

ICT-2011-288048

EURECA

Enabling information re-Use by linking clinical
Research and CAre

IP
Contract Nr: 288048

Deliverable 8.1: Evaluation and validation procedures
for the EURECA environment

Due date of deliverable: (31-12-2012)
Actual submission date: (12-03-2013)

Start date of Project: 01 February 2012 Duration: 42 months

Responsible WP8 FORTH

Revision: <outline, draft, proposed, accepted>

Project co-funded by the European Commission within the Seventh Framework
Programme (2007-2013)

Dissemination level

PU Public x

PP Restricted to other programme participants (including the Commission Service

RE Restricted to a group specified by the consortium (including the Commission
Services)

CO Confidential, only for members of the consortium (excluding the Commission
Services)

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 2 of 37

0 DOCUMENT INFO

0.1 Author

Author Company E-mail

Manolis Tsiknakis FORTH tsiknaki@ics.forth.gr

Haridimos Kondylakis FORTH kondylak@ics.forth.gr

Lefteris Koumakis FORTH koumakis@ics.forth.gr

Manolis Daskalakis FORTH emdask@ics.forth.gr

Pascal Coorevits EUROREC pascal.coorevits@exchange.eurorec.org

0.2 Documents history

Document
version #

Date Change

V0.1 01-06-2012 Starting version, template

V0.2 01-07-2012 Definition of ToC

V0.3 30-10-2012 First complete draft

V0.4 30-11-2012 Integrated version (send to WP members)

V0.5 10-12-2012 Updated version (send PCP)

V0.6 20-12-2012 Updated version (send to project internal reviewers)

Sign off 31-01-2012 Signed off version (for approval to PMT members)

V1.0 01-03-2013 Approved Version to be submitted to EU

0.3 Document data

Keywords

Editor Address data Name: Lefteris Koumakis
Partner: FORTH
Address: N. Plastira 100 Vassilika Vouton Heraklion
Phone: +30 2810 391424
Fax: +30 2810 391448
E-mail: koumakis@ics.forth.gr

Delivery date 13-03-2013

0.4 Distribution list

Date Issue E-mailer

13-03-2013 1.0 Benoit.ABELOOS@ec.europa.eu

 INFSO-ICT-288048@ec.europa.eu

mailto:tsiknaki@ics.forth.gr
mailto:kondylak@ics.forth.gr
mailto:koumakis@ics.forth.gr
mailto:emdask@ics.forth.gr
mailto:pascal.coorevits@exchange.eurorec.org
mailto:koumakis@ics.forth.gr

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 3 of 37

Executive Summary
This document establishes the evaluation process, defines the evaluation criteria and
makes a preliminary identification of the products to be evaluated. The evaluation
process is based on the ISO/IEC 25000 standard, so the relevant evaluation criteria
are used. However, in general, we expect that evaluation criteria will be continuously
adapted to the current state of development of the environment, considering the end-
user scenarios and clinical pilots as general guideline.

Moreover, this deliverable presents an overview of the validation methodology that we
intent to use within the EURECA project.
There are many approaches that can be combined to conduct validation activities and
tests, depending on the constraints. Different approaches can be combined to the
requirements for different types of service, service model, risk profile, skill levels, test
objectives and levels of testing. Examples include:

• Modelling and measuring – suitable for testing the service model and Service
Operations plan.

• Risk-based approach that focuses on areas of greatest risk, e.g. business
critical services, risks identified in change impact analysis.

 Simulation

 Scenario testing and

 Live pilot.
The decision of the EURECA consortium is that live pilot validation activities will be
executed, using a range of test cases with known results within and without the
technological platform established within EURECA. The specific details of the test
cases will be defined in a subsequent deliverable of WP8.

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 4 of 37

Table of Contents

1 INTRODUCTION ... 5

1.1 Purpose of the evaluation ... 5

1.2 Quality requirements ... 6

1.3 Document Structure .. 6

2 ESTABLISH EVALUATION REQUIREMENTS .. 7

2.1 Products to be evaluated .. 8

2.1.1 Technological Components .. 8

2.1.2 Clinical Services .. 10

3 EVALUATION MODULES .. 12

3.1 Decision criteria for measures ... 12

3.2 Quality model structure... 13

3.2.1 Product quality model ... 14

3.2.2 Quality in use model .. 18

3.3 Decision criteria for evaluation .. 19

3.4 Rating levels for metrics ... 22

4 VALIDATION PROCEDURES .. 24

4.1 General principles and life cycle .. 24

4.2 Verification and validation .. 25

4.3 EURECA validation planning .. 26

4.3.1 Feed Back Results into the Loop ... 28

5 CONCLUSIONS .. 32

6 BIBLIOGRAPHY ... 33

APPENDIX A ... 34

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 5 of 37

1 Introduction

Evaluation is the systematic determination of the extent to which an entity meets its
specified criteria. The evaluation of software product quality is vital to both the
acquisition and development of software. The relative importance of the various
characteristics of software quality depends on the intended usage or objectives of the
system of which the software is a part; software products need to be evaluated to
decide whether relevant quality characteristics meet the requirements of the system.

In general terms, the quality expectations for software systems are twofold:

 the software must do the right things: software systems must do what they are
supposed to do (end-user perspective)

 the software must do the things right: software systems must perform the tasks
correctly (developer perspective)

These two aspects define two of the main components of the software quality
assurance system (SQAS): the validation (does the software do the right things?) and
verification (does the software do the things right?).

Accordingly, SQAS aims at ensuring a high quality of the software product through the
related validation and verification activities. These activities must be carried out by the
people and the organizations responsible for developing and supporting the system in
an overall engineering process that includes:

 Quality planning

 Execution of selected quality assurance activities

 Measurement and analysis to demonstrate software quality to all parties
involved.

Unfortunately, as the complexity and code size of the software increase, the risks of
having a failure increase as well, and there is no effective general solution to the size,
complexity, quality and other software engineering problems. However, by following
standardized software development practices and by addressing the quality issues
during the whole life cycle of the software, the likelihood of such defects and the cost
incurred by them (both to users and to producers) may be greatly reduced.

1.1 Purpose of the evaluation

The purpose of this document is to propose a unified approach for ensuring the quality
of the software products produced within the EURECA project, in accordance with the
guidelines established in Deliverable (D1.1). So, in this document the procedures for
the evaluation and validation activities will be established and qualitative measures of
the benefits of the project as a whole will be developed.

The implementation of this approach is adapted from various sources and mainly from
the ISO/IEC 25000 series. Due to the high complexity of the software to be produced/
integrated within the EURECA project, this document does not attempt to cover all
possible aspects of quality monitoring/ensuring for every module, but rather provide a
template that should be adapted at the level of each module.

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 6 of 37

1.2 Quality requirements

The evaluation of the EURECA modules, tools and components should clearly be
viewed as an iterative process. Scenarios and Quality Assurance procedures will
evolve as new components get integrated in the environment or as some others are
removed if considered useless. This evolution will be depicted in the deliverables
following D8.1 within the Q&A, Evaluation and Validation work package.

1.3 Document Structure

The structure of this document is the following: Section 2 presents an overview of the
evaluation process, and presents the products to be evaluated. Those products in
EURECA will be individual components and clinical services. A preliminary list of these
components and clinical services is presented in this section as well. Then, Section 3
presents the evaluation model and defines the decision criteria adopted. Section 4
presents the validation procedures and then and Section 5 concludes this deliverable
and links this deliverable to the other deliverables of WP8.

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 7 of 37

2 Establish Evaluation Requirements

For quality assurance, within the EURECA project, norms defined from the
International Organization for Standardization1 (ISO) will be used. More specifically the
Software Product Quality Requirements and evaluation (SQUARE) will be used as a
reference model, shown also in Figure 1. It describes the general processes and
details the activities and tasks providing their purposes, inputs, outcomes and
complementary information that can be used to guide a software product quality
evaluation. It is actually the new version of the ISO/IEC 14598.

Figure 1: Software product Quality Evaluation Process reference model adapted from ISO/IEC

25040

1
 http://www.iso.org

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 8 of 37

The main blocks of the evaluation process are “Establish evaluation requirements”,
“Specify the Evaluation”, “Design the evaluation”, “Execute the evaluation” and
“Conclude the evaluation”. In this document the first two blocks will be defined and
analyzed and the rest of them will be analyzed in the next deliverables of WP8.

2.1 Products to be evaluated

This Section describes the identified “products” of the EURECA project to be
evaluated. These “products” are individual technological components and cross-cutting
clinical services. However since the deliverable which is related to the architecture
(D2.2) is to be delivered at month 12, the list of the identified components and clinical
services to be evaluated is not final. Moreover we expect that as the projects
progresses through time, requirements might change. Nevertheless we present here
an initial list of the components and clinical services to be evaluated.

2.1.1 Technological Components

 EURECA local DWH: Each organization will have locally installed a EURECA-
compatible data warehouse where relevant data will be stored. The data
warehouse will offer services for accessing and storing data.

 Literature DBs: Those DBs will offer access to the literature.

 Personal Medical Information Recommender: This is a tool that will
recommend to the patient relevant information. Information will come from
literature searching.

 Update guidelines tool: This tool will allow one to adjust a clinical guideline
based on evidences from literature.

 Broad Consent tool: This tool will allow patients to easily consent to broad
use of their data.

 Hypothesis Generation tool: This tool will allow one to generate hypotheses
from existing patient data.

 Protocol feasibility tool: This tool will allow Clinical Trial Managers to design
or assess the feasibility of a new trial using existing patient data.

 Microbiology SAE: This tool will allow one to find easily serious adverse
events using microbiology data.

 Outcome Prediction: This tool will allow predicting the outcome of an
individual patient.

 Diagnostic Sarcoma Classifier tool: This tool will be used to diagnose
different types of sarcoma.

 Open DBs: Those DBs will offer publicly available data sets.

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 9 of 37

 Anonymization tool: Anonymization Tool is a service-based de-identification
solution. It will support anonymization of different types of data (XML, DICOM,
Text, Database, etc.) in a generic and extendable way.

 HIS/EHR/PHR systems: These systems are used in order to capture patient
records and their relevant data such as medications, visits, surgeries,
laboratory data etc.

 Patient Identity Management Service: Patients selected for trial screening
are managed in the EURECA platform in the patient identity management
service. It is responsible for the registration, consultation and editing of patient
meta-data relevant for the EURECA patient screening (real patient data is part
of the EHR DW)

 Trial Management Service: This service is responsible for providing trial
registering, querying and editing functionality to a site. It offers registering
services that enables a trial administrator to generate general trial information,
add eligibility criteria to a trial, define different trial arms in a trial, etc. All this
trial information is stored in a trial meta-data repository of the site. Another
important service is that the information stored in the trial repository, for
example the list of trials, can be easily accessed by other services of the site.

 Criteria Matcher: An eligibility criterion is matched with the information of a
selected patient in the criteria matching service. It provides an interface that
enables other EURECA services (in our case the screening service) to send
matching requests. The criteria matcher will query the requested information of
the patient by sending the query that is included in the eligibility criterion to the
CIM based query service of the different available data-warehouses. The
eligibility criterion itself is retrieved from the trial management service. The
outcome of the matching is sent back to the requesting service.

 Common Information Model-Based Data Access: This service provides
functionality to query the datasets of the EHR and other data warehouses
available on the site through the semantic layer. It abstracts the underlying data
sources for the upper EURECA services (in our case, the screening service)
and presents data to applications according to a single integrated data model.
More information about this service can be found in the semantic layer view
section.

 Freetext Query Service: This service is responsible for freetext querying of
the different available datasources (e.g. the EHR data warehouse) in the
EURECA platform. It offers freetext searching functionality in order to query
structured and unstructured data.

 Cancer Registry Reporting tool: This tool will allow one to report patients to
the cancer registry by re-using data already collected.

 Automatic SAEs/SUSARs tool: This tool will automatically file a SAE/SUSAR
report by re-using already collected data.

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 10 of 37

2.1.2 Clinical Services

Bellow we describe the clinical services that will be implemented in the EURECA
platform. Note that these general services contain many sub-services that we expect
to be selected and described in detail as the project progresses in time.

 Information: This service will be used to achieve several goals.
o First personal medical information can be recommended to a doctor or

a patient. A better characterization of a patient according to his/her risk
factors will help to predict the outcome of the disease for him/her. This
can also be seen as a simulation of the response to different treatments
and can be done by selecting patients with the same characteristics
from the database and show which treatment results in which outcome.
A search for further risk criteria will help to distinguish these patients
into more different prognostic groups, to find for an individual patient the
optimal treatment.

o Moreover since many questions asked by patients are repeated into
consultation a mechanism for automatic generating answers to those
questions will be implemented.

 Investigation: This service is composed of a series of other sub-services
focusing either on Clinical Guidelines Investigation or in Protocol & Research
Investigation:

o Clinical Guidelines Investigation focuses on the update of already
established Guidelines based on data mining from CT/HIS databases,
literature and trial databases. In this task classifiers can help that will be
trained, validated and updated.

o Concerning Protocol & Research Investigation focuses on patient and
trial management”

 First a mechanism to allow patients share (or not) their data
should be implemented. So, a service allowing informed consent
to be signed and updated should be available.

 Moreover, before starting a new clinical trial a new research
question is needed. Such a question is of utmost importance
and is part of hypothesis generation. Analysing all available data
from previous trials, guidelines, literature and others, can
support this process. It can also help to find biomarkers that are
relevant for the disease suggesting their use in the trial for
evaluation or validation purposes. The hypothesis generation
assistance can support the design of new trials.

 When a clinical trial is being designed a protocol feasibility
service will identify if a new clinical trial is feasible to start
according to the estimation of recruitment potential. It will be
based either on EHR/PHR/HIS data or other fata sources such
as public data, population information other protocols or
literature.

 Selection & Recruitment: This service focuses on the choice of optimal
treatment for a patient and the selection of the appropriate trial to be enrolled.

o The early knowledge about infectious agents and their resistance profile
for patients in chemotherapy is really important for the optimal treatment

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 11 of 37

of a patient. Common Toxicity Criteria can be specified in order to
detect SAE events automatically.

o Moreover, we want to learn and validate outcome prediction models
from routine patient care data. We need to have access to large
amounts (10.000+) of patient’s data preferentially with clinical, imaging,
biology information. This scenario can be integrated in the scenario
‘Personal medical information recommender’.

o Concerning patient recruitment the purpose of this service is to identify
eligible patients for clinical trials, or vice versa. The goal is to find the
optimal trial that fits the needs of the patient the best.

 Reporting: The purpose of this service is to detect and report
o Information about specific tumour from the local cancer registry

including all patient information.
o Information stored in local IT systems about patients in order to avoid

double data entry for the clinical trial management systems.
o Episodes of febrile neutropenia by extracting some specific symptoms

and clinical relevant characteristics from EHR on a given period of time
for retrospective study.

o SAE and SUSARs based on a database of pharmacogenomics

 Long-Term Follow-up: This service will allow a trial chairman to define follow-
up eCRFs. Those eCRFs can be filled either manually using the Clinical Trial
Management System or automatically by querying relevant data from patient
PHR. Moreover, eCRFs will be possible to be pre-filled with information from
national registries.

 Economic Analysis: By joining data from EHR, clinical trials, literature and
open databases economic aspects of different procedures (diagnostic and/or
therapeutic) can be analysed in respect to outcome and quality of life in an
individual patient. This will include data about days to stay in the hospital,
expected side effects, costs of diagnostics and therapeutics, etc.

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 12 of 37

3 Evaluation Modules

The goal of the evaluation is to ensure that the software produced in each technical
WP is compliant with the end-user specifications.

The evaluation of software product quality is vital to both the acquisition and
development of software. The relative importance of the various characteristics of
software quality depends on the intended usage or objectives of the system.

Evaluation modules contain the specification of the quality model (i.e. characteristics,
sub-characteristics and corresponding internal, external or quality in use measures),
the associated data and information about the planned application of the model and
the information about its actual application. Appropriate evaluation modules will be
selected for the EURECA components evaluation based on the Software product
Quality Requirements and Evaluation (SQuaRE) – Evaluation reference model and
guide (SQuaRE).

3.1 Decision criteria for measures

ISO and the International Electrotechnical Commission (IEC) form the specialized
system for worldwide standardization. The ISO SQuaRE, will be used as reference
model. Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 7, Software and systems engineering, prepared ISO/IEC 25010.
ISO/IEC 25010 is a part of the SQuaRE series of International Standards, which
consists of the following divisions:

• Quality Management Division ISO/IEC (2500n)
• Quality Model Division ISO/IEC (25010)
• Quality Measurement Division ISO/IEC (25020)
• Quality Requirements Division ISO/IEC (25030)
• Quality Evaluation Division ISO/IEC (25040)
• SQuaRE Extension Division ISO/IEC 25050 – ISO/IEC 25099 (to appear)

This first edition of ISO/IEC (25010) cancels and replaces ISO/IEC 9126-1:2001, which
has been technically revised.

ISO/IEC 9126:1991 was replaced by two related multipart standards: ISO/IEC 9126,
Software engineering — Product quality and ISO/IEC 14598, Software engineering —
Product evaluation. This International Standard revises ISO/IEC 9126-1:2001, and
incorporates the same software quality characteristics with some amendments.

• The scope of the quality models has been extended to include computer
systems, and quality in use from a system perspective.

• Context coverage has been added as a quality in use characteristic, with
sub-characteristics context completeness and flexibility.

• Security has been added as a characteristic, rather than a sub-
characteristic of functionality, with sub-characteristics confidentiality,
integrity, non-repudiation, accountability and authenticity.

• Compatibility (including interoperability and co-existence) has been added
as a characteristic.

• The following sub-characteristics have been added: functional
completeness, capacity, user error protection, accessibility, availability,
modularity and reusability.

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 13 of 37

• The compliance sub-characteristics have been removed, as compliance
with laws and regulations is part of overall system requirements, rather than
specifically part of quality.

• The internal and external quality models have been combined as the
product quality model.

• When appropriate, generic definitions have been adopted, rather than using
software-specific definitions.

• Several characteristics and sub-characteristics have been given more
accurate names.

This International Standard defines:

 A product quality model composed of eight characteristics (which are further
subdivided into sub-characteristics) that relate to static properties of software
and dynamic properties of the computer system. The model is applicable to
both computer systems and software products. Section 3.2.1 describes in detail
the product quality model.

 A quality in use model composed of five characteristics (some of which are
further subdivided into sub-characteristics) that relate to the outcome of
interaction when a product is used in a particular context of use. This system
model is applicable to the complete human-computer system, including both
computer systems in use and software products in use. Section 3.2.2 describes
in detail the quality in use model.

3.2 Quality model structure

A quality model is a set of requirements, entities and relationships that must be fulfilled
to assess good quality. The model should be structured in three main levels:

• Characteristic
• Sub-characteristic
• Attribute

We can refer to two models of quality:

• the internal and external quality
• the quality in use

The product quality model in categorizes system/software product quality properties
into eight characteristics: functional suitability, performance efficiency, compatibility,
usability, reliability, security, maintainability and portability. Each characteristic is
composed of a set of related sub-characteristics (Figure 2Figure 2: Software product
quality categories and characteristics (source ISO/IEC 25040)). The product quality
model can be applied to just a software product, or to a computer system that includes
software, as most of the sub-characteristics are relevant to both software and systems.

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 14 of 37

Figure 2: Software product quality categories and characteristics (source ISO/IEC 25040)

3.2.1 Product quality model

The product quality model can be applied to just a software product, or to a computer
system that includes software, as most of the sub-characteristics are relevant to both
software and systems.

The product quality model categorizes product quality properties into eight
characteristics (functional suitability, reliability, performance efficiency, usability,
security, compatibility, maintainability and portability). Each characteristic is composed
of a set of related sub-characteristics, naming:

Functional suitability
Functional suitability is the degree to which a product or system provides functions that
meet stated and implied needs when used under specified conditions

 Functional completeness
The degree to which the set of functions covers all the specified tasks and user
objectives

 Functional correctness
The degree to which a product or system provides the correct results with the
needed degree of precision

 Functional appropriateness
The degree to which the functions facilitate the accomplishment of specified
tasks and objectives
EXAMPLE: A user is only presented with the necessary steps to complete a
task, excluding any unnecessary steps.

Performance efficiency

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 15 of 37

performance relative to the amount of resources used under stated conditions

 Time behavior
The degree to which the response and processing times and throughput rates
of a product or system, when performing its functions, meet requirements

 Resource utilization
The degree to which the amounts and types of resources used by a product or
system when performing its functions meet requirements

 Capacity
The degree to which the maximum limits of a product or system parameter
meet requirements

Compatibility
The degree to which a product, system or component can exchange information with
other products, systems or components, and/or perform its required functions, while
sharing the same hardware or software environment

 Co-existence
The degree to which a product can perform its required functions efficiently
while sharing a common environment and resources with other products,
without detrimental impact on any other product

 Interoperability
The degree to which two or more systems, products or components can
exchange information and use the information that has been exchanged

Usability
The degree to which a product or system can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction in a specified context of
use

 Appropriateness recognizability
The degree to which users can recognize whether a product or system is
appropriate for their needs

 Learnability
The degree to which a product or system can be used by specified users to
achieve specified goals of learning to use the product or system with
effectiveness, efficiency, freedom from risk and satisfaction in a specified
context of use

 Operability
The degree to which a product or system has attributes that make it easy to
operate and control

 User error protection
The degree to which a system protects users against making errors

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 16 of 37

 User interface aesthetics
The degree to which a user interface enables pleasing and satisfying
interaction for the user

 Accessibility
The degree to which a product or system can be used by people with the
widest range of characteristics and capabilities to achieve a specified goal in a
specified context of use

Reliability
The degree to which a system, product or component performs specified functions
under specified conditions for a specified period of time

 Maturity
The degree to which a system meets needs for reliability under normal
operation

 Availability
The degree to which a system, product or component is operational and
accessible when required for use

 Fault tolerance
The degree to which a system, product or component operates as intended
despite the presence of hardware or software faults

 Recoverability
The degree to which, in the event of an interruption or a failure, a product or
system can recover the data directly affected and re-establish the desired state
of the system

Security
The degree to which a product or system protects information and data so that
persons or other products or systems have the degree of data access appropriate to
their types and levels of authorization

 Confidentiality
The degree to which a product or system ensures that data are accessible only
to those authorized to have access

 Integrity
The degree to which a system, product or component prevents unauthorized
access to, or modification of, computer programs or data

 Non-repudiation
The degree to which actions or events can be proven to have taken place, so
that the events or actions cannot be repudiated later

 Accountability
The degree to which the actions of an entity can be traced uniquely to the entity

 Authenticity

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 17 of 37

The degree to which the identity of a subject or resource can be proved to be
the one claimed

Maintainability
The degree of effectiveness and efficiency with which a product or system can be
modified by the intended maintainers

 Modularity
The degree to which a system or computer program is composed of discrete
components such that a change to one component has minimal impact on
other components

 Reusability
The degree to which an asset can be used in more than one system, or in
building other assets

 Analysability
The degree of effectiveness and efficiency with which it is possible to assess
the impact on a product or system of an intended change to one or more of its
parts, or to diagnose a product for deficiencies or causes of failures, or to
identify parts to be modified

 Modifiability
The degree to which a product or system can be effectively and efficiently
modified without introducing defects or degrading existing product quality

 Testability
The degree of effectiveness and efficiency with which test criteria can be
established for a system, product or component and tests can be performed to
determine whether those criteria have been met

Portability
The degree of effectiveness and efficiency with which a system, product or component
can be transferred from one hardware, software or other operational or usage
environment to another

 Adaptability
The degree to which a product or system can effectively and efficiently be
adapted for different or evolving hardware, software or other operational or
usage environments

 Installability
The degree of effectiveness and efficiency with which a product or system can
be successfully installed and/or uninstalled in a specified environment

 Replaceability
The degree to which a product can be replaced by another specified software
product for the same purpose in the same environment
EXAMPLE The replaceability of a new version of a software product is
important to the user when upgrading.

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 18 of 37

3.2.2 Quality in use model

The quality in use model defines five characteristics related to outcomes of interaction
with a system: effectiveness, efficiency, satisfaction, freedom from risk, and context
coverage (Figure 3). Each characteristic can be assigned to different activities of
stakeholders, for example, the interaction of an operator or the maintenance of a
developer.

The quality in use of a system characterizes the impact that the product (system or
software product) has on stakeholders. It is determined by the quality of the software,
hardware and operating environment, and the characteristics of the users, tasks and
social environment. All these factors contribute to the quality in use of the system.

Figure 3: Quality in use model (source ISO/IEC 25010)

Quality in use is the degree to which a product or system can be used by specific
users to meet their needs to achieve specific goals with effectiveness, efficiency,
freedom from risk and satisfaction in specific contexts of use. The properties of quality
in use are categorized into five characteristics: effectiveness, efficiency, satisfaction,
freedom from risk and context coverage.

Effectiveness
Accuracy and completeness with which users achieve specified goals

Efficiency
Resources expended in relation to the accuracy and completeness with which users
achieve goals

Satisfaction
Degree to which user needs are satisfied when a product or system is used in a
specified context of use

 Usefulness
The degree to which a user is satisfied with their perceived achievement of
pragmatic goals, including the results of use and the consequences of use

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 19 of 37

 Trust
The degree to which a user or other stakeholder has confidence that a product
or system will behave as intended

 Pleasure
The degree to which a user obtains pleasure from fulfilling their personal needs

 Comfort
The degree to which the user is satisfied with physical comfort

Freedom from risk
Degree to which a product or system mitigates the potential risk to economic status,
human life, health, or the environment

 Economic risk mitigation
The degree to which a product or system mitigates the potential risk to financial
status, efficient operation, commercial property, reputation or other resources
in the intended contexts of use

 Health and safety risk mitigation
The degree to which a product or system mitigates the potential risk to people
in the intended contexts of use

 Environmental risk mitigation
The degree to which a product or system mitigates the potential risk to property
or the environment in the intended contexts of use

Context coverage
The degree to which a product or system can be used with effectiveness, efficiency,
freedom from risk and satisfaction in both specified contexts of use and in contexts
beyond those initially explicitly identified

 Context completeness
The degree to which a product or system can be used with effectiveness,
efficiency, freedom from risk and satisfaction in all the specified contexts of use

 Flexibility
The degree to which a product or system can be used with effectiveness,
efficiency, freedom from risk and satisfaction in contexts beyond those initially
specified in the requirements

3.3 Decision criteria for evaluation

The selected software product quality measures shall be applied to the software
product and components, according to the evaluation plan, resulting in values on the
measurement scales.

None of the quality characteristics discussed above can be measured directly, but
must be assessed in terms of objective sub-characteristics. ISO/IEC 25000 series

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 20 of 37

does not prescribe specific quality requirements for software, but instead describes a
quality model, which can be applied to any software.

End-user evaluation of the EURECA infrastructure will be conducted through a number
of selected scenarios from deliverable (D1.2) covering the anticipated usage of the
infrastructure, from administration of the software components to specific clinical trials.
For each step in the scenario, the required input data are enumerated and a
description of the expected results will be given. The steps listed for the execution of
the scenarios respond to criteria which will help objectively rating the degree of
success of the modules addressed therein. The end users who will participate at the
evaluation phase will fill in an evaluation form for each EURECA component. The
evaluation form will cover all the appropriate quality characteristics from the product
quality model of the ISO/IEC 25000 series (Figure 2).

At the evaluation phase different type of users, such as physicians, system developers
and patients will participate. Having such a diverse target group of evaluators, the
evaluation forms must be:

 simple

 accurate

 easy to understand (especially for non IT experts)

 non time consuming

 without loss of functionality/quality

For that reason we have translate the crucial sub-characteristics of software quality
measures into simple questions (in natural language). The evaluation form of EURECA
will be a list of such questions where the evaluator will answer with a degree of
satisfaction with scale 5 (from 1 to 5).

The selected sub-characteristics, for the evaluation form of the EURECA scenarios
and components, and its translation into simple statements for the end user can be
found in the table below (Those statements will be then rated using a Likert scale by
the end users to determine their level of agreement or disagreement on a symmetric
agree-disagree scale. The corresponding form generated can be found in the
Appendix. However, the idea behind these criteria is that in the next evaluation phase
for each one of those the following will be described

 A description of the test procedure.

 A description of the expected results.

 Possible test data to be used.

 External tools for assessment.

F
u

n
ct

io
n

a
li

ty
 Completeness The set of functions covers all the specified tasks and user

objectives.

Correctness The system provides the correct results with the needed

degree of precision.

Appropriateness The functions facilitate the accomplishment of specified

tasks and objectives.

E
ff

ic

ie
n

c

y
 Time Behaviour The system responds quickly.

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 21 of 37

Resource utilization The system utilizes resources efficiently.

C
o

m
p

a
ti

b
il

it
y

Co-existence The system shares resources without loss of its

functionality.

Interoperability The system shares information/data with other EURECA

components?

U
sa

b
il

it
y

Recognisability The users can recognize easily whether the system is

appropriate for their needs.

Learnability The users learn to use the system easily.

Operability The users use the system without much effort.

Error protection The system protects users against making errors.

UI aesthetics The user interface enables pleasing and satisfying

interaction for the users.

R
el

ia
b

il
it

y
 Maturity Most of the faults in the software been eliminated over time.

Fault tolerance The software is capable of handling errors.

Recoverability The software resumes working & restores lost data after

failure.

S
ec

u
ri

ty

Authenticity The system provides identification access wherever is

needed.

Confidentiality Data are accessible only to authorized users.

Accountability The system traces actions uniquely.

Integrity The system prevents unauthorized access.

M
a

in
ta

in
a
b

il
it

y
 Analysability Faults can be easily diagnosed.

Modularity The system is composed of discrete independent

components.

Reusability An asset can be used in more than one system, or in

building other assets.

Testability The software can be tested easily.

P
o

rt
a

b
il

it
y

Adaptability The software can be moved to other environments easily.

Installability The software can be installed easily.

Replaceability The software can easily replace other software.

Q
u

a
li

t

y
 o

f

u
se

 Effectiveness The software is accurate and complete for the intended use.

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 22 of 37

Efficiency The software improves the time or reduces resources for the

intended goal.

Satisfaction The software satisfies the perceived achievements of

pragmatic goals.

Health and safety risk The software cannot harm people in the intended contexts of

use.

Table 1). Those statements will be then rated using a Likert scale2 by the end users to
determine their level of agreement or disagreement on a symmetric agree-disagree
scale. The corresponding form generated can be found in the Appendix. However, the
idea behind these criteria is that in the next evaluation phase for each one of those the
following will be described

 A description of the test procedure.

 A description of the expected results.

 Possible test data to be used.

 External tools for assessment.

F
u

n
ct

io
n

a
li

ty
 Completeness The set of functions covers all the specified tasks and user

objectives.

Correctness The system provides the correct results with the needed

degree of precision.

Appropriateness The functions facilitate the accomplishment of specified

tasks and objectives.

E
ff

ic
ie

n
cy

Time Behaviour The system responds quickly.

Resource utilization The system utilizes resources efficiently.

C
o
m

p
a
ti

b
il

it
y

Co-existence The system shares resources without loss of its

functionality.

Interoperability The system shares information/data with other EURECA

components?

U
sa

b
il

it
y

Recognisability The users can recognize easily whether the system is

appropriate for their needs.

Learnability The users learn to use the system easily.

Operability The users use the system without much effort.

Error protection The system protects users against making errors.

UI aesthetics The user interface enables pleasing and satisfying

interaction for the users.

2
 http://en.wikipedia.org/wiki/Likert_scale

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 23 of 37

R
el

ia
b

il
it

y
 Maturity Most of the faults in the software been eliminated over time.

Fault tolerance The software is capable of handling errors.

Recoverability The software resumes working & restores lost data after

failure.

S
ec

u
ri

ty

Authenticity The system provides identification access wherever is

needed.

Confidentiality Data are accessible only to authorized users.

Accountability The system traces actions uniquely.

Integrity The system prevents unauthorized access.

M
a
in

ta
in

a
b

il
it

y
 Analysability Faults can be easily diagnosed.

Modularity The system is composed of discrete independent

components.

Reusability An asset can be used in more than one system, or in

building other assets.

Testability The software can be tested easily.

P
o
rt

a
b

il
it

y

Adaptability The software can be moved to other environments easily.

Installability The software can be installed easily.

Replaceability The software can easily replace other software.

Q
u

a
li

ty
 o

f
u

se

Effectiveness The software is accurate and complete for the intended use.

Efficiency The software improves the time or reduces resources for the

intended goal.

Satisfaction The software satisfies the perceived achievements of

pragmatic goals.

Health and safety risk The software cannot harm people in the intended contexts of

use.

Table 1: From software quality characteristics to NL questions

The scenarios for the evaluation will be described in detail in the deliverable (D8.2).

3.4 Rating levels for metrics

To assess quality levels the end user and/or evaluator have already a list of metrics
that she/he can measure. A scale must also have been defined; usually the scales can
be divided into categories corresponding to different degrees of satisfaction of the
requirements like:

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 24 of 37

 Minimum level: none of the relevant quality characteristics should measure below
the Minimal level. In case one single characteristic scores below its minimum level,
the project failed and the product is unusable.

 Current level: when the software product replaces a current situation, a current
level is also available. In general, the acceptable level will be equal to or higher
than the current level.

 Acceptable level: if all characteristics score above the acceptable level, the
product has passed the test.

 Target level: each quality characteristic should have a challenging target level.

 Maximum level: this is a theoretic level and describes the upper limit of what is
possible.

Figure 4: Degrees of satisfaction and interpretations (adapted from ISO/IEC)

The categories should be specified so that both the user and the developer can avoid
unnecessary cost and schedule overruns. The relative importance of each quality
characteristic determines the minimum, acceptable and target levels for the quality
characteristic. The required levels of quality characteristics will then determine how the
developers’ time will be divided.

When the software product is validated, all tests are carried out and the measured
levels are compared with the predefined minimum, acceptable and target level. This
will then be the acceptance test.

Minimal

Target

Maximal

Acceptable

Current

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 25 of 37

4 Validation procedures

Trying to answer the question if the software does the right things, an integration of
software life cycle management and risk management activities is recommended.
Validation of software has been conducted in many segments of the software industry
for many years. However a general application of several broad concepts can be used
successfully as guidance for software validation. These broad concepts provide an
acceptable framework for building a comprehensive approach to software validation.

4.1 General principles and life cycle

It is preferable that guidance on validation should not recommend any specific life
cycle model or any specific technique or method. It should recommend that software
validation and verification activities must be conducted throughout the entire software
life cycle. According to (ISO/IEC12207:2008), software life cycle processes define a
common framework, with well-defined terminology, that can be referenced by the
software industry and contains processes, activities, and tasks. Software lifecycle
applies to the acquisition of systems and software products, to the supply,
development, operation, maintenance, and disposal of software products and the
software portion of a system, whether performed internally or externally to an
organization.

Figure 5: Software life cycle (source http://isoftdev.eu/software/)

Software validation is accomplished through a series of activities and tasks that are
planned and executed at various stages of the software development life cycle.
Software developers should establish a software life cycle model that is appropriate for
their product.

Activities in a typical software life cycle model include the following:

 Quality Planning

 System Requirements Definition

 Detailed Software Requirements Specification

 Software Design Specification

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 26 of 37

 Construction or Coding

 Testing

 Installation

 Operation and Support

 Maintenance

 Retirement

Verification, testing, and other tasks that support software validation, occur during
each of these activities.

4.2 Verification and validation

Software verification and validation are difficult because a developer cannot test
forever, and it is hard to know how much evidence is enough. In large measure,
software validation is a matter of developing a “level of confidence” that the outcome
meets all requirements and user expectations for the software automated functions
and features of the system.

According to the Quality System regulation (ISO8402:1994), “verification” and
“validation” are treated as separate and distinct terms. On the other hand, many
software engineering journal articles and textbooks use the terms "verification" and
"validation" interchangeably, or in some cases refer to software "verification, validation,
and testing (VV&T)" as if it is a single concept, with no distinction among the three
terms. Software validation is a part of the design validation for a production system,
but is not separately defined in the Quality System regulation. The implementation of
our approach to evaluation is adapted from various sources and mainly from the
ISO/IEC 25000 series.

For purposes of guidance, we consider software validation to be “confirmation by
examination and provision of objective evidence that software specifications conform
to user needs and intended uses, and that the particular requirements implemented
through software can be consistently fulfilled” (FDA, 1997). In practice, software
validation activities may occur both during, as well as at the end of the software
development life cycle to ensure that all requirements have been fulfilled.

Software validation is a critical tool used to assure the quality of desired outcome and
software automated operations. Software validation can increase the usability and
reliability of the system, resulting in decreased failure rates, fewer recalls and
corrective actions and less risk to patients and users. Software validation can also
reduce long term costs by making it easier and less costly to reliably modify software
and revalidate software changes.

The following list summarizes the general principles that should be considered for the
validation of a system/software.

 Requirements: A documented software requirements specification provides a
baseline for both validation and verification. The software validation process
cannot be completed without an established software requirements
specification.

 Defect Prevention: Software quality assurance needs to focus on preventing
the introduction of defects into the software development process and not on

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 27 of 37

trying to “test quality into” the software code after it is written. Software testing
is very limited in its ability to surface all latent defects in software code.

 Time and Effort: To build a case that the software is validated requires time
and effort. Preparation for software validation should begin early, i.e., during
design and development planning and design input. The final conclusion that
the software is validated should be based on evidence collected from planned
efforts conducted throughout the software lifecycle.

 Software Life Cycle: Software validation takes place within the environment of
an established software life cycle. The software life cycle contains software
engineering tasks and documentation necessary to support the software
validation effort. In addition, the software life cycle contains specific verification
and validation tasks that are appropriate for the intended use of the software.

 Plans: The software validation process is defined and controlled through the
use of a plan. The software validation plan defines “what” is to be
accomplished through the software validation effort.

 Procedures: The software validation process is executed through the use of
procedures. These procedures establish “how” to conduct the software
validation effort. The procedures should identify the specific actions or
sequence of actions that must be taken to complete individual validation
activities, tasks, and work items.

 Software Validation after a Change: Due to the complexity of software, a
seemingly small local change may have a significant global system impact.
When any change (even a small change) is made to the software, the
validation status of the software needs to be re-established. Whenever
software is changed, a validation analysis should be conducted not just for
validation of the individual change, but also to determine the extent and impact
of that change on the entire software system.

 Validation Coverage: Validation coverage should be based on the software’s
complexity and safety risk – not on firm size or resource constraints. The
selection of validation activities, tasks, and work items should be
commensurate with the complexity of the software design and the risk
associated with the use of the software for the specified intended use.

 Independence of Review: Validation activities should be conducted using the
basic quality assurance precept of “independence of review.” Self-validation is
extremely difficult. When possible, an independent evaluation is always better,
especially for higher risk applications.

 Flexibility and Responsibility: Specific implementation of these software
validation principles may be quite different from one application to another.
Software is designed, developed, validated, and regulated in a wide spectrum
of environments, and for a wide variety of devices with varying levels of risk.

4.3 EURECA validation planning

For EURECA, validation does not refer only to software components but also to
processes (e.g. clinical scenarios). The main implications in clinical scenarios are that
validation should cover all aspects of the process including the EURECA environment,
any hardware that the environment uses, interfaces to other systems, the users,
training and documentation as well as the management of the system and the
validation itself after the system is put into use.

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 28 of 37

Section 2.1 summarizes the software components to be implemented (section 2.1.1)
and the clinical scenarios (section 2.1.2). In order to assess the accuracy of the
EURECA outcome, selected clinical scenarios will be described in detail, including the
expected outcomes, and will be used as test cases.

The approach is to design an optional test cases list that is of reasonable size and can
reveal as many errors existing in the system as possible. Actually, if test cases are
selected randomly, many of these randomly selected test cases do not contribute to
the significance of the EURECA platform, and thus, the number of random test cases
is, not an indication of the effectiveness of the testing.

The test cases can have impact on different components, subsystems or the entire
prototype depending on the specific requirement(s) they address.

In order to ensure that the user requirements are met, for each requirement there
should be a detailed set of conditions which verify with certainty when a requirement
has or has not been fulfilled.

A formal test case should include at least the following information:

 Preconditions. A set of input parameters and/or the state of the tested
component(s) before a test is conducted.

 Post conditions. The expected result or effect of the test, in order for the tested
component to pass or fail the test.

At this phase of the project a full and exhaustive list of test case is not possible to be
defined.

Moreover, in EURECA we intend to perform an extensive evaluation of the clinical
services offered by the infrastructure that will prove the EURECA project impact. The
idea is that measurable parameters will be established in cooperation with the
responsible clinical partners (e.g. recruitment rate, the number of SAE/SUSAR avoided
etc.) for each clinical service offered within EURECA. Those measurable parameters
will be monitored for a time frame [x1, x2] where the EURECA infrastructure is not
used. Then, EURECA services will be used and the same parameter will be monitored.
In this way we will be able to demonstrate the real impact of the EURECA
infrastructure.

Figure 6: Measuring Parameter x before and after using EURECA infrastructure

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 29 of 37

4.3.1 Feed Back Results into the Loop

In line with the iterative approach, the validation results will contribute to the success of
the project because all the user feedback will be shared with the software developers.
To obtain feedback and validate the EURECA platform, we propose to use the spiral
methodology. This will enable us to make updates and improvements to the system in
more incremental steps. The spiral model (BW, 1988) uses the main processes of the
more traditional waterfall method, requirements gathering, analysis, design and
implementation, but all introduces the notion of an incremental process (see Figure 7).

Figure 7: Spiral Development Model.

The spiral lifecycle model allows for elements of the product to be added in when they
become available or known. This assures that there is no conflict with previous
requirements and design. This method is consistent with approaches that have
multiple software builds and releases and allows for making an orderly transition to a
maintenance activity. Another positive aspect is that the spiral model forces early user
involvement in the system development effort. For EURECA with heavy user
interfacing such involvement is helpful.

Starting at the centre, each turn around the spiral goes through several task regions:

1. Determine the objectives, alternatives, and constraints on the new iteration.
2. Evaluate alternatives and identify and resolve risk issues.
3. Develop and verify the product for this iteration.

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 30 of 37

4. Plan the next iteration.

Designs and prototypes would be generated for the end users to use, validate and
feedback on.

An example of such a process is as follows:

 The new system requirements are defined in as much detail as possible.

 A preliminary design is created for the new system.

 A first prototype of the new system is constructed from the preliminary design.
o This is usually a scaled-down system, and represents an approximation

of the characteristics of the final product.

 A second prototype is evolved using four steps:
o Evaluate the first prototype and identify its strengths, weaknesses, and

risks.
o Define the requirements of the second prototype.
o Plan and design the second prototype.
o Construct and test the second prototype.

 Risk factors might involve development overruns, operating-cost
miscalculation, or any other factor that could result in a less-than-satisfactory
final product.

 The existing prototype is evaluated in the same manner as was the previous
prototype, and, if necessary, another prototype is developed from it according
to the fourfold procedure outlined above.

 The preceding steps are iterated until the desired outcome is satisfied

 The final system is constructed, based on the refined prototype.

Such a process will take place many times as the EURECA environment grows to
include different components and feedback from the end users.

While we are not able to state the exact criteria that we will use to measure the
validation of the components and the test cases at the specific time point, we identified
a general list with validation measures that we may use for the EURECA validation
procedure. This list includes:

Quality measures:
Software quality is a multidimensional concept. The multiple professional views of
product quality may be very different from popular or non-specialist views.
Moreover, end users have levels of abstraction beyond even the viewpoints of the
developer or user. However, very few end users will agree that a program that
perfectly implements a flawed specification is a quality product. Typical criteria for
quality measure are:

 Performance: Stakeholders have been measuring costs, quality, quantity,
cycle time, efficiency, the cost in terms of time and other factors for carrying
out the task. What is new to some extent is having those who the work
determine some of what should be measured in order that they might better
control, understand, and improve what they do. Effectiveness (the ability to
actually carry out tasks successfully) is also measured under performance.

 Added Value: Adding value involves knowing what would be most useful
for the software, how to communicate regularly with the users, following up,
showing interest in future use

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 31 of 37

 Accuracy: Accuracy is the degree to which data correctly reflects the real
world object or event being described. Thus a software accuracy is how
good the reflection of the real world comes to the user

 Acceptance of users: User acceptance can be defined as the
demonstrable willingness within a user group to employ information
technology for the tasks it is designed to support. Thus, acceptance
measurement is less concerned with unintended uses or non-discretionary
use of technologies and more interested in understanding the factors
influencing the adoption of technologies as planned by users who have
some degree of choice

 Subjective assessment (affect) of the quality of an application: In
general assessment can be objective or subjective.

o Objective assessment is a form of questioning which has a single or
multiple specific correct answers.

o Subjective assessment is a form of questioning which may have
more than one current answer (or more than one way of expressing
the correct answer).

 Learning effort required using a system: Learning is acquiring new, or
modifying existing, knowledge, behaviours, skills, values, or preferences
and may involve synthesizing different types of information. The determined
attempt to learn using a system could be measured with time.

 Cognitive workload: The notion of cognitive workload is ill-defined, it is
often implicitly portrayed as something that cannot be reduced to a
combination of more fundamental processes such as working memory load,
attention, and so on.

 Security and Privacy: Security is the degree to which a product or system
protects information and data so that persons or other products or systems
have the degree of data access appropriate to their types and levels of
authorization

Functionality measures:
In information technology, functionality is what the sum or any aspect of what a
product, such as a software application or a service, can do for a user. A product's
functionality is used by marketers to identify product features and enables a user to
have a set of capabilities. Functionality may or may not be easy to use.
Functionality testing is employed to verify whether the product meets the intended
specifications and functional requirements. Typical criteria for functionality measure
are:

 Completeness of necessary functionalities: whether the system offers
all necessary functionalities as well as how well the functionalities are
implemented.

 Workflow support: The question if the functionalities support the usual
workflow can be answered if we measure how well the everyday operation
of the working environment is facilitated.

 Implementation of additional functionalities: Functionality testing helps
deliver software with a minimum amount of issues to an increasingly
sophisticated pool of end users. Additional functionalities could be
implemented after testing.

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 32 of 37

User satisfaction measures:
User satisfaction is difficult to measure for several reasons. One has to count on
users not only to give feedback, but also to be honest in their assessment, as well
as provide surveys in several ways (through mail, email, or over the phone) and in
order to get the best information to allow customers to answer questions on a
weighted scale. The questions of surveys should be designed as to be able to help
draw conclusions on time to complete task as well as completion rate percentage,
repetitions of failed commands, misleads of user interface, disruption of work task,
system control loss etc. The factors, which might affect user satisfaction with, are
contained in this parameter list. It is important that for each parameter in the list
satisfaction should be quantifiable. Some quantification measures are easily
defined. The quantification may be defined as an integer value. Other parameters
may have more subjective quantifications. This list of measures identifies several
alternative metrics.
The metrics are intended to measure user performance only, while deliberately
ignoring user satisfaction and design elements that are or are not visible to the
user:

 Time to complete task

 Percentage of task completed

 Percentage of task completed per unit time (speed metric)

 Ratio of success to failures

 Time spent on errors

 Percentage number of errors

 Number of commands used

 Frequency of help or documentation use

 Time spent using documentation

 Percentage of favourable / unfavourable comments

 Number of repetitions of failed commands

 Number of times the interface misleads the user

 Number of good and bad features recalled by the user

 Number of available commands not invoked

 Number of regressive behaviours

 Numbers of times users need to work around a problem

 Number of times the user is disrupted from a work task

 Number of times the user loses control of the system

 Number of times the user expresses frustration or satisfaction

Design reviews during the early development phase should be carried out by the
project’s experts, which are not involved in the development effort (clinical partners).
The objective is to use checklists and test the system according to the defined test
cases, assuming the role of a user. Finally the results will be reported directly to the
developers, and possibly involve the developers in the design review.

The test cases for the validation will be described in detail in the deliverable (D8.2)
along with the validation procedures and the exact measurement criteria that will be
used.

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 33 of 37

5 Conclusions

This document established the requirements of the evaluation, identified the products
to be evaluated and identified the measures and models for the evaluation. As such,
the first two blocks from Figure 1 were defined, i.e. the “Establish evaluation
requirements” and “Specify the evaluation” blocks.

The remaining components of the complete evaluation model (based on the ISO/IEC
25040 and adapted for use in EURECA) will be executed and reported in subsequent
activities of the project.
Specifically, the “Design the evaluation” block will be reported in “ (D8.2)-
Specifications of the evaluation and validation scenarios for the different EURECA
components” and “ (D8.4) – Specifications of the evaluation and validation scenarios
and demonstrators for the clinical pilots” whereas the “Execute the evaluation” and
“Conclude the evaluation” blocks will be reported in “ (D8.3) - Report on evaluation and
validation of EURECA components”, “ (D8.5) - Report on the evaluation and validation
of the EURECA environment and services” and “ (D8.6) - Report on the user
workshops at clinical sites”

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 34 of 37

6 Bibliography

2500n, I. (n.d.). Software engineering — Software product Quality Requirements and

Evaluation (SQuaRE) — Guide to SQuaRE.
25010, I. (n.d.). Systems and software engineering -- Systems and software Quality

Requirements and Evaluation (SQuaRE) -- System and software quality
models.

25020, I. (n.d.). Software engineering -- Software product Quality Requirements and
Evaluation (SQuaRE) -- Measurement reference model and guide.

25030, I. (n.d.). Software engineering -- Software product Quality Requirements and
Evaluation (SQuaRE) -- Quality requirements.

25040, I. (n.d.). Systems and software engineering -- Systems and software Quality
Requirements and Evaluation (SQuaRE) -- Evaluation process.

BW, B. (1988). A Spiral Model of Software Development and Enhancement.
Computer, 61-72.

D1.1, E. (n.d.). User needs and specifications for the EURECA environment and
software services .

D1.2, E. (n.d.). Definition of relevant user scenarios based on input from users.
D2.2, E. (n.d.). D2.2 – Initial EURECA architecture.
D8.2, E. (n.d.). Specifications of the evaluation and validation scenarios for the

different EURECA components.
D8.3, E. (n.d.). Report on evaluation and validation of EURECA components.
D8.4, E. (n.d.). Specifications of the evaluation and validation scenarios and

demonstrators for the clinical pilots.
D8.5, E. (n.d.). Report on the evaluation and validation of the EURECA environment

and services.
D8.6, E. (n.d.). Report on the user workshops at clinical sites.
FDA. (1997, 6 9). General Principles of Software Validation; Final Guidance for

Industry and FDA Staff. General Principles of Software Validation, Version 1.1.
IEC. (n.d.). http://www.iec.ch/.
ISO. (n.d.). http://www.iso.org.
ISO/IEC12207:2008. (n.d.). Systems and software engineering -- Software life cycle

processes.
ISO8402:1994. (n.d.). Quality management and quality assurance.
SQuaRE, I. 2. (n.d.). Software engineering - Software product Quality Requirements

and Evaluation (SQuaRE) – Evaluation reference model and guide.

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 35 of 37

Appendix A

Eureca software evaluation form

Name of evaluator(s):

Evaluator's expertise:

Name and Version of the EURECA software component:

Evaluation date :

Rating

strongly

agree
agree neutral disagree

strongly

disagree

F
u

n
ct

io
n

a
li

ty
 The set of functions covers all the specified tasks and user

objectives.

The system provides the correct results with the needed degree of

precision.

The functions facilitate the accomplishment of specified tasks

and objectives.

E
ff

ic
ie

n
cy

The system responds quickly.

The system utilizes resources efficiently.

C
o
m

p

a
ti

b
il

i

ty
 The system shares resources without loss of its functionality.

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 36 of 37

The system shares information/data with other EURECA

components?

U
sa

b
il

it
y

The users can recognize easily whether the system is appropriate

for their needs.

The users learn to use the system easily.

The users use the system without much effort.

The system protects users against making errors.

The user interface enables pleasing and satisfying interaction for

the users.

R
el

ia
b

il
it

y

Most of the faults in the software been eliminated over time.

The software is capable of handling errors.

The software resumes working & restores lost data after failure.

S
ec

u
ri

ty

The system provides identification access wherever is needed.

Data are accessible only to authorized users

The system traces actions uniquely.

The system prevents unauthorized access.

M
a
i

n
ta

i

n
a
b

il
it

y

Faults can be easily diagnosed.

© EURECA <Public>

WP 8 D 8.1, Version 1.0

EURECA

ICT-2011-288048

Page 37 of 37

The system is composed of discrete independent components.

An asset can be used in more than one system, or in building

other assets.

The software can be tested easily.

P
o
rt

a
b

il
it

y
 The software can be moved to other environments easily.

The software can be installed easily.

The software can easily replace other software.

Q
u

a
li

ty
 o

f
u

se

The software is accurate and complete for the intended use.

The software improves the time or reduces resources for the

intended goal.

The software satisfies the perceived achievements of pragmatic

goals.

The software cannot harm people in the intended contexts of use.

