

ICT-2010-270253

INTEGRATE

Driving excellence in Integrative Cancer Research
through Innovative Biomedical Infrastructures

STREP
Contract Nr: 270253

Deliverable: 2.1 State-of-the-Art Report on Standards

Due date of deliverable: (10-31-2011)
Actual submission date: (10-31-2011)

Start date of Project: 01 February 2011 Duration: 36 months

Responsible WP: Philips

Revision: Final

Project co-funded by the European Commission within the Seventh Framework
Programme (2007-2013)

Dissemination level

PU Public x

PP Restricted to other programme participants (including the Commission Service

RE Restricted to a group specified by the consortium (including the Commission
Services)

CO Confidential, only for members of the consortium (excluding the Commission
Services)

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 2 of 83

0 DOCUMENT INFO

0.1 Author

Author Company E-mail

Gaston Tagni Philips gaston.tagni@philips.com

Alejandro Garcia
Ruiz

UPM agarcia@infomed.dia.fi.upm.es

Kristof De Schepper Custodix kristof.deschepper@custodix.com

Brecht Claerhout Custodix brecht.claerhout@custodix.com

Elias Neri Custodix elias.neri@custodix.com

0.2 Documents history

Document
version #

Date Change

V0.1 08/29/2011 Starting version, template

V0.2 08/29/2011 Definition of ToC

V0.3 10/14/2011 First complete draft

V0.4 10/14/2011 Integrated version (send to WP members)

V0.5 10/14/2011 Updated version (send PCP)

V0.6 10/14/2011 Updated version (send to project internal reviewers)

Sign off 10/28/2011 Signed off version (for approval to PMT members)

V1.0 10/28/2011 Approved Version to be submitted to EU

0.3 Document data

Keywords

Editor Address data Name: Gaston Tagni
Partner: Philips
Address: High Tech Campus 34, (6-030)
 5656AE Eindhoven, The Netherlands
Phone: +31 40 27 49709
Fax:
E-mail: gaston.tagni@philips.com

Delivery date November 4, 2011

0.4 Distribution list

Date Issue E-mailer

November 2011 Loukianos.GATZOULIS@ec.europa.eu

 fp7-integrate@listas.fi.upm.es

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 3 of 83

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 4 of 83

Table of Contents

0 DOCUMENT INFO .. 2

0.1 Author ... 2

0.2 Documents history .. 2

0.3 Document data ... 2

0.4 Distribution list .. 2

1 INTRODUCTION ... 8

2 ONTOLOGY REPRESENTATION LANGUAGES 9

2.1 Introduction .. 9

2.2 Resource Description Framework (RDF) 9

2.3 Vocabulary Description Language (RDFS) 10

2.4 OWL .. 11

2.5 OWL 2.0 .. 11

2.6 SPARQL .. 12

2.7 Discussion and Relevance for INTEGRATE 12

3 SEMANTIC REPOSITORIES .. 13

3.1 Sesame ... 13

3.1.1 SYSTEM ARCHITECTURE .. 13

3.1.2 FEATURES .. 15

3.2 Virtuoso .. 15

3.2.1 FEATURES .. 15

3.2.2 DATA STORAGE ... 16

3.2.3 REASONING IN VIRTUOSO .. 17

3.3 OWLIM .. 17

3.3.1 REASONING IN OWLIM .. 18

3.3.2 QUERY EVALUATION ... 19

3.3.3 DATA STORAGE AND MANAGEMENT .. 19

3.4 AllegroGraph .. 19

3.4.1 ARCHITECTURE AND DATA STORAGE .. 20

3.4.2 REASONING AND QUERY ANSWERING 20

3.4.3 ADDITIONAL FEATURES .. 21

3.5 BigData ... 21

3.5.1 ARCHITECTURE AND DATA STORAGE .. 21

3.5.2 REASONING AND QUERY ANSWERING 22

3.6 Other RDF-based Semantic Repositories 22

3.6.1 JENA RDF FRAMEWORK ... 22

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 5 of 83

3.6.2 RDFSTORE ... 23

3.6.3 D2R .. 23

3.7 Discussion and Relevance for INTEGRATE 24

4 AUTOMATED REASONING IN THE SEMANTIC WEB 27

4.1 Pellet ... 27

4.1.1 ARCHITECTURE ... 28

4.1.2 REASONING IN PELLET ... 28

4.1.3 QUERY ANSWERING ... 29

4.1.4 DEBUGGING AND REPAIR OF ONTOLOGIES 30

4.2 Racer Pro .. 30

4.2.1 REASONING IN RACER .. 30

4.2.2 RACER AS A SEMANTIC WEB REASONER 31

4.2.3 QUERY ANSWERING IN RACER .. 31

4.3 FaCT++.. 31

4.3.1 REASONING IN FACT++ ... 32

4.4 KAON2 .. 32

4.4.1 REASONING IN KAON2 .. 32

4.5 HermiT .. 33

4.5.1 REASONING IN HERMIT... 33

4.6 OWLIM TRREE ... 34

4.6.1 REASONING IN TRREE .. 34

4.7 CEL ... 34

4.7.1 REASONING IN CEL ... 35

4.8 Snorocket ... 36

4.8.1 REASONING IN SNOROCKET .. 36

4.9 TrOWL ... 36

4.10 The Large Knowledge Collider (LarKC) 38

4.11 Discussion and Relevance for INTEGRATE 38

5 ONTOLOGY MEDIATION, ALIGNMENT AND MERGING 42

5.1 Introduction .. 42

5.1.1 CLASSIFICATION OF METHODS AND TECHNIQUES 42

5.1.2 ORGANIZATION OF THIS SURVEY ... 43

5.2 ASMOV.. 44

5.3 Eff2Match .. 45

5.4 RiMOM .. 46

5.5 SAMBO ... 47

5.6 AgreementMaker .. 48

5.7 BLOOMS ... 50

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 6 of 83

5.8 AOAS .. 50

5.9 FALCON-AO ... 51

5.10 SOBOM ... 52

5.11 NBJLM System ... 53

5.12 Discussion and Relevance for INTEGRATE 54

5.12.1 CHOOSING THE RIGHT SYSTEM ... 55

6 ONTOLOGIES FOR THE LIFE SCIENCES .. 57

6.1 MedDRA .. 57

6.1.1 USE WITHIN THE INTEGRATE PROJECT 57

6.2 SNOMED-CT ... 57

6.2.1 USE WITHIN THE INTEGRATE PROJECT 58

6.3 LOINC.. 58

6.3.1 USE WITHIN THE INTEGRATE PROJECT 59

6.4 MeSH ... 59

6.4.1 USE WITHIN THE INTEGRATE PROJECT 59

6.5 ICD-10 ... 59

6.5.1 USE WITHIN THE INTEGRATE PROJECT 60

6.6 UMLS... 60

6.6.1 USE WITHIN THE INTEGRATE PROJECT 60

7 SECURITY AND PRIVACY STANDARDS ... 62

7.1 Identity Management ... 62

7.1.1 SAML ... 62

7.1.2 LIBERTY ALLIANCE STANDARDS ... 62

7.1.3 WS-* .. 63

7.1.4 OPENID ... 64

7.1.5 PKIX ... 65

7.1.6 CAS ... 66

7.1.7 KERBEROS ... 67

7.1.8 DISCUSSION AND RELEVANCE FOR INTEGRATE 67

7.2 Authorization .. 67

7.2.1 ATTRIBUTE-BASED AUTHORIZATION .. 67

7.2.2 OAUTH .. 67

7.2.3 XACML... 67

7.2.4 PERMIS ... 68

7.2.5 PONDER .. 69

7.2.6 CASSANDRA ... 70

7.2.7 DISCUSSION AND RELEVANCE FOR INTEGRATE 70

7.3 Data Transfer Security .. 70

7.3.1 TLS/SSL ... 70

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 7 of 83

7.3.2 IPSEC .. 71

7.3.3 DISCUSSION AND RELEVANCE FOR INTEGRATE 71

7.4 De-identification ... 71

7.4.1 TRANSFORMATION TECHNIQUES ... 72

7.4.2 K-ANONIMITY .. 73

7.4.3 DIVERSITY .. 73

7.4.4 T-CLOSENESS .. 75

7.4.5 DISTRIBUTION-BASED MICRODATA ANONIMIZATION................ 75

7.4.6 DISCUSSION AND RELEVANCE FOR INTEGRATE 76

8 CONCLUSION .. 77

9 BIBLIOGRAPHY ... 79

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 8 of 83

1 Introduction

INTEGRATE aims at building an infrastructure of components and tools for enabling
wide-scale integration of data, information and knowledge generated within clinical
trials in the area of oncology research. Such infrastructure will be based, to the
maximum extent possible, on standards and well-known approaches for data
integration, security and privacy management.

One of the first steps towards achieving this goal is to survey the landscape of
standards and technologies stemming from different areas of technology and research
relevant for building the solution envisioned by the project. With that aim in mind and
within the context of the technical work package 2 (WP2) this deliverable presents a
state-of-the-art survey of relevant technologies and standards. The survey intents to
map the pleothora of methods, techniques, tools and standards that are thought to be
relevant for different aspects of the project. More specifically, this deliverable gives an
overview of several Semantic Web technologies for enabling data integration and
sharing of knowledge (ontologies) among systems. The document presents an
overview of the state of the art in various research topics including Ontology
Representation Languages (Chapter 2), Semantic Repositories (Chapter 3), Semantic
Reasoning systems (Chapter 4) and several methods for Ontology Mediation (ontology
matching and merging) (Chapter 5). The type of data and information to be integrated
by the INTEGRATE platform lies within the domain of Clinical research and Life
Sciences and as such it must deal with data described according to standard
ontologies and terminologies commonly used in this domain. Consequently, in Chapter
6 of this survey we report on several standard ontologies that are being used in the
medical domain. Another crucial aspect of the INTEGRATE vision are the security and
privacy aspects which are required in order to guarantee secure and validated access
to the different users of the platform. Therefore, Chapter 7 reports on several security
and privacy technologies that are thought to be highly relevant for the project. Finally,
Chpater 8 presents the conclusions of this survey.

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 9 of 83

2 Ontology Representation Languages

2.1 Introduction

During the last decade the Semantic Web Activity group 1 of the W3C has proposed a
series of standards, in the form of recommendations, for representing (in machine-
processable form), organizing and accessing semi-structured data in the Web. The key
technologies proposed so far, on top of which many others have been and are being
proposed, are RDF, RDFS and OWL. These technologies make use of other
technologies such as the Uniform Resource Identifier (URI) and the eXtensible Markup
Language (XML). In a nutshell, RDF provides a framework for organizing and
exchanging semi-structured data in machine-processable form that abstracts away
from the specific vocabulary and syntax used for referring to the data of a subject
domain. RDFS and OWL provide a common knowledge modelling language for
capturing and explicitly representing the meaning of information and for organizing the
knowledge of a subject domain in the form of ontologies. SPARQL provides a standard
way to access semi-structured data in the Web. In this chapter we want to give a brief
overview of these standard technologies as they have become relevant for building
solutions that support interoperability and data integration across application domains.

This chapter is organized as follows. Sections 2.2 to 2.5 give a brief overview of key
ontology representation languages developed by the Semantic Web community and
sponsored by the World Wide Web Consortium (W3C) that have become standards for
knowledge and metadata representation in the Web and other domains. Section 2.6
briefly introduces the SPARQL query language. Although technically not an ontology
representation language, SPARQL is a key technology enabling semantic-based data
integration and metadata extraction in the Web. Finally, Section 2.7 concludes the
chapter with a discussion of the relevance of these technologies for the INTEGRATE
project.

2.2 Resource Description Framework (RDF)

The Resource Description Framework (1) (RDF for short) is framework developed by
the World Wide Web Consortium (W3C) for representing semi-structured information
in the Web. It enables users to describe Web content with arbitrary vocabularies in
order to associate semantics to the data through the specification of metadata in
machine-processable form. RDF constitutes one of the core technologies in the
Semantic Web technology stack and relies on the concept of URIs (Uniform Resource
Identifier) to uniquely identify resources that need to be described. Since its conception
RDF has become the W3C’s standard for representing semi-structured information in
the Web and other domains where semantic-based data integration is required.

Although typically referred to as a language for representing semi-structured
information in the Web RDF is more precisely a Data Model. It defines a framework for
modelling the data and information associated to a given domain of discourse. The
basic principle behind RDF is that the elements of a domain of discourse can be
described in terms of their properties and values and that such description(s) can be
represented by statements or RDF triples. Each statement in the model captures the
description of a resource, i.e. the “thing” one is interested in talking about or

1
 http://www.w3.org/2001/sw/

http://www.w3.org/2001/sw/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 10 of 83

describing, and specifies the property used for describing the resource and its value. In
RDF terms each statement has the form subject-predicate-object where the subject
represents the resource or “thing” one wants to describe, the predicate represents the
property used for describing the resource and the object represents the value of the
property. Properties in RDF are used for capturing relationships between resources
and resources are uniquely identified by URIs.

RDF represents (a set of) statements using directed graphs, known as RDF graphs in
the RDF terminology. This directed graph is the abstract syntax or graph model of RDF
(see the RDF Concepts and Abstract Syntax for details (2)). Moreover, RDF graphs
can be associated with a name (URI) to uniquely identify a set of statements, a
concept known as RDF Named Graphs. This mechanism extends the expressive
power of RDF as it allows referring to and describing set of triples. In order for
computer programs to be able to process RDF data the abstract syntax of RDF needs
to be serialized using some sort of notation or language. One of the most common
ones is RDF/XML that serializes an RDF graph in XML. However, other, more efficient
notations also exist such as N3 (Notation 3) 2, N-Triples 3 and Turtle (3).

An important feature of RDF is that the framework makes no assumption about the
semantics of a given domain nor does it prescribes a vocabulary for describing and
modelling data; apart from a few language constructs used for defining statements and
related RDF concepts. This allows users to use the framework to describe arbitrary
domains by using vocabularies specific to the domain of discourse.

2.3 Vocabulary Description Language (RDFS)

As a general framework and Data Model for representing semi-structured information
RDF does not impose any restriction on the vocabularies used for modelling the
information of a given domain. Instead, users are free to use and define their own
vocabularies to describe resources and the relationships among them foe any arbitrary
domain. In order to define arbitrary vocabularies what is needed is a language that
allows users to specify the terms in the vocabulary and their semantics.

RDFS (4), the RDF Vocabulary Description Language, is a W3C recommendation of a
language for specifying vocabularies, i.e. sets of terms and with their associated
meaning. RDFS enables users to define concepts (classes of resources) and
properties that can be associated to these concepts in order to describe them. Classes
and properties defined in RDFS can then be used to describe a domain of discourse
using the RDF Data Model. In addition, RDFS provides semantics for
specialization/generalization of classes and properties and for specifying resources as
instances of classes. In other words, RDFS provides the means in the forms of
language constructs to describe vocabularies, i.e. concepts and properties, which can
then be used for formalizing the knowledge of an application domain.

Using terms from the predefined RDF and RDFS vocabularies users can defines
classes, properties, associate properties to classes, specify that individuals in the
domain are instances of certain classes, restrict the domain and range of properties,
specify generalization/specialization of classes and properties, define special data
structures such as containers and collections, among other constructs. One of the

2
 http://www.w3.org/DesignIssues/Notation3

3
 http://www.w3.org/TR/rdf-testcases/#ntriples

http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/TR/rdf-testcases/#ntriples

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 11 of 83

limitations of RDFS and RDF, or perhaps an advantage depending on the way one
looks at it, is that the language does not provide the means for expressing negation,
i.e. the language does not include a construct for expressing the negation of facts. This
can be seen as a limitation of the language as it reduces the expressive power of
RDF(S) or, as a positive feature as it makes reasoning in the language tractable.

2.4 OWL

OWL (5) stands for Ontology Web Language and is a the Web ontology language
developed by the Web Ontology working group of the W3C that has been a W3C
Recommendation since 2004. OWL is a language for representing ontologies, i.e. for
specifying its concepts, relationships between concepts, individuals and axioms. It
enables users to define classes (sets of objects), associate properties to classes,
define relationships between classes and between individuals. Concepts in OWL can
be defined based on the union, intersection and complement of other concepts. In
addition, the language allows for specifying equivalence and disjoint relationships
between concepts. In terms of its expressive power OWL is more expressive than
RDF(S). The formal underpinning of OWL is the family of knowledge representation
formalisms known as Description Logics (6).

OWL comes in three standard flavours or sub-languages, although other non-standard
dialects or fragments have been proposed in different application domains and
scenarios. These fragments were designed to serve different purposes depending on
the needs of the application at hand. The first of these standard fragments is OWL
Lite, which is the least expressive fragment of the three and corresponds to the DL

SHIF(D). OWL Lite is meant for users in need of classification hierarchies and simple

constraints. The second fragment is OWL DL, which corresponds to the DL

SHOIN(D), is a more expressive language with good computational properties.

Finally, OWL Full is the most expressive fragment of the three although it provides no
guarantees with respect to its computational properties. Among the non-standard
fragments are OWL Horst and OWL DLP. OWL Horst (7) is a fragment of OWL that is
based on the extension of RDFS with rules. The language defines inference rules,
called R-entailment rules, that are more general than those defined for RDFS, i.e. D-
entailment rules. The salient characteristics of this language are that it does not
enforce the Unique Name Assumption (UNA) and that its complexity is lower than that
of SWRL (8). OWL DLP is a language whose expressive power lies in the intersection
of OWL DL and Logic Programming and is less than that of OWL Lite. One of the
advantages of OWL DLP is that both DL reasoners and deductive systems can be
used for reasoning in the language and that the knowledge of a domain can be
modelled using OWL and/or rules.

2.5 OWL 2.0

OWL 2 (9) is a revision and extension of OWL 1.0 that extends its syntax with syntactic
sugar and expands its expressive power by adding asymmetric, reflexive, and disjoint
properties, qualified cardinality restrictions and richer data types among other features.
In the same way that OWL has three standard fragments OWL 2 offers three standard
language profiles. These profiles restrict the syntax of the language in an attempt to
make a trade off between efficient reasoning and expressive power. OWL 2 profiles
are tailored to specific application and users needs in terms of the type of knowledge

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 12 of 83

that knowledge engineers need to model. The three profiles are OWL 2 EL, OWL 2 QL
and OWL 2 RL.

 OWL 2 EL: OWL 2 EL is a subset of OWL 2 for which the basic reasoning

services can be solved in polynomial time. It corresponds to the DL EL++ (10)

and it is particularly useful for expressing ontologies with large number of
classes and/or properties that do not require too much expressive power. Many
biomedical ontologies can be expressed with OWL 2 EL and many efficient
reasoning systems for this language have been developed in recent years (see
the section on Semantic Reasoners for an overview).

 OWL 2 QL: OWL 2 QL is tailored for applications that use large amount of
instance data combined with relatively inexpressive logics and whose main
reasoning service is query answering.

 OWL 2 RL: This is a profile aimed at applications that require scalable
reasoning without losing too much expressive power. Reasoning in OWL 2 RL
can be implemented using rule-based approaches.

2.6 SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) (11) is a W3C
Recommendation of a query language for RDF. Since its inception it has become one
of the most widely used query languages for semi-structured data expressed in RDF
and it is nowadays a Semantic Web standard query language. Virtually all RDF
repositories nowadays provide an implementation of the language and many data
repositories in the Web provide query services backed by SPARQL, the so-called
SPARQL endpoints. Queries in SPARQL define an RDF triple pattern with variables
over the RDF graph. A query result is a set of RDF triples satisfying the pattern and
binding the free variables to RDF nodes.

2.7 Discussion and Relevance for INTEGRATE

INTEGRATE is about data integration and interoperability between systems. One way
to achieve this is through the use of semantic technologies as they have been used in
recent years to achieve this goal in many domains. Therefore, semantic technologies
for representation and exchange of data and knowledge are important (crucial) for
achieving the project goals.

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 13 of 83

3 Semantic Repositories

For (Web) data to be useful three fundamental aspects need to be addressed. First,
data need to be represented in machine-processable form through the use of data
representation and exchange languages. Second, data needs to be stored and
managed and third, data need to be accessible to allow the generation of information
and knowledge. Chapter 2 introduced several approaches for representing in machine
processable form, structuring and accessing (querying) data in the Web. This Chapter
is concerned with the second aspect of data management and processing, storing data
and more specifically, storing and managing data structured according to RDF.
Chapter 4 will cover the third aspect, namely reasoning over semi-structured data
whose meaning is described according ontologies.

In the semantic Web community several approaches have been proposed and
investigated for efficiently storing and querying data structured according to RDF.
Many of these systems started as academic projects but have since then gain wide-
spread adoption in the semantic Web community and other communities and become
commercial products with enterprise-level features. Example of these systems include
OpenLink Virtuoso, Ontotext’s OWLIM family of repositories and Aduna’s Sesame
system. These systems, called semantic repositories, provide functions and services
similar to those provided by traditional DBMSs with the fundamental difference that the
data they manage is structured according to RDF rather than being relational data.

In this chapter we focus our attention on semantic repositories and present an
overview of the state-of-the-art systems identifying their main characteristics and
describing their key functionality and services provided. To this end we organize the
Chapter as follows: Sections 3.1 to 3.6 gives an overview of the different semantic
repositories considered in this report. The systems reported are: Virtuoso, Sesame,
OWLIM, BigData, AllegroGraph, the Jena RDF Framework, RDFStore, D2R and the
LarKC Platform for large-scale reasoning. Section 3.7 concludes with a discussion of
the relevance of these technologies for the INTEGRATE project.

3.1 Sesame

Sesame is an open source, Java-based framework for storing, processing and
querying RDF data efficiently. It was developed as a prototype application within the
European project On-To-Knowledge 4 and is currently maintained by Dutch software
company Aduna 5. Over the years Sesame has become one of the defacto platforms
for managing RDF metadata, a feature that is reflected by the number of other
semantic technologies that make use of it. For example, many semantic technologies
vendors implement the Sesame’s SAIL.

3.1.1 System Architecture

Sesame's architecture follows a layered design. Each layer implements a specific set
of services that can be accessed by the layers on top. A layer's functionality is in turn
implemented using the services provided by the underlying layers. The architecture

4
 http://www.ontoknowledge.org

5
 http://www.openrdf.org/

http://www.ontoknowledge.org/
http://www.openrdf.org/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 14 of 83

was designed as to enable part of the functionality to be implemented by other external
components, such as reasoners. The architecture is comprised of the following layers:

 RDF Model: the bottom layer is the foundation upon which the entire Sesame
framework is built. This layer implements a representation or model of RDF and
provides methods for handling the different RDF entities. It is similar to the
Jena RDF Model, a Java-based API for managing RDF data.

 The RIO layer: the RDF I/O layer provides low-level methods for reading and
writing RDF documents. It contains parsers for reading RDF documents
expressed in different file formats and writers for writing RDF to several output
formats such as RDF/XML (the XML serialization of RDF), N-Triples, etc.

 The SAIL: this layer, the Storage and Inference Layer, is an API that provides
an abstraction over specific storage and inference technologies and systems. It
does that by implementing a series of methods for accessing RDF storage and
inference engines. By implementing the SAIL interface different storage and
reasoning systems can be used within Sesame to provide these capabilities to
its clients. Sesame 2 ships with two predefined SAIL implementations: one that
supports in-memory storage and the other supporting on-disk storage
capabilities. Thanks to this approach Sesame is an extensible platform that can
be paired with different technologies for storing and reasoning over RDF data
depending on the specific application requirements. For example, for
applications that manage small amounts of data Sesame can be configured to
use an in-memory storage component thus reducing costs and improving
performance. SAILs can be stacked up to provide powerful means for handling
RDF data. For instance, by stacking SAILs it is possible to implement a caching
mechanisms for schema information, which is typically accessed very often and
requires less space in comparison to instance data. The SAIL enables Sesame
to remain DBMS-independent and hides the details of specific storage
technology from the users. Examples of systems that provide a SAIL
implementation and can thus be integrated and used with Sesame include
OWLIM, RDFStore and Virtuoso. A description of these systems is provided in
other sections of this deliverable.

 HTTP Client: The latest version of Sesame (v 2.x) also implements an HTTP
Client that provides users with methods to access Sesame repositories running
behind HTTP servers thus enabling remote access to Sesame repositories.

 Repository API: On top of the SAIL, RIO and HTTP Client layers sits the
Repository API which is a high-level API that implements a series of methods
for handling RDF data. It allows developers to have simple access to methods
for reading, querying and managing RDF data. Typically, developers make use
of the methods provided by the components of this layer to load, create, query
and modify RDF data.

 HTTP Server: Sesame 2 also implements an HTTP server that enables users
to set up a Sesame repository behind an HTTP Server and access it through
HTTP. This functionality is implemented using Java Servlet technology and
JSP (Java Server Pages).

 User applications: Domain-specific applications that use the Sesame
framework sit on top of the Repository API.

A core component of the Sesame architecture is the SAIL interface which provides
DBMS-like functionality for RDF data and schema information. Other systems and
frameworks that provide similar functionality include the Jena Framework for RDF

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 15 of 83

processing and the Redland RDF Application Framework. SAIL was designed with the
following principles in mind:

 To provide a basic interface for managing RDF and RDFS data

 To provide an abstraction layer over specific storage mechanisms and
technologies.

 To be able to provide scalable processing of RDF data and to be able to run on
low-end hardware.

 To be extendable to support new RDF-based ontology languages.

3.1.2 Features

Sesame can be extended and configured to support a variety of technologies and
standards related to several aspects:

 RDF serialization and representation formats: It is compatible with several RDF
serialization formats such as XML, TRIG, TRIX, Turtle, N-Triples and N3.

 Storage technology: different storage systems can be used for storing RDF
data such as different RDBMS, disk-based storage, in-memory storage, etc.

 Inference: Sesame supports different forms of reasoning, i.e. reasoning
according to different semantics such as RDFS, OWL, etc.

 Query results: different query results formats are supported.

 Query languages: Sesame offers support for SPARQL and SeRQL semantic
query languages. Latest version (2.6.0) supports the SPARQL 1.1 Federation
extension. This gives the possibility to query and integrate data from public
SPARQL endpoints. The latest version also offers the SPARQL Repository
which allows users to programmatically connect to SPARQL endpoints via the
Repository API.

 Storage of context and provenance information.

 Support for REST-full HTTP protocol and to provide a SPARQL endpoint.

 Support for transactional access to RDF data.

3.2 Virtuoso

OpenLink Virtuoso6 is a cross-platform universal server developed by OpenLink
Software. It offers a series of data and metadata facilities such as Web server
capabilities, file and database server functionality, native XML storage and an
Universal Data Access Middleware. The Virtuoso Universal Server comes in two
flavours: Open Source and Commercial. The open source version, distributed under
the GNU General Public License, differs from the commercial version in that it does
not include the Virtual Database Engine (a mechanism for accessing multiple
databases transparently as if it were a single database). At the time of writing, the
latest version is 6.2 which can be installed on multiple platforms including Windows,
Solaris, Mac OS X and Linux.

3.2.1 Features

The following is a list of the most important features offered by Virtuoso:

6
 http://virtuoso.openlinksw.com/

http://virtuoso.openlinksw.com/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 16 of 83

 It offers transparent access to existing data sources thus reducing the cost of
integrating data stemming from different sources

 Virtuoso offers Internet and Web services as well as Data Management
services:

o Internet and Web services: these include XPath query functionality.
MAIL services, XSLT transformation services, HTTP 1.1, SOAP,
WebDAV, Free Text Indexing among others.

o Data Management services offered by Virtuoso include: Access to
external SQL data which enables reuse of data stored in existing
databases, native storage of XML-based data and RDF and a native
implementation of SQL data.

 Virtuoso can be used as the backend of other semantic repository technologies
such as Jena RDF Framework and Sesame. For example, Virtuoso can be
accessed in Sesame through a SAIL implementation.

 One of the recent features being offered by Virtuoso is its support for clustering
and data federation.

o Clustering enables Virtuoso to scale to large volumes of data by
supporting distributed query answering. In addition to this, clustering
can improve the performance of query processing.

o Data federation allows Virtuoso to act as a virtual server that hides the
details of the location of the data from the user. This also enables reuse
of existing databases and leverage of database technology such as
data optimization techniques.

 Virtuoso provides support for managing RDF named graphs by storing RDF-
based data in quads, i.e. RDF triples plus a fourth element that refers to the
graph the triple belongs to. This, for example, can be used for representing
context information or provenance information.

 Virtuoso also provides anytime query answering capabilities. The server is able
to return partial results to a query rather than returning the complete results set
at once. The stopping criterion can be specified by the user. This is a desirable
feature for a couple of reasons:

o First, it protects the server from denial-of-service (DoS) attacks and
o Second, because it enables a better interaction with the user as the

user does not have to wait until all the results are processed, instead
results are returned incrementally.

3.2.2 Data Storage

Virtuoso implements two different approaches for storing RDF-based data. The first
method uses a native implementation of XML and RDF-based data. The second
method, referred to as “RDF as a view” provides a view of the underlying relational
data through either Virtuoso’s own relational storage functionality or federation. This
enables Virtuoso to store RDF data on relational databases thus allowing Virtuoso to
leverage database technology for RDF storage and query such as optimization
techniques for storing, managing and querying relational data. Another advantage of
using this approach is that it facilitates the integration of Virtuoso with existing
databases.

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 17 of 83

3.2.3 Reasoning in Virtuoso

Although Virtuoso does not have a native inference service implemented in the
architecture reasoning capabilities can be implemented on top of Virtuoso and
accessed through queries. Virtuoso allows users to access inference capabilities by
two means. The first approach uses entailment and materialization and SPARQL to
query the materialized data. The second approach is based on query re-writing at
query time. Using this approach inference is enabled at query time by inserting
modifiers into the SPARQL queries. One of the advantages of not using materialization
is that data loading is much faster since no pre-processing of the data is needed. No
materialization is suitable for large databases where the most commonly executed
queries refer to only a subset of the entire database.

The type of ontological reasoning supported by Virtuoso includes sub-class and sub-
property relations, identity by inverse-functional properties, owl:sameAs and transitive
relations.

3.3 OWLIM

OWLIM (12) is a family of semantic repository solutions. It is fundamentally a DBMS
that provides functions to manage (store, query and reason over) data structured
according to RDF. It is the result of the research efforts partially made within several
European projects including SEKT7, TAO8, TripCom9, LarKC10 and SOA4ALL11 among
others and Ontotext AD12. OWLIM has been used in several domains and sectors as a
basic data integration platform for heterogeneous data. The domains include
telecommunications, life sciences and the publishing sector. OWLIM is implemented in
Java and comes in three flavours:

 OWLIM-Lite: It is the new instalment of the OWLIM version previously known
as SwiftOWLIM. It is an in-memory semantic data repository that provides
efficient and relatively fast services for storing, querying and inferring RDF-
based data. Reasoning is performed entirely in memory and is based on
TRREE, the Triple Reasoning and Rule Entailment Engine while query
processing and answering is provided by Sesame (see section 3.1 for a
description of Sesame). OWLIM-Lite implements the Sesame SAIL interface
thus allowing Sesame to access the reasoning and storage services provided
by OWLIM. OWLIM-Lite was designed for applications that require
management of medium-size data volumes which roughly speaking relates to
amounts of about 100M RDF triples. OWLIM-Lite is distributed free of charge.

 OWLIM-Standard Edition (SE): This version uses a scalable, file-based
indexing mechanism and several (query and storage) optimization
techniques to provide efficient query answering and storage functionality. As
such it is capable of handling tens of billions RDF statements in commodity
hardware and billions of explicit triples on desktop hardware. It also uses

7
 http://www.sekt-project.com/

8
 http://www.tao-project.eu/

9
 http://www.tripcom.org/

10
 http://www.larkc.eu/

11
 http://www.soa4all.eu/

12
 http://www.ontotext.com/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 18 of 83

optimization techniques for owl:sameAs reasoning, query answering and
retraction (deletion) of data (assertions). OWLIM-SE is distributed free for
research and evaluation and under a commercial license for development
purposes. Another important feature of this version is its hybrid approach to
query answering that combines SPARQL 1.1 with full-text search, geo-spatial
constraints and ranking of query results. As with OWLIM-Lite this version
implements Sesame’s SAIL interface.

 OWLIM-Enterprise Edition (EE): This is the replication cluster version of
OWLIM and is based on OWLIM-SE. It is distributed free for research and
evaluation and under a commercial license for development purposes.

For details about the differences between the three versions the interested reader is
referred to (12) and the OWLIM Website13.

3.3.1 Reasoning in OWLIM

Reasoning in all three versions of OWLIM is based on a process called total
materialization. Total materialization refers to the process of computing the full closure
of the data in a single, atomic process which in the case of OWLIM happens at triple
loading time and whenever a new triple is added to the repository. Materialization in
OWLIM is a rule-based process that uses R-entailment (7) rules for deriving
knowledge and has the advantage of making query processing/answering more
efficient because no inference is required in order to retrieve knowledge from the
repository. The main disadvantage of this process is that loading triples requires more
time. The component of OWLIM that implements reasoning is called OWLIM TRREE,
Triple Reasoning and Rule Entailment Engine.

OWLIM supports inference based on several rule sets with different levels of
complexity. This allows users to compute different type of knowledge from the same
underlying repository. OWLIM supports reasoning based both on standard and custom
rule sets. The standard rules set natively supported by the system include:

 RDFS (13), using entailment rules from the RDFS schema language but
without data type reasoning.

 OWL-Horst (7) without data type inference.

 OWL-Max, a combination of RDFS and a fragment of OWL-Lite (14) that can
be captured in rules, i.e. inferring functional and inverse functional properties,
all-different, subclass by enumeration and union, min/max cardinality
constraints, etc.

 OWL 2 RL: The OWL 2 profile that can be implemented using rule engines
(15).

 OWL 2 QL: In addition to this OWLIM-SE supports reasoning with OWL 2 QL
(15).

 In addition to these (standard) rule sets OWLIM also supports reasoning based
on user-defined, i.e. custom, rule sets which can be newly defined rules of
inference or an extension/modification of the standard rule sets mentioned
above. This enables users to tune the system for optimal expressiveness and
performance depending on the requirements of the user application.

13

 http://www.ontotext.com/owlim

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 19 of 83

Although the reasoning paradigm is the same for the three versions of OWLIM the
approaches used in OWLIM-Lite and OWLIM-SE/EE are different due to their
mechanism for storing data (see next sections for a description of the data storage and
management approach used in OWLIM). In the former reasoning and query evaluation
is performed in memory while on the latter both are performed over a persistent
storage layer.

3.3.2 Query Evaluation

Query evaluation in OWLIM is performed using Sesame’s functionality and the current
version (as of October 2011) supports SPARQL1.1. In addition to this, OWLIM
implements a series of techniques for query evaluation that are relevant for different
scenarios. These are ranking of results, full-text search and RDF priming. In the
following we briefly describe each of them. For more details of these features the
interested reader is referred to (12).

3.3.3 Data Storage and Management

Data in OWLIM is stored using two different mechanisms depending on the version
used. OWLIM-Lite stores data in memory while the other two versions of the system
use a disk-based approach for storing, reasoning and query answering. Adding of data
to the knowledge base is handled in the same way in the three versions, i.e. upon
insertion of new data OWLIM computes the statements entailed by the combination of
the newly added triples and the existing data. However, deletion is handled differently
in OWLIM-Lite and OWLIM-SE/EE. Deletion of data in OWLIM-Lite is done by deleting
the previously generated closure and re-computing it without the statement(s) that
were deleted. If deletions happen very often on a given application this is a factor to
take into account when choosing this implementation of OWLIM as it is a rather
inefficient approach and does not scale well. On the other hand, OWLIM-SE/EE
updates the full closure incrementally by a combination of forward and backward
chaining to determine which sentences must be deleted as a consequence of a
deletion. This approach allows OWLIM to scale well even when data changes are
frequent. Additionally, OWLIM-SE implements a notification system that allows users
to get notifications when certain RDF statements are inserted/deleted. As in the case
of classical RDBMS notifications are useful for applications that implement reactive
behaviour.

3.4 AllegroGraph

AllegroGraph14 is a high-performance, persistent RDF (graph) database that supports
storing, querying and reasoning over RDF-based data. More generally speaking
AllegroGraph is a graph database for managing graph-based data such as for
example, RDF data, social networks and, in general, any kind of data that can be
structured as a graph. It was developed by Franz Inc. and is distributed as a closed-
source application under a commercial licence. At the time of writing this report the
latest version of the system is 4.3.

14

 http://www.franz.com/agraph/

http://www.franz.com/agraph/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 20 of 83

3.4.1 Architecture and Data Storage

AllegroGraph is based on a layered architecture that exposes a RESTFul protocol to
enable access to clients. Figure 1 depicts the system architecture. For details of the
several components the interested reader is referred to the online documentation at
the AllegroGraph Website (see 14).

Figure 1: AllegroGraph Architecture (taken from

14
)

AllegroGraph supports storage and reasoning over RDF named graphs, also known as
quads, i.e. RDF triples extended with a fourth component which sometimes is referred
to as the triple’s ID. This gives AllegroGraph the possibility to handle different types of
RDF-based metadata such as provenance information. AllegroGraph is able to handle
data stored either locally, using either a disk-based storage mechanism or an in-
memory approach, in remote triple stores or in federated triple stores. Federation gives
AllegroGraph the possibility to scale to large amount of data.

AllegroGRaph implements a form of materialization called Dynamic Materialization
which overcomes one of the disadvantages of using complete materialization, namely
the high cost of maintaining the closure when updates to the knowledge base need to
be performed. Simply stated, AllegroGraph does not perform materialization of data
but rather optimizes SPARQL and Prolog queries. Dynamic Materialization enables
AllegroGRaph to deviate from the traditional workflow implemented by many RDF
stores (load triples, materialize, answer queries) and provide linear time loading of
triples, access to query and reasoning capabilities at load time. Dynamic
Materialization also enables AllegroGraph to overcome the scalability performance
barrier that arises when large amount of data is loaded into the repository and
materialization is performed at loading time, e.g. due to the fact that rdfs:subClass can
be very demanding when the number of rdfs:subClass relations grows.

3.4.2 Reasoning and Query Answering

The system supports reasoning over RDFS++, a non-standard extension of RDFS that
includes the following OWL constructs: owl:sameAs, owl:inverseOf,
owl:transitiveProperty, owl:hasValue, owl:someValuesFrom, owl:allValuesFrom and

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 21 of 83

owl:oneOf. In addition to standard RDFS and non-standard RDFS++ reasoning
AllegroGraph uses a Prolog engine to provide powerful reasoning functionality to
reason about high-level concepts built based on complex rules and numerical
processing.

Query answering in AllegroGraph is implemented by its Twinql SPARQL 1.1 query
engine, which allows for answering queries over RDF named graphs. In addition to
supporting standard SPARQL, queries in AllegroGraph can be defined in declarative
form and then answered by using a Prolog engine. This approach enables a more
powerful query answering mechanism alternative to standard SPARQL query
processing.

3.4.3 Additional Features

A distinctive feature of AllegroGraph that sets it apart from other semantic repositories
is its support for geo-spatial data, temporal data and social network analysis.

 Geo-spatial reasoning refers to reasoning over geo-spatial data. In particular,
AllegroGraph supports reasoning over a more general type of two-dimensional
data, namely, any coordinate system defined on a flat plane or a sphere.

 AllegroGraph also supports reasoning over temporal data, including time
points, time intervals and datetime data.

 Finally, the graph-oriented database approach of AllegroGraph enables it to
support reasoning about social interactions (or any kind of interactions that can
be modelled as a network). It is useful for example for solving problems like
computing the shortest path between two entities and the degrees of
connectivity between two entities in a social network.

In addition to these features AllegroGraph provides many of the features desired in this
type of systems. These include triple level security mechanisms, the possibility to
integrate AllegroGraph within applications through the use of multiple programming
interfaces, e.g. C#, Ruby, Perl, Java, Lisp and JavaScript, the possibility to deploy
AllegroGraph in the cloud through its cloud-based deployment mechanism using
Amazon EC2, a RESTFul protocol that clients written in several languages can use to
access the system’s functionality, etc.

3.5 BigData

BigData 15 is a scalable solution for persistent data storage and distributed computing
that includes a high-performance RDF database with support for standard RDFS
reasoning and limited OWL reasoning capabilities. It was developed by Systap LLC
and it is distributed freely as an open-source application under GNU General Public
Licence v2. BigData is also released with an evaluation/research license and supports
the possibility of obtaining a commercial licence for situations where BigData needs to
be embedded into another system.

3.5.1 Architecture and Data Storage

15

 http://www.systap.com/bigdata.htm

http://www.systap.com/bigdata.htm

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 22 of 83

BigData provides three mechanisms for storing RDF data. The first approach stores
RDF data as triples following the standard RDF data model. The second approach
uses Named Graphs or quads to store data. The third and last method, called
statement-level provenance, stores data as triples associated with provenance
information which is technically achieved by associating an ID with each triple. Using
such an ID it is possible to refer to any triple and add additional information to the triple
description.

For details of the system architecture and a description of the main technologies used
in the entire platform, not only the RDF database, the interested reader is referred to
the online documentation found at the system’s website 15.

3.5.2 Reasoning and Query Answering

The BigData RDF database supports reasoning over RDFS data and OWL Lite
ontologies. It uses a hybrid approach for computing the RDFS closure that combines
the so-called eager closure approach, a method in which the RDFS closure is
computed at triple loading time and, a lazy closure approach or materialization
approach, in which the closure is computed (materialized) at query time. In BigData,
some of the entailment rules are applied at loading time while others are applied at
query time. The idea behind this approach is to benefit from the advantages of both
approaches. Although it has been reported that BigData supports the definition of
custom rules for reasoning, e.g. to support social network analysis, no official
documentation in this regards has been found that details such a feature.

For query answering BigData supports distributed query processing and relies on
Sesame 2 for SPARQL query processing although the query evaluation process is
modified to make it more efficient. More specifically, BigData uses a native rule model
for evaluating SPARQL queries. Queries are parsed by Sesame 2 and then fed to
BigData's SAIL implementation for transformation into the native rule model. The rule
model of BigData supports conjunctive queries, filters and optional joins. As an
important note concerning query answering in BigData, it has been reported in some
benchmarks that BigData does not support the full set of SPARQL features.

3.6 Other RDF-based Semantic Repositories

This section gives an overview of other, less popular systems (although the Jena
framework is perhaps the most popular framework for Java-based RDF processing),
approaches and frameworks for storing, querying and reasoning over RDF-based
data. We decided to report these systems within the same section due to the lack of
documentation and third-parties benchmark results found in the literature in
comparison to other mainstream systems such as OWLIM, Virtuoso, Sesame and
AllegroGraph.

3.6.1 Jena RDF Framework

Jena 16 is a Java-based, open source Framework for building semantic-based
applications that provides a series of API for handling RDF-based data, e.g. RDFS and

16

 http://jena.sourceforge.net/

http://jena.sourceforge.net/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 23 of 83

OWL, querying such data through the SPARQL standard and reasoning over such
data. It was developed in conjunction with the HP Labs Semantic Web Research 17.

The framework comprises the following technologies:

 The Jena RDF API, a Java API for programming with RDF that includes an
RDF model, parsers, etc.

 ARQ, a SPARQL query engine for Jena.

 Jena SDB 18, a persistence RDF storage engine that uses a SQL database to
store RDF data and to provide support for transactions. Jena SDB can be
deployed on top of existing databases and supports many of the state-of-the-
art RDBM Systems. From the practical point of view SDB can be used both
within a Java-based application through the provided API and as a standalone
application. In addition, SDB can be paired with the Joseki SPARQL engine to
provide a SPARQL endpoint over HTTP. Query answering is based on ARQ.

 Jena TDB 19, a component of Jena that provides support for large-scale
persistent storage and query of RDF data. Jena TDB stores RDF data natively
rather than relying on a relational database backend. It does not support
transactional database access. Query processing is based on ARQ and
supports SPARQL. The latest version at the moment of writing this report is
0.8.10.

 Joseki, a SPARQL query server for Jena that uses the SPARQL protocol.

3.6.2 RDFStore

RDFStore20 is a toolkit written in Perl/C for processing, storing and retrieving RDF
data. Data in RDFStore can be stored using a memory-based or disk-based approach
and can be retrieved locally from memory and disk and remotely through HTTP. It was
designed to support RDF contexts (quads for provenance), typed and multi-lingual
literals, reification and blank nodes.

The system implements RDQL21 (RDF Data Query Language), which allows for
querying RDF data using standard DB interfaces such as JDBC, ODBC and DBI.

3.6.3 D2R

D2R 22 is an open source application for publishing relational data, i.e. data stored and
managed by an RDBMS, on the Semantic Web. The D2R server acts as a wrapper
around the contents of an RDBMS and provides services for accessing its data
through the SPARQL protocol. SPARQL queries are translated on the fly into SQL
queries that are then evaluated using the query processing facilities of the underlying
RDBMS. To achieve this the application transforms the contents of a relational
database into RDF format so that the data stored in RDBMSs can be exposed as

17

 http://www.hpl.hp.com/semweb/
18

 http://openjena.org/wiki/SDB
19

 http://openjena.org/wiki/TDB
20

 http://rdfstore.sourceforge.net/
21

 http://www.w3.org/Submission/RDQL/
22

 http://www4.wiwiss.fu-berlin.de/bizer/d2rmap/D2Rmap.htm

http://openjena.org/wiki/SDB
http://openjena.org/wiki/TDB
http://rdfstore.sourceforge.net/
http://www.w3.org/Submission/RDQL/
http://www4.wiwiss.fu-berlin.de/bizer/d2rmap/D2Rmap.htm

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 24 of 83

Linked Data 23 without the need to replicate the data in a specialized RDF storage
system. The transformation rules are customizable. One of the benefits of using such
an approach for accessing data is that applications can access (browse and search)
data stored in legacy RDBMSs with relative ease of implementation.

This type of approach to exposing relational data as RDF is sometimes referred to as a
bottom up approach and refers to the process of transforming or mapping data stored
in traditional databases into schema and instance information expressed in RDF.
Similar services and tools have been developed24.

D2R is a Java-based application that is compatible with Oracle, MySQL, PostgreSQL,
Microsoft SQL Server, and any SQL-92 compatible database server.

3.7 Discussion and Relevance for INTEGRATE

The semantic repositories described in the previous sections differ in a number of
important aspects. First of all, they differ on the technology they use for storing RDF
data. Some of them store RDF data in some native structure while others rely on
traditional database technology. Second of all, they also differ on the type of services
they provide to the applications built on top of them. Some of them provide basic data
storage capabilities while others implement a full-fledge data management system for
RDF data that provide services such as inference over RDF data, query answering for
different query formalisms and data clustering and federation. Semantic repositories
also differ in terms of the license under which they are released, some being
distributed as open source applications while others offer both free closed-source and
commercial licenses.

From the survey presented above four basic classes of semantic repositories can be
identified w.r.t. how they store data:

 Systems that store RDF data natively, i.e. by implementing a computational
model of the RDF data model.

 Systems that map relational data to RDF data. These translate SPARQL
queries into queries that are evaluated on relational databases and provide
tools and applications for mapping the content of a relational database to RDF
thus allowing to expose relational data as RDF. An example of such a system
is the D2R Server.

 Systems that wrap SPARQL around existing databases and data sources. This
is a common practice for exposing data stored in legacy systems (databases
and other data sources) through SPARQL endpoints. The advantage of storing
RDF data in RDBM systems is the possibility to leverage database technology
to improve the efficiency of the overall system by benefiting from query and
storage optimization techniques.

 Systems that offer a combination of these approaches, for example the
OpenLink Virtuoso Universal Server gives the option to store data using a
native approach or by saving RDF data into relational databases.

23

 http://linkeddata.org/
24

 http://www.w3.org/wiki/RdfAndSql

http://linkeddata.org/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 25 of 83

In addition the following features are identified as desirable in a semantic repository for
RDF-based data:

 Lightweight: This is important in order to facilitate its use on single machines
in order to reduce deployment costs.

 Abstraction: Independent of the data source and/or the underlying data
storage technology used for storing the data. This enables easy
reuse/integration of legacy database systems and allows for leveraging
database technology

 Efficient query processing: Many applications both in the Semantic Web and
in other domains such as the medical and life science domains require almost
real time access to data through user queries. This calls for efficient methods to
process large number of queries from multiple users in very short time.

 Scalable: semantic repositories should be scalable not only in terms of the
amount of data they are able to handle efficiently but also in terms of the
number of simultaneous users (queries) they can handle. The Web and other
domains contain large amount of (semi)-structured data that changes and
grows very rapidly. This calls for scalable solutions to store and process data.

 Full-text search: Many applications need to handle information stored in text
form. For this efficient full-text search services are required.

 Provenance and context information: Ideally, semantic repositories should
offer support for representing and reasoning with provenance and context
information.

 Reusable: Easy to interface and integrate with existent tools and systems
specially legacy systems.

 Flexible deployment: Possibility to distribute as part of a cloud-based, grid-
based and cluster-based computing approaches in order to reduce costs of
deployment and gain access to scalable computing facilities.

Given the plethora of systems available today and their differences in combination with
application requirements and the lack of a standard procedure for characterizing
semantic repositories choosing a candidate repository for a given application scenario
is not an easy task. In this respect, some of the factors that need to be considered
when choosing a repository solution are the following:

 The type of queries that are characteristic of the user scenario. This requires to
assess the complexity of queries in terms of the number of constraints and the
relations between (un)known variables.

 Frequency with which each type of query is posed (application-dependent
factor).

 Type of user interaction. For example, very interactive user sessions requires
sub-second response times for query answering (application-dependent factor).

 Size of data (application-dependent factor).

 Type of reasoning required. This can be determined based on the
expressiveness of the ontological language (e.g. sub-properties, sub-classes,
transitive properties, etc.), which in turn depends on the kind of queries the
application needs to handle.

Semantic repositories are relevant for INTEGRATE as they provide one of the basic
services required for implementing semantic-based data integration solutions. These

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 26 of 83

solutions call for methods for managing RDF-based information and for providing
query and reasoning capabilities. The core data model being developed in
INTEGRATE together with data annotated using such data model call for a storage
and query solution able to accommodate the type of reasoning required by the
different uses cases.

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 27 of 83

4 Automated Reasoning in the Semantic Web

One of the pillars in the technology stack that is required to help fulfill the Semantic
Web vision is ability to be able to use the knowledge of a given domain, which is
formally described by ontologies, to infer implicitly stated knowledge from the explicitly
represented information. In the Semantic Web jargon this process is referred to as
semantic reasoning.

Over the past several years the Semantic Web community have proposed several
approaches, techniques and tools for efficient reasoning over ontological data
expressed in various ontology representation languages. More recently and due to the
exponential increase in the volume of information published on the Web the emphasis
has shifted to designing efficient methods for scalable reasoning.

Two broad categories according to which most reasoning algorithms and tools can be
categorized are full-fledged reasoning platforms and classifiers. The first refers to
reasoning systems that are able to deal with description logics-based knowledge
bases (ontologies) of varying degrees of expressiveness and that provide a wide range
of description logics reasoning services such as subsumption checks, classification of
concepts, instance checking, etc.. These systems are typically designed to be used
with any kind of ontology that is expressed in the right formalism. Two commonly used
logical reasoning strategies are tableaux-based methods and rule-based methods.
Examples of these systems are Pellet, RacerPro and FaCT++. The other type of
reasoning systems, classifiers, are specialized reasoning algorithms that exploit the
structural characteristics of certain type of ontologies in order to provide more efficient
reasoning services at the expenses of reduced number of reasoning services. They
incorporate specialized optimization techniques and are based on non-standard
reasoning strategies as opposed to those used by full-fledged reasoning systems. This
trend started since the development of a new polynomial-time classifier for the family

of Description Logics EL (10). Rather than developing general algorithms for

reasoning with an entire family of ontologies of a given ontological language this trend
seems to be aimed at focusing on specific, ontology-custom properties and developing
tractable algorithms for these ontologies. The idea is to devise optimizations tailored at
the specific structures of ontologies such as that exhibited by many medical and life
science ontologies, for instance SNOMED CT.

This chapter is organized as follows: Sections 4.1 to 4.10 gives an overview of several
state-of-the-art reasoners and classifiers developed in the Semantic Web community
and applied in different application domains including the Semantic Web and the Life
Sciences. Then, Section 4.11 concludes the chapter with a discussion on how these
technologies relate to the project and a description of the most important factors to
take into consideration when choosing the right reasoner for the applications
envisioned in the project.

4.1 Pellet

Pellet (16) is an OWL reasoner developed by Clark & Parsia25 that provides reasoning
services for OWL ontologies with support for the latest revision of the Ontology Web

25

 http://clarkparsia.com/pellet/

http://clarkparsia.com/pellet/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 28 of 83

Language, OWL 2.0. It is distributed under the terms of the AGPL v3 license for open
source applications and under alternative license terms for proprietary, commercial
closed-source applications. Pellet is regarded as the first reasoner to support OWL-DL
(14) and over the years it has become the defacto standard for implementing
applications that require reasoning over OWL ontologies.

In terms of usability Pellet is implemented in Java and its reasoning services can be
accessed through its own Java API or by using one of the many bindings to common
programming toolkits such as Jena and the OWL API 26. Pellet has also been
integrated in the Protege ontology editor 27. Additionally, Pellet implements the DIG
interface which allows users to access the reasoner's services through HTTP requests.

4.1.1 Architecture

Pellet's architecture was designed with extensibility in mind and contains four main
components (see Figure 2, taken from (16)). The first and most important is the
tableaux-based reasoning component that implements consistency. A secondary
related component is a data type reasoner that enables Pellet to reason about both
built-in and derived XML Schema data types. The second important component is the
knowledge base itself for which Pellet follows the Description Logics conventions and
divides it into a terminological part (Tbox) and an assertional part (Abox). The third
component, Species Validation and Ontology Repair, is responsible for validating and
repairing ontologies to ensure that they are syntactically valid w.r.t. OWL-DL. The
fourth component in the architecture is the Abox Query Engine that is responsible for
processing conjunctive queries expressed in SPARQL or RDQL, solving them by using
the reasoning component. The rest of the components include several parsers and
APIs for accessing the services. For details of the architecture the interested reader is
referred to (16).

Figure 2 Overview of Pellet's architecture

4.1.2 Reasoning in Pellet

Reasoning in Pellet is based on tableau methods. This is in contrast with other
reasoners that use rule-based and hybrid mechanisms. HermiT's (see section 4.5)
reasoning is based on a similar approach named hypertableaux. In order to the derive

26

 http://owlapi.sourceforge.net/
27

 http://protege.stanford.edu/

http://owlapi.sourceforge.net/
http://protege.stanford.edu/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 29 of 83

the truth value of a logical formula tableaux-based methods try to build a model of the
formula by exploiting its structure and by applying a series expansion rules until no
more rules can be applied or, a contradiction is found. Pellet is able to reason over

OWL-DL ontologies, a syntactic variant of the DL SHOIN(D).

The tableaux method implemented in Pellet was designed with extensibility in mind
and is based on the application of expansion strategies of which several are used
depending on the characteristics of the knowledge base. This design also allows for
adding and testing new expansion strategies. Pellet implements a dynamic selection
procedure for selecting the expansion strategy to use. In particular, Pellet includes the
following built-in strategies:

 SHOIN strategy,

 Empty SHN strategy,

 SHIN strategy,

 SHON strategy and

 E-connection strategy. This has the advantage of being able to exploit the
specific characteristics of an ontology to provide sound and complete
reasoning. Pellet implements a method for reasoning with multiple ontologies
based on E-connections.

As an OWL-DL reasoner Pellet implements all the basic DL reasoning services
including consistency checking, concept satisfiability, classification and realization.
Consistency checking, the process of checking whether a (set of) logical formulae is
consistent, is the basic reasoning service upon which all other services are
implemented. In addition, Pellet supports other non-standard services that have been
identified as important for practical applications. One such service is the explanation
and debugging of ontologies. The current version of Pellet (as of the time of writing this
report) supports also reasoning over OWL 2 EL (15).

Pellet also provides support for non-monotonic reasoning, a form of reasoning that is
capable of capturing several forms of common-sense and database reasoning,

through the implementation of a non-monotonic language called ALCK. This feature

allows Pellet's users to "turn on" the CWA on demand at query time by means of an
extension to the SPARQL language. Knowledge bases can also include, in a restricted

form, a non-monotonic rule that makes use of the K operator in ALCK to represent

non-monotonic information. Using this feature Pellet should be able to treat knowledge
bases as database-like repositories.

Moreover, Pellet provides limited support for rule-based reasoning. This is achieved by
implementing a decidable fragment of SWRL (Semantic Web Rule Language (17)),

called AL-Log that combines Datalog rules with DL knowledge bases allowing DL

concepts to be used in the body of the rules. Pellet also provides support for reasoning
with standard and user-defined XML Schema-based data types, nominals and over
individuals.

4.1.3 Query Answering

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 30 of 83

Pellet supports reasoning with individuals (Abox reasoning) through conjunctive
queries over assertions. Such queries can be issued using any of the languages
supported by Pellet, namely SPARQL (18), RDQL (19) and KIF.

As with the tableau method, query answering in Pellet is implemented using a series of
sub-query engines tailored to specific characteristics of the queries such as queries
with no variables, queries with undistinguished variables, queries with one
undistinguished variable, etc.

4.1.4 Debugging and Repair of Ontologies

An important non-standard service provided by Pellet to support Knowledge
Engineering and Management tasks is ontology analysis and repair, a.k.a. debugging
of ontologies. Pellet is able to perform a syntactic analysis of an OWL Full ontology to
detect and repair fragments of the ontology that logically corresponds to OWL DL.

Another non-standard reasoning service implemented by Pellet is axiom pinpointing
and debugging. Axiom pinpointing refers to the process of finding justifications for any
arbitrary entailment. Using this technique Pellet is able to identify or pinpoint the
source of inconsistencies in an ontology and extract that part from the ontology. This
service is important for the design, debugging and evolution of ontologies.

4.2 Racer Pro

RACER stands for Renamed ABox and Concept Expression Reasoner and is a
Description Logics reasoning system with support for terminological and assertional

reasoning over knowledge bases specified in the DL SHIQ(D), i.e. SHIQ with

concrete domains, extended with simple data types. In Semantic Web jargon RACER
supports OWL Lite and OWL DL. In addition, RACER implements a decision
procedure for satisfiability in Modal Logics. It was the first DL reasoning system to
support a very expressive logic. RACER PRO is the commercial version of RACER.
The system is maintained and released by Racer Systems GmbH & Co. KG 28.

RACER is distributed free for research purposes while RACER PRO is the commercial
version of the system. It can be accessed programmatically through Java, C and C++
APIs and, through TCP/IP.

4.2.1 Reasoning in RACER

Reasoning in RACER (Pro) is based on a tableau-calculi that implements the
reasoner's core reasoning service, namely Abox consistency. In addition to the
standard reasoning services provided by state-of-the-art DL systems RACER
implements a series of non-standard services that have been identified as important in
many practical applications. These include services to retrieve the list of concepts and
individuals in the knowledge base, retrieval of the set of roles and sub-roles, etc. The
full list of services can be found at the reasoner’s website 29.

28

 http://www.racer-systems.com
29

 http://www.racer-systems.com/products/racerpro/index.phtml

http://www.racer-systems.com/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 31 of 83

A distinctive feature of Racer is its support for reasoning over multiple Tboxes and
Aboxes. RACER also supports knowledge base management activities by providing
services to add and retract axioms from (possibly) multiple Tboxes and Aboxes.
Moreover, RACER provides support for algebraic reasoning including concrete
domains over integers, min/max cardinality restrictions over integers and (in)equalities
over strings.

The architecture of Racer reflects the advances in optimization techniques for DL
systems. This is manifested in the fact that Racer implements a series of optimizations
for improving the performance and efficiency of reasoning.

4.2.2 RACER as a Semantic Web Reasoner

In addition to being seen as a Description Logics reasoner RACER can also be seen
as a Semantic Web reasoner. As such RACER supports reasoning over OWL Lite and
OWL DL ontologies with approximations for nominals in class expressions. RACER is
also capable of reasoning over certain extensions of OWL such as OWL-E and, of
handling rules with its implementation of SWRL (17). From this point of view RACER
allows for:

 Checking the consistency of OWL ontologies.

 Computing and querying the specialization/generalization hierarchy induced by
the declarations in the ontology.

 Finding synonyms for resources 9both for classes and instances).

 Retrieving extensional information by means of OWL-QL.

 Information retrieval based on incremental query answering.

 Accessing reasoning services using the DIG interface through HTTP.

A limitation of the system, however, is the lack of support for user-defined XML data
types.

4.2.3 Query Answering in RACER

RACER support queries written in nRQL (new Racer Query Language), which
supports negation as failure, numeric constraints wrt. attribute values of different
individuals, substring properties between string attributes, etc. RACER's
implementation of nRQL is the basis for implementing many of the features of OWL-
QL.

4.3 FaCT++

FaCT++30 (20) is a DL tableau-based reasoning platform that supports reasoning over

SHOIQ DL knowledge bases and, in its latest version provides limited reasoning

support for OWL 2 (SROIQ) knowledge bases. In addition to this, FaCT++ provides

support for reasoning with XML Schema data types although it lacks support for built-in
primitive types. FaCT++ was originally designed as a reasoning platform for
experimenting with novel tableau methods and optimization techniques and for
reasoning over ontologies that use inverse roles.

30

 http://owl.man.ac.uk/factplusplus/

http://owl.man.ac.uk/factplusplus/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 32 of 83

It is an open source project distributed under GNU LGPL. It is available as a Protege
plug-in and its services can be accessed through the DIG interface and the OWL API.

4.3.1 Reasoning in FaCT++

Reasoning in FaCT++ is based on a tableau method that is used for implementing the
core reasoning service, namely KB satisfiability. The core component of the reasoner
is a satisfiability checker that allows for checking the satisfiability of a set of logical
formulae. Every other reasoning service is reduced to this. The basic workflow of the
reasoner loads an ontology into the knowledge base and then classifies the ontology
using the satisfiability component for deciding subsumption between pairs of concepts.

The reasoner applies several optimization techniques for enabling efficient reasoning
over ontologies. Many of the optimizations are well-known in the DL community and
implemented by several DL reasoning systems. These are the so-called standard
optimization techniques (21). In addition to incorporating these techniques FaCT++
implements novel optimization techniques and heuristics. These are applied at
different stages of the reasoning and ontology management process and include
optimization strategies used while loading data to the reasoner, strategies for
optimizing satisfiability checking and those used in the classification task geared
towards reducing the number of subsumption tests. For details of these optimization
techniques and how they are used in FaCT++ the reader is referred to (21) and (20)
respectively.

Although FaCT++ is able to reason over OWL 2 ontologies (SROIQ DL) its reasoning

capabilities are limited. Specifically, FaCT++ can not properly handle Top/Bottom
Object and Data property semantics and has partial data type support; the only
supported data types are literal, string, anyURI, boolean, float, double, integer, int,
dateTime and nonNegativeInteger.

4.4 KAON2

KAON231 is a platform for managing and reasoning over ontologies specified according
to OWL DL, SWRL and F-Logic. It was developed by the University of Manchester, the
University of Karlsruhe and the Information Process Engineering (IPE) at the Research
Center for Information Technologies (FZI). It is a continuation of the work started with
the KAON system that aims at supporting reasoning over more expressive knowledge
representation formalisms.

KAON2 is distributed free of charge for non-commercial purposes and under a
commercial license with the name of OntoBroker OWL. The system is implemented in
Java and its services can be accessed through the DIG interface. No support for the
newer OWL API interface has been reported so far.

4.4.1 Reasoning in KAON2

31

 http://kaon2.semanticweb.org/

http://kaon2.semanticweb.org/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 33 of 83

Reasoning in KAON2 is based on the work of Boris Motik (22). More specifically,

KAON2 reasons by reducing a SHIQ(D) KB to a disjunctive datalog program and

applying well-known and tested deductive databases techniques and resolution-based
methods. In this sense KAON2 implements a reasoning paradigm that differs from the
tableau-based method used in many DL reasoners.

In terms of expressiveness KAON2 supports full reasoning over OWL Lite and partial

reasoning over OWL-DL ontologies as it can reason over the SHIQ(D) fragment of

OWL-DL, the fragment that does not include nominals. The system is capable of
answering SPARQL conjunctive queries with non-distinguished variables although full
support for SPARQL reasoning is not implemented.

4.5 HermiT

HermiT 32 (23) is a Description Logics reasoning system that is based on a novel
technique for reasoning with Description Logics knowledge bases called hypertableau
calculi. HermiT was developed as part of the efforts made in order to provide scalable
reasoning methods for large and complex ontologies such as the ones encountered in

the Life Sciences. HermiT is able to reason over OWL Lite and OWL 2 (SROIQ DL)

ontologies and provides support for OWL 2 data types.

In terms of usability, HermiT is an open source project written in Java and distributed
under the GNU LPGL33. Its services can be accessed through command line or
programmatically from other applications using the OWL API. It can process ontologies
serialized using RDF/XML syntax, the OWL Functional Syntax, KRSS and OBO.

4.5.1 Reasoning in HermiT

Reasoning in HermiT is done using a hypertableau calculi (24). HermiT implements a
series of optimizations to address two of the most important factors affecting the
efficiency and performance of tableau-based reasoning methods. First, the
hypertableau method implemented by HermiT addresses the issue of large number of
models by using several optimizations that aim at reducing the number of candidate
models of a given set of logical formulae. The second performance factor, the size of
the candidate models, is addressed by implementing a techniques known as anywhere
blocking, an optimization strategy that allows HermiT to limit the size of the models
constructed by the hypertableau method.

Another reasoning aspect addressed by HermiT is the handling of nominals. HermiT
implements a novel technique to improve the efficiency and performance of reasoning
when nominals are used in the presence of number restrictions and inverse roles. In
addition to these optimizations HermiT also optimizes the ontology classification task
by implementing optimization strategies tailored to the way the hypertableau algorithm
constructs models. The latest version of HermiT (v1.3.4) includes support for
incremental Abox reasoning.

32

 http://hermit-reasoner.com/
33

 http://www.gnu.org/licenses/lgpl.html

http://hermit-reasoner.com/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 34 of 83

HermiT is able to reason over SHIQ DL knowledge bases therefore covering OWL

Lite. In addition to this, work is still being done in order to support the DL SHOIQ

which will enable HermiT to reasoner over OWL DL ontologies. HermiT also has
support for DL safe rules.

A non-standard functionality implemented by HermiT is the support for reasoning with
ontologies that contain description graphs. Description graphs are ontological
constructs that extend the expressiveness of OWL and support the representation of
structured objects, i.e. objects composed by several parts interconnected in arbitrary
ways (25). At the time of writing (September 2011, version 1.3.5) HermiT is the only
known DL reasoner capable of supporting this modelling construct.

4.6 OWLIM TRREE

OWLIM TRREE stands for Triple Reasoning and Rule Entailment Engine and is the
reasoner at the core of the OWLIM family of high-performance semantic repositories.
The TRREE is available in two different versions depending on the OWLIM repository
used which in turn depends on the specific user needs. The TRREE included in
OWLIM Lite is called SwiftTRREE and is characterized by its in-memory reasoning
and query processing capabilities. The other version is called BigTRREE and is
bundled with OWLIM SE. BigTRREE is the in-disk version of TRREE that is capable of
delivering high-performance reasoning over data and information stored in the file
system.

4.6.1 Reasoning in TRREE

TRREE is a rule-based engine that performs reasoning by forward chaining RDF
entailment rules on RDF triples with variables. The reasoning paradigm followed by the
engine is total materialization. TRREE supports the specification of inequality
expressions between variables in the rules body and it supports inconsistency checks.

The format and semantics of the inference rules used by TRREE are a slight variation
of the R-entailment rules proposed in (7). The reasoner has the ability to perform
reasoning with respect to a customized set of inference rules, i.e. a user-defined rule
set which must include the entailment rules to use in the forward-chaining process and
the axiomatic triples. In addition to user-defined rules both OWLIM Lite and SE come
bundled with a predefined set of inference rules that the TRREE can use. The set of
entailment rules supported by default by the TRREE are enumerated in Section 3.3.1.

4.7 CEL

CEL (26), Classifier for EL+, is an OWL 2 EL reasoner based on the polynomial-time

algorithm for classifying EL+ ontologies; technically speaking CEL is a description

logics classifier. The language it supports, EL+, is a knowledge representation

formalism that extends the description logic EL with role inclusion and posses enough

expressive power to represent the type of knowledge typically found in Life Science
ontologies such as SNOMED CT. The main reasoning task supported by CEL is
ontology classification.

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 35 of 83

CEL was developed by the Technical University of Dresden and is regarded as the first

classification system for EL+ ontologies. After its conception several other systems

have been proposed (cf. Snorocket). It is distributed as an open source project34 and
its reasoning services can be accessed through Protege (as plug-in),
programmatically through the OWL API and DIG interfaces and through a command
line interface. The input syntax is based on an extension of KRSS and ontologies can
be loaded from files or entered interactively through the command line. The interface is
also able to accept goal-oriented queries aimed at retrieving the subsumption
relationship between a pair of concepts. Its current version, v1.0 beta, includes support
for role domain and range constraints, role reflexivity, more powerful subsumption
queries, and a weak form of incremental classification.

4.7.1 Reasoning in CEL

The core reasoning algorithm implemented by CEL was first described in (27) and it is

based on an adaptation of the algorithm implemented for the DL EL++ (10). Since

then the algorithm has undertaken a few modifications to improve its performance (26)
(27). The algorithm enables CEL to compute the subsumption hierarchy induced by an

EL+ ontology in polynomial time and has been proven to be efficient in classifying

real-world ontologies expressed in EL+.

In addition to its basic reasoning service CEL supports other services that have been
identified as important for the development and use of ontology-based applications.
These, implemented in version 1.0, include the following (28):

 Partial incremental classification is a non-standard reasoning service that
allows for classifying an ontology upon modification without the need of re-
classifying the entire ontology.

 Axiom pinpointing refers to the task of computing the (set of) justifications of
a given consequence.

 Module extraction refers to the task of extracting a subset of an ontology
given a signature, i.e. a set of concepts and roles.

Other standard DL reasoning services are also supported by CEL, namely: checking
satisfiability of concepts, checking the consistency of an ontology, checking the
equivalence between two concepts, etc.

The CEL algorithm to classify an EL+ ontology proceeds in two sequential steps. The

first step is called a normalization and transforms an EL+ ontology into a normal form

applying a series of syntactic modifications in linear time. Normalization occurs at
loading time. In the second step, called mapping, CEL computes two mappings to
make implicit subsumption relationships explicit. Mappings are computed by applying a
series of completion rules for which efficient rule selection and application strategies
have been devised.

34

 http://lat.inf.tu-dresden.de/systems/cel/

http://lat.inf.tu-dresden.de/systems/cel/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 36 of 83

4.8 Snorocket

Snorocket35 (29) is a high-performance, Java-based implementation of the same

algorithm for classifying EL+ ontologies implemented by the CEL reasoner (26) (see

Section 4.7). It is distributed as a Protege plug-in 36 and can be accessed through the
OWL API. Input ontologies can be serialized in various formats including KRSS, the
SNOMED CT distribution format and the OWL 2 Functional Syntax.

The development of Snorocket was motivated by the scalability issues shared by many
of the classifiers and reasoners that were not able to handle large real-world
ontologies in the Life Sciences domain such as the well-known SNOMED CT ontology.
Putting Snorocket into context the reasoner is part of a family of reasoners and
classifiers systems that are specifically optimized for a certain family of knowledge
representation formalisms, in particular those based on Description Logics, that are
typically used for representing ontologies used in the Life Sciences and the medical
domain such as FMA, SNOMED CT, the Gene Ontology, etc.

The reasoner, technically speaking a description logics classifier, provides a cross-
platform reasoning system that has at its core a polynomial-time classification
algorithm. Its cross-platform characteristic means that it can be more easily adopted by
developers of ontology-based applications and systems; this being a drawback of the
initial implementation of the algorithm by the CEL classifier.

4.8.1 Reasoning in Snorocket

The core reasoning component is an optimized implementation of the polynomial-time

classification algorithm developed for the DL EL+ by (26). Snorocket provides,

however, a more efficient implementation of the aforementioned algorithm in
comparison to that provided by the CEL reasoner. Compared to CEL Snorocket is
characterized by its Java-based implementation, exhibiting better performance and
being licensed by IHTSDO (the International Health Terminology Standards
Development Organization).

Snorocket partially supports reasoning over OWL 2 EL ontologies as it lacks support
for handling ontologies that include definitions of properties domain and range, same
individual relations and different individuals among others. For details about the
knowledge representation constructs supported by Snorocket the reader is referred to
(29). Snorocket also supports partial incremental classification which means that the
reasoner is able to incrementally classify an ontology upon insertion of statements
without the need of re-classifying the entire ontology but not upon data deletion.

4.9 TrOWL

TrOWL is a tractable reasoning infrastructure for OWL 2 (30) that uses lightweight
reasoners and language transformation techniques for providing tractable reasoning
over various fragments of OWL 2. TrOWL aims at supporting users in the ontology
development and management processes. It was developed by Aberdeen University.
The stable version at the time of writing this report is v0.7.

35

 http://aehrc.com/hie/snorocket.html
36

 http://protegewiki.stanford.edu/wiki/Snorocket

http://protegewiki.stanford.edu/wiki/Snorocket

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 37 of 83

More concretely, TrOWL is an interface that provides access to two reasoners, namely
TrOWL Quill and TrOWL REL.

TrOWL Quill 37 supports reasoning over RDF-DL and OWL 2 QL ontologies. Quill
stores OWL 2 QL ontologies in a database and thus is able to exploit the database
query and indices technologies for efficient query processing and subsumption
computation. The approach used in Quill is based on novel algorithms for query
rewriting and ontology normalization. The reasoner provides standard reasoning
services such as concept satisfiability, consistency checking and conjunctive query
answering over OWL 2 QL ontologies. In addition, it is capable of semantically
approximating more expressive ontologies using an OWL DL reasoner. It also
supports negation as failure and fuzzy queries. TrOWL Quill is the engine that
supports ONTOSEARCH2's search and query engine.

The second reasoner included in the TrOWL platform is REL38. REL supports
reasoning over OWL 2 EL ontologies by implementing an optimized version of the

algorithm for reasoning over EL+ ontologies (10) (the one implemented by the CEL

classifier) and is capable of supporting tractable TBox reasoning for OWL 2 EL
ontologies. This reasoner is used as the basis for implementing the syntactic
transformations used for transforming OWL 2 ontologies into specific fragments with
desirable computational properties. REL also includes a conjunctive query engine for
OWL EL ontologies. The reasoning services provided by REL are Tbox classification

and conjunctive query answering over EL+ ontologies. Together with Snorocket they

represent two optimized implementations of the CEL algorithm.

TrOWL also provides support for full DL reasoning by relying upon existing DL
reasoners such as Pellet and FaCT++; these underlying reasoners are incorporated
into the TrOWL infrastructure as plug-ins. The idea behind this approach is to provide
optimized reasoning services for different applications depending on the application
requirements.

TrOWL uses syntactic and semantic language transformations for transforming OWL 2
ontologies to specific fragments. For example, for transforming OWL 2 ontologies into
OWL 2 QL ontologies TrOWL makes use of a technique known as Semantic
Approximation that transforms an OWL DL ontology into an OWL Lite ontology. More
concretely this technique is characterized by the use of a reasoner in order to
guarantee that every axiom in the approximated ontology is valid wrt. the source
ontology. For transforming OWL 2 ontologies into OWL 2 EL TrOWL uses a
soundness-preserving approximate reasoning method. This transformation is syntactic
in comparison to the previous one. TrOWL also uses transformation strategies based
on forgetting (31) (32).

37

 http://kt.abdn.ac.uk/wiki/Projects/Quill
38

 http://kt.abdn.ac.uk/wiki/Projects/REL

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 38 of 83

4.10 The Large Knowledge Collider (LarKC)

The Large Knowledge Collider (LarKC39 (33)) is a FP7 European project whose aim is
to develop a platform for large-scale semantic reasoning in the Web. Its main
contribution is a platform for massive, distributed, large-scale incomplete reasoning
over Web data. LarKC tackles scalability using a combination of different approaches
that include reducing the reasoning search space by identifying and selecting relevant
sources of data and information that can be used in the reasoning process, by
transforming data from one format to another, by inferring new implicitly stated
knowledge from the explicitly stated one and by using a meta-reasoning paradigm to
decide whether more computations is needed. Each of these approaches uses
techniques from different areas such as Cognitive Psychology, Machine Learning,
Information Retrieval, etc.

In the broadest sense, reasoning in LarKC is achieved by executing a workflow of
activities each of which tackles a separate aspect of the global reasoning process.
More concretely, LarKC models reasoning in terms of five activities: Identify, Select,
Transform, Reason and Decide. Identify is responsible for identifying sources of
information relevant for the reasoning process. The Select task aims at selecting from
all the data retrieved by the Identify task the subset of data and information that can be
used in the reasoning process. The Transform task is responsible for making
transformations to the data in order to accommodate different data formats and
representation languages. The Reason task is where the actual reasoning happens.
LarKC does not imposes a specific type of reasoning, which means that both logic-
based and non-logic-based approaches can be implemented. Finally, the Decide task
is where decisions are made in order to decide whether more time is required to
produce an answer. The reasoning process in LarKC is triggered by a SPARQL query
and ends when the expected answers are returned to the user.

LarKC implements the workflow mentioned above using a pluggable architecture of
components (plug-ins). Each plug-in type implements one of the five tasks described
before. Users are free to implement their own plug-ins and to build/reuse workflows in
order to solve specific reasoning problems, i.e. answer specific SPARQL queries. User
applications are built reusing and/or implementing new workflows which in turn can be
based on newly developed plug-ins or existing ones. Besides providing support for
building and executing workflows and plug-ins the LarKC platform also provides
additional services required for implementing each of the five aspects of a reasoning
process. These include parallelization strategies, a data layer that supports storage,
retrieval and lightweight inference over large volumes of data and that automates the
exchange of RDF data, caching of data, etc.

LarKC is implemented in Java and is distributed under an Apache 2.0 license 40. It can
be deployed in consumer machines as well as in a cluster configuration.

4.11 Discussion and Relevance for INTEGRATE

Reasoning systems can be characterized according to several characteristics. A
characterization of reasoners is important to support users in choosing a reasoner for
a given application scenario. Several characterizations have been proposed in the

39

 http://www.larkc.eu
40

 http://sourceforge.net/projects/larkc/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 39 of 83

literature, see (34)(35)(36)(37) for an example of some of these works. From these
characterization frameworks it is possible to identify several factors that need to be
taken into account when deciding which reasoner to use. The following is a summary
of the most important features to consider elaborated based on the aforementioned
results:

 Required expressiveness, e.g. RDFS, OWL fragments, OWL 2 Profile, etc.

 Reasoning services required, these include:
o Standard (logic-based) description logics reasoning services such as

instance retrieval (conjunctive query answering), consistency check,
subsumption reasoning, concept satisfiability, classification, etc.

o Non-standard services such as ontology management, evolution and
debugging.

 Type of reasoning required such as for example temporal reasoning, non-
monotonic reasoning, geo-spatial reasoning, anytime reasoning, approximate
reasoning, probabilistic reasoning, etc.

 Correctness of the reasoner, i.e. soundness and completeness. It is important
to notice that these properties depend on the type of application at hand. For
example, in some application scenarios incomplete reasoning is acceptable if a
small number of answers is returned in less time.

 Scalability of the reasoner both in terms of number of simultaneous users
(queries) the reasoner is able to handle and the size of the data (ontologies,
knowledge bases) the reasoner is able to reasone over; in the semantic Web
this is typically measured in terms of RDF statements. If the specific application
scenario requires large amount of data (large ontologies) then the scalability of
the reasoner, i.e. the capacity of the reasoner to handle large volume of data
efficiently is important. In this case, a selection criteria could be the ability of
the reasoner to cache answers and/or to be able to distribute data across
multiple compute nodes and distribute the process of answering queries.
Another important feature to look for in a reasoning platform in this case would
be the support for anytime or incremental reasoning, i.e. the ability to provide a
trade-off between computational resources such as time or memory for some
reasoning property such as completeness. If, on the other hand, the application
is used by multiple users simultaneously then the ability of the reasoning
platform to distribute the load is an important criterion to consider.

 Reasoning performance, which canbe measured in terms of the resources
required for carrying out each the reasoning services supported by the system.

 Ability to integrate with existing semantic repositories

 The access mechanisms supported. For example through HTTP suing the
DIG or OWLink interfaces.

 The query protocol supported. Given its wide-spread usage, SPARQL should
be supported.

Table 1 summarizes some of the most salient characteristics of the reasoners included
in this survey.

One of the conclusions drawn from this survey of reasoners is that there is no system
that outperforms the rest in all the features presented above. Each of the reasoners
considered in this survey have its strengths and weaknesses. For example, a known
issue in KAON2 is its inability to handle large numbers of cardinality restrictions.

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 40 of 83

Snorocket does not support individuals, specification of domain and range constraints.
A limitation of the CEL classifier is its lack of a proper interface and reasoning system
around it that allows for easier integration into user applications and consequently
widespread adoption by the community. A first step into making this reasoner more
usable has been the implementation of the OWL API that eases the process of
integrating the reasoner into ontology management tools such as Protege. Ultimately,
the desicion of which system to use for a given application scenario depends very
much on a carefull analysis of the aforemetioned factors and on a systematic
evaluation of the performance of the system using data from the domain at hand. Also
important is the type of reasoning task that is required from a reasoner. If, for example,
the user application requires only classification services then a classifier such as CEL
or Snorocket is preferred over a more general reasoner such as Pellet or FaCT++ due
to their used of optmization techniques specifically tailored for certain types of
ontologies, in this case life science ontologies. On the other hand, if more reasoning
services are required such as consistency checking and instance retrieval (query
answering) then more general reasoners are preferred.

For INTEGRATE the relevance of lightweight reasoners (classifiers) such as CEL and
Snorocket is important as they have been shown to outperform other more general
reasoners such as Pellet, RacerPro, etc. wrt. the classification tasks. Because these
classifiers exploit the structure of certain types of ontologies they are able to use
optimization techniques for classifying large ontologies such as the ones used in the
Life Sciences. This is very important for INTEGRATE as the type of ontologies relevant
for the project share many of the charactersitics of the ontologies for which these
reasoners perform well. For details of the benchmarks and evaluation results the
readeris referred to deliverable D2.2.

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 41 of 83

 Pellet FaCT++ RacerPro HermiT TRREE KAON2 Snorocket CEL TrOWL
Reasoning Tableau tableau tableau tableau Rule-based resolution completion rules Completion

rules
DL
reasoning

Sound yes yes yes yes yes yes yes yes yes
Complete yes yes yes yes yes yes N/A N/A yes
Rules SWRL (AL-Log) no SWRL SWRL (DL

safe)
OWL-Horst
OWL 2 QL
OWL 2 RL
OWL Max
Custom rules

SWRL no no No

Justifications yes no yes no no no no yes no
Abox Reas. yes yes yes yes yes yes no No yes
Expressive P. SHOIN(D)

SROIQ(D)
SHOIQ
SROIQ(D)

SHIQ(D) SROIQ
SHOIQ(D)

OWL 2QL/RL
OWL Horst
OWL Max

SHIQ(D)
F-Logic

EL+ (OWL2 EL) EL+ (OWL2
EL)

RDF-DL
OWL 2
QL/RL

Non-monotonic yes no no no no no no no No
Queries SPARQL

RDQL
 nRQL

OWL QL
 SPARQL SPARQL

API OWLAPI
Jena, DIG

OWLAPI
DIG

OWLAPI
OWLink
DIG

OWLAPI DIG

Table 1 Reasoners characteristics

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 42 of 83

5 Ontology Mediation, Alignment and Merging

5.1 Introduction

Ontology mediation is the process concerned with discovering, specifying and
exploiting the semantic correspondences between ontologies. A correspondence
reflects a relationship between entities of two ontologies; the term entity is used for
referring to the concepts, relations among these concepts and instances of the
ontologies involved in the mediation process. In other words, aligning, mediating or
matching two ontologies refers to the process of translating the terminology of one
ontology into the terminology of a second (target) ontology in such a way that the
translation respects or agrees with the target ontology's semantics. In the context of an
ontology-based application three types of ontology mediation processes are typically
required (38):

 Ontology Mapping: this refers to the process of identifying and representing
the semantic correspondences between two ontologies. It deals mostly with the
representation or specification of the mappings between ontologies. The
process takes as input two ontologies and produces an ontology mapping, i.e.
a collection of correspondences between the entities of both ontologies. The
problem of finding and specifying the mapping between two ontologies is
sometimes referred to as the ontology matching problem. Following the
characterization in (38) the ontology mapping task consists of the following
steps:

o Finding alignments between ontology entities: This refers to the
process of finding the correspondences between the entities (concepts,
properties/roles and instances) of two ontologies. This process is known
as ontology alignment and several methods, techniques for (semi)
automatic alignment of vocabularies and ontologies have been
proposed in the recent years.

o Specification of the alignments: This refers to the process of
specifying the mappings between ontologies so as to enable
exploitation of the semantic overlap between two ontologies. Several
methods and approaches exist for specifying these mappings.

o Exploitation of the mapping: This step consists in using the mappings
for enabling reuse and knowledge sharing among applications across
domains. For example, the mapping between two ontologies could be
used to implement a search engine that search for information in
multiple heterogeneous databases.

 Ontology Merging: This process consists in taking a set of ontologies and
producing a new ontology that is the union of the source ontologies and
captures both the correspondences and discrepancies among the ontologies.

 Ontology Integration: Ontology integration can be seen as the process of
creating an ontology by composing other existing ontologies possibly
describing different domains (39); in contrast to ontology mapping where
usually the ontologies describe the same domain.

5.1.1 Classification of Methods and Techniques

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 43 of 83

The literature of ontology mediation is rich in methods for addressing different aspects
of the ontology mediation task. They make use of techniques and algorithms from
different areas. For example, ontology mediation benefits from the techniques
developed in the area of Linguistics, Natural Language Processing (NLP) (see e.g. the
methods proposed by (40)(41)(42)(43)), and Machine Learning (44) among others.
More recently, new methods for ontology mediation have been proposed that make
use of reasoning techniques from the area of Automated Reasoning in Artificial
Intelligence and Semantic Web research. These methods differ in many aspects
including the kind of information they use for producing the alignment (structural,
linguistic, semantic, etc.), the computational resources used for producing the
alignment (e.g. memory and time), the quality of results (e.g. precision, recall, etc.) and
the type of correspondences or mappings they are able to discover, among other
aspects. For example, the works of (45)(46)(47) use probability and statistical methods
to produce an alignment but they are limited by their inability to detect semantic
differences. The approaches presented in (48)(49)(50)(51) consider many other
informational aspects but they fail to support the alignment of large-scale ontologies.

In order to organize and help the users make sense of all the methods available a
classification or categorization is required. Broadly speaking ontology alignment
techniques (or simply matchers) can be classified into elementary and composite
techniques. Elementary matchers are individual matchers from which other, more
complex, composite matchers that combine different techniques can be built. One
approach to classifying elementary matching methods was proposed by (52). This
work builds upon the previous work of the authors as well as other researchers and
introduces a multi-layer classification schema. Each layer classifies ontology matching
techniques according to a different criterion. Three layers are identified: the granularity
and input interpretation layer, the basic techniques layer and the type of input layer.
The first one classifies methods according the granularity of the matchers and the way
they interpret the input. The third layer classifies methods according to the type of input
used by the matchers. Finally, the second layer identifies several classes of techniques
and classifies them according to the categories of the other two layers. Based on this
classification criteria the authors identify several classes of ontology matching
methods. For details of this classification and example of methods the reader is
referred to (52).

Many other classification frameworks have been proposed in the literature, such as the
one proposed in (53) but, in general all of them refer to the same categories and
classes identified in (52) although they do so by using a different nomenclature. For
example, ontology mapping methods can also be classified into instance-
based and schema-based methods depending on the type of data they use. These
categories correspond to the extensional and structural techniques introduced in (52).
Sometimes methods are classified into lexical methods and structural methods. The
former rely on the lexical characteristics of terms to determine the degree of similarity
between them. The latter rely on the structural information of terms, including the
relations with other terms such as through ancestors and descendants. These
correspond to the internal and relational of (52) respectively.

5.1.2 Organization of this Survey

Over the years several methods for ontology alignment have been proposed. In this
survey we concentrate our attention into ontology mapping systems that have proven

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 44 of 83

to be successful over the recent years and, in particular, that have been used and
tested in applications of the medical and Life Sciences domains as this is the context
of the INTEGRATE project. The approach for selecting the systems consisted in
exploring the latest experiments conducted in the context of the Ontology Alignment
Evaluation Initiative 41 and choosing those systems that have participated several
times and/or that have been used for mapping medical ontologies. In addition we
survey those systems that over the years have become defacto standard in the
community due to their success.

The goal of this survey is to identify candidate systems for reuse and to identify
techniques and strategies that could be reused and/or extended as part of the solution
envisioned by the project. Techniques and algorithms that have been tested on
ontologies relevant to INTEGRATE are particularly interesting. We are also interested
in technical details such as whether the systems are free or distributed through
commercial licences and whether they support integration with other systems. Each
system is described in terms of the technologies and techniques used for finding
mappings between ontologies, the type of correspondences derived, the type of
background knowledge used by the system to assist the alignment process (if any) and
several other more general features. Another goal of this survey is to identify the
factors that need to be taken into account when choosing an ontology mapping
solution.

Although experimental results are important for choosing the appropriate system in this
deliverable we refrain from reporting on the details of benchmarks and experiments
aimed at evaluating the performance of the systems presented in this survey. These
will be reported in Deliverable 2.2.

This chapter is organized as follows: Sections 5.2 to 5.11 gives an overview of several
ontology matching and alignment systems. We conclude the chapter with a discussion
of the relevance of these systems to the project and several factors to be considered
when choosing mapping algorithms and systems.

5.2 ASMOV

ASMOV (54) is an ontology mapping algorithm that computes an alignment between
two input ontologies. The alignment consists of equivalence relations between the
entities of the ontologies; no other type of correspondence is computed. Although
equivalence relations are an important asset other complementary correspondences
such as sub class and sub property relations are also important in certain applications.
ASMOV assumes the ontologies to be aligned are expressed in OWL DL.

ASMOV takes as input two ontologies to be mapped, an optional reference alignment
and applies an iterative process that consists of two main phases: a similarity
calculation phase and a semantic verification phase. The output of the similarity
calculation phase is a matrix that contains information about the similarity between
different entities in the ontologies. From this matrix a pre-alignment is extracted and
evaluated and refined by the semantic verification process from which the final
alignment can be extracted. The iterative algorithm finishes when either the resulting
alignment is repeated or when the same alignment matrix is obtained.

41

 http://oaei.ontologymatching.org/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 45 of 83

1. Similarity Calculation: In this phase ASMOV computes a similarity matrix that

contains information about the similarity among the entities of the ontologies
involved in the mapping process. The algorithm computes a (total) similarity
measure as a weighted average over four similarity measures. The first one is
a lexical similarity measure that takes into account lexical information and uses
string comparison methods and external resources such as thesaurus. The
second measure is a relational measure of similarity that takes into account
structural information such as the specialization/generalization hierarchy of the
ontology. The third one, a restriction similarity measure, also takes into account
structural information to determine the similarity of entities based on the
constraints used in the definition of concepts and properties. The fourth
measure is an extensional similarity measure that uses data about instances to
determine the similarity between classes and between properties. In addition,
the algorithm can make use of a reference alignment that can be used to
overwrite the weighted similarity measure computed by the algorithm. The total
similarity measure computed by the algorithm corresponds to the measure
provided by the reference alignment (if present) or to the weighted average
over the other four measures. The computation of this total similarity measure
is partially done at pre-processing time (computation of the lexical measure)
and during the similarity calculations phase of the algorithm.

2. Semantic Verification: In this phase the algorithm tries to semantically verify
the pre-alignments by removing those correspondences that are not supported
or are less likely to be satisfiable by the axioms in the ontologies. This is done
by considering different kinds of inferences made from the correspondences in
the pre-alignment.

ASMOV is implemented in Java and uses a standard thesaurus adapter API to
facilitate the integration of the tool with different thesauri in different domains.
ASMOV's performance and accuracy have been evaluated using the Ontology
Alignment Evaluation Initiative (OAEI) benchmark suite in multiple occasions. For
details of benchmark results the interested reader is referred to Deliverable 2.2 and the
OAEI’s website.

5.3 Eff2Match

Eff2Match (55) is an ontology mapping method. The algorithm implements an iterative
matching process that uses different type of information, including lexical and structural
information in order to iteratively expand an initial set of matching entities. The type of
correspondence between entities computed by the algorithm is entity equivalence
(similarity between concepts and between properties). The algorithm starts with two
ontologies to be matched and iteratively produces a set of correspondences between
entities of the two ontologies. The following are the key steps of the algorithm.

1. Anchor generation: The first step of the algorithm consists in generating pairs
of similar entities using an exact string matching method using the entities
names and labels.

2. Candidate generation: In this step Eff2Match tries to find candidate similar
entities to those for which no similar entities were found in the previous step.
Candidate entities are computed using Vector Space Models in conjunction
with information about an entity's name, an entity's ancestors and descendants

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 46 of 83

(in the case of concepts) and an entity's domain and range (in the case of
properties). For each unmatched entity in the source ontology a set of
candidate entities is computed using the VSM-based similarity measure.

3. Anchor expansion: In this step the algorithm tries to expand the set of
equivalent entities found in the previous step by using terminological alignment
methods. In particular, the algorithm relies on WordNet to find equivalent
entities (concepts and properties) based on the synonymy between their labels.
In addition to this, the Eff2Match uses a novel techniques called Informative
Word Matching that determines the similarity between entities based on the
similarity between an entity label and the label of the target entity's ancestor.

4. Iterative boosting: The last step of the algorithm consists in extending the set
of matching entities using the initial anchor set computed in the first step and
an expanded anchor set. The expanded anchor set is the union of the initial
anchor set and the anchor set produced by the anchor expansion step. The
algorithm tries to find matches for those entities for which no match was found
between them and the candidates set. Structural information of the ontologies
such as the number of ancestors/descendants of a given entity is exploited by
the algorithm in order to discover correspondences between entities.

Eff2Match was implemented in Java and is distributed as a single jar file that can be
embedded into one's application. No front-end or GUI is provided with the system.

5.4 RiMOM

RiMOM 42 (56) is a framework for ontology alignment that combines multiple mapping
strategies and dynamically selects which strategy to apply based on several types of
ontological information derived from the input ontologies. It extends a previous version
of the tool and combines multiple alignment strategies with a dynamic strategy
selection mechanism that can detect which strategy best suits a specific alignment
task.

RiMOM was developed based on the observation that not all alignment methods are
equally suitable, i.e. accurate and efficient, for every ontology. Multiple experiments in
the field of ontology alignment and mediation have shown that there is no single
method or strategy that outperforms the rest across every single ontology. Instead,
depending on the features of an ontology certain strategies perform better than others;
see the OAEI’s website for experimental results. Based on this observation and on
experiments done with a previous version of the tool the authors in (56) propose a
ontology alignment method that combines multiple strategies and selects the strategy
to apply depending on several ontological features. In this sense the aim of this system
is to serve as a framework for ontology mapping where multiple alignment strategies
can be used and where the accuracy of the mapping method is improved by carefully
selecting at runtime the strategies to use depending on the characteristics of the input
ontologies.

RiMOM takes as input two ontologies to be matched and follows five steps in order to
produce a mapping of the input ontologies. The key steps in the process are the
following:

42

 http://keg.cs.tsinghua.edu.cn/project/RiMOM/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 47 of 83

1. Pre-processing: The first step consists in computing two ontology similarity
measures, one based on structural information and the other based on an
entity's label. These measures will be used for selecting the appropriate
strategy in subsequent steps.

2. Linguistic-based ontology matching: The second step of the algorithm
consists in computing the similarity between ontology entities using multiple
linguistic-based similarity measures including standard metrics such as edit
distance and vector distance. A strategy selection method is applied in order to
select what linguistic-based strategy to employ.

3. Similarity combination: In the next step the algorithm combines the results
produced in the linguistic-based ontology matching step. As in the previous
step a selection method is applied in this step to determine the appropriate
weights for each similarity measure to be combined.

4. Similarity propagation: In this step the algorithm computes multiple structural
similarity measures and applies a strategy selection method.

5. Alignment generation and refinement: The final step of the algorithm
consists in refining and returning the alignment found between the ontologies.

RiMOM applies three strategy selection methods for selecting the appropriate
strategies to use at three different steps. One method is used for selecting the right
linguistic-based strategy to use. Another method is applied when combining multiple
similarity measures and a third method is used when computing structure-based
similarity measures. In the linguistic-based ontology mapping step two thresholds
(which can be tuned by the user) based on the label and structure similarity measures
are used for selecting the right strategy. For similarity combination RiMOM computes
several weights and then uses them in combination with the label and structure
similarity measures computed in step one to decide whether to rely on a label-based
similarity or on vector distance-based similarity. Finally, the decision of what type of
structural information to use in the similarity propagation phase is based on the
structure similarity measure computed in the first step. Comparing this value to a
threshold, which can be tuned, helps deciding what strategy to use.

RiMOM is implemented in Java and is available for public download 43. For details on
evaluation and benchmark the reader is referred to the section on Benchmark of
Ontology Mapping Tools.

5.5 SAMBO

SAMBO 44 (53) is a system for aligning and merging biomedical ontologies. It is based
on a framework developed to support the semi-automatic alignment and merge of
biomedical ontologies and for comparing alignment strategies. It is characterized by
the use of multiple matchers, each of which can implement a specific alignment
strategy, a method for combining and filtering the results obtained from these matchers
and an interactive process that allows users to participate in the ontology mediation
process by accepting and discarding alignments proposed by the systems
implementing the framework. The alignments computed by the framework are based
on the computation of similarity measures between the entities of the source
ontologies. The framework can exploit several kind of ontological information and

43

 http://keg.cs.tsinghua.edu.cn/project/RiMOM
44

 http://www.ida.liu.se/~iislab/projects/SAMBO

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 48 of 83

supports the use of strategies based on structural information, linguistic or lexical
information, constraint-based information, instance-based information and strategies
that use auxiliary information such as dictionary, domain thesauri, etc. The output of an
alignment task is the set of similarity relations between the terms of the input
ontologies.

SAMBO takes as input two ontologies expressed in OWL and can output a new
ontology that is the result of merging the input ontologies or, a set of alignments
between the input ontologies. The system uses a terminological matching algorithm
that implements a linguistic-based strategy that computes the similarity between terms
(concepts or relations) using n-gram, edit distance and word-based techniques. To
improve the accuracy of the algorithm SAMBO uses WordNet as an external source of
information. In addition, SAMBO implements a structural-based alignment strategy that
determines the similarity between ontology entities based on the specialization (is-a)
and part-of hierarchies. SAMBO also uses the UMLS' Metathesaurus to determine the
similarity between concepts based on the synonym relation between the concepts in
the ontology and those in the metathesaurus. SAMBO also allows for the combination
of strategies and enables users to choose the strategies to be used. Each matcher
(strategy) suggests an alignment and suggestions can be analyzed using weights or
based on the similarity value of the matcher that produces the suggestion. SAMBO
currently uses alignment strategies that derive similarity and is-a relations only; i.e.
correspondences that reflect other types of relations such as disjoint relations are not
computed.

Using the alignments computed by the alignment process SAMBO can merge
ontologies by applying the alignments and inferring new knowledge that is consistent
with the ontologies and alignment.

5.6 AgreementMaker

AgreementMaker 45 (57) is an ontology and schema matching system developed and
maintained by the University of Illinois at Chicago in the Advances in Information
Systems Laboratory (ADVIS Lab). AgreementMaker was designed and developed as
an efficient solution to the problem of aligning large real-world ontologies and schemas
and has been applied in different domains that include geospatial data (58),
environmental data (59) and biomedical data (60).

What differentiate AgreementMaker from other similar systems is that
AgreementMaker is not only an ontology and schema matching system but it is more
generally a platform for evaluating and comparing multiple alignment methods. The
system is built around a flexible architecture that allows users to incorporate new
matching methods and strategies and test their performance against other methods.

Another distinctive feature of AgreementMaker, and one that also sets it apart from
other ontology mapping systems, is its user interface whose design was driven by the
requirements of domain experts. It provides a visual environment not only for finding
mappings between ontologies according to several alignment methods but also for
evaluating, comparing and combining different alignments as well as the performance
of these methods. Users can configure and run multiple methods and visualize the

45

 http://agreementmaker.org/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 49 of 83

results of the alignments. The GUI also provides a mechanism for visualizing sub trees
of the source and target ontologies along with the corresponding mappings. Users can
also specify previously computed mappings as input to a new matching task. Also,
several mappings can be combined either manually or automatically. In addition to its
comprehensive user interface, the system incorporates several mapping methods that
vary along multiple dimensions and produce mappings based on different strategies,
e.g. by using schema and/or instance information, by using manual or (semi) automatic
strategies, by considering different features of the ontologies, etc.

In terms of its architectural design the system is composed of three layers. Each layer
contains a matcher that implements a specific mapping algorithm and produces a set
of mappings by extending the functionality of the matchers in the layers above. In
general, every matcher follows a generic architecture that consists of a module for
computing the similarity between the entities of the input ontologies (concepts and
properties) and a module for selecting the best mappings. The first module takes as
input the two ontologies and produces two matrices, one for concepts and the other for
properties, containing information about the similarity between concepts and properties
of the input ontologies. The mapping selection module then selects the best mappings
based on a threshold value and on the cardinality of the mappings. Specific matchers
are specializations of this generic architecture. The first layer of the architecture
contains a matcher that is responsible for producing the similarity matrices based on
several concept features such as name, label, comments and instances. The second
layer's matcher improves on the results of the first layer's matcher by refining the
mappings using conceptual or structural information. Finally, the third layer's matcher
combines the results of the matchers in the layers above in order to produce the final
mapping. This architectural design of both the system and the individual matchers
allows AgreementMaker to compose matchers in a serial or parallel fashion. Because
of its flexibility and modular approach the architecture enables users to develop and
plug-in their own matchers.

In order to evaluate the quality of the alignment produced by the system
AgreementMaker can make use of a reference alignment and compare the results of
the different methods to that "gold standard" and produce a measure of relative quality.
However, when a reference alignment is not available the system can determine the
quality of the alignment using other metrics, in particular local and global metrics. For
details on these metrics the reader is referred to (57).

The different native matching algorithms implemented in AgreementMaker make use
of various alignment strategies. AgreementMaker uses both syntactic and structural
methods for finding mappings between the ontologies. Among the syntactic methods
the system uses a Base Similarity Matcher, a Parametric String Matcher and a Vector-
based Multi-word Matcher. As for the structural matchers the system includes
a Descendants Similarity Inheritance Matcher and a Siblings Similarity Contribution
Matcher. For details about the specifics of these methods the reader is referred to (57).

In terms of usability AgreementMaker supports several input and output formats
including XML, N3, RDFS, OWL as input formats and XML and Excel as output
formats. The system also supports the development and integration of new matchers
through a Java API that provides the basic means for developing and plugging in new
matchers. The current version (0.23 at the moment of writing) is publicly available
through a free-of-charge registration procedure.

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 50 of 83

5.7 BLOOMS

BLOOMS (61) is method for mapping ontologies that uses simple lexical mapping
methods and couples them with a novel global similarity computation techniques that
takes advantage of the semantic variability of edges (62). BLOOMS was developed as
a component of a much larger ontology extension system called Auxesia. It was
designed as a fully automatic system for finding alignment between biomedical
ontologies with precision over recall in mind, although it can also be used for mapping
ontologies in other domains.

At its core BLOOMS is composed of a lexical matching component and a global
similarity component. The first component is responsible for computing the similarity
between concepts and is composed by two other modules, an exact matcher and a
partial matcher. The exact matcher determines the similarity between two concepts by
using a simple string matching technique whereas the partial match component
computes the similarity between concepts by considering the different parts of a
concept's textual description. The second component of BLOOM is a module that
implements a similarity propagation technique called semantic broadcast. This
technique is based on the idea that concepts whose relatives (ancestors and
descendants) are similar should also be similar and relies on the availability of a
semantic similarity measure between concepts. Using an average measure of the
semantic similarity between two concepts, the sum of similarities between the
concept's relatives and the lexical similarity computed by the lexical component
BLOOMS determines a final similarity measure between concepts.

Alignments in BLOOMS are produced by each of the three matching modules, i.e. the
exact, partial and semantic broadcast matching modules, using different thresholds for
determining when a match is considered an alignment.

5.8 AOAS

AOAS (63) (64) (65) stands for Anatomy Ontology Alignment System and is the result
of the efforts made at the U.S. National Library of Medicine to develop domain
knowledge-based techniques for aligning large anatomical ontologies. It is a domain-
specific ontology matching system for anatomical entities, i.e. for anatomy concepts
and relations.

The AOA system uses an automatic, rule-based alignment method that relies on
schema-level information and domain-specific lexical information to find mappings
between concepts. The mappings found by the system represent equivalence relations
between the entities. AOAS uses a direct alignment method for finding mappings
between ontologies. In ontology alignment and mediation, a direct alignment method
finds mappings between two ontologies by computing the similarity between concepts
(or entities in general) without relying on a reference ontology as it is the case
with indirect alignment methods where mappings are indirectly computed based on
direct mappings with a reference ontology. In particular, the AOA system computes the
similarity between concepts using domain-specific lexical techniques in combination
with structural and semantic techniques to validate the mappings. The process of
determining the lexical similarity between two concepts is reduced to deciding an exact
match between the terms.

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 51 of 83

The alignment process used by the system involves two key (sub) processes. The first
one is a lexical mapping process that finds mappings between concepts across
ontologies by using lexical techniques to map concepts based on their names and
synonyms, if present. To support the lexical matching of concepts AOA can make use
of an external source. For example, in (65) the UMLS was used for resolving
synonyms between concepts in the process of aligning the GALEN and FMA
ontologies. The second process used in the alignment task is called structural
validation and consists in validating the mappings produced by the lexical mapping by
computing a structural similarity measure. To validate mappings AOA uses shared
relations to other aligned (equivalent) concepts, such as is-a and part-of relations. The
system considers both explicit relations and implicit relations extracted
through augmentation and reasoning techniques. For example, if concepts A and B are
lexically aligned and both are in a is-a relationship with concepts C and D respectively
and, C and D are correctly mapped then the mapping between A and B is considered
valid. For details of these techniques the interested reader is referred to (65).
Augmentation is particularly interested when aligning biomedical ontologies because it
allows to extract knowledge that is embedded in concept names, a feature present in
many biomedical ontologies and more generally, in ontologies rich in descriptions,
comments and annotations.

The AOA system was used in (64) to automatically align the anatomy part of the NCI
thesaurus 46 and the Adult Mouse Anatomy ontology (MA) 47. The work in (63) is
particularly interesting because it proposes a hybrid system for ontology alignment that
combines direct and indirect alignment methods to align anatomical entities. The direct
method works as described before (AOAS's) while an indirect method finds mappings
between the MA and NCI thesaurus by using the FMA ontology as a reference
ontology. An indirect mapping is produced on the basis of two direct mappings
between concepts of MA and FMA and concepts of the NCI thesaurus and FMA. For
details the interested reader is referred to (63).

A benchmark of AOAS was conducted during the OAEI 2006 campaign while the
hybrid system presented in (63) was evaluated in OAEI 2007. For details of the
evaluation the reader is referred to Deliverable 2.2.

5.9 FALCON-AO

Falcon-AO 48 (66) (67) is an ontology alignment system developed by the Department
of Computer Science and Engineering of the Southeast University in Nanjing. It is an
open source project implemented in Java and distributed under the Apache 2.0
license. Although it is publicly available for download at the time of writing it was not
possible to get access to the project's homepage due to technical problems on the
team's website.

Falcon-AO's architecture is composed of a few key components. The first component
is the model pool which is responsible for parsing the input ontologies and preparing
the ontologies for alignment by adding/removing statements based on the inference
capabilities of the ontology languages. The second component is the matcher
library which contains a series of matching algorithms. More concretely, the library

46

 http://cancer.gov/cancerinfo/terminologyresources
47

 http://www.informatics.jax.org/searches/AMA_form.shtml
48

 http://ws.nju.edu.cn/falcon-ao/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 52 of 83

contains two linguistics-based matchers (LMOs) that use linguistics-based algorithms
to compute the similarity between words using lexical comparisons and statistical
analysis. These rely on the availability of concept descriptions (entities descriptions in
general) such as names, labels and comments. A third matching algorithm used in
Falcon-AO is a partition-based matching algorithm (or PBM) used for finding blocks of
mappings; a technique that aims at improving the performance when aligning large-
scale ontologies. The fourth matcher implements the graph matching for
ontologies algorithm (or GMO) and uses a graph-based approach to align two
ontologies. GMO computes the similarity between two ontology entities based on
structural information associated to these entities, which in turn is computed based on
the similarity between RDF statements involving the two entities. GMO is used in
conjunction with the LMOs and the PBM. It takes as input an external alignment
produced by the LMOs, the blocks identified by the PBM and an existing alignment of
the built-in constructs of ontology languages. The output of GMO is an alignment that
extends the alignment produced by the other matchers. These two alignments are later
on integrated to produce the final alignment. For details of the algorithm the reader is
referred to (68). Another key architectural component is the central controller that is in
charge of executing the alignment workflow, e.g. executing matchers and combining
similarity measures. The alignment set component is responsible for evaluating the
generated alignment against reference alignments. For details of the architecture the
reader is referred to (67).

The alignment workflow in Falcon-AO proceeds as follows. Given two ontologies to be
aligned the system first prepares both ontologies for alignment by adding/removing
statements based on the inference capabilities of the ontology languages. This step is
called model construction. The next step, called matcher execution, consists in running
the LMOs and PBM to produce part of what is called an external alignment. The other
part of this external alignment is comprised by an existing alignment that contains
mappings between the built-in constructs of different ontology languages (RDF, RDFS,
OWL). Using this external alignment GMO tries to generate additional mappings. The
final step, called similarity combination, is to integrate the two alignments using
the linguistic and structural comparability measures. More concretely, GMO requires
an external component to evaluate the quality of the computed alignment. The
approach used in Falcon-AO is to use two measures to evaluate the quality or
reliability of a mapping. The first one is a linguistic comparability measure that
quantifies the similarity of two ontologies based on their lexical similarity and the
second one, is a structural comparability measure that quantifies the similarity of two
ontologies based on how similar their structures are. The alignment produced by
Falcon-AO captures equivalence relations only.

5.10 SOBOM

SOBOM 49 (69) is an ontology matching system that uses a novel approach to ontology
matching based on sub-ontology extraction to find alignments between two input
ontologies. It was designed as a general purpose system to automatically match
lightweight ontologies structured according to an is-a hierarchy. SOBOM was
developed by the School of Computer Science and Technology of the Harbin Institute
of Technology in Harbin, China.

49

 http://mlg.hit.edu.cn:8080/Ontology/Download.jsp

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 53 of 83

SOBOM views an ontology from two different point of views: on the one hand, SOBOM
treats an ontology as composed of an is-a hierarchy only. On the other hand, an
ontology is seen as comprised of different types of relations among concepts. Using
this two-fold view of an ontology the system is able to find anchors (pairs of equivalent
concepts between the ontologies), extract sub-ontologies from the two ontologies
being aligned and align relations between the ontologies. Correspondences computed
by SOBOM represent equivalence relations between ontology entities.

The architecture of the system is composed of four modules. The first one,
called anchor generator, is a module that finds correspondences (anchors) between
concepts in the source and target ontologies by using linguistic techniques and a
concept's local information, e.g. instances (if present), textual information (label,
comments, etc.) and structural information. The second component of the architecture
is called Semantic Inductive Similarity Flooding (SISF) and implements an algorithm
for propagating similarity relations from the anchors to the sub-ontologies. The third
component is a relation matcher that finds alignments between ontology relations. The
final component is called Sub-ontology Extractor and is used for extracting sub-
ontologies from the source and target ontologies.

SOBOM executes the following workflow to find an alignment between the source and
target ontologies. The first step consists in extracting anchors and sub-ontologies.
Using the anchors found by the anchor generator the system extracts a set of sub-
ontologies from each ontology. The second step consists in ranking each set of sub-
ontologies and then aligning sub-ontologies using SISF. Next, the system tries to find
an alignment between the relations in the ontologies and the individuals using as input
the output produced by SISF. The final step consists in grouping the alignments
obtained in the previous steps and generating the final alignment. Ontologies can be
specified in RDF and OWL. It is important to notice that SOBOM does not use
background knowledge to align ontologies a feature that needs to be considered when
analyzing benchmark results.

The system was developed in Java and is publicly available for downloads although at
the time of writing the system was unavailable due to connection errors on the server
side.

5.11 NBJLM System

NBJLM (70) is a multi-strategy (or hybrid system), dynamic ontology matching system
written in Java. It has been jointly developed by the Nankai University and the Military
Transportation University.

NBJLM combines similarity of literal concepts and semantic structure to discover
correspondences between pairs of concepts and properties. The correspondences
represent equivalence and subsumption relations between the entities of the source
and target ontologies. More specifically, ontology entities are aligned based on a
function that computes the similarity between two entities in terms of two similarity
measures. The first is a literal concept similarity measure and the second is a
structural similarity measure. The literal concept similarity measure takes into account
polysemy and synonym of words and uses WordNet as an external resource to
determine the degree of similarity between two concepts using their names.
The structural similarity measure on the other hand uses the literal concept similarity

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 54 of 83

measure values, the structure of the ontology and the hypernym and hyponym of
words to compute the degree of similarity between two concepts. To help speed up the
computation of mappings the system uses parallelization techniques.

The system is publicly available for downloads at the group’s website 50 although at the
time of writing the system was unavailable due to connection errors on the server side.

5.12 Discussion and Relevance for INTEGRATE

Ontologies in the Biomedical domain and the Life Sciences pose important challenges
to the mediation and alignment tasks due to their distinctive features. First, biomedical
ontologies tend to be very large in terms of the number of concepts they contain.
SNOMED CT for example contains roughly 340,000 concepts and the Gene Ontology
about 50,000 concepts. A second feature of this type of ontologies is the range of
relation types they contain. Most of these ontologies contain a limited set of relation
types, e.g. is-a, part-of, etc. and this can affect negatively the performance of more
general-purpose mapping systems that take advantage of the rich structure of
ontologies. A third feature is the vast amount of textual information these ontologies
posses. This comes in the form of concept names, synonyms, labels, comments, etc.
Although rich textual descriptions can be exploited by alignment methods based on
lexical strategies the high degree of ambiguity found in these ontologies also poses a
challenge for these methods. The distinctive characteristics of biomedical ontologies
have also been acknowledged by the knowledge representation and reasoning
community which have proposed in recent years novel mechanisms and techniques for
representing and reasoning over this type of ontologies.

The characteristics of this type of ontologies call for methods that can deal with large
number of concepts and in some cases relatively shallow terminologies. Table 2 shows
for each system in this survey the type of semantic correspondences it is able to
compute, e.g. equivalence relations (=) or subsumption relations (<=), whether the
system is able to associate a confidence value to each correspondence thus allowing
users to judge the accuracy of the alignments produced and whether the system uses
background knowledge.

System Correspondence
Type

Confidence Background Knowledge

ASMOV =, <= Yes Yes

Falcon-AO = Yes No

AgrMaker = Yes No

SAMBO = No Yes

BLOOMS = No No

RiMOM = No No

Eff2Match = Yes No

AOAS = No Yes

NBJLM =, <= No Yes

SOBOM = Yes No
Table 2 Characteristics of Ontology Matching Systems

50

 http://www.brsbox.com/OAEI2010

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 55 of 83

The SAMBO system is particularly relevant to INTEGRATE due to its focus on
alignment strategies that are applicable to ontologies found in the biomedical domain.
It is also relevant due to its underlying framework that can in principle be extended
and/or used for implementing and testing new alignment strategies in the biomedical
domain. BLOOMS, SAMBO, AOAS and AgreementMaker are particularly relevant for
the project because they have been applied in alignment tasks in the Life Sciences
and Medical domains as well.

 As for the disadvantages and limitations of the BLOOMS system the current version
(as of September 2011) does not take into account spelling variants and does not
make use of external resources to complement the mapping algorithm. Moreover, the
only type of correspondence between entities computed by the system is an
equivalence relation. From a practical point of view the major disadvantage is that the
system was not designed as a standalone application but rather as part of a bigger
system. This could hinders its reusability outside the host system.

Perhaps the major disadvantage of the AOA system is its domain-specific nature that
makes it not suitable for other domains, i.e. for domains where the data contains no
anatomical entities. However, although the reusability of the system is low some of its
underlying mechanisms and strategies could be reused and possibly adapted to other
application domains. One key idea used in the system is the structural validation
mechanism that uses the structure of the ontologies to validate the lexical mappings.
Another key concept is the exploitation of domain-specific information for discovering
lexical mappings between concepts and, the use of such information throughout the
entire alignment process.

In the case of Eff2Match its main drawback is the limited support for finding
correspondences between entities. As of August 2011 the system is not able to
discover equivalence relations between concepts and properties. The authors report in
(55) their plans to extend the functionality of the tool in order to be able to compute
other types of correspondences such as non-equivalence relations, specialization
relations and part-of, a very common type of relation found in many biomedical
ontologies. However, no concrete changes have been made to the tool or reported
since then.

One of the disadvantages of RiMOM is its inefficiency when dealing with large
ontologies.

5.12.1 Choosing the Right System

The task of choosing an appropriate ontology mediation tool or alignment method
mainly depends on the requirements of the application at hand. Each application will
impose certain constraints on the type of system needed based on the characteristics
of the application and the type of data used. From the survey conducted in this work
and the description of the systems presented in the previous sections it is possible to
identify several key factors that need to be taken into account when deciding on an
ontology mediation technique or system, e.g. merging or alignment tool.

 Accuracy of the mappings: The set of mappings produced by an ontology
matching method are typically evaluated with respect to their accuracy to
ensure that the mappings produced are correct. The most common approach to

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 56 of 83

evaluate the correctness of mappings is by measuring their precision and
recall.

 The type of correspondences computed by the mapping algorithm: Every
ontology matching algorithm produces one type of correspondence between
ontology entities, namely an equivalence relation. However, equivalence
relations are not the only type of entity relationship that is relevant. Some
applications require other types of relations to be discovered such as
subsumption, disjointness and part of, among others. A few of the systems
presented in the previous sections are able to discover, in addition to
equivalence relations, subsumption relations as well.

 The format in which the mappings are expressed: In order to facilitate the
use of the mappings discovered between ontologies they need to be
represented in a form that enables reuse. RDF-based formats are very
common these days and an ontology of mappins is typically used.

 The licence under which the system is distributed: This is a relevant
technical aspect of the system specially for projects and/or systems that follow
open source practices.

 The input format of the ontologies: The application requirements will
determine the format in which the ontologies are represented and based on this
the choice of system may change.

 The external resources the system may require or accept: It is a plus that
the system can exploit them but if the system can only work when external
resources are available, e.g. only mapping ontologies if WordNet is available,
could be a drawback.

 Computational resources required: These are factors that need to be
determined empirically using ontologies from the application domain.

 Alignment with a confidence value: Some of the systems surveyed in this
work are able to assign a confidence value to the alignments produced. This is
meant to assist users in deciding the validity of the alignments and to help them
choose among alignments produced by different tools.

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 57 of 83

6 Ontologies for the Life Sciences

6.1 MedDRA

MedDRA51 (Medical Dictionary for Regulatory Activities) is a medical vocabulary
developed by the IFPMA-International Federation of Pharmaceutical Manufacturers
and Associations that refers to diseases, diagnoses and reactions and results to
classify information related with adverse events associated to the use of biopharma
and other medical products on humans. The structure of this dataset is hierarchical,
i.e., concepts are “owned” by a sequence of predecessor terms; one term could be
preceded by more than one father-term. The hierarchy contains 6 levels and
approximately 57,700 concepts (according to the version of 2002).

The hierarchy of the core dataset is composed by six levels:

 System Organ Class, SOC.

 High Level Group Term, HLGT.

 High Level Term, HLT.

 Preferred Term, PT.

 Lowerest Level Term, LLT.

A purchase license is required if it is intended to be used within a commercial software,
although, true not-for-profit organizations qualify for a Basic subscription. For instance,
an educational institution, or a direct patient care provider as a hospital, use MedDRA
as a reference tool.

6.1.1 Use within the INTEGRATE project

MedDRA has all the virtues and benefits of being a taxonomy extremely well defined,
which facilitates its management and comprehension. Nevertheless, it is only oriented
to work with diseases, which may not be enough to represent all the possible concepts
needed in the project.

6.2 SNOMED-CT

SNOMED-CT52 (Systematized Nomenclature of Medicine – Clinical Terms) is
considered the most important clinical terminology due to its precision and highly
comprehension data. It was developed by the College of American Pathologists (CAP)
and it is a property of the International Health Terminology Standards Development
Organization (IHTSDO). This taxonomy allows its users to tag, index and store clinical
information; facilitating the correct management of medical media. Its usability has
been an important help point to everyone working with electronic medical record
systems (EMRs); becoming adopted as the standard clinical terminology for many
institutions, as for instance, the NHS of England.

SNOMED-CT consists of over a million medical concepts. These concepts are
arranged in a is-a hierarchy and can have multiple parents and roles. SNOMED-CT

51

 www.meddramsso.com
52

 http://www.ihtsdo.org/

http://www.meddramsso.com/
http://www.ihtsdo.org/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 58 of 83

contains roughly 730,000 descriptions and 920,000 relations. The hierarchy is
arranged in 33 levels. Each concept has associated the next properties:

 Fully Specified Name: A unique way to name and denominate the concept

 Preferred Term: The common phrase/term used by clinics to name the
concept

 Synonym: Additional phrases/terms that could represent the concept

SNOMED-CT is free for research purposes. There are also a series of free and useful
web-based taxonomy browsers on the internet, being especially interesting the
SNOMED-CT core browser53 developed by the Virginia-Maryland Regional College as
well as the one facilitated by the U.S. National Cancer Institute’s Term Browser54.

6.2.1 Use within the INTEGRATE project

The large size of the taxonomy with its large number of concepts is one of its great
advantages. In addition, if it is necessary to define a new concept which does not exist
yet on the taxonomy, SNOMED-CT allows its users to “create” new concepts by using
existing concepts; this process receives the name of “Post-coordination”. On the other
hand, the large size and the irregular structure of the taxonomy suppose also
disadvantages because it makes it more complex and disperse, which could make its
management and its comprehension to be more difficult.

6.3 LOINC

LOINC (Logical Observation Identifiers Names and Codes)55 was developed by the
Regenstrief Institute to provide a definitive standard for identifying clinical information
in electronic reports. The main goal of LOINC is to facilitate the exchange,
management and pooling of results/outcomes and research on clinical care. The
LOINC database provides a set of universal names and ID codes for identifying
laboratory and clinical test results in the context of existing HL7, ASTM E1238, and
CEN TC251 observation report messages. The latest version (2010) contains roughly
65,000 concepts organized in a flat hierarchy, i.e. with no levels.

LOINC codes are principally intended to identify test results and clinical observations
and have been expanded to include nursing diagnosis, nursing interventions,
outcomes classification and patient care data. Other fields in the LOINC message can
transmit, for example, the identity of the source laboratory or other special details
about the sample.

LOINC provides a Windows-based mapping utility called the RELMA56 to facilitate
searches through the LOINC database and to assist efforts to map local codes to
LOINC codes. Also is available as a Microsoft Access database file and a web search
application57.

53

 http://snomed.vetmed.vt.edu/sct/menu.cfm
54

http://nciterms.nci.nih.gov/ncitbrowser/pages/vocabulary.jsf?dictionary=SNOMED%20Clinical
%20Terms
55

 http://loinc.org
56

 http://loinc.org/relma
57

 http://search.loinc.org/

http://loinc.org/relma
http://search.loinc.org/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 59 of 83

6.3.1 Use within the INTEGRATE project

LOINC is the best way to represent clinical results because it allows users to define all
the relative fields, for instance, components, scales or procedures of measure.
Nevertheless, it has the inconvenient of being overly specific focusing only in clinical
experiments. Moreover, the benefits of a taxonomy are lost as it does not have a
hierarchical structure.

6.4 MeSH

The Medical Subject Headings (MeSH)58 is a vocabulary for the purpose of indexing
journal articles and books in the Life Sciences, it can also serve as a thesaurus that
facilitates searching. It was developed by the United States National Library of
Medicine (NLM).

This taxonomy is composed by descriptors. The latest version of MeSH (2007)
contains about 26.000 descriptors and everyone has a list of synonym and a list of
qualifiers; the total number of qualifiers according to the latest version is 83 while the
number of synonyms or supplements is 139,000. These qualifiers are a subheading
which can be added to descriptors to narrow down the topic and provide semantic
information for classifying the descriptors. The descriptors or subject headings are
arranged in a hierarchy of 12 levels. A given descriptor may appear at several places
in the hierarchical tree. The tree locations carry systematic labels known as tree
numbers, and consequently one descriptor can carry several tree numbers. Every
descriptor also carries a unique alphanumerical ID that will not change.

MeSH can be browsed and downloaded free of charge on the Internet through
PubMed. The yearly printed version was discontinued in 2007 and MeSH is now
available online only. Originally in English, MeSH has been translated into numerous
other languages and allows retrieval of documents from different languages. It has all
the virtues of a taxonomy extremely well defined with its 6 exact hierarchy levels which
facilitates its management and comprehension. However, it is only oriented to
diseases which may not be enough to represent all the possible concepts to represent
in the project.

6.4.1 Use within the INTEGRATE project

It has a brief and concise structure which makes it an ontology extremely well defined
and with scarce dispersion. However, this simplified structure may suppose the lack of
many needed concepts. In addition, the nature of the MeSH terminology (indexing
MEDLINE publications) is not directly related with the INTEGRATE project needs.

6.5 ICD-10

ICD-1059 stands for International Statistical Classification of Diseases and Related
Health Problems (10th revision). It is a vocabulary specifically designed for the
encoding and classification of all the information relative to external causes of injury or

58

 http://www.nlm.nih.gov/mesh/
59

 http://www.who.int/classifications/icd/en/

http://www.nlm.nih.gov/mesh/
http://www.nlm.nih.gov/mesh/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 60 of 83

diseases. It was developed by the World Health Organization (WHO) and contains
approximately 14,400 codes although it can be expanded to 16,000. Therefore, it is
used to classify data in a wide variety of health-situation conditions and to manage and
administrate every possible health record form. ICD is revised periodically and is
currently in its 10th edition which dates from 1992.
The ICD-10 Procedure Coding System has a seven-character alphanumeric code
structure. Each of these characters has 34 possible values: Ten digits (0-9) and 24
letters (A-H, J-N and P-Z). The first character of the procedure specifies the section
(for instance 2-Placement or 7-Osteopathic), the second have a consistent meaning
within the section, the third specifies the type of procedure performed, and the rest of
the characters specify useful additional information. Therefore, ICD-10 is a medical
terminology that provides codes to classify diseases, signs, symptoms or abnormal
findings and which allows users to assign to every health condition a unique
codification and category. ICD-10 contains no hierarchy levels.

6.5.1 Use within the INTEGRATE project

ICD-10 has the benefits of being a vocabulary extremely well defined and which is
used worldwide nowadays. Nevertheless, it is only oriented to work with diseases and
it is not a taxonomy but a vocabulary or terminology.

6.6 UMLS

The Unified Medical Language System 60 (UMLS) is a compilation of many of the most
important medical vocabularies and biomedical taxonomies that exist nowadays. It was
developed by the US National Library of Medicine. It puts at disposal to the medical
environment multiple sources of knowledge plus a set of related software applications.
The current version contains roughly five million concepts of which roughly one billion
of them are biomedical concepts. Its main purpose is to facilitate the comprehension
and understanding of the broad spectrum of items in the medical domain and, for it,
UMLS facilitates a series of vocabularies that seek to provide some cohesion to the
medical field.
This compendium of vocabularies is currently applied in tasks ranging from the
systematic exchange of clinical information until the uniform definition of patient
records, being also very useful in the development of tools for extracting relevant
information from the existing medical literature.
UMLS is composed of three knowledge sources: the metathesaurus, the semantic
network and the Lexicon, being the first one the base of the UMLS. It is a subset
composed of a series of concepts that have their own characteristics and that are
related to each other by different types of relationships. It is composed of around one
hundred vocabularies, being the most important of them SNOMED-CT, MeSH, ICD-10
and LOINC.

6.6.1 Use within the INTEGRATE project

The principal disadvantage is that it is not exactly a taxonomy, it’s just a compendium
of taxonomies. On the other hand, the large number of concepts may be an
advantage because it would not be necessary to define new concepts in order to

60

 http://www.nlm.nih.gov/research/umls/

http://www.nlm.nih.gov/research/umls/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 61 of 83

represent all the needed concepts, however, this enormous quantity of elements,
would suppose many management problems.

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 62 of 83

7 Security and Privacy Standards

7.1 Identity Management

7.1.1 SAML

The Security Assertion Markup Language61 (71) defines an XML-based protocol,
making it possible to exchange authorisation and authentication data between one or
more security domains. This exchange is done by using signed assertions containing
identity information. The entity that provides the assertions is called the asserting
party while the relying party is the entity that consumes and verifies the assertions. A
level of trust is required between the assertion providers and the relying parties. The
current version of SAML is 2.0 which is a combination of three predecessor identity
federation standards: SAML 1.1, ID-FF 1.2 and Shibboleth. This resulted in SAML 2.0
not being compatible with SAML 1.1.

SAML mainly focusses on solving the problem of web browser single sign-on (72). For
this it offers a single sign-on profile. In the case of single sign-on the assertion provider
takes the role of Identity Provider (IdP) and the relying party the role of Service
Provider (SP). When the user visits a protected Service Provider, the SP redirects the
user to the IdP with an authentication request (SP-initiated web Single Sign-On (SSO)
opposed to IdP-initiated web SSO). Once the user has successfully authenticated
himself (assuming he/she is already registered to the IdP), a signed assertion is
generated by the IdP that contains all the information that is requested by the SP to
authenticate and authorise the user. This assertion is send back to the SP that will use
it to determine whether the user is allowed to access the service. SAML does not
define how a user should authenticate himself on the IdP. It leaves the responsibility
completely to the security domains 62.

Next to the single sign-on profile, SAML offers some other useful profiles (72): Single
Logout, Attribute Exchange, Name Identifier Mapping, Assertion Query/Request
profile.

SAML is widely adopted thanks to its focus on federation enablement and exchange of
asserted information (it is the industry standard). Shibboleth is a well known
implementation of the SAML protocol.

7.1.2 Liberty Alliance standards

The Liberty Alliance 63, currently transitioning to the Kantara Initiative64, is an effort of
more than 150 organisations that try to establish open standards, guidelines and best
practices for identity management. The main keywords in the project are Federated
Identity, Single Sign-On (SSO), Global Logout, Circle of Trust and Web Services. The
Liberty Alliance Project is categorised in three main components explained in the
following three paragraphs.

61

 http://en.wikipedia.org/wiki/Security_Assertion_Markup_Language
62

 http://en.wikipedia.org/wiki/Security_Assertion_Markup_Language
63

 http://projectliberty.org/liberty/specifications__1/
64

 http://kantarainitiative.org/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 63 of 83

The Liberty Identity Federation Framework (ID-FF) specifies core protocols (SSO,
Single Logout (SLO), Federation, Name Registration), schemata, bindings (HTTP and
SOAP) and concrete profiles (Browser/Artifact, Browser/Post, etc.) that allow
implementers to create a standardised, multi-vendor, identity federation network. ID-FF
is an extension of SAML and served as input for SAML 2.0.

The Liberty Identity Web Services Framework (ID-WSF) consists of a set of
schemata, bindings (SOAP, PAOS), protocols (Discovery and Interaction) and profiles
(Security Mechanisms, etc.) for providing a basic framework of identity services, such
as interoperable identity services, identity service description and discovery.

The Liberty Identity Service Interface Specifications (ID-SIS) utilize the ID-WSF
and ID-FF to provide networked identity services, such as contacts, presence detection
or wallet services that depend on networked identity. ID-SIS enables interoperable
identity services such as personal identity profile service, alert service, calendar
service, wallet service, contacts service, geo-location service, presence service and so
on.

The Liberty Alliance standards are not commonly used for identity management
solutions.

7.1.3 WS-*

WS-* is a collective noun for a variety of specifications associated with web services.
These specifications form together the basic framework for web services build on the
first-generation standards of SOAP, WSDL and UDDI. This association does not mean
they are developed by a main standard body, the specifications are maintained by a
diverse set of bodies or entities. The WS-* specifications are not strictly disjunct, they
may complement, overlap, and compete with each other.

In the domain of security and especially identity management, five specifications of the
WS-* are important: WS-Security, WS-Trust, WS-SecureConversation, WS-Federation
and WS-SecurePolicy.

WS-Security 65 defines how web service messages can be exchanged in a secure
way by guarding the integrity, confidentiality and the sender's identity of the messages.
To enforce this, WS-Security uses XML signature (for integrity), XML encryption (for
confidentiality) and various security token formats, like SAML, Kerberos, X.509 (for
sender authentication), to provide end-to-end security.

WS-Trust 66 is an extension of WS-Security providing methods for issuing, renewing
and validating security tokens and providing ways to establish, assess the presence of,
and broker trust relationships. Using the extensions defined in WS-Trust, applications
can participate in secure communication designed to work within the web service
framework. A main concept in WS-Trust is the Security Token Service (STS), this is a
special web service that issues security tokens conforming to the WS-Security
specification. In Figure 3, each arrow represents a possible communication path

65

 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss.
66

 http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.pdf

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 64 of 83

between the participants. Each participant has its own policies which combine to
determine the security tokens and associated claims required to communicate along a
particular path.

Figure 3 Security Token Service

WS-SecureConversation 67 defines extensions that include session key derivation
and security context establishment/sharing. This allows contexts to be established and
potentially more efficient keys or new key material to be exchanged, thereby increasing
the overall performance and security of the subsequent exchanges.

WS-SecurePolicy 68 extends the WS-Security, WS-Trust and WS-
SecureConversation security protocols by offering a specification for policy-based web
services .WS-SecurePolicy defines XML based policies that are called security policy
assertions. These policies allow web services to express their constraints and
requirements.

WS-Federation 69 defines federation mechanisms by extending WS-Trust, WS-
Security and WS-SecurePolicy. A fundamental goal of WS-Federation is to simplify the
development of federated services through cross-realm communication and
management of federation services by re-using the WS-Trust Security Token Service
model and protocol.

7.1.4 OpenID

67

 http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-
spec-os.pdf
68

 http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.pdf
69

 http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.pdf

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 65 of 83

OpenID (see the OpenID foundation’s website fot he specifications 70) is a lightweight
HTTP-based protocol for Single Sign-On and attribute exchange. The OpenID
specification is widely adapted and implemented by internet companies that have large
user bases like Google, Yahoo, WordPress and Facebook.

OpenID Authentication (see the specification at its website 71) uses only standard
HTTP(S) requests and responses, no special capabilities are required from the user
client. OpenID is not tied to the use of cookies or any other specific mechanism of
consumer or OpenID Provider session management. The OpenID Authentication
protocol messages are a defined fixed set of key-value pairs which are included in the
HTTP(S) requests as HTTP parameters.

The main OpenID authentication component has some extensions:

 OpenID Simple Registration 72 allows very light-weight profile exchange.

 OpenID Attribute Exchange 73 defines how to exchange identity information
between endpoints through attributes.

 OpenID Authentication Policy 74 allows a consumer to request that particular
authentication policies are applied by the OpenID provider when authenticating
an end user.

OpenID does not define explicit trust between the OpenID authentication provider and
the consumer. OpenID only ensures identification, that the given person is the one he
claimed to be during his previous visit. It enables a consumer to re-identify the user but
gives no guarantee about the user itself because of the lack trust between consumer
and provider. Anyone can use any provider to identify himself or even set up his/her
own one. If trust is required, a consumer could require the user to use a specific
provider, i.e. Google.

7.1.5 PKIX

PKIX is a standard, specified by the IETF's Public-Key Infrastructure working group,
describing a public key infrastructure. It specifies public key certificates, certificate
revocation lists, attribute certificates, and a certification path validation algorithm. PKIX
is a derivation of the X.509 (73) standard in order to adapt it to the more specific
domain of internet standards. The term X.509 certificate usually refers to the IETF's
PKIX Certificate and CRL Profile of the X.509 v3 certificate standard.

X.509 public key certificates bind a certain identity to a public key. It identifies the
holder and can be used to authenticate him. Public key certificates typically last for a
long time (several years). Authorisation information can be placed in a public key
certificate through the available X.509 extension mechanism. It is usually not desirable
though to place authorisation information in a public key certificate. Authorisation
information typically has a short lifetime and the authority issuing public key certificates
usually is not authoritative for the authorisation information. Authorisation information
can be separated by putting it in an attribute certificate. An attribute certificate is a

70

 http://openid.net/developers/specs/
71

 http://openid.net/specs/openid-authentication-2_0.html
72

 http://openid.net/specs/openid-simple-registration-extension-1_0.html
73

 http://openid.net/specs/openid-attribute-exchange-1_0.html
74

 http://openid.net/specs/openid-provider-authentication-policy-extension-1_0.html

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 66 of 83

digitally signed identity with a set of attributes. It does not have a public key and
typically does not last as long as a public key certificate. The PKIX standard is mainly
used for authentication though and less commonly for authorization purposes (74).

The main building blocks in the PKIX system are Central authorities (CA's), these are
entities that can issue certificates. Each of these entities contains a signed
certificate(s) with public/private key-pair. A CA signs every new issued certificate with
his private key and includes a reference to his own certificate. In this way every
certificate can be verified by using the public key of the CA that issued it. An issued
certificate signed by a CA can also be used as base certificate of a new CA. It is clear
that in this way a structured system can be build of CA's and end entities (base
certificates that are not used as base for a CA). These structures can range from very
simple, hierarchical topologies to complex topologies such as mesh architectures.

The certification path validation algorithm 75 is the algorithm which verifies that a given
certificate path is valid under a given PKI. A path starts with the end entity and
proceeds through a number of intermediate certificates up to a trusted root certificate,
typically issued by a trusted certification authority. Path validation is necessary for a
relying party to make an informed trust decision when presented with any certificate
that is not already explicitly trusted.

The revocation of certificates is specified in the Certificate Revocation List (CRL)
profile. The main concept behind CRL is the generation of a blacklist containing a list
of all revoked certificates.

Although PKIX certificates are widely spread there are some issues. As explained
before PKIX is a derivation of X.509, a standard from 1988, some of the design
decisions are not compatible with the current widely adopted computer (internet)
standards. The CRL system for example is not a good design solution to revoke
certificates; it slows down the overall performance of the PKI infrastructure. Because of
this many of the X.509 implementations turn off the revocation checks. Another
example is that the X.509 specification is over-functional and underspecified and the
normative information is spread across many documents from different standardization
bodies.

7.1.6 CAS

CAS (see the Central Authentication Service documentation, version 1.0 at Jasig’s
website 76) is a centralized ticked based single sign-on HTTP-based protocol. Unlike
most of the Single Sign-On systems, CAS lacks the use of attributes.

When a user visits a website requiring CAS authentication, the site redirects the user
to a CAS server. This is the central component in the CAS architecture and is
responsible for authenticating users, issuing security tickets and validating these
tickets. Once the user has successfully authenticated him/herself, the CAS server
redirects the user back to the website passing along with a security ticket. The website
validates this security ticket by contacting the CAS server. If the validation succeeds,
the user is successfully authenticated on the website.

75

 http://en.wikipedia.org/wiki/Certification_path_validation_algorithm
76

 http://www.jasig.org/cas/protocol

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 67 of 83

CAS 2.0 added support for proxiable credentials which allows a user to be
authenticated on back-end services of a website through proxy tickets.

7.1.7 Kerberos

Kerberos (75) can be seen as the first widely distributed Single Sign-On system. It is a
ticket oriented system that allows a user to authenticate him/herself in a non-secure
network domain. The authentication is mutual, both the user and the server verify each
other's identity. It is based on symmetric key cryptography and requires a trusted third
party. Kerberos offers sufficient protection facilities against eavesdropping and replay
attacks. The user credentials are not communicated over the untrusted network. The
Kerberos system demands that the users are trusted else the Kerberos system is at
risk of being compromised.

7.1.8 Discussion and Relevance for INTEGRATE

The INTEGRATE platform will provide a range of different services that demand from a
user some kind of identification. Implementing on each service a local identification
component is not sustainable in an extendable platform. A central identification
management system provides a better solution. This system should implement one or
more of the standards that were explained in the previous sections to be compliant to
the general industry solutions.

7.2 Authorization

7.2.1 Attribute-based Authorization

In an attribute-based authorisation model, identity information on a subject is
exchanged from one site to another site in support of some action. The identity
information exchanged will rather be information on some characteristic of the subject
relevant to the action performed (i.e. the role of the subject in a given scenario),
opposed to information exchanged during authentication on who, when and how the
subject authenticated. To exchange this authorisation information the same languages
can be used as for exchanging authentication attributes (i.e. SAML, WS-*, Liberty,
X.509).

7.2.2 Oauth

Oauth (76) is an open standard for authorisation. It allows a resource owner to grant
access to his/her private resources on one site (which is called the server), to another
site (called client) without the need to share his/her personal credentials. Instead
OAuth uses shared tokens which can be limited in time and/or scope. As such the
resource owner can give different clients different levels of access. The OAuth protocol
messages are a defined fixed set of key-value pairs which are included in the HTTP(S)
requests as HTTP parameters.

7.2.3 XACML

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 68 of 83

XACML 77 (full name: eXtensible Access Control Markup Language) is a XML based
declarative access control policy language defining both a policy, decision request and
decision response language. It is based on the Attribute Based Access Control (ABAC)
model which incorporates Role Based Access Control (RBAC). Currently version 2.0 of
XACML is adopted, the planned 3.0 version (which is currently in first draft) will support
a broad range of new features 78. The following paragraphs use version 2.0 as
reference unless otherwise stated.

Central in the XACML architecture stand two main components: the Policy
Enforcement Point (PEP) and the Policy Decision Point (PDP). The PEP intercepts
access requests by a subject on one or more protected resources on a server. After
the PEP has intercepted such an access request, it generates a decision request
based on the attributes of the subject, the resource in question, the performed action
and other information pertaining to the request. This decision request is send to the
PDP, a component responsible for making access decisions. For making an access
decision the PDP interprets the incoming decision request and searches for policies
(known to the PDP) that apply to the request. The search for matching policies can be
an overhead in the XACML system, because for each decision request, every policy
available to the system is checked (no indexing mechanism available). After an access
decision is made, based on the access rules in the policies, the PDP generates a
decision response and sends it back to the PEP. The PEP uses this response to
decide if access is granted to the protected resource or not.

The XACML policy language is designed to offer great interoperability with different
platforms and extensibility. The smallest element in the language is the rule element.
Each rule targets a set of decision requests to which it is intended to apply. The rule
target is expressed in form of a logical expression on attributes of the request. A rule
also has a condition element that refines even more the set of decision requests that
are targeted. If for the given target and condition a set of decision requests is found,
the rule responses with a defined effect value that permits or denies access to the
selected set of decision requests. Rules can not exists on there own, they have to be
combined in a policy element. This policy element groups rules and combines the
access decisions (permit or deny), that were evaluated for the targeted set of decision
requests, to a general policy access decision using a combining algorithm. A policy
element can target a set of decision requests. Finally there is an optional third element
called policyset. This element can group policy elements and/or other policysets. Like
the policy element it has a combining algorithm to generate a general policyset access
decision. The policyset can target a set of decision requests. Policies and Policysets
can contain obligations, which contain a set of operations that must be performed by
the PEP in conjunction with an authorisation decision.

XACML 3.0 adds a new important concept to the policy language: delegation. It
permits some users to create policies of limited duration to delegate certain capabilities
to others.

7.2.4 PERMIS

77

 http://www.oasis-open.org/committees/xacml/
78

 http://www.webfarmr.eu/2010/07/enhancements-and-new-features-in-xacml-3-axiomatics/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 69 of 83

PERMIS (77) (PrivilEge and Role Management Infrastructure Standards) is an
authorisation infrastructure that is based on two underlying technologies: role based
access control (RBAC) and Policy based Management. RBAC allows to group all users
who use the infrastructure into roles (or attributes). Each role (or attribute) is
associated with a collection of privileges. A user's membership of a role will allow the
user to exercise the privileges associated with the role. The policy based management
is a collection of rules that specify the authorization criteria for the users.

7.2.5 Ponder

Ponder (78) is a declarative, object-oriented language for specifying different types of
policies, grouping policies into roles and relationships and finally defining
configurations of roles and relationships as management structures. Ponder can be
used to specify security policies with role-based access control, as well as general-
purpose management policies. Ponder2 79 is the successor of the Ponder policy
language. It corrects some of the main disadvantages of Ponder making the framework
easier to deploy, make it more accessible for small devices and improve the
collaboration/interaction/federation between the policy execution components.

Key concepts of the language include:

 Domains, which provide a means of grouping resources to which policies apply
and can be used to partition the resources in a large system according to
geographical boundaries, resource type, responsibility and authority or for the
convenience of human managers. Membership of a domain is explicit and not
defined in terms of a predicate on resource attributes. A domain does not
encapsulate the resources it contains but merely holds references to resource
interfaces.

 Roles, which group the policies relating to a position in an organisation (like
service administrator, service operator, etc.)

 Relationships, which define interactions between roles and management
structures to define a configuration of roles and relationships pertaining to an
organisational unit such as a department.

Ponder supports, as said before, an extensible range of policy types.

 Authorisation policies are essentially security policies related to access-control
and specify what activities a subject is permitted or forbidden to do to a set of
target resources.

 Obligation policies specify what activities a subject must do to a set of target
resources and define the duties of the policy subject. Obligation policies are
triggered by events and are normally interpreted by a manager agent at the
subject.

 Refrain policies specify what a subject must refrain from doing and are similar
to negative authorisation policies but are interpreted by the subject.

 Delegation policies specify which actions subjects are allowed to delegate to
others. A delegation policy thus specifies an authorisation to delegate.

 Composite policies are used to group a set of related policy specifications
within a syntactic scope with shared declarations in order to simplify the policy

79

 http://ponder2.net/

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 70 of 83

specification task for large distributed systems. Four types of composite
policies are provided: groups, roles, relationships and management structures.

7.2.6 Cassandra

Cassandra (79) is a role-based policy specification for access control in a distributed
system in which the expressiveness (and the computational complexity) can be tuned
according to need by choosing an appropriate constraint domain. It is designed to
satisfy complex policy requirements and at the same time be simple enough to express
access control semantics that can be defined in a formal way (trade-off between
expressiveness and decidability). This means that, depending on the application’s
requirements, a suitable constraint domain can be used in the Cassandra system
without the need of changing the semantics.

The language is based on a clear mathematical foundation, more precisely Datalog
with constraints (subset of Prolog) and uses five special predicates to express a wide
range of policies including role hierarchy, role delegation, separation of duties,
cascading revocation, automatic credential discovery and trust negotiation. It is policy
neutral meaning it can express subtle variants of well-known policy idioms. The formal
specification for Cassandra does not only include policy language semantics but also
operational semantics. A goal-oriented distributed policy evaluation algorithm is used
to guarantee termination.

7.2.7 Discussion and Relevance for INTEGRATE

Strict policies are defined by official medical instances to ensure that the confidential
medical data can be accessed and manipulated in a secure way. It is clear that a well
defined access control system is essential in the INTEGRATE platform. This ensures
that a user only can see and manipulate the resources that he is allowed to. To be
compliant to the industry standards, INTEGRATE should use one or more of the
standards discussed above.

7.3 Data Transfer Security

7.3.1 TLS/SSL

A reliable protocol for securing data transfer is SSL (Secure Socket Layer 80) together
with his successor TLS (Transport Layer Security (80)). They both offer services to
secure the packets of the application layer of the OSI-model 81.These services provide
authentication, message integrity and confidentiality over an insecure network. TLS
(SSL) is commonly used in the HTTPS protocol and for tunnelling in VPN.

To set up a secure connection the protocol uses several steps called the handshake
procedure. First the server and client that want to exchange sensitive data over TLS
(SSL) negotiate the cipher suite (this are the cypher and hash algorithms) that will be
used by both parties as base for encryption and hashing of the data. After this step the
server sends a digital certificate containing the server name, the CA that signed the
certificate (to verify the certificate can be trusted) and the public encryption key of the

80

 http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt
81

 http://en.wikipedia.org/wiki/OSI_model

http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt
http://en.wikipedia.org/wiki/OSI_model

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 71 of 83

server. After the client has checked the validity of the certificate, the client encrypts a
random number with the public key of the server and sends it to the server (which can
only be decrypted by the server's private key). Finally both client and server generate
session keys, using the random number as base, that will be used for the secured
connection. The client and server can now exchange the sensitive data in a secure
way.

7.3.2 IPSec

Next to the well-known SSL-TLS standards there is another protocol that is specified
for securing data that needs to be transmitted. IPSec (Internet Protocol Security) (81)
secures the packets of the network layer of the OSI-model by encrypting and/or
authenticating the IP packages of this layer. This allows network applications to
communicate in a secure way on a network without the need of implementing extra
network software in their application stack. This application independence is not
possible in TLS-SSL systems. The drawback of this is that IPSec is more complex to
deploy than TLS-SSL.

IPSec has two main modes of operation:

 Transport mode: in this mode only the payload (the data you transfer) of the
IP packet is encrypted and/or authenticated.

 Tunnel model: here the entire IP packet is encrypted and/or authenticated. It is
then encapsulated into a completely new IP packet containing a new IP header.
This operation is commonly used in VPN.

The encryption of small packages in the network generates a large computational
overhead which can be a problem in real-time systems.

7.3.3 Discussion and Relevance for INTEGRATE

The different services of the INTEGRATE platform exchange resources with each
other, over a possible unsecure exchange channel. To guard confidentiality and
integrity of the exchanged resources, a secure system like SSL/TLS or IPSec needs to
be provided.

7.4 De-identification

When publishing data about individuals, also called microdata, it is important that no
sensitive information is revealed about them. Microdata is typically stored in a table,
and each record (row) corresponds to one individual. Each record has a number of
attributes, which can be divided into the following three categories:

 Explicit identifiers are attributes that clearly identify individuals (e.g., social
security number, address, name).

 Quasi-identifiers are attributes whose values when taken together can
potentially identify an individual (e.g., zip-code, birthdate, gender).

 Sensitive attributes are attributes that are considered sensitive (e.g. disease,
salary).

To avoid the identification of records in microdata, the uniquely identifying information
(explicit identifiers) are removed from the table. However, the quasi-identifiers,which

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 72 of 83

are a set of non-sensitive attributes, can be used for identifying an individual if linked to
other public records. These quasi-identifier attributes should be de-identified in the
dataset in order to prevent the sensitive information of individuals from being
disclosed. So, microdata should be sanitised on two levels before it is published: firstly
all explicit identifiers should be removed and secondly all the quasi-identifier attributes
should be transformed in such a way that the disclosure risk is limited while
maximising the usefulness of the data (82).

There are two types of information disclosure: identity disclosure and attribute
disclosure. Identity disclosure occurs when in the released data a record is linked to
an individual. Attribute disclosure occurs when new sensitive information can be
extracted from the data about some indivuals. When an identity is revealed,
corresponding sensitive attributes are disclosed, often causing attribute disclosure
(82).

7.4.1 Transformation Techniques

The process of modifying the original microdata into a form that limits disclosure is
called anonymisation. For this, several techniques can be used.

 Generalisation consists in substituting the values of a given attribute with more
general values. Generalisation allows the data to be modeled in generalisation
hierarchies in which the leaves are the actual values of the attribute and the
precision of a value is reduced by each move to one higher level. A de-
identification algorithm needs to deal with this hierarchical nature of the
attributes. For a quasi-identifier consisting of multiple attributes, each with its
own domain (e.g. age, zip code, salary), the domain generalisation hierarchies
of the individual attributes can be combined to form a multi-attribute
generalisation lattice (83).

 Suppression removes data from the table to anonymise it. It can be applied at
the level of a row by removing a whole record, at the level of an attribute by
obscuring all values of an attribute or at the level of a cell by obscuring the
attribute value for a specific attribute and record. Removing all values of an
attribute is equivalent to generalisation to the root node of the hierarchy.

 Global recoding consists in aggregating the values observed in an attribute
causing several values of that attribute to be collapsed into a single one.

 PostRAndomisation Method (PRAM) is a method to protect categorical
attributes (e.g., blood type) from disclosure. By using a known probability
mechanisms, the values of a categorical attribute are changed to a new values,
which may or may not be different from the original. It is basically a form of
deliberate misclassification, wherefore it will be difficult to identify records (with
certainty) as corresponding to certain individuals. Since the probability
mechanism that is used when applying PRAM is known, characteristics of the
true data can still be estimated from the perturbed data file.

 Microaggregation aggregates records into groups. Instead of releasing the
actual values of sensitive attributes, the mean of the group to which the
observation belongs is released. The confidentiality of individual data subjects
is protected by ensuring that each group has at least a minimum number of
observations.

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 73 of 83

 Top- and bottom coding are particular global recoding techniques. Top
coding on numirical attributes groups together all top values. It basically sets an
upper limit on all published values of that attribute. Bottom coding groups
together all bottom values.

 Slicing partitions data vertically into groups of correlated attributes (columns).
It then horizontally partitions the data into groups of records. Within each group
of records, the rows in each column are randomly permutated to hide the
linking between the different columns. Generalisation is often applied to
columns to make them satisfy k-anonymity.

The above list is not exclusive, other, lesser discussed, techniques exist such as
adding-noise, data-swapping (specific for categorical data), re-sampling (specific for
numerical data).

7.4.2 K-anonimity

K-anonymity transforms a data set containing personal information making it difficult to
determine the identity of individuals in the data set. Each record in a k-anonymised
data set is similar to at least k-1 other records on a given set of quasi-identifiers. Such
a group of k records is called an equivalence class. K-anonymity is reached by using
transformation techniques such as generalisation, global recoding and suppression.
The maximum probability of a record being re-identified would then be 1/k. A higher
value of k implies a lower probability of re-identification but also more distortion to the
data, and hence greater information loss due to k-anonymization. Excessive
anonymisation can make disclosed data less useful to the recipient. Some analysis
can become impossible or it can produce biased and incorrect results (84).

By applying generalisation and suppression a generalisation T can be derived from a
microdata set V. If such a generalisation satisfies k-anonymity, if it does remove more
data then necessary (does not enforce more suppression then allowed) and if there is
not another generalisation wich is less general, then the generalisation T is k-minimal
(85). Different algorithms exist to find such a k-minimal generalisation. An extensive
study comparing several of those algorithms (Optimal Lattice Anonymisation, Incognito
(86), Datafly, Samarati) has been made (87).

As a record is similar, for a given set of quasi-identifiers, to at least k-1 other records,
no identity can be linked to groups of less than k individuals preventing identity
disclosure. However, information can be leaked through attribute disclosure if an
equivalence class lacks diversity in the value of a sensitive attribute.

7.4.3 Diversity

l-Diversity tries to provide stronger privacy guarantees than k-anonymity by making
sure that sensitive attributes are diverse enough in the groups, equivalence classes,
created by k-anonymity. An equivalence class has l-diversity if the dataset contains at
least l "well-represented values on the sensitive attribute. If all the equivalence classes
in a table, created by anonymising some non-sensitive attributes in a dataset, have l-
diversity, then the table is said to have l-diversity. It ensures that for a positive
disclosure an attacker needs at least l-1 pieces of damaging background knowledge to
eliminate l-1 possible sensitive values. By setting this parameter l, the data publisher

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 74 of 83

can determine how much protection is provided against background knowledge of
sensitive values, even if the publisher doesn't know this background knowledge (88).

There exists different variants of l-diversity, based on the interpretation given to the
term "well-represented".

 Distinct l-diversity is the most general form of l-diversity and foresees that
there are at least l distinct values for the sensitive attributes in any possible
equivalence class.

 Entropy l-diversity suggests that there are enough different sensitive values
for each equivalence class and that these different sensitive values should be
distributed evenly enough. The entropy of the distribution of sensitive values in
each equivalence class is at least log(l).

 Recursive (c, l)-diversity restricts the less frequent values to not appear too
rarely and similarly the most frequent values to not appear too frequently.

l-Diversity possesses the monotonicity property. If a generalisation of a table T (T*)
satisfies l-diversity, then any generalisation T** of T* will aslo satisfy l-diversity.
Because k-anonymity also possesses the monotonicity property it is possible to modify
k-anonymity algorithms (e.g. Incognito, Samarati) to calculate the minimal
generalisation. Instead of checking for k-anonymity every time a generalisation is
tested, you would then test for l-diversity.

l-Diversity has a few limitations, namely:

 It can be unnecessary to achieve. A single sensitive attribute can have values
that have a very different degree of sensitivity. An HIV positive result for
example is much more rare than an HIV negative result, meaning that one
would not mind being known as having an HIV-negative result as most of the
population probably has this result. Therefore it would be unnecessary to
achieve 2-diversity for an equivalence class that contains only negative
records.

 l-Diversity can be difficult to achieve. To achieve for example distinct l-diversity
for a population of 100000 records and 0,2% HIV positives (100000 * 0,2% =
20) there can be at most 20 equivalence classes. This means large
generalizations, which will cause a lot of information loss (82).

 l-Diversity also isn't sufficient to prevent attribute disclosure (new information
about an individual can be revealed).

 As l-diversity doesn't consider the overall distribution of a sensitive
attribute, a sensitive attribute can be disclosed when the overall
distribution of a sensitive attribute is skewed (skewness attack). When
there is in example, in the HIV case, an equivalence class with an equal
number of positive and negative records then anyone in that class has a
50% possibility of being positive.

 When the values of a sensitive attribute in an equivalence class are
distinct, but semantically similar, attributes can also be disclosed
(similartiy attack). An equivalence class for example could have all
kinds of stomach-related disease values for the sensitive attribute
"disease". Even though an attacker doesn't know which specific disease
somebody in that equivalence class might have, he can still infer the
fact that is is stomach related.

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 75 of 83

7.4.4 t-Closeness

t-Closeness tries to overcome the limitations and shortcomings of l-diversity and k-
anonymity. T-Closeness requires that the distribution (P) of a sensitive attribute in an
equivalence class is close to the distribution (Q) of that attribute in the overall table. A
threshold t determines the maximum distance between these two distributions P and
Q. In other words P and Q have to be within a certain proximity/closeness (t) of each
other. A table is said to have t-closeness if all equivalence classes have t-closeness.
The t parameter enables one to trade off between utility and privacy of the released
data. If t is too small, then the useful information about the correlation between the
quasi-identifier attributes and the sensitive attributes will be lost, hereby removing
some information from the released data. On the other hand if t is a bit too big, this
correlation can enable attribute disclosure.

The distance between the distributions P and Q is expressed by using the Earth
Mover's Distance (EMD) 82. The EMD is based on the minimal amount of work needed
to transform one distribution to another by moving distribution mass between each
other. EMD captures semantic distance (i.e., ground distance) well. EMD extends the
notion of a distance between single elements to that of a distance between sets, or
distributions of elements (89).

7.4.5 Distribution-based Microdata Anonimization

k-Anonymity, l-diversity and t-closeness achieve privacy through record grouping. They
essentially specify constraints on the sensitive attribute distribution of a group of
records. The anonymisation problem is thus to transform the original microdata table to
groups so that the sensitive attribute distribution of each group satisfies the privacy
goal. However there may not always exist groupings that satisfy the privacy goal and
the data owner has no control over how the final grouping will look. As such there is a
conflict between the desirable grouping for microdata analysis (i.e. by age group) of
the data owner and the grouping for privacy protection. This is caused by the fact that
these anonymisation approaches tightly couple grouping with the achieval of privacy
goals (90).

Distribution transformation tries to cleary decouple grouping from privacy goals by
modifying the sensitive attribute values in arbitrary record groups so that it is only
possible to infer from the anonymised data that for each record its sensitive attribute in
the group follows the target distribution and nothing more.

The basic intend is to generalise and permute the sensitive attribute values, leaving
quasi-identifiers unchanged. This allows different target distributions (e.g., P1 and P2)
for different groups (e.g., g1 and g2), making it possible that both distributions P1 and
P2 allow l-diversity or t-closeness for their respective groups but are different such that
each is closer to the original distribution. This reduces data distortion in the resulting
table. Introducing fake values, for the sensitive attribute into the different groups, can
yield even better results. The addition of fake values can reduce the level of
generalisations needed to match the target distribution. However, the introduction of

82

 http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/RUBNER/emd.htm

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 76 of 83

fake values needs to happen in a controlled way, as adding too many fake values can
influence the generalisation too much, which would result in a too distorted result table.

7.4.6 Discussion and Relevance for INTEGRATE

De-identification and pseudonymisation play a central role in the INTEGRATE
platform. All sensitive privacy information of a patient should be keep hidden for
unauthorised users. Using t-closeness provides a secure way of sharing the patient
resources without revealing the identity of the patient.

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 77 of 83

8 Conclusion

This document reported on a survey of the state-of-the-art standards relevant to
INTEGRATE. The survey covered several technologies in the form of methods,
techniques, languages, ontologies and computer software systems from a variety of
research and technology areas that included the Semantic Web, Privacy and Security
and the Biomedical and Life Science domains.

From the Semantic Web research area we focused our attention on four areas of
interest that contribute technologies for addressing different aspects of semantic data
and knowledge management. These included ontology representation and query
languages, semantic repositories, automated reasoners and ontology mediation. One
of the key conlusions drawn from the survey of these technologies is the lack of
standards in many areas which could be attributed to the relative young age of the
semantic Web community. Although the W3C sponsors several standards in the area
of ontology languages and core semantic technologies the story is rather different
when it comes to semantic repositories, automated reasoners and ontology mediation
techniques. Although the area is timing with techniques, methods and approaches for
addressing different aspects of knowledge management the tools and systems
implementing these are far from becoming standards. It is important to notice,
however, that many of these tools have become the defacto standard for building
semantic solutions in the semantic community and outside of it as well. This is
specially reflected in the area of semantic repositories and reasoners where systems
such as OWLIM, Virtuoso, Sesame and AllegroGraph have positioned themsleves as
the four defacto standards for managing RDF-based data. In a similar way, reasoners
such as Pellet, RACER (Pro) and FaCT++ have become the defacto choice for
reasoning with ontologies. In the area of semantic reasoning it is also important to
highlight the newly-developed family of efficient classifiers for dealing with ontologies in
the Life Sciences. These differentiate themselves from the “classic”, general-purpose
reasoners such as Pellet, FaCT++, HermiT, RACER (Pro), etc., in that they exploit the
characteristics of the type of ontologies found in the Life Sciences and Medical
domains in order to provide a more efficient classification service albeit with the lack of
other important reasoning services. Finally, the landscape of ontology mediation,
alignment and merging shares the same characteristic in terms of the lack of
standards. Although techniques and methods abound systems and tools have not
become standards; although some of them do share more popularity among different
communities. Another important conlusion drawn from this survey is with respect to the
selection of tools and systems. The conlusion is that no system (reasoners, matchers
and repositories) seems to outperform all the other systems, although many have
positioned themselves obe level higher than the rest in terms of features.
Consequently, although a series of characteristics were identified as the main factors
influencing the selection of systems the ultimate decision will depend on a carefull
analysis of the application requirements, the characteristics of the tools and an
empirical analysis of the performance of the tools. In this respect, the selection of
systems willbe done based on an analysis of the performance of the systems which
will be reported in Deliverable 2.2.

In the field of Security and Privacy this survey focused on four main areas, namely
identity management, authorization, data transfer security and de-identification. With
respect to identity management the main conclusion is that implementing a local

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 78 of 83

identification component in each service is not sustainable in an extendable platform.
Instead, a better approach is a central identification management system. With respect
to authorization, it is clear that a well defined access control system is essential in the
INTEGRATE platform. This ensures that a user only can see and manipulate the
resources that he is allowed to. To be compliant to the industry standards,
INTEGRATE should use one or more of the standards discussed above. In what
regards to data transfer security, the main conclusion is that in order to guard
confidentiality and integrity of the exchanged resources, a secure system like SSL/TLS
or IPSec needs to be provided within the INTEGRATE platform. Finally, de-
identification and pseudonymisation play a central role in the INTEGRATE platform. All
sensitive privacy information of a patient should be keep hidden for unauthorised
users. Using t-closeness provides a secure way of sharing the patient resources
without revealing the identity of the patient

Finally, this document also surveyed the landscpae of ontologies relevant for the
project, covering standard ontologies such as SNOMED CT, LOINC, MeDRA, MeSH,
ICD-10 and UMLS. All of them cover different areas within the biomedical domain and
promise to serve as the basis for building the solution envisioned by the project.

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 79 of 83

9 Bibliography

1. F. Manola, E. Miller. RDF Primer. W3C. [Online] February 10, 2004.
http://www.w3.org/TR/rdf-primer/.
2. G. Klyne, J. Carroll. Resource Description Framework (RDF): Concepts and
Abstract Syntax. W3C. [Online] February 10, 2004. http://www.w3.org/TR/rdf-
concepts/.
3. D. Beckett, T. Berners-Lee. Turtle - Terse RDF Triple Language. W3C. [Online]
March 28, 2011. http://www.w3.org/TeamSubmission/turtle/.
4. D. Brickley, R.V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema.
W3C. [Online] February 10, 2004. http://www.w3.org/TR/rdf-schema/.
5. M. Dean, G. Schreiber. OWL Web Ontology Language Reference. W3C. [Online]
February 10, 2004.
6. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider. The
Description Logic Handbook. Theory, Implementation and Applications. s.l. :
Cambridge University Press, 2003.
7. Combining RDF and Part of OWL with Rules: Semantics, Decidability, Complexity.
Horst, H.J. ter. Galway, Ireland : s.n., 2005. ISWC. Vol. LNCS 3729, pp. 668–684.
8. OWLRules: A Proposal and Prototype Implementation. I. Horrocks, P. Patel-
Schneider, S. Bechhofer, D. Tsarkov. 2005, Journal of Web Semantics, pp. 23-40.
9. P. Hitzler, M. Krotzsch, B. Parsia, P. Patel-Schneider, S. Rudolph. OWL 2 Web
Ontology Language Primer. W3C. [Online] October 29, 2009.
http://www.w3.org/TR/owl-primer/.
10. Pushing the EL envelope. F. Baader, S. Brandt, C. Lutz. 2005. 19th International
Joint Conference on Artificial Intelligence (IJCAI).
11. E. Prud'hommeaux, A. Seaborne. SPARQL Query Language for RDF. W3C.
[Online] January 15, 2008. http://www.w3.org/TR/rdf-sparql-query/.
12. OWLIM: A family of scalable semantic repositories. B. Bishop, A. Kiryakov, D.
Ognyanoff, I. Peikov, Z. Tashev, R. Velkov. 1, 2011, Semantic Web –
Interoperability, Usability, Applicability, Vol. 2, pp. 33-42.
13. D. Brickley, R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. World Wide Web Consortium. [Online] February 10, 2004.
http://www.w3.org/TR/rdf-schema/.
14. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinness, P. F.
Patel-Schneider, L.A. Stein. OWL Web Ontology Language Reference. World Wide
Web Consortium. [Online] February 10, 2004. http://www.w3.org/TR/owl-ref/.
15. Motik, B., et al. OWL 2 Web Ontology Language Profiles. World Wide Web
Consortium. [Online] October 27, 2009. http://www.w3.org/TR/owl2-profiles/.
16. Pellet: A practical OWL-DL reasoner. E. Sirin, B. Parsia, B. Cuenca Grau, A.
Kalyanpur, Y. Katz. 2, 2007, Web Semantics: Science, Services and Agents on the
World Wide Web, Vol. 5, pp. 51-53.
17. I. Horrocks, P.F. Pate-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean.
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. World Wide
Web Consortium. [Online] May 21, 2004. http://www.w3.org/Submission/SWRL/.
18. E.Prud'hommeaux, A Seaborne. SPARQL Query Language for RDF. World Wide
Web Consortium. [Online] January 15, 2008. http://www.w3.org/TR/rdf-sparql-query/.
19. Seaborne, A. RDQL - A Query Language for RDF. World Wide Web Consortium.
[Online] January 9, 2004. http://www.w3.org/Submission/RDQL/.

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 80 of 83

20. FaCT++ description logic reasoner: System description. D. Tsarkov, I. Horrocks.
2006. Int. Joint Conference on Automated Reasoning (IJCAR). pp. 292-297.
21. Horrocks, I. The Description Logic Handbook: Theory, Implementation and
Applications. [ed.] D. Calvanese, D. McGuinness, D. Nardi, P. F. Patel-Schneider F.
Baader. s.l. : Cambridge University Press, 2002.
22. Motik, B. Reasoning in Description Logics using Resolution and Deductive
Databases. s.l. : PhD Thesis, 2006.
23. HermiT: A Highly-Efficient OWL Reasoner. R. Shearer, B. Motik, I. Horrocks.
2008. 5th Int. Workshop on OWL: Experiences and Directions.
24. Hypertableau Reasoning for Description Logics. B. Motik, R. Shearer, I.
Horrocks. 2009, Journal of Artificial Intelligence Research, Vol. 36, pp. 165-228.
25. Structured Objects in OWL: Representation and Reasoning. B. Motik, B. Cuenca
Grau, U. Sattler. 2008. 17th International WWW Conference. pp. 555–564.
26. CEL: A Polynomial-time Reasoner for Life Science Ontologies. F. Baader, C. Lutz,
B. Suntisrivaraporn. [ed.] N. Shankar U. Furbach. s.l. : Springer-Verlag, 2006. IJCAR.
Vol. LNAI 4130, pp. 287-291.
27. Is tractable reasoning in extensions of the description logic EL useful in practice?
F. Baader, C. Lutz, B. Suntisrivaraporn. 2005. International Workshop on Methods
for Modalities (M4M-05).
28. Reintroducing CEL as an OWL 2 EL Reasoner. J. Mendez, B. Suntisrivaraporn.
2009. 22nd International Workshop on Description Logics. Vol. 477.
29. Fast Classification in Protege: Snorocket as an OWL2 EL Reasoner. M. Lawley, C.
Bousquet. 2010. Australasian Ontology Workshop.
30. TrOWL: Tractable OWL 2 Reasoning Infrastructure. E. Thomas, J. Pan, Y. Ren.
2010. Extended Semantic Web Conference (ESWC).
31. Forgetting in managing rules and ontologies. T. Eiter, G. Ianni, R. Schindlauer, H.
Tompits. s.l. : IEEE Computer Society, 2006. IEEE/WIC/ACM International
Conference on Web Intelligence (WI). pp. 411-419.
32. Forgetting in DL-Lite. Z. Wang, K. Wang, R. Topor, J. Pan. 2008. 5th European
Semantic Web Conference (ESWC).
33. Towards LarKC: a Platform for Web-scale Reasoning. D. Fensel, F. van
Harmelen, B. Andersson, P. Brennan, H. Cunningham, E. Della Valle, F. Fischer,
Z. Huang and A. Kiryakov, T. Lee, L. School, V. Tresp, S. Wesner, M. Witbrock, N.
Zhong. 2008. Proceedings of the IEEE International Conference on Semantic
Computing (ICSC).
34. Comparison of Reasoners for large Ontologies in the OWL 2 EL Profile. K.
Dentler, R. Cornet, A. Ten Teije, N. De Keizer. s.l. : IOS Press, 2011, Semantic Web
Journal, Vol. 1, pp. 1-5.
35. Benchmarking OWL reasoners. J. Bock, P. Haase, Q. Ji, and R. Volz. 2008.
Workshop on Advancing Reasoning on the Web: Scalability and Commonsense.
36. Liebig, T. Reasoning with OWL - System Support and Insights. Ulm University.
2006. TR-2006-04.
37. Framework for an Automated Comparison of Description Logic Reasoners. T.
Gardiner, D. Tsarkov, I. Horrocks. s.l. : Springer, 2006. Proceedings of the
International Semantic Web Conference (ISWC). Vol. 4273, pp. 654–667.
38. J. de Bruijn, M. Ehrig, C. Feier, F. Martin-Recuerda, F. Scharffe, M. Weiten.
Ontology Mediation, Merging and Alignment. [book auth.] R. Studer, P. Warren J.
Davies. Semantic Web Technologies: Trends and Research in Ontology-based
Systems. s.l. : John Wiley & Sons, 2006.
39. Ontology Mapping: The State of the Art. Y. Kalfoglou, M. Schorlemmer. Dagstuhl
Seminar Proceedings. Semantic Interoperability and Integration.

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 81 of 83

40. SMART: Automated Support for Ontology Merging and Aligning. N.F. Noy, M.
Musen. 1999. Proceedings of the 12th Workshop on Knowledge Acquisition, Modelling
and Management (KAW).
41. PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment.
N.F. Noy, M. Musen. 2000. Proceedings of the 17th Interational Conference on
Artificial Intelligence (AAAI).
42. PROMPTDIFF: A Fixed-Point Algorithm for Comparing Ontology Versions. N.F.
Noy, M. Musen. 2002. Proceedings of the 18th National Conference on Artificial
Intelligence (AAAI).
43. Ontology Merging for Federated Ontologies on the Semantic Web. A. Maedche, G.
Stumme. 2001. Proceedings of the International Workshop for Foundations of Models
for Information Integration (FMII).
44. Learning to map between ontologies on the semantic web. A. Doan, J. Madhavan,
P. Domingos, A. Halevy. 2002. Proceedings of the 11th International World Wide
Web Conference (WWW).
45. A proposal for word sense disambiguation using conceptual distance. E. Agirre, G.
Rigau. 1997. Amsterdam Studies in the Theory and History of Linguistic Science
Series. pp. 161-172.
46. Sentence similarity based on semantic nets and corpus statistics. Y. Li, D.
McLean, Z. Bandar, J. O’Shea, K. Crockett. 8, 2006, IEEE Transactions on
Knowledge and Data Engineering, Vol. 18, pp. 1138-1150.
47. Using information content to evaluate semantic similarity in a taxonomy. Resnik, P.
1995. International Joint Conference on Artificial Intelligence (IJCAI). Vol. 14, pp. 448-
453.
48. Ontology matching with semantic verification. Y. Jean-Mary, E. Shironoshita, M.
Kabuka. 2009, Web Semantics: Science, Services and Agents on the World Wide
Web, pp. 235-251.
49. Similarity Computation by Ontology Merging System: DKPOM. Fahad, M. A. Q.
Muhammad. 2009, Computer, Control and Communication, pp. 17-18.
50. Correlation between gene expression and GO semantic similarity. J. Sevilla, V.
Segura, A. Podhorski, E. Guruceaga, J. Mato, L. Martinez-Cruz, F. Corrales, A.
Rubio. 4, 2005, IEEE/ACM Transactions on Computational Biology and
Bioinformatics, Vol. 2.
51. Using Bayesian decision for ontology mapping. J. Tang, J. Li, B. Liang, X. Huang,
Y. Li, K. Wang. 2006, Journal of Web Semantics: Science, Services and Agents on
the World Wide Web, pp. 243–262.
52. J. Euzenat, P. Shvaiko. Ontology Matching. s.l. : Springer-Verlag, 2007.
53. SAMBO - A System for Aligning and Merging Biomedical Ontologies. P. Lambrix,
H. Tan. 3, 2006, Journal of Web Semantics, Special issue on Semantic Web for the
Life Sciences, Vol. 4, pp. 196-206.
54. Ontology matching with semantic verification. Y. R. Jean-Marya, E. P.
Shironoshitaa, M. R. Kabuka. 3, 2009, Journal of Web Semantics: Science, Services
and Agents on the World Wide Web, Vol. 7, pp. 235-251.
55. Eff2Match Results for OAEI 2010. W. Wei Khong Chua, K. Jung-Jae. ISWC
Workshop on Ontology Matching. pp. 150-158.
56. RiMOM: A Dynamic Multistrategy Ontology Alignment Framework. J. Li, J. Tang,
Y. Li, Q. Luo. 2009, IEEE Transactions on Knowledge and Data Engineering, Vol. 21.
57. AgreementMaker: efficient matching for large real-world schemas and ontologies. I.
F. Cruz, F. Antonelli, C. Stroe. 2, 2009, Proceedings of the VLDB Endowment, Vol. 2,
pp. 1586-1589.

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 82 of 83

58. A Visual Tool for Ontology Alignment to Enable Geospatial Interoperability. I. F.
Cruz, W. Sunna, N. Makar, S. Bathala. 3, 2007, Journal of Visual Languages and
Computing, Vol. 18, pp. 230-254.
59. Handling Semantic Heterogeneities using Declarative Agreements. I. F. Cruz, A.
Rajendran, W. Sunna, N. Wiegand. 2002. International ACM GIS Symposium. pp.
168-174.
60. Using the AgreementMaker to Align Ontologies for the OAEI Campaign 2007. W.
Sunna, I. F. Cruz. 2007. Proceedings of the International Workshop on Ontology
Matching (CEUR-WS). Vol. 304, pp. 133-138.
61. BLOOMS on AgreementMaker results for OAEI 2010. C. Pesquita, C. Stroe, I. F.
Cruz, F. Couto. 2010. Proceedings of the 5th International Workshop on Ontology
Matching.
62. BLOOMS on AgreementMaker: results for OAEI 2010. C. Pesquita, C. Stroe, I. F.
Cruz, F. M. Couto. 2010. Proceedings of the Fifth International Workshop on Ontology
Matching.
63. Hybrid Alignment Strategy for Anatomical Ontologies: Results of the 2007 Ontology
Alignment Contest. S. Zhang, O. Bodenreider. 2007. Proceedings of the 2nd
International Workshop on Ontology Matching. Vol. 304.
64. Of mice and men: Aligning mouse and human anatomies. O. Bodenreider, T.F.
Hayamizu, M. Ringwald, S. de Coronado, S. Zhang. 2005. Proceedings of AMIA
Symposium. pp. 61-65.
65. NLM Anatomical Ontology Alignment System: Results of the 2006 Ontology
Alignment Contest. S. Zhang, O. Bodenreider. 2006. Proceedings of the OAEI
Campaign. pp. 145-156.
66. Falcon-AO: Aligning Ontologies with Falcon. N. Jian, W. Hu, G. Cheng, Y. Qu.
2005. Proceedings of K-CAP 2005 Workshop on Integrating Ontologies.
67. Falcon-AO: A practical ontology matching system. W. Hu, Y. Qu. 3, 2008, Journal
of Web Semantics: Science, Services and Agents on the World Wide Web, Vol. 6, pp.
237-239.
68. GMO: A Graph Matching for Ontologies. W. Hu, N. Jian, Y. Qu, Y. Wang. 2005.
Proceedings of Workshop on Integrating Ontologies (K-CAP). pp. 43-50.
69. Alignment Results of SOBOM for OAEI 2010. P. Xu, Y. Wang, L. Cheng, T. Zang.
2010. The Fifth International Workshop on Ontology Matching. pp. 202-211.
70. Results of NBJLM for OAEI 2010. S. Wang, G. Wang, X. Liu. 2010. The Fifth
International Workshop on Ontology Matching. pp. 186-194.
71. S. Cantor, J. Kemp, R. Philpot, E. Maler. OASIS. Assertions and Protocols for
the OASIS Security Assertion Markup Language (SAML) V2.0. [Online] 2005.
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf.
72. J. Hughes, S. Cantor, J. Hodges, F. Hirsch, P. Mishra, R. Philpott, E. Maler.
OASIS. Profiles for the OASIS Security Assertion Markup Language (SAML) V2.0.
[Online] http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf.
73. D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. Polk. RFC
5280. Internet X.509 Public Key Infrastructure Certificate and CRL Profile. IETF.
[Online] http://tools.ietf.org/html/rfc5280.
74. S. Farrell, R. Housley. RFC 3281. An Internet Attribute Certificate Profile for
Authorization. IETF. [Online] http://www.ietf.org/rfc/rfc3281.txt.
75. J. Kohl, C. Neuman. RFC 1510. The Kerberos Network Authentication Service
(V5). IETF. [Online] 1993. http://tools.ietf.org/html/rfc1510.
76. Hammer-Lahav, E. RFC 5849. OAuth (Open Authorization). IETF. [Online] 2010.
http://tools.ietf.org/html/rfc5849.

© INTEGRATE Public

WP 2 D 2.1, version 1.0.

INTEGRATE

ICT-2010-270253

Page 83 of 83

77. PERMIS: a modular authorization infrastructure. D. W. Chadwick, G. Zhao, S.
Otenko, R. Laborde, L. Su, T. Anh Nguyen. 11, 2008, Concurrency and
Computation: Practice and Experience, Vol. 20.
78. N. Damianou, N. Dulay, E. Lupu, M. Sloman. Ponder: A Language for Specifying
Security and Management Policies for Distributed Systems (v2.3). s.l. : Imperial
College of Science, Technology and Medicine, 2000.
79. Becker, M. Y. Cassandra: Fexible trust management and its application to
electronic health records. s.l. : University of Cambridge, Computer Laboratory, 2005.
80. T. Dierks, E. Rescorla. RFC 5246. The Transport Layer Security (TLS) Protocol
Version 1.2. IETF. [Online] 2008. http://tools.ietf.org/html/rfc5246.
81. S. Kent, K. Seo. RFC 4301. Security Architecture for the Internet Protocol. IETF.
[Online] 2005. http://tools.ietf.org/html/rfc4301.
82. N. Li, T. Li, S. Venkatasubramanian. t-Closeness: Privacy Beyond k-Anonymity
and L-Diversity. s.l. : Center for Education and Research Information Assurance and
Security, Purdue University, 2007.
83. An efficient hash-based algorithm for minimal k-anonymity. X. Sun, M. Li, H.
Wang, A. Plank. 2008. Proceedings of the thirty-first Australasian conference on
Computer science. pp. 101-107.
84. Protecting Privacy Using k-Anonymity. K. El Emam, F. Kamal Dankar. 5, 2008,
Journal of the American Medical Informatics Association, Vol. 15, pp. 627–637.
85. k-Anonymity. V. Ciriani, S. De Capitani di Vimercati, S. Foresti, P. Samarati.
s.l. : Springer-Verlag, 2007. Secure Data Management in Decentralized Systems.
86. Incognito: efficient full-domain K-anonymity. K. LeFevre, D. J. DeWitt, R.
Ramakrishnan. 2005. ACM SIGMOD international conference on Management of
data. pp. 49-60.
87. A globally optimal k-anonymity method for the de-identification of health data. K. El
Emam, F. Kamal Dankar, R. Issa, E. Jonker, D. Amyot, E. Cogo, J. Corriveau, M.
Walker, S. Chowdhury, R. Vaillancourt, T. Roffey, J. Bottomley. 5, 2009, Journal of
the American Medical Informatics Association, Vol. 16, pp. 670–682.
88. l-diversity: Privacy beyond k-anonymity. A. Machanavajjhala, D. Kifer, J. Gehrke,
M. Venkitasubramaniam. 1, 2007, ACM Transactions on Knowledge Discovery from
Data, Vol. 1.
89. Ninghui Li, Tiancheng Li, Suresh Venkatasubramanian. t-Closeness: Privacy
Beyond k-Anonymity and l-Diversity. 2007.
90. Distribution based microdata anonymization. N. Koudas, D. Srivastava, T. Yu, Q.
Zhang. 2009. Proceedings of the VLDB Endowment. Vol. 2, pp. 958-969.

