

 Feature extraction from images. 

 Feature selection methods for selecting a subset of relevant features. 

 Data integration methods for constructing an informative meta-dataset. 

 Building accurate classifiers for the prediction work. 

 Pattern recognition methods for estimating the generalization error of the 
prediction model. 

 Statistical methods for evaluating the performance of the prediction model. 
 

The following chapters will guide the reader to a brief representation of the previously 
mentioned techniques before analysing our prediction models for the scenarios 
described below.   
 

5.1.1 Feature Extraction from Images 
 
The data generated by the omics and imaging technologies do not lend themselves to 
immediate incorporation in computational models of cancer but must be pre-processed 
or in some cases even extracted from the raw data. 
 
Advances in image processing and computer vision nowadays allow the automated 
extraction of features from radiology and pathology images. While automated 
segmentation of radiology images cannot replace manual annotation by doctors, it can 
help them to delineate the three-dimensional shape of tumours efficiently. Similarly, 
automated algorithms are far from the reliability and expertise level of human 
pathologists, but they are already used to extract simple features from digital pathology 
images such as cell counts, biomarker quantification or basic morphological 
descriptors. The advantage of these automated software, is that, provided sufficient 
computational resources, they can process large areas the images. They are also 
unaffected by the biases linked to inter-observer variability. 
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5.1.2 Feature Selection 
 
Feature selection (FS) techniques have become an apparent need in bioinformatics 
and specifically in pattern recognition techniques. Specifically, the nature of microarray 
and proteomic data poses a great challenge for computational techniques, because of 
their high dimensionality and their small sample sizes [16]. Many widely used methods 
were originally not designed to cope with large amount of irrelevant features. 
Therefore, combining pattern recognition techniques with FS methods has become a 
necessity in many applications [17]. In the current study, we focus on the supervised 
classification in which feature selection techniques can be organised into three 
categories; filter, wrapper and embedded techniques. An extensive overview of some 
of the most important feature selection techniques is given by [18].  
 
Filter based techniques rely on information content of features. Different metrics from 
statistics like distance metric, information measure, correlation, etc. can be used to 
extract useful subsets from the entire dataset. In most cases a feature relevance score 
is calculated and low scoring features are removed. Advantages of filter techniques 
are that they easily scale to very high-dimensional data, they are computationally 
simple and fast, and they are independent from the classification procedure.  

 
A novel technique for microarray feature selection called Differential Expression via 
Distance Synthesis (DEDS) will be adopted for the needs of our study [19]. This 
technique is based on the integration of different test statistics via a distance synthesis 
scheme because features highly ranked simultaneously by multiple measures are 
more likely to be differential expressed than features highly ranked by a single 
measure. The statistical tests combined are ordinary fold changes, ordinary t-statistics, 
SAM-statistics and moderated t-statistics. A recently published work that used DEDS 
technique can be found in [20], in which DEDS was applied in microarray data in order 
to reduce the high dimensionality of the dataset before contributing to the integrated 
meta-dataset for clinical decision support. 
 
In general, classifiers cannot successfully handle high dimensional dataset generated 
from proteomics experiments. To overcome this problem, in case of proteomics, 
Wilcoxon rank sum test [21] as a feature selection scheme will be used to reduce the 
dimensionality of the proteomic dataset to a manageable number. Wilcoxon rank test 
is a nonparametric test which has no distribution assumption and when applied to the 
analysis of microarray data in [22], outperformed all other methods. All the data are 
ranked together based on their values. Then the ranks from one class are compared 
with those from the other class. A similar study is given by a biomedical data fusion 
framework in [20] that used this non-parametric rank test in proteomic data for 
extracting the most relevant proteins. 
 
Therefore, a very first approach of feature selection will be implemented as a pre-
processing step to reduce the high dimensionality of both microarray and proteomic 
data. DEDS and Wilcoxon rank test will be independent to the classification procedure, 
focusing exclusively to the reduce dimensionality, removing irrelevant and redundant 
data and improve discrimination between the examined classes. The idea behind 
applying filtering techniques is that we want to avoid time consuming feature selection 
techniques keeping at the same time unbiased the classification approach that will be 
implemented at the next step. The next step, described by the following chapter, is the 
integration of the different data sources into a unique meta-dataset.  
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5.1.3 Integrating Heterogeneous Data 

5.1.3.1 Integration of Genomic Data 

Integration of multiple types of genomic data can produce high-quality predictive 
models and shed new light on the molecular mechanisms at play (Cancer Genome 
Atlas Research Network, 2011). This cannot be achieved by simply piling up the data 
but data needs to be integrated. Multiple mechanisms for multi-level genomic data 
integration are possible. 
 
The first level of integration of genomic data is identifier mapping. For example, the 
oligonucleotide probe set detecting a particular transcript on a gene expression 
microarray must be linked to the name of the corresponding gene. Similarly, identifiers 
for CpG sites on a DNA methylation microarray or for probes on a CNV microarray 
must be linked to the names of the corresponding genes. Although tools and 
databases exist for this purpose, it is not trivial as there is rarely a one-to-one 
unambiguous mapping between different molecular entities and the corresponding 
identifiers. 
 
At a higher level, molecular pathways provide a powerful unifying framework for 
genomic data integration. Disturbances over sets of genes that do not make sense 
when they are considered individually become meaningful when these genes are 
mapped to biological pathways. 
 
Finally, integration at the level of the biological functions themselves can bring insight 
and clarity, for example through the use of ontologies such as GeneOntology. 

5.1.3.2 Machine Learning Methods for Integration 

In addition to integration methods specific of genomic data, generic methods for the 
integration of high-dimensional multi-level data sets have been developed in recent 
years, especially with the machine learning community. We present some of these 
methods here. 
 
With a wide array of multi-modal and multi-scale biomedical data available for disease 
characterization, the integration of heterogeneous biomedical data in order to construct 
accurate models for predicting diagnosis, prognosis or therapy response seems to be 
one of the major challenges for the data analysis. Different data streams like clinical 
information, microarray and proteomic data will be represented in a unified framework, 
overcoming differences in scale and dimensionality. Data integration, or alternatively 
data fusion, is a challenging task and approaches for data integration like bagging, 
boosting [23] and Bayesian networks [24] allow different strategies to integrate 
heterogeneous data. These methods either use direct or indirect ways (i.e. at the 
decision level) of combing heterogeneous data. In this work, we formulate the data 
integration task in machine learning terms, and we rely on kernel-based methods to 
construct integrated meta-datasets for prediction analysis. During the last decade, 
kernels have been developed significantly because of their ability to deal with a large 
variety of data, for example Support Vector Machines (SVMs) [25], Kernel-PCA [26] or 
Kernel Fisher Discriminant [27]. Kernels [28] use an implicit mapping of the input data 
into a high dimensional feature space defined by a kernel function; a function returning 

the inner product  〈𝛷(𝑥), 𝛷(𝑥′)〉 between two data points 𝑥, 𝑥′ in the feature space (see 
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Figure 3). More precisely, the dot product 〈𝛷(𝑥), 𝛷(𝑥′)〉 can be represented by a kernel 
function K as: 
 

𝐾(𝑥, 𝑥′) = 〈𝛷(𝑥), 𝛷(𝑥′)〉 
 
This mapping, colloquially known as the “kernel trick” transforms observations with no 
obvious linear structure into observation easily separable by a linear classifier. This 
renders analysis of the data with a wide range of classical statistical and machine 
learning algorithms possible. Any symmetric, positive semi-definite function is a valid 
kernel function, resulting in many possible kernels, e.g. linear kernel, Gaussian radial 

basis function (RBF) and polynomial (see following equations). Parameter 𝜎 stands for 
the tuning parameter of the RBF kernel, the scaling parameter, 𝑠𝑐𝑎𝑙𝑒, of the polynomial 
kernel is a convenient way of normalizing patterns without the need to modify the data 
itself, and 𝑑𝑒𝑔𝑟𝑒𝑒 is the degree of the polynomial. They all correspond to a different 
transformation of the data, meaning that they extract a specific type of information from 
the dataset.  
 

𝐾(𝑥, 𝑥′) = 〈𝑥, 𝑥′〉, 𝑓𝑜𝑟 𝐿𝑖𝑛𝑒𝑎𝑟 𝐾𝑒𝑟𝑛𝑒𝑙

𝐾(𝑥, 𝑥′) = 𝑒𝑥𝑝(−𝜎 ∙ ‖𝑥 − 𝑥′‖2), 𝑓𝑜𝑟 𝑅𝐵𝐹 𝐾𝑒𝑟𝑛𝑒𝑙

𝛫(𝑥, 𝑥′) = (𝑠𝑐𝑎𝑙𝑒〈𝑥, 𝑥′〉 + 𝑜𝑓𝑓𝑠𝑒𝑡)𝑑𝑒𝑔𝑟𝑒𝑒 , 𝑓𝑜𝑟 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝐾𝑒𝑟𝑛𝑒𝑙

 

 
 

 
Figure 3 Principles of Kernel Methods 

However, using a single kernel can be a limitation for some tasks (e.g. integrating 
heterogeneous biomedical data form various data sources), since all features are 
merged into a unique kernel. To overcome this limitation, combining multiple kernels is 
necessary, like in the Multiple Kernel Learning (MKL) framework, pioneered by [29] to 
incorporate multiple kernels in classification. The essence of MKL relies on the kernel 
representation while the heterogeneities of data sources are resolved by transforming 
the different data sources into kernel matrices. MKL involves first transforming each 
data source (e.g. clinical, microarray and proteomic data) in a common kernel 
framework, followed by weighted combination of the individual kernels as given by the 
following equation. M is the total number of kernels, each basis kernel 𝐾𝑚 (i.e. linear, 
RBF or polynomial) may either use the full set of each data source or each feature 
from all datasets individually and the sum of the weighting coefficients 𝑑𝑚 equals to 
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one. This approach has been proposed to tackle the descriptor fusion problem, by 
merging in a single kernel a set of kernels coming from different sources.  
 

𝐾(𝑥, 𝑥′) = ∑ 𝑑𝑚𝐾𝑚(𝑥, 𝑥′)

𝑀

𝑚=1

, 𝑤𝑖𝑡ℎ 𝑑𝑚 ≥ 0, ∑ 𝑑𝑚

𝑀

𝑚=1

= 1 

 
A graphical representation of the MKL approach is depicted in the following figure. The 
top schema (a) presents the MKL in which each basis kernel has been computed from 
the entire data source, respectively. Then, using the MKL methodology a combination 
of base kernels is computed. A slightly different approach is given in b) where a basis 
kernel is computed for each feature followed by a weight coefficient. A more detailed 
representation of the MKL methodology will be given in the following chapter in which 
multiple kernel learning is embodied into the classification task. It is highly important to 
mention here that when dealing with several data types of a specific group of data (i.e. 
two different microarray analysis datasets), a basis kernel is computed for each data 
type. For instance, in case we have gene expression (GE), single nucleotide 
polymorphism (SNP) and methylation data, for an analysis as in Figure 4 a), a basis 
kernel is computed for GE, SNP and methylation data respectively.  
 
Given an introduction of both single and multiple kernel methodologies, we can now 
represent the main categories for data integration using kernels. Three ways exist to 
learn simultaneously from multiple data sources with kernel methods: early, 
intermediate and late integration [30]. In early integration, heterogeneous data are 
considered as one big dataset. A single kernel maps the dataset into the feature space 
and a classifier (e.g. Support Vector Machine) is trained directly on the single kernel. In 
intermediate integration, a kernel is computed separately for each homogeneous 
dataset, or for each feature of the datasets. Each of the kernels is given a specific 
weight, a linear combination of the multiple kernels is performed and a classifier is 
trained on the explicitly heterogeneous kernel function. At late integration, for each 
dataset (e.g. clinical, microarray and proteomics) a kernel is computed and a classifier 
is trained. The multiple outcomes of all the classifiers are combined with a decision 
function to become a single outcome. 
 
In this work, we will perform intermediate integration because this type of data 
integration seemed to perform better on some genomic data sets [30]. Intermediate 
integration has the advantage that the nature of the data is taken into account when 
compared to early integration. On the other hand, when compared to late integration, 
intermediate has the advantage that a model is trained by weighting both datasets 
simultaneously through the use of kernels, leading to one decision result. 
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Figure 4 Multiple Kernel Learning  

5.1.4 Kernel-Based Classification and MKL 
 
The notion of Multiple Kernel Learning is originally proposed in a binary Support Vector 
Machine classification [25]. The SVM forms a linear discriminant boundary in kernel 
space with maximum distance between samples of the two considered classes. 
Among all linear discriminant boundaries separating the data, also named as hyper-
planes, a unique one exists yielding the maximum margin of separation between the 
classes [31], as depicted in Figure 5. 
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Figure 5 Linear Classification example [31] 

 
Since SVMs are large margin classifiers, they have the potential to handle large 
feature spaces and prevent over-fitting [32]. Therefore, this methodology will be 
adopted in our study to handle the high dimensionality of the genomic data and 
perform the classification analysis. By replacing the single kernel with a combination of 
base kernels, the methodology is switched from the single kernel-based classification 
to the multiple kernel learning.  
 

5.1.5 Decision Trees and Ensembles of Trees 
 
Besides the kernel-based classification approaches, a second option for building our 
prediction models is given by the ensemble classifiers that consist of Decision Trees. 
In recent years, the ensemble classifier techniques are rapidly growing and enjoying a 
lot of attention from pattern recognition and machine learning communities due to their 
potential to greatly increase prediction accuracy of a learning system. These 
techniques generally work by means of firstly generating an ensemble of base 
classifiers via applying a given base learning algorithm to different permutated training 
sets, and then the outputs from each ensemble member are combined in a suitable 
way to create the prediction of the ensemble classifier. The combination is often 
performed by voting for the most popular class. Examples of these techniques include 
Bagging [33], AdaBoost [34], Random Forest [35] and Rotation Forest [36]. Among 
these methods, AdaBoost has become a very popular one for its simplicity and 
adaptability [37, 38]. 
 
AdaBoost constructs an ensemble of subsidiary classifiers by applying a given base 
learning algorithm to successive derived training sets that are formed by either 
resampling from the original training set or reweighting the original training set 
according to a set of weights maintained over the training set. Initially, the weights 
assigned to each training instance are set to be equal and in subsequent iterations, 
these weights are adjusted so that the weight of the instances misclassified by the 
previously trained classifiers is increased whereas that of the correctly classified ones 
is decreased. Thus, AdaBoost attempts to produce new classifiers that are able to 
better predict the ‘‘hard” instances for the previous ensemble members. 
 
Based on Principal Component Analysis (PCA), a new ensemble classifier technique 
named Rotation Forest was recently proposed and demonstrated that it performs 
much better than several other ensemble methods on some benchmark classification 
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data sets [36]. Its main idea is to simultaneously encourage diversity and individual 
accuracy within an ensemble classifier. Specifically, diversity is promoted by using 
PCA to do feature extraction for each base classifier and accuracy is sought by 
keeping all principal components and also using the whole data set to train each base 
classifier. A possible decision tree construction for every ensemble classifier will be 
C4.5 Decision Tree [39]. 
 

5.1.6 Evaluating the performance of the classifier 
 
A crucial term for evaluation of classifiers is the classification error. However, in many 
applications distinctions among different types of errors turn out to be important. In 
order to distinguish among error types, a confusion matrix (see Table 2) can be used 
to lay out the different errors. In case of a binary classification problem, a classifier 
predicts the occurrence (Class Positive) or non-occurrence (Class Negative) of a 
single event or hypothesis.  
 

 True Class 

Predicted Class Class Positive Class Negative 

Prediction Positive True Positives (TP) False Positives (FP) 

Prediction Negative False Negatives (FN) True Negatives (TN) 
Table 2 Confusion matrix for classification 

Common metrics for evaluation of the classification performance, calculated from the 
confusion matrix, are the sensitivity, specificity and accuracy. Using the notation in 
Table 2, these metrics can be expressed as: 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
= 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 
In case where the number of True Positives is small when compared with True 
Negatives, precision can be also calculated. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
Kappa error or Cohen’s Kappa Statistics [40] value will be used to compare the 
performance of the classifiers as well. Kappa error is a good measure to inspect 
classifications that may be due to chance. In [41] an attempt was made to indicate the 
degree of agreement that exists when the Cohen’s kappa is found to be in various 

ranges; ≤ 0 (poor); 0 − 0.2 (slight); 0.2 − 0.4 (fair); 0.4 − 0.6  (moderate); 0.6 − 0.8  
(substantial); 0.8 − 1  (almost perfect). As the Kappa value calculated for classifiers 
approaches to 1, then the performance of the classifier is assumed to be more realistic 
rather than by chance. Therefore, in the performance analysis of classifiers, Kappa 
error is a recommended metric to consider for evaluation purposes [42] and it is 
calculated with the equation below. 
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𝐶𝑜ℎ𝑒𝑛′𝑠 𝐾𝑎𝑝𝑝𝑎 =  

[(𝑇𝑃 + 𝑇𝑁) − (
((𝑇𝑃 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃) + (𝐹𝑃 + 𝑇𝑁)(𝐹𝑁 + 𝑇𝑁))

𝑛 )]

[𝑛 − (
((𝑇𝑃 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃) + (𝐹𝑃 + 𝑇𝑁)(𝐹𝑁 + 𝑇𝑁))

𝑛 )]

 

 
Sensitivity, specificity and accuracy describe the true performance with clarity, but 
failed to provide a compound measure for the classification performance. This 
measure is given through Receiving Operating Characteristic (ROC) analysis. For a 
two-class classification problem ROC curve is a graphical plot of the sensitivity vs. 1-
specificity as the discrimination threshold of the classifier is varied (see Figure 6).  
 
 

 
Figure 6 A typical ROC curve, showing three possible operating thresholds 

While the ROC curve contains most of the information about the accuracy of a 
classifier through several values of thresholds, it is sometimes desirable to produce 
quantitative summary measures of the ROC curve. The most commonly used 
quantitative measure is the area under the ROC curve (AUC). AUC is a portion of the 
area of the unit square, ranging between 0 and 1, and is equivalent to the probability 
that a classifier will rank a randomly chosen positive instance higher than a randomly 
chosen negative instance.  
 
Another useful plot diagnostic of model performance related to the ROC curve is the 
precision-recall curve [43], where recall is given by: 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

5.1.7 Estimating the generalization error 
 
In pattern recognition, a typical task is to learn a model for the available data. In a 
general classification problem, the goal is to learn a classifier with good generalization. 
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Such a model may demonstrate adequate prediction capability on the training data and 
on future unseen data. Cross validation is a procedure for estimating the 
generalization performance in this context in a way to protect the classification model 
against over-fitting. No matter how sophisticated and powerful algorithms for 
classification are developed, if no reliable performance estimates are obtained, no 
reliable decisions can be made based on classification results. Basic forms in cross-
validation are the k-fold and the leave-one-out cross-validation.  
 
In k-fold cross-validation the data is first partitioned into k equally (or nearly equally) 
sized folds. Subsequently k iterations of training and validation are performed such 
that, within iterations, a different fold of the data is held-out for validation while the 
remaining k-1 folds are used for learning. If k equals the sample size, this is called the 
leave-one-out. In this study, k-fold cross-validation (with k=5 or k=10) or leave-one-out, 
in case of few samples, will estimate the performance of our model. In case of k-fold 
cross-validation, the data will be stratified prior to being split into k folds in order to 
ensure that each fold is a good representative of the whole. Finally, stratified k-fold 
cross-validation will be run several times, increasing the number of estimates, where 
data is reshuffled and re-stratified before each run.  
 
Conclusively, the generalization error will be estimated by applying extensive iterative 
internal validation using cross-validation techniques. K-fold and leave-one-out cross-
validation allow each subset/sample to serve once as a test set, producing different 
measurements. Therefore, the means and standard deviation of the sensitivity, 
specificity, accuracy, precision and AUC will be computed and reported over the total 
number of the iterative procedure. 
 

5.1.8 Feature Selection in Kernel Space 
 
The MKL approach can be also extended in feature selection techniques applied to 
kernel space, where features that contribute to the highest discrimination between the 
classes are chosen as the most significant for classification [44-46]. Existing methods 
typically approach this type of problem as solving a task of learning the optimal 
weights for each feature representation. More specifically, for feature selection in a 
multi-dimensional space, MKL uses each feature to generate its corresponding kernel 
and aims to select the relevant features of the corresponding base kernels according 
to their relevance to the task of classification. In this way, the feature weights and the 
classification boundary are trained simultaneously and the most relevant features 
(features with the highest weighted value) that leading to the best classification 
performance are selected. 
 
An alternative way of selecting the most relevant features in the kernel space is given 
in [47]. The heterogeneous data sources are integrated into a unique kernel 
framework, and the combined kernel matrix extracts the data in the form of pairwise 
similarities (or distances) which can be used as the input for a generic feature 
selection algorithm. Generally speaking, the features in the kernel space are not 
assumed to be independent. Therefore, feature selection methods that consider each 
feature individually are unlikely to work well in a kernel space. However, a margin-
based feature selection method can handle the feature-dependency problem 
successfully, as explored in [48]. For that reason, methods like Relief [49] and Simba 
[48] can be adopted as a margin-based feature selection method. Simba is a recently 
proposed margin based feature selection approach, which uses the so-called large 
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margin principle [25] as its theoretical foundation to guarantee good performance for 
any feature selection scheme which selects small set of feature while keeping the 
margin large. Roughly speaking, the main idea of Simba is to obtain an effective 
subset of features such that the relatively significant features have relatively large 
weights by using hypothesis-margin criterion.  

5.2 Scenario A-Retrospective use of data 

Scenario A 
Objective An academic researcher wants to define if the response to a specific drug 

X used across multiple breast cancer neo-adjuvant trials can be predicted 
by a gene expression signature. 

Steps  The researcher logs into the system. 

 The researcher filters by type of cancer (i.e. breast), the treatment 
setting (i.e. neoadjuvant) and the selected drug (i.e. drug X). 

 The academic researcher selects for the following outputs; gene 
expression data, pathologic response, trial name and additional 
characteristics. 

 The researcher either downloads the results on his computer (i.e. 
an excel file in csv format) and the gene expression data in the 
relevant format or works directly on the INTEGRATE platform 
using the provided tools. 

Results The researcher tries now to validate the predictive role of the gene 
signature using publicly available gene expression data generated from 
trial using the same drug X. 

Table 3 Scenario A-Retrospective use of data 

The objective of this study is to build a prediction model that given a set of 
characteristics, predicts in an accurate way the response to a drug X. Summarizing all 
the previously analysed techniques in chapter 5.1, we can now proceed to the 
presentation of our methodology for identifying the most relevant biomedical data that 
characterize in an accurate way the response of a drug X. Initially, the researcher logs 
into the INTEGRATE platform and exports the examined dataset which consists of 
patients with breast cancer, treated by any possible type of regimen under 
neoadjuvant therapy. All available patients are dichotomised into two classes based on 
their pathological response (pCR) to drug X. The multisource dataset might be include 
clinical, microarray and/or proteomic data. The available data enters our prediction 
modelling system and a pipelining approach, as presented in Figure 7, is executed.  
 
Due to the very high dimensionality of the microarray and proteomic data, the first step 
is to perform a filter-based feature selection technique using DEDS and Wilcoxon rank 
test to microarray and proteomic data, respectively. In a problem with over 1000 
features, filtering methods like Wilcoxon and DEDS have the key advantage of 
significantly small computational complexity contributing to a flexible dataset of about 
100-200 features that enter the prediction model for further analysis. Our main aim in 
this step is to provide datasets with a manageable number of features for further 
analysis and not to thoroughly search for the best subset of features that lead to the 
best prediction accuracy. 
 
The datasets with reduced dimensionality are next entering the data integration model. 
In multiple kernel learning, a basis kernel multiplied by a constant weighted value is 
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assigned to each feature from each dataset and a convex combination of the basis 
kernels is constructed. The patterns of the data in the form of pairwise similarities are 
extracted by the combined kernel matrix, which can then be used as the input for a 
generic kernel-based feature selection algorithm. The learning process is therefore 
executed into a kernel-based classification approach using SVMs for estimating the   
weights 𝑑 for the base kernels and the parameters of the classifier. Alternatively, 
ensemble classifiers using Decision Trees in which a feature selection technique is 
embodied into the overall method (5.1.5) will be used as well.  
 
The optimization problem follows a recursive procedure either by iterated stratified k-
fold cross validation or leave-one-out (see chapter 5.1.7 for further details) split the 
overall dataset into training, validation and testing set. Following the kernel-based 
method, through the iterative procedure the weight coefficients of the basis kernels 
and the margin-based methods described in 5.1.8 define a small set of relevant 
features that contribute to the highest performance of the classifier. On the other hand, 
ensemble trees define their own relevant subset of features.  
 

 
Figure 7 Overall framework for Scenario A 

As we applied an iterative procedure for identifying the most relevant subset of 
features we actually obtained different selected subsets. By computing the frequency 
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of each feature appearing in all the subsets, we can identify and rank the important 
features which have been most frequently selected for different re-sampling sets. This 
is important because the most important features from a statistical point of view are 
also likely to be the most important from a biological point of view. Concerning the 
consistency of the classifier in terms of selected features as the most relevant over the 
iterative procedure, the consistency (or features overlap) index is tabulated in Table 4. 
 
The model returns a matrix with the most relevant features along with their frequency 
of appearance through the iterative classification procedure, their ranking position in 
each iteration based on the kernel-based feature selection, a short statistical analysis, 
and a p-value. For instance, in case of a 10-fold cross-validation where 10 folds 
contribute to the estimation of the generalization error of the classifier the matrix is 
given as in Table 4. Rank ordered by t-statistics among the features of the integrated 
dataset will be provided as well. All p-values will be two-sided with statistical 
significance evaluated at the 0.05 alpha level. 
 

Feature Frequency of Appearance Ranking Position T-test P-value 

Feature 1 8 / 10 1-10-1-1-1-3-2-6   

Feature 2 6 / 10 4-2-8-10-6-1   

. . .   

. . .   

. . .   

. . .   

. . .   

. . .   

Feature M 2 / 10 .   
Table 4 T-statistics, ROC analysis, ranking of the selected features 

In order to evaluate the potential of the classifier to discriminate the two classes based 
on their pathological complete response (pCR) to drug X we will use all the metrics 
described in chapter 5.1.6. According to these metrics, an informative matrix like the 
one depicted in Table 5 and a graphical representation of the ROC curve as in Figure 
6 are given to the researcher. For our classifier, a boxplot with mean values and 
standard errors showing the classification measures through the iterative cross-
validation will be represented as well.  
 

Metric  Mean Standard 
Deviation 

Accuracy   

Sensitivity   

Specificity   

Precision   

Recall   

AUC   

Kappa   
Table 5 Assessing the classification performance 

The researcher either works directly to the INTEGRATE platform or downloads all the 
analysis to his/her local computer. The downloaded analysis could be an excel file with 
the resulted tables and graphical results placed in the same sheet. 
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5.3 Scenario B-Retrospective use of data 

Scenario B 
Objective A researcher wants to define if a gene expression signature can be used 

to predict the toxic effects (grade 3 (G3) or more) of an investigational 
class of drugs (e.g. mAb, TKI) used in the neoadjuvant treatment of a 
specific breast cancer subtype. 

Steps  The researcher logs into the system. 

 The researcher filters by type of cancer (i.e. breast), the treatment 
setting (i.e. neoadjuvant), the selected class of treatment and the 
toxicity (i.e. G3 or more). 

 The researcher selects for the following outputs; gene expression 
data, type of drug, toxicity type and grade, clinical trial and patients 
baseline characteristics. 

 The researcher either downloads the results on his computer (i.e. 
an excel file in csv format) and the gene expression data in the 
relevant format or works directly on the INTEGRATE platform 
using the provided tools. 

Results The researcher analyses gene expression data and tries to confirm his 
hypothesis: “A gene signature can predict the toxicity of a class of drugs”. 

Table 6 Scenario B-Retrospective use of data 

The objective of this study is slightly changed compared to the previous one, but the 
overall prediction framework remains the same. As in previous scenarios, the 
researcher logs into the INTEGRATE platform and exports the examined dataset 
which consists of patients with breast cancer, treated by an investigational class of 
drugs with a specific toxicity type and grade per drug, under neoadjuvant therapy. All 
available patients that received the investigational drug are dichotomised into two 
classes based on the toxicity grade of the drugs; a class with high grade (grade 3 or 
more) and a class with low grade toxic effect. The overall dataset enters the prediction 
model as in Figure 7 and the researcher can get access to the results by an excel file 
with all the available information as mentioned in the description of the previous 
scenario (chapter 5.2). 

5.4 Scenario C-Retrospective use of data 

In this scenario, data generated from samples collected in a neo adjuvant clinical trial 
run by Institute Jules Bordet (IJB), are used to create a model that predicts 
response/resistance to a specific preoperative drug (i.e. epirubicin) in estrogen 
receptor-negative (ER-) breast cancer patients. Again the dataset is dichotomized 
based on the independent clinical variable of pCR. The researcher logs into the 
INTEGRATE platform and exports the examined dataset which consists of patients 
with breast cancer, treated by a specific preoperative drug (i.e. epirubicin), under 
neoadjuvant therapy. This scenario encapsulates the adaptation of both kernel-based 
and ensemble trees classification techniques for prediction analysis.  
 
When using kernel-based approaches, both implementations as depicted in Figure 4, 
can be applied to the examined dataset (a basis kernel for each data source or a basis 
kernel for each feature). Specifically, a first model of the MKL using support vector 
machines will compute separately a basis kernel for each data source (i.e. a kernel for 
each clinical, microarray and proteomic dataset respectively) and a unique kernel from 
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the linear combination of the individual kernels projects the overall data to the feature 
space for further analysis. A prediction model is then constructed by using all the 
available data (no feature analysis is performed), and its accuracy is assessed using 
the statistics in chapter 5.1.6 under the iterative validation techniques described in 
chapter 5.1.7. 
 
A slightly changed kernel-based framework will be constructed using an individual 
kernel for each feature of all the available data sources. As in both scenarios 
described in 5.2 and 5.3, feature selection for reducing the high dimensionality of the 
microarray and molecular data will be first implemented. Then, a weighted basis kernel 
is computed for each feature and an iterative analysis is performed to estimate the 
most relevant features that give the highest classification accuracy.  
 
A third prediction model will be provided using the ensemble of the decision trees (see 
chapter 5.1.5 for further details). Using several methods from the field of decision trees 
like the RotBoost, Random Forest and Rotation Forest, we aim in assessing the 
performance of them using an iterative evaluation process (i.e. bootstrapping or cross 
validation) and choose the “tree model” that shows the maximum performance. 
 
Finally, the most accurate prediction model from both fields will be selected, becomes 
a part of the INTEGRATE platform and could be used as a predictive model for 
response to a specific preoperative drug (i.e. epirubicin) in estrogen receptor-negative 
(ER-) breast cancer patients. 
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6 Conclusion 

This deliverable summarised the main objectives of the WP proposing an approach of 
building the framework for INTEGRATE VPH predictive modelling development. The 
clinically relevant questions that have been defined so far with concern the 
development of scenario-driven prediction models that given a set of characteristics 
will be able to predict in an accurate way the response to a drug and/or the 
response/resistance to a specific preoperative drug. This deliverable highlighted the 
main techniques that will be exploited giving emphasis to multi-kernel techniques that 
will allow the integration of multi-level heterogeneous data and subsequently the 
development of predictive models beyond the sate-of-the-art. 
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7 Appendix 

Additional scenarios that do not represent highest priorities for users but they pose 
interesting challenges from the computational or methodological view, and will 
therefore by utilized for the definition of the generic framework, are presented in the 
following chapters. A statistical analysis of the heterogeneous data along with the 
implementation of the prediction modelling framework offers a thorough study to the 
researchers and constitutes a relevant and tool for assessing the clinical behaviour of 
patients’ response to disease.    

7.1 Scenario D-Retrospective use of clinical data 

Scenario D 
Objective An academic researcher wants to compare the pathological complete 

response (pCR) rate obtained using two different treatment regimens in 
the neo-adjuvant setting in a specific breast cancer subtype. 

Steps  The researcher enters the system. 

 The researcher filters the entire dataset by type of cancer (i.e. 
breast), the treatment setting (i.e. neoadjuvant) and the 
pathological characteristics (HER2+). 

 The researcher selects the treatment type and the pathologic 
response.  

 The researcher either downloads the results on his computer (i.e. 
an excel file in csv format) or works directly in the INTEGRATE 
platform using the provided tools and defines the rate of pCR in 
HER2+ patients treated with a standard regimen VS a regimen 
containing an investigational drug. 

Results The results will be used to design the statistical hypothesis for a new 
NeoBIG trial. 

Example A researcher wants to define the response to a standard regimen VS a 
regimen containing an investigational drug (monoclonal antibodies (mAb), 
tyrosine kinase inhibitors (TKI)) in human epidermal growth factor receptor 
2 positive (HER2+) breast cancer patients using pCR as endpoint. 

Table 7 Scenario D-Retrospective use of clinical data 

This scenario encapsulates a very first decision support system in which the response 
of a breast cancer subpopulation to an investigational regimen is evaluated compared 
to the response from a standard regimen. The user logs into the INTEGRATE platform 
and the examined dataset is exported, using queries for filtering data by type of 
cancer, treatment settings and the pathological characteristics. The pCR, a binary 
value that corresponds to the disappearance or not of tumour at the tissue level 
evaluated at surgery, will be used as a criterion for the assessment of the regimen 
efficacy. A statistical analysis that enables the researcher to quantitatively specify 
whether or not the investigational regimen leads to better results will be done under a 
web-based unified framework or by executable programming logic. 
 
From the technical aspect, the pCR rate as well as the Odds Ratio though forest plots 
[50] will be employed to measure the investigational regimen effect versus standard 
regimens effect. In order to estimate the pCR rate, the number of patients with pCR is 
divided by the total patients who received a standard and investigational regimen, 



 
 
 

 
© INTEGRATE <Consortium confidential> or <Public> 

WP 5 D 5.1,   

INTEGRATE 

ICT-2010-270253 

Page 31 of 38 

respectively. The pCR rate will be a basic approach for estimating the percentage of 
pCR in a subgroup of patients who received a specific type of regimen. The odds ratio 
will be given by considering a trial in which a number of patients were randomized to 
two different regimens, as depicted in the following table. 
 

 Standard Regimen Investigational Regimen 

pCR a b 

No pCR c d 
Table 8 2x2 table for odds ratio estimation 

This study will be extended towards the assessment of strength dependence between 
data values within each subpopulation that received a specific type of regimen. The 
available clinical data, presented in chapter 4.1, will contribute to the calculation of the 
following characteristics, as seen below.  
 

Characteristic No. of Patients Patients with pCR (%) 

Age, years   

≤50 86 10.5 

>50 53 18.9 

Tumor Size   

T1-T2 119 13.4 

T3-T4 20 15.0 

Ki67   

≤25 23 8.7 

>25 92 15.2 
Table 9 Clinical Characteristics for Evaluable Patients treated with Anthracyclines 

Given the characteristics above, one can estimate the strength of dependence 
between the characteristics and the pCR (i.e. significant association is found between 
patients with tumor size T1-T2, achieving pCR when treated with anthracyclines). A 
statistical analysis can therefore be provided by the INTEGRATE platform, in which 
odds ratios are estimated between the clinical characteristics and the pCR of patients 
treated with a standard and an investigational regimen, respectively. Conclusively, the 
platform returns a ranked table with the clinical-pCR dependence for every regimen 
having a format as the presented table below. 
 

 Standard Regimen Investigational Regimen 

Characteristic OR 95% CI p value OR 95% CI p value 

Age, years       

≤50       

>50       

Tumor Size       

T1-T2       

T3-T4       

Ki67       

≤25       

>25       
Table 10 Representation of odds ratios for both regimens 
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The INTEGRATE platform will also provide a graphical representation of the odds ratio 
between the characteristics and the pCR, for every type of regimen. An example is 
given in the following figure, represented from [51].  
 

 
Figure 8 Forest plot of odds ratios and associated confidence intervals [51] 

The overall statistical analysis (pCR rate and Odds ratios with CIs and p-values) will be 
available for download on a local computer (i.e. an excel file in csv format). All p-
values will be two-sided with statistical significance evaluated at the 0.05 alpha level 
and confidence interval of 95% will be calculated to assess the precision of the 
obtained estimates. 

7.2 Scenario E-Retrospective use of clinical data 

Scenario E 
Objective An academic researcher wants to define if pCR is a candidate surrogate 

marker for Disease Free Survival (DFS) and Overall Survival (OS) 
independently of treatment type. 

Steps  The researcher logs into the system. 

 The researcher filters by type of cancer (i.e. breast), the treatment 
setting (i.e. neoadjuvant), selected treatment (i.e. all) and the 
pathological characteristics (i.e. all).  

 The researcher selects the outcome data (i.e. pCR, DFS, OS). 

 The researcher either downloads the results on his computer (i.e. 
an excel file in csv format) or works directly in the INTEGRATE 
platform using the provided tools and defines how pCR correlates 
to DFS and OS independently of treatment type. 

Results According to the obtained results, the academic researcher will design a 
new NeoBIG trial in which pCR will or will not be used as a surrogate 
endpoint. 

Table 11 Scenario E-Retrospective use of clinical data 

In this scenario, a researcher wants to investigate the association between the 
pathological complete response (pCR) and clinical outcome in terms of Disease Free 
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Survival (DFS) and Overall Survival (OS) independently of any treatment type. 
According to the obtained results, the researcher will design a new NeoBIG trial in 
which pCR will or will not be used as a surrogate endpoint.   
 
Initially, the researcher logs into the INTEGRATE platform and exports the examined 
dataset which consists of patients with breast cancer, treated by any possible type of 
regimen under neoadjuvant therapy. The examined dataset is dichotomized into two 
groups using the binary variable pCR as the independent variable. In complex 
diseases, such as cancer, researchers rely on statistical comparisons of DFS and OS 
of patients against healthy control groups or against patients following different 
treatment as in [52]. In this approach DFS and OS will be estimated by Kaplan-Meier 
survival analysis [53] and the log-rank test will be used to compare DFS and OS 
between the two groups (pCR VS no pCR achieved).   
 
In this statistical analysis, Kaplan-Meier survival curves, along with the 95% 
confidence interval for the curves, showing the DFS and OS of pCR and non-pCR 
patients treated by any type of neoadjuvant regimen will be presented. A 
representative example, given by [54], is illustrated below. Anthracycline-treated 
patients were dichotomized by their Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) 
level and Kaplan-Meier survival analysis has been done, showing the cumulative 
percentages of DFS (subfigure A) and OS (subfigure B) over time. 
 

 
Figure 9 Kaplan-Meier plot showing the DFS (A) and OS (B) of TIMP-1 [54]. 

To compare the survival distributions given by our groups, the widely-used non-
parametric log-rank test will be performed. It provides a p value that indicates whether 
or not the difference in survival between the two groups is statistically significant. 
Therefore, estimating the log-rank between the survival curve of pCR and non-pCR 
groups we interpret a p value that indicates a statistically significant deference (low p 
values) or a convergence of the two curves if the p value is high.  
 
After the completion of the statistical analysis, the researcher either works directly to 
the INTEGRATE platform or downloads all the analysis to his/her local computer. The 
downloaded analysis could be an excel file with the resulted tables and graphical 
results placed in the same sheet.   
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7.3 Scenario F-Retrospective use of imaging data 

Scenario F 
Objective An academic researcher wants to define if pCR is associated with a 

decrease of more than 20% in tumor volume between baseline and day 
15, so that decrease in tumor volume between baseline and day 15 could 
be used as an early surrogate for pCR. 

Steps  The researcher logs into the system. 

 The researcher filters by type of cancer (i.e. breast) and the 
treatment setting (i.e. neoadjuvant). 

 The researcher selects for these outputs: the imaging data at 
baseline and at day 15 and response to treatment. 

 The researcher either downloads the results on his computer (i.e. 
an excel file in csv format) or works directly in the INTEGRATE 
platform using the provided tools and defines if pCR is associated 
with a decrease of more than 20% in tumor volume between 
baseline and day 15 or not. 

Results According to the obtained results, the researcher will design a new 
NeoBIG trial to validate if the decrease in tumor volume between baseline 
and day 15 could be used as an early surrogate marker for pCR. 

Table 12 Scenario F-Retrospective use of imaging data 

Tumor volume can be extracted from the information contained in the tags of 
standard DICOM images (MRI, CT etc.) and the delineation/segmentation of 
the tumor by the doctors, using the "DrEye" tool by FORTH [55]. DICOM stands for 
Digital Imaging and Communications in Medicine, and it is a standard for handling, 
storing, printing, and transmitting information in medical imaging. It includes a file 
format definition and a network communications protocol. The National Electrical 
Manufacturers Association (NEMA) holds the copyright to this standard. It was 
developed by the DICOM Standards Committee, whose members are also partly 
members of NEMA. 
 
The DICOM format groups information into data sets. That means that a file 
of a chest X-Ray image, for example, actually contains the patient ID within 
the file, so that the image can never be separated from this information by 
mistake. This is similar to the way that image formats such as JPEG can also 
have embedded tags to identify and otherwise describe the image. 
A DICOM data object consists of a number of attributes, including items such 
as name, ID, etc., and also one special attribute containing the image pixel 
data (i.e. logically, the main object has no "header" as such: merely a list 
of attributes, including the pixel data). A single DICOM object can only 
contain one attribute containing pixel data. For many modalities, this 
corresponds to a single image. But note that the attribute may contain 
multiple "frames", allowing storage of cine loops or other multi-frame data. 
Another example is NM data, where an NM image by definition is a 
multi-dimensional multi-frame image. In these cases three- or 
four-dimensional data can be encapsulated in a single DICOM object. Pixel 
data can be compressed using a variety of standards, including JPEG, JPEG 
Lossless, JPEG 2000, and Run-length encoding (RLE). LZW (zip) compression 
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can be used for the whole data set (not just the pixel data) but this is 
rarely implemented. 
 
The estimation of the tumor’s volume is based on the fact that the 
tumor is a collection of voxels. A voxel can be defined as the volume unit, 
which can be computed from the information contained in the DICOM tags of 
each image in the series of interest. The volume of a voxel is the product 
of the information in the tag (0028, 0030) by the sum of the information in 

the tag (0018,0050) and in tag (0018,0088). These calculations are given by the 
following equation: 
 

𝑉𝑜𝑙𝑢𝑚𝑒 = 𝑃𝑖𝑥𝑒𝑙𝑆𝑝𝑎𝑐𝑖𝑛𝑔. 𝑊𝑖𝑑𝑡ℎ ∗ 𝑃𝑖𝑥𝑒𝑙𝑆𝑝𝑎𝑐𝑖𝑛𝑔. 𝐻𝑒𝑖𝑔ℎ𝑡 ∗ (𝑆𝑙𝑖𝑐𝑒𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 + 𝑆𝑝𝑎𝑐𝑖𝑛𝑔𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑆𝑙𝑖𝑐𝑒𝑠) 

 
With the volume unit (=voxel) to be defined, a draft estimation of volume of 
the tumor is computed based by multiplying the sum of all the voxels of the 
tumor with the volume unit. The estimation of the volume can be improved by 
interpolating the available series and creating a new series in an isotropic 
space where the volume unit is defined as 1 cubic mm, which is 
fairly smaller than the one without interpolation. 
 
Having the available information from the DICOM imaging system, we estimate the 
tumor volume at baseline and day 15 for each patient. All cases are dichotomised 
based on if they achieve to perform a decrease in volume change equal or more than 
20%. A confusion matrix is then given between the pCR and the decrease of tumor 
change, as depicted in Table 13. An odds ratio statistical analysis will be performed to 
characterize the association between the two variables and validate if the decrease in 
tumor volume between baseline and day 15 could be used as an early surrogate 
marker for pCR. A graphical representation of the odds ratios through forest plots will 
be also provided, as depicted in Figure 8.  
 

 ≥20% decrease <20% decrease 

pCR a b 

No pCR c d 
Table 13 Confusion matrix for tumor volume change 
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