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1 INTRODUCTION 
 
Data mining plays a crucial role in the overall goal of EURECA. The aimed link 
between clinical research and clinical care systems requires methods to extract the 
relevant data and patterns out of the overwhelming large amounts of available data. 
Furthermore, this information needs to be presented to the health care professional 
and the patient in a highly interpretable fashion. Data mining in EURECA is mainly 
developed and applied in scenarios such as diagnostic classifiers, outcome prediction 
and hypothesis generation but other scenario’s will use them also, like for example the 
text mining from EHRs for extraction of meaningful information to populate research 
databases. This deliverable will describe the state-of-the-art methods involved in data 
mining with the specific focus on EURECA specific aims and tools.  
 
The structure of this deliverable is as follows. Section 2 summarizes which technical 
scenarios use data mining techniques and which type of data mining. Section 3 then 
provides a review of the useful methods, including references to available tools. 
Section 4 describes specifically for each of the data mining involved technical 
scenarios which methods are used or suggestions will be made based on similar 
published tools. Section 5 provides an overview of the relevant tools and platforms to 
develop the data mining methods in. In general, many references to tools or packages 
are provided with the focus in the free software package R. This choice is motivated in 
section 5.    
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2 DATA MINING IN EURECA 
 
This section provides an overview of all the data mining methods used in EURECA in Table form (Table 1).  
 
Table 1. Overview of technical scenarios and their corresponding classification in data mining techniques    
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Information 

SIT2 
VUA2 
UdS3 

Personal medical information recommender StoneRoos x  x   x  x   

FORTH1 Export from an HER to a PHR FORTH           

UdS2 Data mining for consultation FhG IAIS   x   x  x x  

VUA1 
C-P1 

Contextualized overview  VUA      x     

Investigation 
Guidelines 

UdS4 
Maastro1 

Update of guidelines  VUA      x  x   

UOXF1 
Maastro4 

Train, validate and updating a diagnostic 
classifier 

UOXF x  x x x x x x x x 

Investigation 
Protocol & 
research 

UdS5 Broad consent Custodix           

UdS6 Hypothesis generation UOXF x x x x x  x x   

VUA3 
UdS7 

Protocol feasibility  Philips           

Selection & 
Recruitment 
Treatment choice 

UdS8 Microbiology SAE FhG IBMT           

Maastro2 
Maastro3 

Outcome prediction UOXF x  x x x X x x x x 
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UOXF1 
Maastro4 

Use a diagnostic classifier  UOXF x          

Selection & 
Recruitment 
Patient trial 
recruitment  

Maastro5 
Maastro6 
IJB1 
BIG1 
BIG2 
UOXF2 
UdS9 

Trial recruitment  Custodix x x    x x  x x 

Reporting 

IJB2 Reporting episodes of febrile neutropenia IJB           

IJB3 
IJB4 
IJB5 

Cancer registry and tumour bank reporting IJB       
 

   

Maastro7 Pre-filling of CRF and AE reports UPM           

Maastro8 
UdS10 
UdS11 

Automatic detection and reporting of 
SAEs/SUSARs 

FhG IBMT x  x x  x x x   

Long-term follow-
up 

IJB6 
IJB7 
UOXF3 
IJB8 
IBMT1 
UdS12* 

Long-term follow-up and patient diary* FORTH      x 

 

x x  

Economic analysis UdS13 
Analyse economic data between different 
procedures 

FhG IAIS x  x x   x  x x 
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3 DATA MINING APPROACHES AND METHODS 
 
The previous sections described the different technical scenarios and use cases that 
use data mining techniques to accomplish their aim. Below the state-of-the-art data 
mining techniques are described in more detail including references to use cases and 
literature. This is an extension on the brief data mining overview which was given in 
D5.1. The described methods are not all methods available, but only the main areas 
that will be useful and used in EURECA. We will refer to this proposed classification 
throughout the document, starting with Table 1. This table provides only a quick 
reference overview. Methods classified per scenario often overlap, and some of these 
are more approaches then methods. But the focus, and particularly the EURECA 
application, is different, as described in this section. We can characterise four classes 
of data-mining approaches:  

• Supervised: the data is labelled (e.g. outcome). Very important in almost 
all DM techniques, but most known for classification.     

• Unsupervised: unlabelled data. Typically unsupervised clustering 
algorithms can be used to find groups of patients with similar 
characteristics.    

• Mixed: more complex techniques which use semi-supervised learning. 

• Knowledge based: these techniques use knowledge and reasoning in their 
tasks. This knowledge is often represented by rules, frames or scripts.  

 

3.1 Data pre-processing 

New clinical trials include techniques such as high-throughput assays and imaging 
techniques which produce a very large amount of data points/variables. Thus, data 
pre-processing has become a very important step in data analysis. The main pre-
processing methods applied to medical data are:  

• Outlier detection: out-of-range values entered wrongly in the dataset or by 
measurement error can affect DM algorithms. Detecting combinations of data 
which are unlikely or impossible is also important, e.g. patient gender is male 
for cervical cancer patients. 

• Missing values: values not present in the dataset can be dealt with according 
to the task. Imputation (substituting) of the values using specific algorithms is 
common for classification problems, but not always necessary since some 
classification methods can deal with missing values.     

• Normalization: since the range of values of raw data varies widely, in some 
DM algorithms, objective functions will not work properly without normalization. 
For example, the majority of classifiers calculate the distance between two 
points by the distance. If one of the features has a broad range of values, the 
distance will be governed by this particular feature. Therefore, the range of all 
features should be normalized so that each feature contributes approximately 
proportionately to the final distance. 

• Dimensionality reduction: Reasons to reduce the number of variables in a 
dataset used for data mining are: 1) Many of the variables in the available 
datasets are correlated and not independent. To avoid over fitting and improve 
model performance, i.e. prediction performance in the case of supervised 
classification and better cluster detection in the case of clustering 2) In high 
dimensional datasets the false discovery rate can be high due to multiple 
testing, meaning that there is a risk that one will find a significant predictor b 
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chance 3) to provide faster and more cost-effective models 4) to gain a deeper 
insight into the underlying processes that generated the data. Dimensionality 
reduction approaches can be applied before the analysis or, for example in 
classification problems, whilst building the classifier. This helps gaining 
statistical power in analyses where usually the number of variables is much 
higher than the number of cases. 

 
This section will now focus on dimensionality reduction using feature selection since in 
EURECA we deal with high dimensional datasets and due to the complexity of this 
domain, feature selection is one of the most common pre-processing steps for 
extracting knowledge from genomic data. 
 
 

3.1.1 Feature selection 

 
Reduction of the dimensionality of data is a well-known problem in machine learning 
and data mining, denoted as feature selection.1 In its general form the problem could 
be stated as follows: 
 

Given a set of features (attributes or descriptors, i.e., molecular markers) m and a target 

variable T (i.e., phenotypic classes); Find an optimal subset r of features, r ⊂ m that 
achieves maximum classification performance over T for a given set of predictors 
(classifiers) and respective classification performance metrics (e.g., predictive accuracy, 
sensitivity, specificity etc). 

 
A strategy for feature selection should implement a search through the space of 
possible feature subsets that addresses the following landmark questions2:  

• Where to start and to which direction the search?  
o Begin with an empty set and start adding individual (or subset of) 

‘useful’ features or, begin with all (or part of) the features and start 
removing ‘useless’ features 

• How to assess the usefulness of features?  
o The two main strategies are the filter and wrapper approaches (see 

below) 

• How to search?  
o As an exhaustive search is intractable (especially for huge dimensional 

domains, like microarray gene expression data) heuristic search 
methods should apply 

• When to stop the search?  
o Adding of removing features could stop when none of the alternatives 

improves performance (e.g., predictive accuracy).  
In the light of these observations, a general feature selection process could be realized 
in three basic steps (Error! Reference source not found.): generation, evaluation, 
stopping criterion, and validation (on external test cases) of the selected feature 
subset3. 
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Figure 1. The generalized feature selection methodology: components and operational flow – the 
“generalization” component is shaded to point its major importance in the underlying feature space search 
process. 

Given a domain with m input features, finding the best feature subset in an exhaustive-
search mode (i.e., in a 2m space of feature subsets) is known to be NP-hard4, with the 
search to become quickly computationally intractable.  

3.1.1.1 Basic Feature Selection Strategies (Filters and wrappers) 

The intractability of a complete features’ space search, forces us to concentrate on 
heuristic search approaches where, with the risk of losing solutions, optimality could be 
approximated. The long-term machine learning and data mining research have 
elaborated on two major families of feature selection methodologies realized by 
different heuristic space search strategies: the filter and the wrapper methods.  

• Filters: In the filter-based feature selection (FFS) approach the feature space 
is not explored via the use of an induction algorithm; instead the features (or, 
subset of features) are evaluated and selected on the basis of their statistical 
properties. In most cases the evaluated property relates to the power of the 
features to discriminate between the classes, as assessed by respective 
feature scores or ranks. FFS is utilized as a pre-processing step in order to 
select the most characteristics and/or discriminant (with respect to the available 
classes) features. Then, a particular classifier may be applied on the reduced 
dataset. So, FFS techniques are not classifier specific. In filter-based 
approaches, selection implies deployment of a scoring or, ranking procedure, 
to measure the power of a gene to discriminate between the different sample 
categories.  

• Wrappers: In the wrapper-based feature selection (WFS) approach the feature 
subset selection algorithm exists as a wrapper around the utilized induction 
algorithm, that is: the induction algorithm itself (considered as a ‘black-box’) is 
used as part of the feature subset evaluation function. In other words, the 
feature selection component is embedded in the algorithm, carrying of course 
the classifier’s bias.  In the worst, exhaustive search case - where all different 
feature subsets should be evaluated, WFS approaches exhibits an exponential 
to the number of features m (time) complexity, O(2m). As already noted this is 
impractical for gene expression studies. More economical wrapper-based 
features selection algorithms have been proposed. One such simple algorithm 
is implemented by backward elimination where the search starts with the full 
set of features and proceeds by greedily removing features until performance 
starts to degrade. Another option is forward selection where, one starts with the 
empty set and proceeds by greedily adding features until no further 
improvement can be achieved. Due to their high computational complexity 
WFS techniques have not received much interest. In order to cope with this, a 
reduction of the feature space is applied first (e.g., following a filter approach), 
followed by the wrapper or embedded component on the reduced data set, 
hence fitting the computation time to the available resources..  
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Combined hybrid filter-wrapper techniques have been also proposed. Such techniques 
base their selection strategy on a pre-ordered ranking of features followed by an 
incremental feature selection process. With this approach, the respective 
computational burden is relaxed at great extent. 

3.1.1.2 Feature selection for EURECA 

The advent of genomic and proteomic high-throughput technologies enabled a 
‘systems level analysis’ by offering the ability to measure the expression status of 
thousands of genes in parallel, even if the heterogeneity of the produced data sources 
make interpretation especially challenging. The high volume of data being produced by 
the numerous studies worldwide, post the need for a long-term initiative on bio-data 
analysis in the context of ‘translational bioinformatics’ research.  
In the context of EURECA feature selection is relevant for applying data mining on 
clinical data but essential for the identification of relevant biomarkers that accurately 
predict risks in patients and to validate new hypotheses using large (genomic) studies. 
For such a high dimensional domain, where one must explore the space of 230000 gene 
subsets, an exhaustive search is practically impossible. It is proved that, in the case 
that the evaluation criterion possesses the monotonicity property (i.e., a subset of 
features should be not better than any larger set that contains the subset) an optimal 
subset of features could be found without evaluating the whole space of 2m feature 
subsets5.  
 

3.2 Similarity Learning (SL) 

Similarity Learning consists of classification on pairwise similarities. In contrast to other 
machine learning methods, similarity learning does not assume that objects are well 
represented in a Euclidean feature space. This is useful for problems in bioinformatics, 
information retrieval and many other areas with diverse object representations. In 
EURECA for example we want to find similar clinical trials. Since clinical trials more 
frequently now include pathology, genomic and imaging data, the representation of 
semantic similarity will need to be defined in extremely complex data space. 
 
A typical application of similarity learning is a recommender system. They attempt to 
recommend information items that are likely to be of interest to the user. “Typically, a 
recommender system compares a user profile to some reference characteristics, and 
seeks to predict the 'rating' or 'preference' that a user would give to an item they had 
not yet considered.”6 Many algorithms used for recommender systems and gene 
pattern recognition are based on distance measures. The distance indicates the 
similarity of information items. Then, those items are recommended that are “closest” 
to match the user profile. User interaction can be used as feedback to improve the 
similarity models, in that the system will observe the choices made by the user with 
regard to the “similar items” offered, extending the list of similar items as input for 
similarity learning. 
 
The key idea of similarity learning is to replace fixed distance functions by learning a 
function that produces a non-negative real number for any pair of examples. The 
intended semantic is that the higher this number the more similar the two examples 
are. The training data that the function learns from consist of example pairs labelled as 
similar or dissimilar. 
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The learning framework is generic, in that information items are considered as 
structured objects (of arbitrary nature). For instance, the information item may be a 
document with a substructure given by “title”, “author”, “abstract”, “main text”, and, 
eventually, “metadata”. Typically, similarity learning proceeds by attaching basic 
distance measures to the atomic components, eventually as well to structural 
properties, and then by learning weight coefficients applied to the basic distance 
measures. More formally, let D be a set of base distance measures. Then the distance 
of two “points” x, y is defined by where are the weight coefficients. Points are typically 
n-tuples of atomic components but may as well be structures such as trees or graphs. 
Basic distance measures are distinguished by the type of the atomic component. A 
number of distance measures, well known from the literature7, are listed below: 

• String 
o LevensteinSimilarity, BlockDistance, DiceSimilarity, 

JaroWinklerSimilarity, MatchingCoefficient, JaccardSimilarity, 
CosineSimilarity on words, ChapmanLengthDeviation, 
ChapmanMatchingSoundex, ChapmanMatchingSoundexSpanish, Jaro, 
MongeElkan, NeedlemanWunch, OverlapCoefficient, QGramsDistance, 
SmithWaterman, SmithWatermanGotoh, 
SmithWatermanGotohWindowedAffine, SoundexEnglish, 
SoundexSpanish, 

• Numbers, Number series 
o EuclideanDistance, CosineSimilarity, CamberraDistance, 

ChebychevDistance, CorrelationSimilarity, JaccardSimilarity, 
ManhattanDistance 

• Boolean 
o Jaccard Similarity, Dice Similarity, Matching Koeffizient, Cosinus 

Similarity 

• Text 
o Cosine distance on n-grams 

• Structured Data 
o Hierarchies in the data may be reflected by taking the path length into 

account. 
o Hierarchy in structures such as trees or graphs may be reflected by 

taking the path length into account. 
 
The result of similarity learning is a similarity model that consists of the weight 
coefficients for the basic distance measures. 
 
Due to the variety of information objects, the question of how to define a similarity for 
them is a challenging task. It is even more complicated in case the definition of 
similarity depends on user needs. It makes no sense to generalize a recommendation 
function among multiple users. There is a requirement for an easy-to-use service that 
each user can create a similarity model according to his/her particular preferences.  
 
At the same time, a typical user will be unwilling to spend a lot of time to set up a 
recommendation system. The process of obtaining labelled data is costly in terms of 
time and manual effort. In order to start learning with n examples, the user needs to 
give his feedback for n * (n−1) object pairs. Hence, he should be only asked for input 
that he can give quickly and correctly. In particular, it is very favourable to ask the user 
only questions regarding specific instances, for which domain experts can usually give 
very concrete feedback. As an example, when recommending papers to read, it is 
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better to ask the user “is this paper relevant to you?” instead of “do you like to see 
more papers of the same author?” In order to reduce the user’s efforts in labelling, the 
selection of a small set of pairs that is informative enough to create an accurate model 
is necessary. Intelligent sampling strategy that selects the most ‘interesting’ pairs from 
a pool of unlabelled data to show them to the user exist8. 
 

3.3 Association Rule Discovery 

Association rule discovery (ARD) considers the problem of discovering association 
rules between items in a large databases; it has been applied extensively for example 
to databases of sales transactions but less so to the clinical or medical sciences. 
Algorithms have been proposed and tested mainly for categorical data and less for 
numerical data. This is because it does not perform well for numeric data9-14. An ARD 
algorithm requires a collection of instances as input and provides rules to predict the 
values of any attribute(s) (not just the class attribute) from values of other attributes as 
output.   
 
ARD can also be used to do an integrative analysis of microarray data. The approach 
can integrate gene annotations and expression data to discover intrinsic associations 
among both data sources based on co-occurrence patterns, which can help in 
determining the cause of mutation in tumours and diseases. Typical annotations are 
metabolic pathways, transcriptional regulators and Gene Ontology categories. 
Previous studies automatically extracted associations revealing significant 
relationships among these gene attributes and expression patterns, where many of 
them are clearly supported by recently reported work.14, 15 
 
Available R-package: http://cran.r-project.org/web/packages/arules/index.html  

3.4 Classification 

Classification is a mining technique based on machine learning; it is used to classify 
each item in a set of data into one of predefined sets of classes or groups. The data 
classification process involves a learning phase and classification phase. In the 
learning phase a set of training data are analysed by a classification algorithm; then in 
the classification phase data are used to estimate the accuracy of the classification 
rules. If the accuracy is acceptable the rules can be applied to any new and similar 
data. The classifier-training algorithm uses these pre-classified examples to determine 
the set of parameters required for proper discrimination. The algorithm then encodes 
these parameters into a model called a classifier. There are different algorithms to do 
this classification, each of them having their strengths and weaknesses, and their 
optimal data type suitability. A set of well-known and state-of-the-art extensions and 
applications of these algorithms is discussed in this subsection.  
 

3.4.1 Support vector machines 

This method was introduced in 1995 16 and is since then widely used in bioinformatics 
and other fields due to its high accuracy, the ability to deal with high-dimensional data 
(such as gene expression) and the flexibility of modelling diverse sources of data. 
SVMs belong to the general category of kernel methods. A kernel method only 
depends on the data through dot-products. In that case, a dot product can be 
computed in a possibly high dimensional feature space by replacing the dot-product 
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with a kernel function. This has two advantages: 1) the ability to generate non-linear 
decision boundaries using methods designed for linear classifiers 2) The use of kernel 
functions allows the user to apply a classier to data that have no obvious fixed-
dimensional vector space representation. In general SVMs are sensitive to the way 
features are scaled. Therefore it is essential to normalize the data because the 
accuracy of the classifier can degrade severely. As in most other classifiers, feature 
selection is important in SVMs; not necessarily to improve accuracy, but to understand 
better the data and the classification results.  
 

 
Figure 2. Concept of SVMs: maximizing the margin between two labelled groups of samples. The samples that 
define the margin are called support vectors. This is an extreme example with no misclassifications. In 
practice, soft margins are used that take misclassification rate into account in the maximizing process.  

Advantages: 

• Accurate and robust classification results on different data types 

• Uses a subset of training points in the decision function so it is also memory 
efficient. 

• Expert knowledge can be implemented by designing the kernel  

• Convex optimisation problem (no local minima in optimisation process) 

• Non-linear modelling ability 

• Strong theoretical basis 
 
Disadvantages:  

• Classification in a black box fashion, i.e. they do not provide the user much 
information on why a particular prediction was made. 

• Most SVMs are two-class classifiers, although multi-class classifiers exist but 
they are computationally more expensive.   

• SVMs do not directly provide probability estimates  
 
Published applications:  

• MicroRNA profiling to distinguish lung cancer patients from healthy controls.17 

• Gene and microRNA expression predicts nodal involvement in breast cancer.18  

• Prediction of event-free-survival for neuroblastoma patients using miRNA 
expression.19 

   

3.4.2 Random forests 

3.4.2.1 Decision trees  

To understand the concept of random forests the decision tree classifier needs to be 
explained. Decision trees try to find ways to divide the universe into successively more 
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subgroups (creating nodes) until each addresses only one class or until one of the 
classes shows a clear majority that does not justify further divisions, generating in this 
situation a leaf containing the class majority (example: Figure 3). The algorithm starts 
with a training set in which the classification label is known for each record. The 
algorithm then systematically tries to break up the records into two parts, examining 
one variable at a time and splitting the records on the basis of a dividing line in that 
variable. The objective is to attain an as homogeneous set of labels as possible in 
each partition. This splitting or partitioning is then applied to each of the new partitions. 
The process continues until no more useful splits can be found. In this way a decision 
tree is constructed which is highly interpretable. The heart of the algorithm is the rule 
that determines the initial split rule. In general, every possible split is tried and 
considered, and the best split is the one which produces the largest decrease in 
diversity of the classification label within each partition. Another concept which is 
applied in the development of decision trees is pruning. This is the process of 
removing leaves and branches to improve generalizability of the tree for new data 
because in some nodes the populations are not representative anymore.  
 

 
Figure 3. Simple example of a decision tree for CLN2 gene regulation by three explaining genes

20
  

 

3.4.2.2 Supervised random forests 

 
A random forest actually grows a collection of many classification trees. To classify a 
new object, this object is input for each of the trees in the forest. After each tree 
provides a classification, the forest picks the classification having the most votes. Each 
tree is grown as follows:  

1. If the number of cases in the training set is N, sample N cases at random from 
the original data (with replacement) as a training set.  

2. If there are M input variables, a number m<<M is specified such that at each 
node, m variables are selected at random out of the M and the best split on 
these m is used to split the node. The value of m is held constant during the 
forest growing. 

3. There is no pruning, so each tree is grown to the largest extent possible. 
 
The forest error rate depends on: 

1. The correlation between any two trees in the forest. Increasing the correlation 
increases the forest error rate. 

2. The strength of each individual tree in the forest. A tree with a low error rate is 
a strong classifier. Increasing the strength of the individual trees decreases the 
forest error rate. 
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The task is to find the optimal range for the value of m because correlation and 
strength go up or go down simultaneously when altering m. To find the optimal m, the 
oob (out-of-bag) error rate is in general used. This error rate provides an internal 
validation of the test set error: A different bootstrap sample from the original data is 
used to construct each tree. One-third of this bootstrapped data is left out to test on the 
same tree. These classified “new” cases are compared to their actual class and the 
error estimate is averaged over all cases, providing an unbiased error rate.     
 
Advantages: 

• Very accurate method overall 

• Can handle high dimensional inputs 

• Provides variable importance estimates 

• Can deal with missing data accurately 
 
Disadvantages:  

• Risk of overfitting in noisy classification tasks  

• For data including categorical variables with different number of levels, random 
forests are biased in favour of those attributes with more levels. 

 
Published applications:  

• Finding specific mutations for melanomas using RF.21 

• Identification of microRNAs associated with overall patient survival in 
neuroblastoma.22 

 
 
 

3.4.3 Bayesian networks 

A Bayesian network (BN) is a graphical model that encodes probabilistic relationships 
among variables of interest. In particular, each node in the graph represents a random 
variable, while the edges between the nodes represent probabilistic dependencies 
among the corresponding random variables (Figure 4). There are three general tasks 
for the development of BNs:  

1. Structure learning: the structure of the network can be provided by an expert, 
be learned from the data, or both.  

2. Parameter learning: given the structure of the network, for each node the 
variable distribution needs to be estimated given the information of the 
“parents” nodes.  

3. Inferring unobserved variables: the network can be used to find out updated 
knowledge of the state of a subset of variables when other variables (the 
evidence variables) are observed.     
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Figure 4. A Bayesian Network representing a hypothetical gene-regulation pathway. This structure of a 
hypothetical Bayesian Network contains five nodes. The probabilities associated with this network structure 
are not shown. The network structure indicates that Gene1 can regulate (influence) the expression level of 
Gene3, which in turn can regulate the expression level of Gene5.

23
 

 
Advantages:  

• BN can deal with incomplete datasets 

• Causal relationships can be learned  

• They facilitate the use of prior knowledge 

• No data preprocessing required to avoid overfitting  

• Easy to interpret visualization of the model 
 
Disadvantages:  

• Very sensitive to the (subjective) structure of the network 

• Costly computational task 

• Not all BN software can deal with continuous data (discretization required) 

• Feedback effects cannot be included in the network (acyclic nature of BNs) 
 
Published applications: 

• Modeling local failure in lung cancer using clinical, dosimetric variables and 
blood biomarkers.24 

• Discriminating responders and non-responders for head and neck cancer 
patients with specific gene clusters.25  

 

3.4.4 Artificial neural networks 

The concept of a neural network (NN) learning algorithm is inspired by the structure 
and functional aspects of biological neural networks. Computations are structured in 
terms of interconnected artificial neurons, which are usually non-linear in nature. 
These networks are constructed with an input layer with all the variables, one or more 
hidden layers, and an output layer which produces the estimation of your target 
outcomes (Figure 5). 
 

 

Figure 5. Example of an artificial neural network with one hidden layer (http://offthelip.org)  

 
Advantages:  

• Powerful technique utilized across scientific disciplines.  

• Theoretically well suited to non-linear processes 
 
Disadvantages: 
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• Not transparent and therefore hard to interpret results (“black box” concept) 

• Technically difficult to understand 

• Empirical nature of model development 

• Computationally expensive 
 
Published applications:  

• NN was better in predicting breast cancer survival than decision trees and 
logistic regression using gene expression data.26 

• Modelling interaction between mRNA and microRNA using fuzzy neural 
networks27  

 
 
 

3.4.5 Data types  

The selection of a classifier mainly depends on the input data that is provided. One 
can distinguish continuous data and discrete data, which can be categorical (nominal) 
or ranked (ordinal). Table 2 shows some examples of these data types.   
 
Table 2. Cancer related examples of categorical and continuous data for different sources  

Input origin  Discrete (category/ranked) Continuous  
Clinical 
 

Tumour stage 
Health performance score (1-4) 

Age 
Blood pressure 

Imaging Tumour invasion >20mm (yes/no) 
Nr of lymph nodes (0, 1-3, >3) 

Tumour heterogeneity  
Tumour sphericity  

Genomics 
 

Copy number  Gene expression levels 
RNA expression levels 

Treatment  
 

Chemo administration (yes/no) 
 

Radiotherapy dose 
Time to surgery 

 
In Table 3 the mentioned classification methods are compared for the abilities to deal 
with different data, low sample sizes, high dimensionality, distributed learning and 
rapid learning. 
  
Table 3. Suitability of classification methods based on type of input data   
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SVM (3.4.1) Both Fair Good Fair Fair Yes Yes 
RF (3.4.2) Both Fair Good Fair Fair No Yes 
BN (3.4.3) Categorical Poor Poor Good Good Yes Yes 
NN (3.4.4) Both  Poor Poor Fair Poor No Yes 
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There have been several classifier comparison studies published, also in the genomics 
domain. Testing 22 diagnostic and prognostic microarray-based datasets by SVMs 
and RFs showed that random forests are outperformed by support vector machines 
both in the settings when no gene selection is performed and when several popular 
gene selection methods are used.28 On the other hand, random forests are found to be 
optimal when feature distributions were skewed and when class distributions were 
unbalanced.29 Another study found that BNs are outperforming SVMs and RFs when 
classifying mood disorders based on gene expression and SNP data, but differences 
in performance are small. 30 

 

3.5 Clustering  

Clustering is a data mining technique that defines groups of observations that have 
similar characteristics. Contrarily to classification where objects are assigned into 
predefined classes, clustering both defines the classes and assigns objects to them. 
By using clustering techniques we can identify particular regions in object space and 
can discover overall distribution pattern and the correlations among data attributes. 
Types of clustering methods that we discuss in this deliverable are hierarchical 
clustering, partitioning clustering, unsupervised random forests, Bayesian clustering 
and other techniques like coexpression networks, integrative clustering and consensus 
clustering.   
 
The reasons to do unsupervised clustering:  

1. Hypothesis generation  
2. Labelling large data sets can be very costly 
3. Changes in patterns over time can be detected 
4. Data categorization purposes  
5. As exploratory phase of data analysis  

 
For EURECA we will use clustering especially for hypothesis generation. For example 
for the genomic field, suppose genes A and B are grouped in the same cluster, then 
we hypothesis that genes A and B are involved in similar function. If we know the role 
of gene A is apoptosis but we do not know if gene B is involved in apoptosis, we can 
do experiments to confirm if gene B indeed is involved in apoptosis. 
 
The tools for unsupervised learning and clustering are the same as for classification, 
where R is the main focus for Eureca. For R most clustering tools are summarized and 
available at: R: http://cran.r-project.org/web/views/Cluster.html  
  

3.5.1 Hierarchical clustering 

Hierarchical clustering31 is based on the core idea of data points being more related to 
nearby data points than to data points farther away, meaning that these algorithms 
connect data points to form clusters based on a distance measure. This clustering is 
called hierarchical because these algorithms do not provide a single partitioning of the 
data set, but instead provide an extensive hierarchy of clusters that merge with each 
other at certain distances. Two types can be distinguished: agglomerative, where each 
observation start in its own cluster and pairs of clusters are merged as one moves up 
the hierarchy, and divisive, in which all observations start in one cluster and splits are 
performed moving down the hierarchy. A useful feature of this type of clustering is the 
formation of a dendrogram, which visually shows the formation of clusters when the 
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distance threshold is varied. A published example is provided in Figure 6, showing also 
the dendrogram and the identified clusters at the top.  
 

 
Figure 6. Coexpression map of 534 genes that are clustered hierarchically, identifying five gene clusters in 115 
breast cancer tissue samples.

32
 

 
Advantages:  

• Number of clusters not required in advance  

• No input parameters (except choice of similarity)  

• Computes complete hierarchy of clusters  

• Integration of result visualizations  
 
Disadvantages:  

• Interpretation of the hierarchy is complex 

• Only effective at splitting small amounts of data 

• Sensitive for outliers because outliers may become their own clusters or will 
falsely connect distant clusters. 

• No automatic discovering of optimal clusters 
 
Published applications:  

• Exploring miRNA deregulation and candidate miRNA markers for follicular 
carcinomas that can be used diagnostically33 

• Predicting prognosis in colorectal cancer using hierarchical clustering for gene 
expression34     

 
 

3.5.2 Partitioning clustering  

The most well-known and widely used partitioning clustering algorithm is K-means 
clustering35. This method, originating from 1957, aims to partition n observations into k 
clusters in which observation belongs to the cluster with the nearest mean. The idea is 
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to choose random cluster centers, one for each cluster. These centers are preferred to 
be as far as possible from each other.   
 

 
Figure 7. Artificial example of k-means clustering for randomly and normally distributed clusters (k=3)

36
  

 
Advantages:  

• Computationally fast for large samples (and for small k) 

• Produces tight clusters, especially for globular clusters (convex or 
spherical/elliptical) 
 

Disadvantages:  

• Inappropriate choice of k may yield poor results (diagnostic checks are 
required) 

• Sensitive to the randomly chosen initial cluster centres 

• The tendency of k-means to produce equivalent sized clusters can lead to 
counterintuitive and false results  

• Might converge to local optimum, resulting in clusters close to the initial 
partitioning    

• Works not well with non-globular clusters 
 
Published applications:  

• Weighted K-means clustering for microarray data37 

• Classification of breast cancer using gene expression, copy number variations 
and microRNA38 

 

3.5.3 Unsupervised random forests 

 
Random forests are usually used for supervised learning, but unsupervised learning is 
also possible39. The approach is to consider the original data as class 1 and to create 
an artificial second class of the same size that will be labelled as class 2. The artificial 
second class is created by sampling at random from the univariate distributions of the 
original data, meaning that class two has the distribution of independent random 
variables. Class 2 thus destroys the dependency structure in the original data. Now, 
two classes are created and this two-class problem can be run through random 
forests. The higher the misclassification rate in this two-class problem is, the input 
variables are looking too much like independent variables (low discrimination). Other 
way around, if the misclassification rate is low, the dependencies between the input 
variables are playing an important role. 
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Figure 8. Example of an applied RF clustering method
40

. a. multidimensional scaling plot on the RF 
dissimilarity in the DNA microarray data. Two clusters are defined (C = Clear cell, N = Non-clear cell). b. 
Kaplan-Meier plots of survival show distinct separation between the two clusters.    

Advantages:  

• Missing values can be replaced effectively 

• Outliers can be found 

• Scaling can be performed  

• Variable importance can be measured 

• Can deal with skewed data distributions 
 
Disadvantages:  

• Exact quantitative contribution of every variable is hard to interpret.   
 
Published applications: 

• Lung tumor classification using supervised and unsupervised random forests.41 

• Classification for renal cell carcinoma using microarray data (see also Figure 
8)40  

 
Additional tools:  
In R the same function can be used as for the supervised random forests as has been 
described42.  
 

3.5.4 Bayesian clustering 

Unsupervised Bayesian clustering has been far less explored than the supervised 
Bayesian networks.43 Beside the Chow and Lui multinets and the tree augmented 
Naïve Bayes model, the simple Bayesian network (SBN) classifier has been 
introduced recently in 2009. This method is more robust in its structure, capable of 
handling the trade-off between complexity (number of edges in the network) and 
accuracy using a Bayesian approach. The unsupervised training technique maximizes 
the classification maximum likelihood (CML) of the Bayesian network classifiers, 
instead of using the traditional EM approach that maximizes the maximum likelihood 
(ML). The methods both do structure and parameter learning but without labeling of 
the outcomes. Not many applications are published of this method, but because in 
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classification the BN is so elegant and useful, we decided to discuss this clustering 
technique for comparison.    
 
Advantages:  

• Number of clusters is variable 

• The resulting structure can give additional information on how the features are 
related (probabilistic dependencies) in each cluster 

 
Disadvantages:  

• It is difficult to determine the correct number of clusters during the learning 
process 

• One needs an effective unsupervised technique for transforming continuous 
attributes into discrete ones 

 
Applications: 
This method has not been used frequently. One paper stated that Bayesian 
unsupervised learning was useful in finding the dependence between gene expression 
and micro-RNA data.44 
 

3.5.5 Other clustering techniques 

3.5.5.1 Co-expression networks  

Using gene co-expression analysis clusters of genes with consistent functions that are 
relevant to cancer development and prognosis can be detected. Gene co-expression 
networks are constructed from data of gene expression microarray experiments by 
using different correlation based inference methods.45 The vertices of these networks 
represent genes, while their edges are related to the values of the pairwise correlation 
coefficient that is calculated from the expression data of the genes. Co-expression 
networks, in contrast with other networks whose edges represent well-defined 
biological interactions, are composed of edges that show co-expression patterns of 
genes over different experimental conditions. There are some remarks to be made 
when interpreting co-expression results. Often linear correlations of the gene 
expression values are considered, some co-expression edges might be established by 
simple chance, averaging the gene expression values over a large number of cells 
could distort the whole co-expression analysis, and the networks are known to be 
incomplete which may affect the results. Successful applications of this method have 
been published in which clusters of genes were associated with prognosis46 or clusters 
of microRNAs were found to affect disease.47 An R-package have been developed: 
http://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/     
 

3.5.5.2 Integrative clustering 

When taken into account a genomic dataset involving more than one data type 
measured in the same set of tumors, for example integrating copy number and gene 
expression data, it is often called multiple genomic platform (MGP) data. Identifying 
tumor subtypes by simultaneously analyzing MGP data is a new problem. The current 
approach to subtype discovery across multiple types is to separately cluster each type 
and then to manually integrate the results. An ideal integrative clustering approach 
would allow joint inference from MGP data and generate a single integrated cluster 
assignment through simultaneously capturing patterns of genomic alterations that are: 
1. consistent across multiple data types; 2.  specific to individual data types; 3. weak 
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yet consistent across datasets that would emerge only as a result of combining levels 
of evidence.48 A study where this method is applied on a large scale was found for 
breast cancer in which copy number and gene expression data were integrated.49 An R 
implementation for integrative clustering: 
http://www.mskcc.org/mskcc/html/85130.cfm   

3.5.5.3 Consensus clustering 

This strategy involves class discovery and clustering validation tailored to the task of 
analyzing gene expression data.50, 51 It refers to the situation in which a number of 
different (input) clusters have been obtained for a particular dataset and it is desired to 
find a single (consensus) clustering which is a better fit in some sense than the 
existing clusters. Many clustering techniques are dependent on the selection of the 
distance measure and these are hard to define with high dimensionality. Consensus 
clustering provides a method to represent the consensus across multiple runs of a 
clustering algorithm, to determine the number of clusters in the data, and to assess the 
stability of the discovered clusters. A very interesting applications has been published 
for DNA microarray analysis of lung cancer which could identify reproducible tumor 
subtypes with different clinically behaviors.52   
 
Implementations in R:  
http://cran.r-project.org/web/packages/clusterCons/clusterCons.pdf 
http://www.bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html  
 

3.5.6 Comparison of clustering techniques  

Several publications are present about comparing clustering techniques for genetic 
data specifically, which we will focus on in EURECA for the hypothesis generation 
scenario. For example, 2780 cluster analysis methods were tested on seven publicly 
available microarray data sets with common reference designs, and it followed that 
hierarchical clustering using Ward’s method, k-means clustering and Mclust (R: 
http://www.stat.washington.edu/mclust/) are the clustering methods considered in this 
paper that achieves the highest adjusted performance.53 Another publication tested 
seven different clustering methods for the analysis of 35 cancer gene expression data 
sets.54 Here, finite mixture of Gaussians55 performed best, followed closely by k-
means. It is a difficult task to select a cluster algorithm which is optimal for your 
dataset within the huge list of methods currently developed. This selection process can 
also be formalized by validation measures. A publication aiming for these measures 
defined one measuring the statistical stability of the clusters produced and another one 
representing their biological functional congruence.56 

3.6 Text mining 

Text Mining is a branch of data mining that refers to learning by using automatic 
extraction of information from free text. Information from different text documents 
and/or resources is extracted and then linked to generate new rules or hypotheses. 
These are typically organized and explored with other data-mining methods. In text 
mining the data patterns are extracted from natural language text rather than from 
structured databases; such automated processing of natural language is challenging 
and methods to perform such a task are still limited. Typically, it requires dividing text 
mining in specific relatively small tasks that can be performed automatically. 
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An example of application to genomics is the study of co-occurrences of words in 
publications to infer related function of genes or proteins, or generate hypotheses that 
can then be tested in further studies.57 
 
For further information on text mining in EURECA we would like to refer to deliverable 
3.1, where the SPECIALIST NLP Tools and Medical text processing toolkit are 
described.  
 

3.7 Time-dependent and data stream mining 

In many modern scientific and medical research domains, new knowledge and data 
are stored and recorded in large data streams of transactional data that rapidly and 
continuously grow over time. Not all scenarios described in section 4 present all the 
data stream characteristics but several of them present the challenge of being data 
that change over time and a large amount of data to be processed. These types of 
data require a different data mining approach with respect to the ones used for 
classical static databases; both as the data change in time but also because the 
dimension of the data does not allow the classical re-sampling and training 
approaches often used in the machine learning and data mining community. For 
example, several classification algorithms require a recursive processing of the data. 
 
Methods for analysis of such data have been described and a recent collection has 
been published, edited by Aggarwal, which describes many of the advances in the 
area 58. 

3.8  Privacy preserving data mining 

One of EURECA key goals is to deliver an environment that fulfils the data protection 
and security needs and the legal, ethical and regulatory requirements related to linking 
research and EHR data. In addition, several conflicting interests of different 
stakeholders must be taken into account to ensure the practicability of data mining 
solutions. The main problem are conflicting interests on which information should be 
protected, and which information should be freely available, in particular when 
considering information that should be made public outside of the EURECA 
contractual framework, e.g. in the form of scientific publications or open models for 
decision support. Vast research on methods for privacy-preserving data mining exists. 
The main directions of privacy-preserving data mining can be described as follows: 
 
Privacy-preserving data publishing deals with the question of releasing data in such a 
way that all sensitive information is removed. The released data can then be 
processed with standard data mining methods. Approaches include randomization, k-
anonymity 59, l-diversity 60 and t-closeness 61. In EURECA, however, these approaches 
do not seem promising. The problem is that once relevant information is removed, it 
cannot be recovered. Strategies for EURECA specific privacy preserving data mining 
are explained in detail in deliverable 5.1.  
 

3.9  Distributed data learning 

A vast amount of information is currently stored in digital data repositories, yet it is 
often difficult to understand and extract the important and useful information in those 
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massive data sets. To sift large data sources, computer scientists designed software 
techniques and tools that can analyse data to find useful patterns—these techniques 
contribute to the so-called knowledge discovery in databases (KDD) process. In 
particular, data mining is the basic component of the KDD process for the 
semiautomatic discovery of patterns, associations, changes, anomalies, events, and 
semantically significant structures in data. Typical examples of data mining tasks are 
data classification and clustering, events and values prediction, association rules 
discovery. 
 
Cloud and grid computing are the most promising frameworks for future 
implementations of high-performance data-intensive distributed applications. 
Furthermore, the Internet is shifting from an information and communication 
infrastructure to a knowledge delivery infrastructure. The discovery and extraction of 
knowledge from geographically distributed sources will be increasingly important in 
many typical daily activities. The distributed knowledge discover is a significant step in 
the process of studying the unification of knowledge discovery technologies and 
defining an integrating architecture for distributed data mining and knowledge 
discovery based on cloud or grid services. Such architectures will accelerate progress 
for very large-scale geographically distributed data mining by enabling the integration 
of various currently disjointed approaches and revealing technology gaps requiring 
further research and development.  
 
The basic principles behind the reference architecture design of a distributed KDD 
system include: Data heterogeneity and large data-set-handling; Algorithm integration 
and independence; Compatibility with distributed infrastructure; Openness; Scalability; 
and Security and data privacy.  
 

3.9.1 Distributed data mining tools 

EBI-R-Cloud (http://www.ebi.ac.uk/Tools/rcloud/). EBI-R-Cloud is a new service at the 
European Bioinformatics Institute (EBI) allowing advanced users of the statistical 
package R to log on and run distributed computational jobs remotely, making use of 
the powerful EBI infrastructure. Users log on to the system and can work on multiple 
projects, submitting long-running, memory-intensive tasks that make use of multiple 
computational nodes. EBI-R-Cloud comes with a full mirror of CRAN and Bioconductor 
package repositories. Users have access to all public data hosted at the EBI without 
the need to download it to their machines. EBI-R-Cloud also includes the R-Cloud-
Workbench (Mac OS and Windows versions), an optimized graphical client to R on 
the cloud. 

The EBI-R-Cloud showcase include three distributed computing applications: (a) 

distributed Affymetrix microarray data normalization; (b) genotype imputation in the 

cloud, and (c) ArrayExpressHTS, distributed pre-processing and quality assessment of 

RNA-seq datasets – with Data from the 1000 genomes are available as a reference 

panel option. 

Bioconductor AMI (http://www.bioconductor.org/help/bioconductor-cloud-ami/). An 

Amazon Machine Image (AMI) is developed and optimized for running Bioconductor in 

the Amazon Elastic Compute Cloud (or EC2) for sequencing tasks when: one does not 

want to install Bioconductor on her own machine; a long-running task that may tie up 
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the CPU; one has a parallelizable task and would like to run it (either on multiple CPUs 

on a single machine, or in a cluster of many machines); run R-Bioconductor on a web 

browser (using RStudio Server; or run difficult to install and configure packages like 

RGraphviz)  

GridR (http://cran.r-project.org/web/packages/GridR/index.html). GridR is a tool which 

allows using the collection of methodologies available as R packages in a grid 

environment. The aim of GridR, which was initiated in the context of the ACGT EU 

project, is to provide a powerful framework for the analysis of clinico-genomic trials 

involving large amount of data (e.g. microarray-based clinical trials). As a proof of 

concept, an example of microarray-based analysis taken from the literature was 

reproduced using GridR. GridR is an R-Package that submits R functions to execute 

them on another computer or cluster and it provides an interface to share functions 

and variables with other users. Submission modes are using a web service, ssh or 

local, execution modes are condor, globus or using a single server. All needed 

functions and variables that are necessary to execute that function will be copied to the 

execution machine. 
 
 

3.10  Subgroup Discovery 

Subgroup discovery is a technique for learning descriptive rules, i.e. rules that can be 
used to understand inherent relations in the data of a database. A subgroup is a 
subset of individuals in the database such that the individuals in the subgroup are 
distinguished from all other individuals by their characteristics with regard to some 
target attribute. Typically, these characteristics ensure that a subgroup displays a 
different (statistical) distribution on the target attribute if compared to the distribution on 
the target attribute in the complete dataset. Subgroups are presented in terms of 
“subgroup patterns”, i.e. a conjunction of atomic propositions, the most common being 
pairs a = v with a being an attribute of the database and v being a value. Then a 
subgroup pattern of the form a0 = v0, …, an-1 = vn-1 states that the combination of values 
vi of the attributes ai are “interesting” with regard to a specific attribute studied. 
 
In case of numerical values, atomic propositions may be intervals l ≤ a ≤ u with l being 
a lower and u being an upper bound. An instance di of the database d is said to satisfy 
a subgroup pattern p if it satisfies all the atomic propositions in the pattern, e.g.. if a = v 
is in p, then di(a) = v meaning that the value di(a) of the instance di at attribute has 
value v.  
 
Subgroup discovery intends to find subgroup patterns that are “interesting” and “easy 
to interpret”. Interestingness is typically expressed in terms of a “quality function” that 
typically reflects statistical or other user-defined criteria. Moreover, subgroup patterns 
found are often relatively simple and thus easy to understand. For example, if 
biomedical experts try to identify which genes may play a role in the development of a 
disease, gene expressions of each patient’s DNA can be related to the relevant clinical 
data, with particular clinical data being used as target attribute. 
 
Subgroup discovery is a generic name for a variety of algorithms with specific 
characteristics, for instance 

• Type of values of target attribute 
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o Nominal 
o Numeric 
o Ordinal 

• Subgroup pattern 
o Nominal - a = v 
o Intervals - l ≤ a ≤ u. The intervals may be disjoint or overlapping. There 

are several strategies to define intervals for specific data, e.g. divide 
data into intervals that hold equal number of values or split the range of 
all values of an attribute into equal length intervals. 

• Quality function 
o Two class quality functions – the values of the target attribute are split 

into two classes in terms of which the quality function is defined. 
o Multiclass quality functions – the quality function depends on all values 

of the target attribute. 
o Exceptional Mode Mining – the quality function depends on a complex 

statistical property of the examples covered by the subgroup 

• Subgroup property 
o Refined subgroups – only maximal elements with regard to a given 

order on subgroups are considered for the output 
o Closed subgroups – close a subgroup pattern under all patterns that 

have the same “instance basis”, i.e. which occur in all the instances in 
which the given subgroup pattern occurs. 

 
Each particular choice of algorithm reflects particular aspects of “interestingness” and 
results in quite different subgroup patterns being generated. Hence working on a use 
case, subgroup discovery implies exploration of the “space of algorithm”. Thus, the 
choice of algorithms becomes a parameter for subgroup discovery. Other parameters 
include the length of subgroups to be considered (which may have a dramatic effect 
concerning computation time and space), number of best subgroups to be considered, 
minimal quality, and generality. 

 

3.10.1  Subgroup Discovery for Genomic Data Analysis 

The main purpose of a typical microarray experiment is to find a molecular explanation 
for a given macroscopic observation. The most common methods are based on a 
’functional enrichment’. First, genes of interest (e.g. genes that are significantly over- 
or under expressed when two classes of experiments are compared) are selected. 
Then, external sources of information, such as gene ontologies and pathways 
databases, are included to translate the set of genes into interpretable biological 
knowledge. SD can be extended as an approach that transforms the dataset submitted 
by the user into a large list of genes enriched by GO terms, see Trajkovsky62. 
 
Applied to gene expression data, the standard SD algorithm would deliver a set of 
gene names that share similar properties relative to the research question of interest, 
i.e. SD uses the filtered dataset as produced by the statistical methodology used. The 
translation of these results into useful biological knowledge still remains a necessary 
validation procedure, which is often time-consuming. For instance, one might wonder 
how the set of genes can be described in terms of molecular or cellular function. 
Knowledge databases such as Gene Ontology63 (GO) or Kyoto Encyclopedia of Genes 
and Genomes64 (KEGG) serve as an excellent basis for the interpretation of genes. 
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Gene Ontology (GO) serves as a controlled vocabulary of terms for describing genes 
according to several aspects. GO includes three ontologies containing the description 
of molecular functions, biological processes and cellular locations of any gene product, 
respectively.  Within each of these ontologies, the terms are organised in a hierarchical 
way, according to parent-child relationships in a directed acyclic graph (DAG). This 
allows a progressive functional description, matching the current level of experimental 
characterization of the corresponding gene product. Moreover, further interesting 
knowledge databases exist, such as the KEGG or Reactom65. 
 
Overall, the integration of these additional knowledge databases into Subgroup 
Discovery would provide the researcher with more meaningful results.  
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4 Technical scenarios using DM 
In this section an overview of all the technical scenarios which use or may use data 
mining methods is provided. Other scenarios are not listed here for clarity purposes.  

4.1 Personal Medical Information Recommender 

Partner scenarios: SIT2, VUA2, UdS3 
Responsible partner:  StoneRoos 
 
Description 
The personal medical information recommender (PMIR) is a tool reporting to either the 
patient (health condition, EHR assistance) and physicians (e.g. relevant literature). The 
recommendations are generated by the local PMIR Service which applies several 
types of approaches to find the relevant contextualized semantic match between the 
personal health information that originates from the local EHR-DW and CDW 
accessible via the CIM based Data Access layer and the remote PMIR Metadata 
Service (PMS). The PMS updates periodically the meta-data that it extracted from the 
external sources that are registered by the subscribed administrators of the PMS.  
 
Data mining  
In the current status of the scenario it is unknown if the involved recommender 
algorithm will use data mining techniques. It is expected that use cases UC.TS.IR.02 
(reporting relevant literature) and UC.TS.IR.04 (update relevant patient information) 
will be candidates to use data mining techniques because each extraction task 
involves three parallel processes getting recommendations about terminology, sources 
and literature. Several studies have been published who developed a grading scale for 
medical evidence based on specific literature. For example, a scale that allows readers 
to learn one taxonomy that will apply to many sources of evidence based on quality, 
quantity, and consistency of the evidence, allowing authors to rate individual studies or 
bodies of evidence.66 

4.2 Data mining for consultation 

Partner scenarios: UdS2 
Responsible partner:  FhG IAIS 
 
Description 
The goal of this scenario is to help a trial chairman to answer frequently asked 
questions in consultations posed by clinicians. It involves entering and viewing 
consultation requests and replies and giving feedback on consultations.  
 
Data mining 
The consultation tool will computes the similarities between the current CRF and all 
CRFs in the system when viewing a consultation recommendation (UC.CD.CR.2). 
Currently it is not known if this involves similarity learning, as has been described in 
section 3.2.   
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4.3 Update of guidelines 

Partner scenarios: UdS4, Maastro1 
Responsible partner:  VUA 
 
Description 
Support the updating process of a guideline by identifying relevant literature (evidence) 
for this guideline. 
 
Data mining 
The guideline developer is able to find new and relevant evidences from papers in 
PubMed or clinical trial repositories based on the evidences of a guideline. This is 
based on a set of keywords from the evidence description, keywords of the papers, 
and the references of the papers to identify the relevance. The system shows the 
potentially relevant literature. It is expected to use DM methods to calculate the 
relevance score to rank literature.  
 
Automatic grading systems for medical evidence have been developed using machine 
learning techniques, obtaining 70% accuracy using publication types, publication 
years, journal information and article titles.67 Others computed relevance and quality 
scores to rank the literature according to their evidence.68 An annotation scheme 
based on an evidence-based medicine model for critical appraisal of evidence was 
developed. Textual, structural, and meta-information features essential to outcome 
identification were learned from the created collection and used to develop an 
automatic system. Accuracy of automatic outcome identification was assessed in an 
intrinsic evaluation and in an extrinsic evaluation, in which ranking of MEDLINE search 
results obtained using PubMed Clinical Queries relied on identified outcome 
statements. It is also possible to find specific outcome statements by evaluating each 
sentence in medical text (micro approach). In contrast, classifying a text as a whole to 
determine the presence of an outcome statement, showed only moderate associations 
between perceived clinical value of a citation and features that characterize the whole 
citation (macro-level approach).69 Another approach is to construct a rule-based tree to 
calculate stability and strength of medical evidence (Figure 9).    
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Figure 9. Example of rule-based tree to calculate stability and strength of medical evidence.
70

  

 

4.4 Training/validating/updating a diagnostic classifier 

Partner scenarios: UOXF1, Maastro4 
Responsible partner:  UOXF 
 
Description 
This scenario describes the process of obtaining a diagnostic classifier by using a set 
of data mining tools on the collected patient health information including genomic data, 
images and clinical data that are gathered from EPRs. It involves pulling the data from 
the COSD repository, pre-processing the data for the training process, configuring and 
run the training tools to obtain the classifier, selecting a trained diagnostic classifier, 
loading patient health information and running the classifier to obtain classification 
results.  
 
Data mining 
In this scenario data mining is particularly used in the training phase of the classifier, 
whether this is a first training or an update. The aim is to learn a diagnostic classifier 
from clinical, biomarker, imaging and genomic data, and to then use this classifier to 
improve the management of the patients and choosing optimal treatment. This 
scenario will use mainly supervised methods on the combined analysis of genomic 
data and clinical data. More specifically, the data-mining will mainly involve 
classification in early phase trials and routine care patients, and will generate a 
classifier which will be refined in subsequent large scale studies.  
 
The scenario requires no de-identification if it runs locally exclusively inside the 
hospital walls but whenever this is not possible de-identification is required. Semantic 
operability needs to be harmonized to use the tool in different centres. Data involved 
are clinical, biomarker, treatment, imaging and genomic related. In this context, the 
model will need to be updated and tool such as rapid learning will be used, in which 
the classifier is learnt first on specific set of patients from trials and routine care and 
then continuously updated and validated with the available data from routine patient 
care. The rapid learning concept has been described in a previous document (D5.1 
“Requirements analysis and knowledge discovery scenario”, in section 4.2). This 
approach is extremely useful in the context of a diagnostic classifier because very 
limited data, both clinical and mostly genomic data, is currently available for the 
validation of the diagnostic classifier. Distributed learning will also facilitate the 
modelling process because large numbers of data are required to accurately train the 
models.  
 

4.5 Hypothesis generation 

Partner scenarios: UdS6 
Responsible partner:  UOXF 
 
Description 
This scenario involves the support in designing new trials and hypothesis generation, 
which allows the clinical and scientific researcher users to generate new hypotheses 
from existing clinical trials, literature, public databases and experimental data in an 
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efficient, and automatic or semi-automatic way. A trial design is then suggested that is 
suitable to test the new hypothesis. The steps that are involved are:  

• Pull data from clinical trials, literature, public databases and other available 
experimental evidence  

• Mine the data to generate multiple hypotheses 

• Finalize the new hypothesis to test in clinical trials/studies 

• Identify possible designs for clinical trial/study and check feasibility 
 
Data mining 
The background and more details for this scenario, and an example in the genomic 
area have been already provided in a previous deliverable (D5.1 “Requirements 
analysis and knowledge discovery scenario”, in section 4.3).  
 
Briefly, a clinical trial often starts with the formulation of a research hypothesis 
generated as a consequence of analysing available data from previous trials, 
guidelines, existing literature and/or laboratory results. Depending on the validation of 
the hypothesis and evidence already acquired an early or late phase trial will be 
designed. A trial can often also involve a translational biomarker study, where 
biomarker can be tested during the trial execution. However is often the case that the 
biomarker study is planned after the execution of the trial has completed, limiting the 
scope of the biomarker study. An early and fast knowledge management and 
hypothesis generation could help this process and result in better designed clinical 
trials and biomarker or in general translational studies. 
 
In EURECA, this task will be applied mainly to the genomic area and the use of 
previously acquired genomic data to formulate hypotheses to be tested in and to help 
the design of clinical trials, pharmacodynamics studies, translational genomic studies 
and biomarker studies. This scenario will use both supervised and unsupervised 
methods on the combined analysis of genomic data and clinical data. More 
specifically, the data-mining will mainly involve classification and clustering in 
retrospective clinical series and early phases trials and will generate hypotheses to 
design subsequent larger trials and associated translational studies.  
 
The scenario requires no de-identification if it runs locally exclusively inside the 
hospital walls but whenever this is not possible de-identification is required. Semantic 
operability needs to be harmonized to use the tool in different centres. Data involved 
are clinical, treatment related, imaging, blood biomarkers, genomic related.  
 
This scenario also makes use of the rapid learning tool, in which hypothesis generation 
is continuously refined with new evidence and validated with the available data from 
clinical trials, translational studies and routine patient care. The rapid learning concept 
has been described in a previous document (D5.1 “Requirements analysis and 
knowledge discovery scenario”, in section 4.2). In fact, due to the fast accumulation of 
scientific, clinical knowledge, and an interactive expertise component, this scenario 
would benefit from some of the methods used in data stream mining, where mining is 
performed over continuously and rapidly changing streams of data (see D5.1 
“Requirements analysis and knowledge discovery scenario”, Section 3.1.1 and also 
this document). 
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4.6 Protocol feasibility  

Partner scenarios: VUA3, UdS7 
Responsible partner:  Philips 
 
Description 
In this scenario the aims are to define a trial proposal, request an evaluation of the 
recruitment potential of a trial for selected data sources, and view the results of the 
evaluation. 
 
Data mining 
The first use case expected to use DM techniques is UC.TS.PF.11 (compute eligibility 
criterion probability). Here the researcher can select sources of public data which will 
be used to automatically determine the probability of a successful outcome of the 
criterion. Another candidate use case is UC.TS.PF.13 (compute trial path probability). 
The researcher can select sources of public data which will be used to automatically 
determine the probabilities, thereby modelling the distribution of the different trial 
paths. 
 

4.7 Microbiology SAE 

Partner scenarios: UdS8 
Responsible partner:  FhG IBMT 
 
Description 
In the scenario first the trial chairman defines in one or more specific CRFs which 
specific information have to be documented in order to get an early knowledge about 
infectious agents and their resistance profile for patients in a chemotherapy. Services 
enable the collection of data from the Microbiology database for a specific patient in 
order to get specific information as defined in the CRFs of the Microbiology Module. 
These data will be automatically included in the corresponding CRF. As far as 
Common Toxicity Criteria are defined, a SAE event can be automatically detected. 
Services also enable the collection of data from the Hospital Information system (HIS) 
for a specific patient in order to get specific information as defined in the CRFs of the 
Microbiology Module. These data will be automatically included in the corresponding 
CRF. As far as Common Toxicity Criteria are defined, a SAE event can be 
automatically detected and reported. 
 
Data mining 
Use case UC.TS.MS.05 (statistical analyses of specific infection/medication based 
parameters) involves only the interface to export data. Exported statistical parameters 
can be:   

• Summary of the SAE of the patient 

• Summary of all infections of a specific patient with all infectious agents, their 
source and resistance profile, usage of antibiotics for each infectious disease  

• Summary of infectious agents, their source and resistance profile of a ward, or 
of a specific infection (e.g.: pneumonia) and a list of antibiotics used  

• Comparison of the above generated data with other oncology wards or other 
wards in the same hospital or outside. 
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The main end task of this scenario is to detect SAEs, which is a classification task. 
More on serious adverse events can be found in section 4.9. 

4.8 Outcome prediction 

Partner scenarios: Maastro2, Maastro3 
Responsible partner:  UOXF 
 
Description 
This scenario describes the process of making predictions for patient outcome after 
treatment in order to assist physicians in making treatment decisions for new patients. 
This assistance involves tools to train and update prediction models within the rapid 
learning framework, and to translate these models to a validated a decision support 
system based on all the available data including genomic data, images and clinical 
data that are gathered from EPRs. 
 
Data mining 
In EURECA, the outcome prediction mainly involves feature selection, classification, 
distributed learning. The involved scenarios describe why it is useful to do outcome 
prediction; physician and patient require an estimate of the outcome for certain 
treatments, in order to make a decision which treatment fits the patient wishes and 
benefits best. The involved tool uses existing, validated outcome prediction models 
and allows this kind of decision support. The outcomes that are predicted are cancer 
specific, but generally tumour response, local control, distant disease, survival, quality 
of life, cost and toxicities. It is shown before that outcome predictions by doctors are of 
low accuracy.71  
 
The tool requires no de-identification if it runs locally in the hospitals but for all 
instances of the model running externally de-identification is required. Semantic 
operability needs to be harmonized to use the tool in all centres. Data involved are 
clinical, treatment related, imaging, blood biomarkers, genomic related.  
 
The basis of these outcome prediction tools is the rapid learning tool, in which 
outcome prediction models are continuously learned and validated with the available 
data from routine patient care. The rapid learning concept has been described in a 
previous document (D5.1 “Requirements analysis and knowledge discovery scenario”, 
in section 4.2). This approach is extremely useful in the context of outcome prediction 
because limited data is currently available for model validation. Distributed learning will 
facilitate the modelling process because large numbers of data are required to 
accurately train the models. The aim is to develop models that have sufficient 
discrimination (accuracy to distinguish outcomes with the model) and calibration 
(measure for how good the model output distribution represents the real outcome 
distribution) and optionally prediction intervals to provide a confidence measure.   
 

4.9 Automatic detection and reporting of SAEs/SUSARs 

Partner scenarios: Maastro8, UdS10, UdS11 
Responsible partner:  FhG IBMT 
 
Description 
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This scenario involves the automatic detection of SAEs and SUSARs, which will be 
(automatically) reported through a specific CRF in the clinical trial system.   
 
Data mining 
In use case UC.CD.AD.03 (Detection of a SAE) the clinical trial system detects a SAE 
automatically based on defined criteria (UC.CD.AD.01) or/and through data mining 
processing. Previously, automatic detection of adverse drug reactions (ADR) have 
been published using natural-language processing (NLP) and a knowledge source to 
differentiate cases in which the patient's disease is responsible for the event rather 
than a drug.72-74 Accuracy and time-saving are important outcome targets here.       
 

4.10 Economic analysis 

Partner scenarios: UdS13 
Responsible partner:  FhG IBMT 
 
Description 
The scenario describes data mining of hospital data for economic purposes. The goal 
is to help hospital administration in a better understanding of the economic effects of 
patient treatment. Steps involved are: selecting data to analyse, joining additional 
information, select and execute analysis, view results. 
 
Data mining 
Use case UC.NN.NN.3 (select analysis) can be affected by data mining. Tools involve 
data mining of hospital data for economic purposes. A list of possible analyses that 
can be performed on the selected data is shown to user.  
 
Papers have been published about the mining EHRs with the purpose to reduce 
healthcare costs or improve management. To analyse hospitalized patient flows one 
might use sequential pattern mining, very values are delivered in a sequence as is the 
case with hospitalization.75 A framework tool for sequential pattern mining is available 
(http://www.philippe-fournier-viger.com/spmf/). Association and classification rule 
mining can also be used for this surveillance purpose.76 A showcase of several 
methods implemented in SAS Enterprise miner 
(http://www.sas.com/technologies/analytics/datamining/miner/) is also available 
(http://www2.sas.com/proceedings/sugi31/077-31.pdf)          
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5 DATA MINING PLATFORMS/TOOLS  
 
There are many tools available for data mining if you consider also the numerical 
computing environments :  

• SPSS (http://www-01.ibm.com/software/uk/analytics/spss/)  

• R (http://www.r-project.org/)  

• Weka (http://www.cs.waikato.ac.nz/ml/weka/)  

• Matlab (http://www.mathworks.co.uk/products/matlab/)   

• Splus  (http://www.morningstarcommodity.com/get-
support/downloads/statistical-tools/s-plus-download) 

• Mathematica (http://www.wolfram.co.uk/mathematica/)  
 
We do not want to elaborate on all of these methods and only focus on relevant 
platforms for EURECA. We can restrict the number of platforms if we consider the 
following criteria:  

• Open source 

• Free 

• Large community (computational, biomedical, statistical), implying lots of 
documentation and specific packages and toolboxes.  

 
When these selection criteria are applied, the main driving platform will be R, which is 
an open source free environment with a large statistics and bioinformatics community. 
All the other platforms mentioned (except for Weka) are commercial products requiring 
licenses, which is not preferred in EURECA. Therefore, we will focus on both R and 
Weka, which has integration in R.       

5.1 R platform  

R (http://www.r-project.org/) is a free software environment using a free software 
language for statistical computing. Large statistical and data mining communities are 
using the environment and contributing to it by developing statistical and data analysis 
packages. R uses the S programming language (http://cm.bell-
labs.com/cm/ms/departments/sia/S/history.html) combined with lexical scoping 
semantics inspired by Scheme. R was created by Ross Ihaka and Robert Gentleman 
(the name R is based on their first names) at the University of Auckland, New Zealand. 
The source code for the R software environment is written primarily in C, Fortran, and 
R. R is freely available under the GNU General Public License, and pre-compiled 
binary versions are provided for various operating systems. R uses a command line 
interface; however, several graphical user interfaces are available for use with R. 
 
Positive aspects of R:  

• R is a programming environment well suited for statistical analysis. 

• R is open source and cross platforms (Windows, Mac, Linux). 

• Fortran, C (C++), and Python wrappers are in place. 

• Deals well with spatial data, has a robust graphical interface and has an active 
user group list / forum. 

• External packages for R are almost daily increasing, most of them based on 
published up-to-date books and peer-reviewed articles. 

• Documentation  
 
Negative aspects of R: 
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• R has a steep learning curve. 

• Experience with other programming languages is a plus / minus. 

• You can save scripts, but not *.exe. 

• It is updated several times a year (good) but there are no upgrades. 

• Memory management problems (depends on your OS), especially when 
displaying big images at high resolution or working with huge matrices 
(hundreds of Mb). 

 
It is very efficient to use a graphical user interface for R, since it only comes with a 
command line. There are many interfaces available, but here are some notable ones:  

• R-studio (http://www.rstudio.com/), see Figure 10  

• RGUI (http://www.sciviews.org/_rgui/)  

• RapidMiner (http://rapid-i.com/content/view/181/190/)  
 

 
Figure 10. Interface of R-studio showing the console which provides the command line and interfaces for 
workspaces, history backup, function writing, file explorer, packages (with easy installing features), plotting 
and help function.      

A specific open-source software for the analysis of genomic data using R programming 
language (but also other languages) is bioconductor (http://www.bioconductor.org/). 
Many bioconductor packages are available for R and free to download.   
 
Some suggest that EHR vendors will soon be embedding or otherwise implementing R 
in their solutions, because data mining and analysis of electronic medical record data 
is the next frontier.7 R is suitable for this because:  

• The used platform should be flexible and capable of adapting to shifting EMR 
standards. R is positioned well for this environment, as it already integrates and 
connects into a plethora of database management systems.  
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• R enables parallel processing and can be used in conjunction with Hadoop 
(http://hadoop.apache.org/) and other technologies to spread analysis out to 
distributed hardware.  

• The technology will need to be capable of analysing very large amounts of 
data. As the EHR space is a rapidly growing field, the analytical technology that 
it’s paired with should also be on a growth trajectory.  Given that R is open-
source, new methods and techniques are implemented into R faster than 
proprietary alternatives.  

• The analytical technology should work on many different operating systems in 
order to service the variety of hardware/software solutions used by healthcare 
organizations. R works on Windows, Mac, and Unix. 

• The analytical technology should have a large user base to support the needs 
of the healthcare space.  R has a large, international community that includes 
some of the brightest minds. 

• The technology must be transparent.  Once again, R is open-source, enabling 
anyone to go in and understand what it is doing.  Also, R is very well-
documented in the literature. 

• The technology must have very strong support for unstructured data analysis, 
as much of EHR data is unstructured text.  R has a list of very powerful text 
mining and unstructured data analysis packages / libraries. 

5.2 WEKA 

Weka (http://www.cs.waikato.ac.nz/ml/weka/) is a popular suite of machine learning 
software written in Java, developed at the University of Waikato, New Zealand. Weka77 
is free software available under the GNU General Public License. Weka supports 
several standard data mining tasks, more specifically, data pre-processing, clustering, 
classification, regression, visualization, and feature selection. Weka's techniques are 
predicated on the assumption that the data is available as a single flat file or relation 
(with the extension “.arff”), where each data point is described by a fixed number of 
attributes (normally, numeric or nominal attributes, but some other attribute types are 
also supported). Weka's main user interface is the Explorer, but essentially the same 
functionality can be accessed through the component-based Knowledge Flow interface 
and from the command line. There is also the Experimenter, which allows the 
systematic comparison of the predictive performance of Weka's machine learning 
algorithms on a collection of datasets (see Figure 11Error! Reference source not 
found.).  
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Figure 11. The Weka machine-learning and data-mining benchmark. 

 

The Explorer interface features several panels providing access to the main 
components of the workbench: 

• The Pre-process panel has facilities for importing data from a database, a CSV 
file, etc., and for pre-processing this data using a so-called filtering algorithm. 
These filters can be used to transform the data (e.g., turning numeric attributes 
into discrete ones) and make it possible to delete instances and attributes 
according to specific criteria. 

• The Classify panel enables the user to apply classification and regression 
algorithms (indiscriminately called classifiers in Weka) to the resulting dataset, 
to estimate the accuracy of the resulting predictive model, and to visualize 
erroneous predictions, ROC curves, etc., or the model itself (if the model is 
amenable to visualization like, e.g., a decision tree). 

• The Associate panel provides access to association rule learners that attempt 
to identify all important interrelationships between attributes in the data. 

• The Cluster panel gives access to the clustering techniques in Weka, e.g., the 
simple k-means algorithm. There is also an implementation of the expectation 
maximization algorithm for learning a mixture of normal distributions. 

• The Select attributes panel provides algorithms for identifying the most 
predictive attributes in a dataset. 

• The Visualize panel shows a scatter plot matrix, where individual scatter plots 
can be selected and enlarged, and analysed further using various selection 
operators. 

 

Positive aspects of WEKA: 

• Open source (free, extensible, can be integrated into other java packages) 

• Graphic User Interface (easy to use) 

• Features: run individual experiment or build knowledge discovery and data 
mining phases 

• Integration with R possible 
 
Negative aspects of WEKA: 

• Lack of proper and adequate documentations 

• Systems are updated constantly (scope creep) 
 

Weka for EURECA 
Even though the core knowledge discovery platform for EURECA will be the R-
statistics platform, Weka can be used within EURECA as a complimentary library of on 
machine learning algorithms for data mining tasks. Linking R-statistics and Weka can 
be two fold;  

• Using a specific R interface to use Weka from the R-statistics environment 
called RWeka78. Package RWeka contains the interface code, and the Weka 
jar for the machine learning algorithms included in Weka such as data pre-
processing, classification, regression, clustering and association rules. 
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• Weka has a package that brings the power of R into the Weka framework, 
called RPlugin. The plugin provides a Knowledge Flow component for 
executing an R script and a wrapper classifier for the MLR (machine learning in 
R) R package. Also provides a Knowledge Flow perspective and Explorer 
plugin that implements an interactive R console and allows visualization of 
graphics produced by R.  

 
 
 
 
 
 

  



 
 
 
 
 
 

 
© EURECA <Public> 

WP 5 D 5.2,  version 0.2

EURECA

ICT-2011-288048

Page 42 of 47

6 Summary 
Concluding this review of methods and tools for data mining in EURECA, it is 
recognized that not many scenarios will use data mining. Hypothesis generation, 
outcome prediction and diagnostic classifier heavily rely on data mining techniques 
and state-of-the-art methods for them are reviewed in this deliverable. Other scenarios 
mainly use text mining or similarity learning, but in this stage of the project it is not 
always known if data mining methods will be used for some scenarios. In those cases 
this review suggests methods and references for consideration.         
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