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Publishable Executive Summary 

 

The present document contains high level technical descriptions of the cellular and tissue 
models of tumour growth and response to treatment that will constitute the ContraCancrum 
cellular and tissue simulation module. Diagrams depicting information flows enhance and 
clarify the descriptions. The document begins with an introduction to multiscale cancer 
modelling and the emerging field of in silico oncology focusing on the techniques adopted by 
the ContraCancrum project. A brief literature review precedes the main technical part of the 
document. The latter consists of descriptions of models at several spatiotemporal scales. 
Two cancer types are addressed by the ContraCancrum project: gliomas and lung cancer. 
Specific agent based models of microscopic mechanisms of tumour growth and response to 
treatment including i.a. prevascular tumour growth, prevascular tumour response to 
treatment (chemotherapy, radiotherapy), angiogenesis, invasion and metastasis are 
delineated. Their main purpose within the project is to enhance our understanding of tumour 
dynamics related phenomena on the microscopic level so that refinement of the imageable 
tumour modeling approach could be achieved. Subsequently, the focus is moved onto large 
(imageable) clinical tumours. Before the modelling part itself a description of the multiscale 
medical data to be used for the driving, adaptation, optimization and validation of the 
models is provided. Modelling of such tumours is achieved via two major approaches: a 
continuum based modelling approach exploiting primarily diffusion theory and a discrete 
entity/event modelling approach exploiting the potential of cellular automata, the Monte Carlo 

method, cell clustering into equivalence classes as well as numerous dedicated algorithms. 
In this way both diffusion phenomena (e.g. tumour invasion) and complex multiscale 
biological mechanisms of a predominantly discrete character (e.g. symmetric and 

asymmetric stem cell division) are addressed. High level descriptions of the corresponding 
simulation strategies along with particuliarities and limitations are provided. A brief 
description of alternative ways to consider the reponse of normal tissues to treatment is also 
presented.  
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1. Introduction [Code: IN] 

 
Understanding and effectively modeling the dynamics of cancer and treatment affected 
normal tissues at all biocomplexity levels by using any efficient combination of mathematical 
and computer modeling approaches (discrete, continuous, deterministic, stochastic, 
analytical, numerical etc.) is a fundamental research challenge in oncology. Obviously this 
target presupposes success in understanding and modeling numerous critical mechanisms 
involved in cancer and affected normal tissue development and treatment response, as well 
as the subsequent integration of all those modeling modules. As the demands of such an 
endeavour are especially high, a parallelism with the history of Newtonian physics might 
serve as a source of guidance and inspiration [IN1].  

 

It has been suggested that cancer epitomizes the entire biology. In this context a title like: 
"Philosophiae Naturalis Principia Mathematica: Pars II, Materia Vivens" (Mathematical 
Principles of Natural Philosophy: Part II, Living Matter) might to some extent describe the 
collaborative and heavily multidisciplinary efforts on a worldwide scale to apply the analytical 
way of thinking on the description of natural phenomena (mechanisms) involving living matter 
and especially on those related to cancer. Obviously stochasticity is one of the key players in 
such an approach. A thorough, quantitative, rigorously clinically validated and exploitable 
understanding of such multi-scale phenomena is expected to dramatically accelerate the 
achievement of cancer cure on a patient individualized basis through treatment optimization 
in silico (on the computer). In this context the term In Silico Oncology has been proposed to 
denote a new scientific, technological and clinical discipline aiming at both understanding the 
multiscale cancer and related biological phenomena and optimize treatment in the patient 
individualized context [IN1]. 

 

Within this context the ContraCancrum project aims at advancing In Silico Oncology by 
developing and clinically testing clinically driven multiscale models of tumour growth and 
response to various treatment modalities. Two cancer types are adddressed: gliomas and 
lung cancer. The practical goal of this approach is to provide a clinically trustable support 
system for the optimization of patient individualized cancer treatment [IN2].  

 

Since a central feature of the ContraCancrum project is the development of an integrated 
multilevel tumour dynamics simulator, being the main goal of workpackage WP8, a brief 
delineation of the latter is provided below. This may help in acquiring a broad picture of the 
entire ContraCancrum project since workpackage WP4 to which this deliverable belongs will 
also serve as the basis for the integration of several modeling modules into the 
ContraCancrum Integrated Simulator. The latter will be used for the execution of the 
simulation tasks as submitted by the end users. Logical and technical validation of the 
composite simulator (integrator) will be performed before the clinical testing, optimization and 
validation and will take place in tight interaction with workpackage WP9. It is noted that there 
will be a strong interaction of WP8 with all the other simulation workpackages throughout 
most of the project’s lifetime in order to optimally orchestrate and harmonize the 
development of all modules to be finally combined or fused. 

 

The ContraCancrum integrated simulation system will function briefly as follows. Provided 
that the system has been validated (retrospectively and prospectively) for a specific tumour 
type, the imaging, histopathological, molecular and clinical data of any given patient following 
pertinent preprocessing are introduced into the “MULTI-LEVEL CANCER SIMULATOR FOR 
TUMOUR AND NORMAL TISSUE RESPONSE SIMULATION” module. This module 
executes the simulation code for a defined candidate treatment scheme (Figure IN1). The 
prediction is judged by the clinician and if a decision is made to test a further scheme in silico 
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this is done in an analogous way. Alternatively a large number of candidate schemes can be 
executed concurrently on a cluster or grid platform. Finally the clinician decides on the 
optimal treatment scheme to be administered to the patient based on his or her formal 
medical education and knowledge and the predictions of the ContraCancrum integrated 
simulator. Subsequently comparison of the predictions with the real outcome provides a 
feedback signal to be exploited for the optimization of the ContraCancrum integrated 
simulator. The most fundamental processes to be implemented by the ContraCancrum are 
the following:  Processed molecular data is used in order to perturb the radiobiological or 
pharmacodynamic cell-kill parameters about their population-based mean values. At the 
heart of the simulation approach lies a prototype system of quantizing cell clusters included 
within each geometrical cell of a discretizing mesh, covering the anatomic area of interest. 
Cell-cycle phase durations and imaging-based metabolism distribution define the 
quantization equivalence classes considered. Several algorithms will be developed so as to 
simulate various macroscopic mechanisms such as tumour expansion or shrinkage and 
mechanics, as well as the effects of particular drugs and radiation on the tumorous and 
normal tissue under consideration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IN1. A generic functional outline of the ContraCancrum integrated simulator 

 
 

Figure IN2 outlines  an example of the “summarize and jump” strategy aiming at a pragmatic 
biocomplexity “level jumping” and integration. The latter plays a fundamental role in the 
development of a multiscale simulator. This approach serves as the core philosophy for the 
multilevel integration of biological data and mechanisms involved in cancer modelling within 
the framework of ContraCancrum. 
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Figure IN2. An example of the “summarize and jump” strategy as applied to the case of tumour response to 

teatment modlling in the clinical setting. Only three (clusters of) levels are depicted  for simplification purposes. 
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1. Objectives of the Deliverable [Code: OB] 

The objectives of the deliverable are the following 

1. To provide a brief literature review of models of tumour growth and response to 
treatment with emphasis on gliomas and lung cancer as well as to provide the goals 
of workpackage WP4. 

2. To outline agent based models of microscopic mechanisms of tumour growth and 
response to treatment including i.a. prevascular tumour growth, prevascular tumour 
response to treatment (chemotherapy / radiotherapy), angiogenesis, invasion and 
metastasis. Their main purpose within the project is to enhance understanding of the 
tumour dynamics related phenomena in the microscopic level so that refinement of 
the imageable tumour modeling approach can be achieved. 

3. To list the multiscale medical data to be used for the adaptation, optimization and 
validation of the imageable tumour dynamics models. 

4. To provide a high level description of the continuum (diffusion) based models of 
imageable tumour growth and response to treatment (chemotherapeutic, 
radiotherapeutic). 

5. To provide a high level description of the discrete entity/event based models of 
imageable tumour growth and response to treatment (chemotherapeutic, 
radiotherapeutic). 

6. To provide a brief description of alternative ways to consider the reponse of normal 
tissues to treatment. 
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3. A Brief Overall Literature Review and Workpackage WP4 
Tasks [Code: LI] 

 

3.1 Literature Review  
 
Over the past decades considerable progress has been made regarding the development of 
mathematical and computational models simulating various aspects of cancer behaviour. 
The majority of the models adopt the “bottom-up” approach i.e. they address biocomplexity 
by starting from its lower levels (molecular or cellular) and subsequently they try to reach 
higher and higher levels. Such models refer primarily to the in vitro development of tumour 
spheroids or the non imageable preangiogenetic and further development of tumourlets 
within the organism by focusing on several mechanisms or combinations of mechanisms 
[LI1-LI6]. Angiogenesis has been addressed by several investigators [LI7-LI9]. Invasion has 
also been the subject of a number of theoretical investigations primarily addressing glioma 
cell diffusion [LI10,LI11,LI13,L14]]. Concerning the modeling of imageable large in vivo 
tumours most models tend to focus on the growth aspect by trying to predict the shape of the 
tumour as a function of time [LI13-LI14]. Nevertheless, a synoptic consideration of treatment 
response also been included in some of them. Certain models have been developed in order 
to simulate the response of numbers of non mutually interacting tumour cells or small non 
imageable tumourlets to therapeutic interventions [LI15-LI31] In the clinical context such 
models are potentially useful in order to provide a rough estimate of the relative effectiveness 
of various candidate treatments on non imageable tumourlets. This is the case when only 
some population based statistical knowledge is available concerning the invasiveness and/or 
diffusiveness of a specific tumour type instead of exact imaging data (i.e. non imageable 
glioblastoma micrometastases).   
 
From the clinical point of view, however, it is usually the prediction of the response of an 
already grown clinical tumour to candidate therapeutic schemes (chemotherapeutic, 
radiotherapeutic, combined etc.) that is of primary importance.  This is also the context  
where tumour models can in principle be validated in a quantitative manner (based on 
multiscale medical data). Theefore, clinical validation is best achieved within the clinical 
environment and preferrably in conjunction with clinical trials. Within this framework the In 
Silico Oncology Group, Institute of Communication and Computer Systems, National 
Technical University of Athens [LI50] has developed the “top-down” discrete event/entity 
treatment simulation approach which starts from the macroscopic imaging data of the patient 
and subsequently integrates information stemming from lower and lower biocomplexity levels 
(histological, molecular etc. ). In collaboration with experimentalists, radiobiologists and 
clinicians it has produced a number of treatment simulation models addressing  both tumour 
and treatment affected normal tissue behaviour that are based on the individual data of the 
patient [LI29- LI49].  
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Figure LI1. Irradiation response simulation of an imageable glioblastoma tumour according to the 
standard fractionation scheme (2 Gy once a day, 5 days per week, 60 Gy in total). Left panel: 3-D 
sections of the tumor shown in the right panel. Top row: before the beginning of irradiation. Second 
row: one fictitious day after the beginning of irradiation. Third row: two fictitious days after the 
beginning of irradiation. Bottom row: three fictitious days after the beginning of irradiation. Color code 
red: proliferating cell layer; green: dormant cell layer (G ); blue: dead cell layer. The colouring criterion 
“99.8%” used to visualize the predictions has been defined as follows. “For a geometrical cell of the 
discretizing mesh, if the percentage of dead cells is lower than 99.8% then f if percentage of 
proliferating cells > percentage of G cells, then paint the geometrical cell red (proliferating cell layer), 
else paint the geometrical cell green (G cell layer)g else paint the geometrical cell blue (dead cell 
layer).” The values of certain parameters (e.g., cell loss) have been deliberately exaggerated in order 
to facilitate the demonstration of the ability of the model to simulate the shrinkage effect. Adapted from 
[G.S.Stamatakos, D.D.Dionysiou, E.I.Zacharaki, N.A.Mouravliansky, K.Nikita, N.Uzunoglu, “In silico radiation oncology: 
combining novel simulation algorithms with current visualization techniques”, Proceedings of the IEEE, vol. 90, No 11, pp.1764-
1777, Nov. 2002.] 

 
 
 
Figure LI1 shows a typical three-dimensional rendering of these models’ predictions. An 
initial clinical trial based retrospective validation of some models has already been achieved 
[LI35,LI45] whereas within the EC funded ACGT project new in silico oncology “top-down” 
models have been developed and tested by exploiting actual running clinicogenomic trials 
[LI46-LI49]. The primary target of this approach is to provide the clinician or the researcher 
with a system of simulators in order to perform in silico experiments regarding the likely 
outcome of several candidate therapeutic schemes/schedules for any given individual 
patient. The experiments refer to both tumour behaviour and to a lesser degree of detail to 
normal tissue treatment response. The simulators will act as dynamic integrators of the 
multilevel data and mechanisms corresponding to the spatiotemporal natural phenomenon of 
cancer as is manifest in the individual patient. Subsequently, following a rigorous clinical 



CONTRACANCRUM – FP7-223979  D4.1 

 

 
12 

optimization and validation, the clinician is expected to be able to decide on the optimal 
treatment scheme and/or schedule to be administered to the particular patient based on the 
predictions of the simulators and his or her own formal medical education, experience and 
logic. 
 

3.2 Tasks of workpackage WP4  
 
The cell and higer biocomplexity level simulators of the project will be primarily based on the 
“top-down” simulation approach described above which will be applied for the first time to the 
simulation of treatment response of lung cancer. The same approach will also be 
considerably refined and adapted for the case of gliomas. Special emphasis will be put on 
stem and limited mitotic potential tumour cells. In this way multilevel information will be being 
extracted and used in a realistic level of detail by always taking into account that the whole 
endeavour is to be confined within the clinical setting. However, the “bottom-up”approach will 
also be adopted in simulating non-imageable tumour growth, especially the process of 
glioblastoma local invasion. It is noted that in parallel with the tumour response models, 
rather simple experimentally and clinically based toxicology models potentially in combination 
with discrete simulation of the replenishment of normal tissue stem, transit and differentiated 
cells will provide safety limits beyond which any candidate treatment scheme would be 
clinically unacceptable regardless of its tumour control predicted outcome. The multilevel 
clinical testing, optimization and validation processes to be performed mainly within the 
framework of workpackages WP8 and WP9 will constitute per se another novelty of the 
project in the context of gliomas and lung cancer. 
 

 
3.3 Mathematical Notation Convention 
 
The following mathematical notation convention has been adopted throughout the document 
unless otherwise stated or clearly  implied:  
 
A bare letter denotes a scalar quantity (e.g. “c” stands for tumour cell concentration) 

A letter with a right arrow on top of it denotes a vector quantity (e.g.  “ J ” stands for the 

diffusion flux of tumour cells) 

A letter with a left-right arrow on top of it denotes a tensor or matrix (e.g. “ D ” stands for the 
tumour cell diffusion tensor) 
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4. Modelling Basic Mechanisms of Microscopic Tumour 
Growth and Response to Treatment [Code: MI] 

This chapter begins with a specialized literature review of models pertaining to microscopic 
mechanisms of tumour growth and response to treatment including i.a. prevascular tumour 
growth, non imageable tumour response to treatment (chemotherapy / radiotherapy), 
angiogenesis, invasion and metastasis. Subsequently an agent based unified approach to 
treat these mechanisms is delineated. The main purpose of the development of these 
microscopic models within the ContraCancrum framework is to enhance our understanding 
of the tumour dynamics related phenomena on the microscopic level so that refinement of 
the imageable tumour models (Chapters 6 and 7) can be achieved. Figure MI1 depicts the 
basic branches of the microscopic model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure MI1. The basic branches of the microscopic model 
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4.1 A Brief Overview 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure MI2 The microscopic tumour growth scene 

 

 
The mathematical models of tumour growth and tumour induced interactions with other cells 
(Figure MI2) fall into four major categories: 
 

i. Continuum models that treat cell density and chemical species like continuous 
variables that evolve according to the reaction-diffusion system 

ii. Discrete, cell-based models in which cells are treated as units and where the cells 
move, grow and divide according to the prescribed rules 

iii. Hybrid or multilevel/multiscale models that uses discrete models at certain levels of 
complexity, and continuous models at another levels of complexity and integrate 
solutions together 

iv. Agent based models where every entity is an “intelligent” agent with some prescribed 
(not necessarily same) rules and where these entities interact with each other 

v. Discrete event/entity models in which cells are clustered into dynamic equivalence 
classes, each one characterized by its own fate and rules of interaction with the other 
classes. This is an efficient approach to simulate the response of large imageable 
tumours to treatment  in a discrete way and therefore to retain the potential of a 
detailed multiscale biological simulation able to address i.a. different cell categories 
(stem, progenitor, differentiated, dead cells), different  cell cycle phases, different cell 
phase dependent treatment sensitivities etc. Chapter 7 deals with this approach. 
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All basic features of cancer biology demonstrate that tumour growth is a multiscale natural 
phenomenon. The complexity of cancer progression manifests itself at least in the following 
three scales that can be readily distinguished and described by mathematical models: 
molecular/sub-cellular, cellular and tissue scale. More specifically  

 The molecular and sub-cellular scale refers to phenomena that take place within the 
cell or at its plasma membrane. Examples of such phenomena include gene 
mutations or changes in gene expression patterns, alterations of signaling cascades 
and/or metabolic pathways, cytoskeleton rearrangement and altered membrane 
activity, progression through and control of the cell cycle, etc.   

 The cellular scale refers to cellular interactions between tumour and host cells such 
as endothelial cells, macrophages, lymphocytes, and even the local components of 
the extracellular matrix (ECM). This pathological communication between tumour and 
stroma is mediated through the synthesis and secretion of stimulatory growth factors 
and cytokines by neoplastic and host cells [MI49]. In addition, this level includes cell-
cell and cellmatrix adhesion mechanisms that determine cell aggregation properties, 
remodeling of the adjacent ECM that seems to be a necessary step in the 
microinvasion of cancer cells, etc.  

 The tissue scale is concerned with processes occurring at the tissue level such as 
cell migration, convection and diffusion of nutrients and chemical factors, mechanical 
stress, rupture of capsules or basement membranes and invasion of nearby tissues, 
etc.  

Several combinations of these scales have been addressed by cancer modellers. Some 
examples related to ContraCancrum can be found in [MI64, MI215-MI233]. 

 

4.1.1 Avascular tumour growth 

Mathematical models of avascular tumour growth are usually based on the biological model 
of multicellular tumour spheroids [MI215], [MI14],[MI16]. Spheroids are aggregates of tumour 
cells that can be grown in precisely externaly controlled nutrient conditions. The spheroids 
nutrient supply is provided through diffusion from their surface. Spheroids develop many 
features identical with characteristics of avascular tumours such as altered metabolism, 
proliferation arrest, necrotic death and therapy resistance. Data from experiments with 
multicellular tumour spheroids can be used to determine model parameters and to validate 
simulation results. 

Models of avascular tumour growth take into account many processes such as cell 
proliferation and growth, nutrient consumption and diffusion, waste material production and 
diffusion, effects of growth promoting and inhibitory factors, intracellular adhesion, cell-
environment interactions as well as the geometry of the tumour and the individual cells. 

Continuum models describe cells and chemicals density using continuous variables 
according to a reaction-diffusion system [MI1]. Several possible growth laws including 
exponential, Gompertz and logistic growth have been utilized. Some models take also into 
account the interaction of the tumour with immune cells [MI2]. The interaction between 
immune and tumour cells can be described in a predator-prey way where the role of the 
predator is played by immune cells whereas the role of the prey by tumour cells. 

Discrete, hybrid and agent based models take the cell cycle state into account. Cells behave 
differently depending on the cell cycle state in which they are found. It is also important to 
efficiently describe tumour growth and its interaction with the local microenvironment. 
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On the cellular level certain hybrid models make use of discrete lattice/graphs with some 
deterministic [19] or stochastic rules regarding cell growth, proliferation, death and/or 
intercellular adhesion (e.g. some Monte Carlo models, the  extended large-Q Potts model 
etc.). On the subcellular level a simplified expression regulatory network (Boolean protein 
expression regulatory network [MI16]) may control the cell cycle state [MI19].  On the tissue 
level a system of differential equations usually describes the diffusion, consumption and 
production of nutrients, metabolites, growth promoters and inhibitors [MI16], [MI19]. 

 

4.1.2 Tumour induced angiogenesis 

A typical continuum model consists of a balance number of endothelial cells (EC) which is 
coupled nonlinearly with a set of mass balances describing selected factors in the EC 
environment [MI18]. The models assume that endothelial cells migrate through random 
motility, chemotaxis (i.e. a directed migratory response of cells to soluble, diffusible growth 
factors) in response to tumour angiogenic factors released by the tumour, and haptotaxis (i.e. 
a directed migration response of cells to insoluble, nondiffusible molecules) in response to 
fibronectin gradients in an extracellular matrix [MI8]. 

Blood rheological properties (viscosity, hematocrit, etc.) and microvascular network 
remodeling represent  interrelated issues as blood flow creates stress on the vascular wall 
(shear stress) that leads to an adaptation of the vascular diameter via vasodilatation or 
constriction. This in turn leads to adaptation and relaxation of the microvascular network 
architecture. The flow of blood, a non-Newtonian fluid, can be approximated by a Poiseuille-
like expression. This leads to a dynamic adaptive tumour induced angiogenesis [MI9]. 

On the tissue level certain hybrid models of angiogenesis (e.g. [MI17]) describe the diffusion, 
uptake and decay of the tumour-secreted pro-angiogenic factor by means of differential 
equations. On the cellular level the cellular Potts model which is based on the system-energy 
reduction has been used in order to describe endothelial cell migration, growth, division, and 
cellular adhesion. 

 

4.1.3 Response to Treatment 

Models of tumour response to treatment take into account several  factors and treatment 
modalities (e.g. chemotherapy, irradiation). Immune response may also play some role in the 
treatment outcome [MI1], [MI2]. One  way to model tumour response to  chemotherapy is by 
adding a specific drug killing function [MI217],[MI221], [MI2], [MI12] for each type of cells and 
by changing the cell cycle state to necrosis or apoptosis depending on the current cell cycle 
state and its treatment sensitivity. Other supporting drugs such as anti-angiogenic drugs 
[MI12] can also be taken into account as inhibitory factors.  

Irradiation can be modeled by a linear quadratic model [MI20] or extended by a multiscale 
model that takes into account the key regulation signals (e.g. hypoxia) influencing tumour 
growth by a Boolean genetic network ([MI3]) or by discrete models of cell cycle [MI216], 
[MI218], [MI219], [MI3], [MI15] that lead to apoptosis/necrosis depending on the previous 
cycle state. A crucial phenomenon in understanding tumour response to treatment is that 
drug and nutrients delivery/diffusion is non homogeneous throughout the tumour. Besides 
there is a clear dependence of radiosensitivity and chemosensitivity on the cell cycle phase 
[MI216-MI221], [MI223-MI229], [MI5], [MI13], [MI4], [MI6], [MI7], [MI10], [MI11]. 

Several methods have been used in order to model drug delivery and drug-tumour 
interactions such as ordinary differential equations, stochastic differential equations, S-
system formalism, power law equations, partial differential equations, molecular dynamics, 
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variants of the Petri nets, discrete cellular automata, agent based methods, Pi Calculus, 
discrete event/entity formalism etc.  [MI21], MI6], [MI217],[MI221]. 

 

4.2 Prevascular Tumour Growth Models 

 

In general, there are two main approaches to model avascular tumour growth. The first one 
is usually termed continuous since it is based on modelling physical and chemical processes 
through partial differential equations. The second one is usually termed discrete and focuses 
on modelling the behaviour of single cells and their mutual communication. The 
mathematical apparatus for the latter is usually based on the cellular automata theory. 
Multiscale approaches are also possible. In a multiscale approach, each level is described in 
terms of distinct models and all of them are coupled in a single model, [MI215], [MI70-MI72].  

 In mathematical terms, the tumour and its host environment can be described by a 

macroscopic state vector  t,xu


 whose components can include cell population densities, 

concentrations of the nutrients and chemical factors, mechanical quantities, such as 
pressure, describing the response of the tissue to external forces. Cell populations are 
characterized by the internal functional state of each of their cells specified by a discrete or 
continuous variable.  

In the following a short presentation of the main ideas applied on most approaches will be 
made and subsequently the approaches to be adopted for the development of the 
microscopic models of the ContraCancrum project will be commented on. 

All computations involved in the continuous approach make use of statistical data i.e.  they 
deal with average densities of both cell numbers and chemical concentrations in the 
environment. Basically these processes are focused on three different areas: reaction 
kinetics, diffusion of chemicals and convection. Each area is described by a set of suitable 
equations. Quite extensive research has also been taking place in the field of the mechanical 
aspects of the interaction between tumour cells and their surrounding cells. 

A usual assumption is that diffusion in conjunction with nutrient consumption limits tumour 
growth. This approach was firstly proposed by Burton [MI149]. There has been published a 
wide range of papers using similar approaches [MI147],[MI148-MI205]. The following excerpt 
from [MI24] outlines this fundamental basis of most models dealing with tumour nutrition:  

“Tumour cells consume nutrients. Nutrients diffuse into the tumour tissue from the 
surrounding tissue. Therefore, if the tumour is very large, the nutrients cannot reach all parts 
of the tumour tissue. This leads to a decrease in tumour cell proliferation and eventual cell 
death in regions lacking nutrients. The steady size of the tumour spheroid is reached when 
the cell proliferation in regions rich in nutrients balances cell death in regions poor in 
nutrients.” 

A way to formulate the above mentioned statement in the language of partial differential 
equations is given below by summariazing the paper by Casciari, Sotirchos and Sutherland 
[MI148].  In this context the tumour is assumed to be a spheroid and therefore all calculations 
have been done within this framework.  
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On the molecular/sub-cellular level interacting molecules within sub-cellular compartments 
(e.g. nucleus, cytosol and plasma membrane) are usually modelled through stoichiometric 
and reaction kinetics approaches.  

In the continuous approach ordinary differential equations (ODEs) are derived on the basis of 
kinetic principles. This can be applied on reactions involving molecular interactions and flows 
between adjacent subcompartments or extracellular microenvironment. 

Subcellular models can supply parameters to the cellular  and tissue models.  Synthesized 
molecules   and their derivatives determine the cell phenotype (state). These  products may 
be put on the cell surface or may be excreted or diffused through  the whole tissue. A typical 
continuous formulation  [MI73] can be expressed as 

Reaction equation 

   1 1... ...i
n n

dC
= self C , ,C +interact C , ,C

dt
 

  
j

jjn Ck=C,,Cself ...1  

 1 ... n ij i j

i, j
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Compartment flow equations 

 
    j,C,,Cdiff=
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The cell state is determined on the basis of the concentration of chemicals.   

The conservation equations for the chemical species are 

i
i i

C
+ N = P ,

t





 

where Ci are concentrations of the chemical species (oxygen, glucose, lactate ion, carbon 

dioxide, bicarbonate ion, chloride ion and hydrogen ion concentration are considered); iN  is 

the flux inside the tumour spheroid and Pi is the net rate of consumption/production of the 

chemical species (including mutual reactions of chemical species as well as tumour cells 
consumption/production). 

The flux is calculated according to Fick’s law of diffusion but since some of the chemicals are 
ionic electric field driven charge migration has also to be considered. The resulting equations 
can thus take the following form 

i i i i i iN = z u FC Φ D C     
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where Di are (positive) constant diffusion coefficients; zi is the ionic charge of species, ui is 
the mobility, F is the Faraday constant, and Φ is the electrical potential (the first term 

vanishes in the case of uncharged chemicals i.e. glucose, oxygen, and carbon dioxide). 

Casciari, Sotirchos, and Sutherland [MI148] have choosen ui to be given by the Nernst–
Einstein equation 

/i i gu = D R T  

where Rg is the gas constant and T is the absolute temperature. By applying the assumption 

that there is zero net electrical current so that 0,k k

k

z N =  the equation for the flux of the 

ionic species can be rewritten in the form 

2
.

k k k

k
i i i i i

k k k

k

z D C

N = D C z C
z D C

 
 

  
 
 
 




 

In this way all ionic species are entangled and their flow is dependent on the concentrations 
of other ionic chemicals. 

Moreover, from the part dealing with chemical reactions the authors of [MI148] consider 
breakdown of glucose through glycolysis and the Krebs cycle and include the detailed 
metabolic pathway for pH regulation. An overview of these equations can be found in  [MI24] 
or [MI148]. 

The cellular level is usually described in terms of ordinary differential equations [MI75,MI76] 

or cellular automata evolution rules [MI66],[MI67] for the size iN  (i = 1, 2, . . . , n) of each cell 

population and the functional state of every cell . The dynamics is determined by intra- and 
intercellular interactions that can modify the state of the interacting cells and generate cell 

replication and death.   s,tN i - the number of cells of type i being in the state s at time t - 

evolves as 

 
         ts,,uS+ts,,uDts,,uP+ts,,uJ+ts,,uI=

δt

ts,δN
iiiii

i 
  

where  t,xu


 is a macroscopic state vector whose components can include cell population 

densities, concentrations of the nutrients and chemical factors, mechanical quantities, such 
as pressure, describing the response of the tissue to external forces. The internal evolution 

iI  takes into account all those intracellular phenomena such as phenotypic transitions 

triggered by mutations that change the functional state of a cell.  The conservative 

interactions iJ  represent cell-cell interactions which change the functional state of one or 

both interacting cells, but do not lead to cell replication or death. Proliferation is accounted for 

by the term iP  whereas cell destruction by the term iD . The term iS  associated with 

external sources or sinks refers to processes such as the production of immune cells, the 
destruction of tumour cells by medical treatments or the injection of cells. The simplest 

expression of the conservative interactions iJ  is provided  by the following quadratic form 

              
j s
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where  s,s,sT 2ij 1  is the transition rate of the i th-cell type to the state s .  The initial state is 

1s  and the state of the interacting cells belonging to the j th-population is 2s .  The first term 

of iJ  takes into account those cells that end up with a state s . The second one is a loss term 

related to those cells that transit from the state s  into another state following pair interactions 

with other cells. 

An alternative approach at the cellular level is based on cellular automata models 
[MI79,MI80]. In the cellular automata framework a set of evolution rules for the discrete state 
variables inspired by generic features of the system dynamics is suggested. These rules 
(deterministic or stochastic) are local in space and  in time. They replace a set of  ODEs 
used in continuous models to describe the evolution in time of the system at the cellular 
level.  All the components of the system have their states updated in parallel.  

The Q-state Potts model  

A discrete lattice is used in this model [MI23]. Each lattice site has a state  ,Qσ 1,2,... . The 

domains of the lattice sites with the same index describe cells while the links between lattice 
sites with different indices correspond to cell surfaces. The free energy of the system is 

described by the Potts Hamiltonian H . A lattice site is chosen at random and a new trial 
index is also chosen at random from one of the other Q – 1 states. The probability of 

changing the index at the chosen lattice site to the new index is: 

diss
T

H
diss

HHe

HH
P




 



1

 

where beforeafter HH=ΔH   denotes the difference between the total energy before and after 

the index reassignment, and T is temperature. dissH  represents the dissipation costs 

involved in deforming a boundary. A Potts model simulation measures time in Monte Carlo 
Steps (MCS): one MCS is defined as as many trial substitutions as the number of lattice 
sites. 

          1 1
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321 H+H+H=H  

where  iσ


represents the state of site i


,  στ represents the type of cell σ , 
1 2,J  stands for 

the coupling between cell type 1  and cell type  2  with respect to the cell surface adhesive 

energy, ,i j  is the Kronecker delta, μ  stands for  the chemical potential, 
i

C stands for  the 

chemical concentration at site i


, Γ  stands for the cell type rigidity , v is the current volume 
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and V  is  the type dependent target volume. The latter depends on the cell cycle since the 

cell may be growing. 

The first term of the energy represents the cell type dependent adhesion energy. The second 
term represents all bulk properties of the cell such as membrane elasticity, cytoskeletal 
properties and osmotic pressure. The third term represents chemotaxis where the chemical 
potential determines if cells move towards or away from higher chemical concentrations.  

At the tissue level, a continuous approach is based on the assumption that there is a 
sufficiently large number of cells and relevant molecules in order to define average 
continuous values for the macroscopic variables. Continuum models are mathematically 
formulated in terms of PDEs in the area of fluid and continuum mechanics. The majority of 

them establish an evolution equation for the field  t,xu


. For those components of u  

representing cells and chemical substances, the derivation of the corresponding evolution 
equations follow  from the mass balance principle applied to each element volume: 

      jjjj

j
δuuΓ+uDuv=

t

u




 
 

where v


is the convective velocity, D  is the diffusion coefficient,  jΓ u  is the proliferation 

term per unit volume, and δ  is the death coefficient of the j th - cell type population density or 

concentration. The evolution equation depends on sinks, sources and appropriate boundary 
conditions determined by the distribution of cells and blood vessels, leading generally to the 
so-called moving boundary problems [MI81]. For the complete specification of the 
macroscopic model, it is necessary to introduce constitutive laws to characterize for instance 
the mechanical properties of the tumour [MI82-MI84].  

Tumour growth is modelled using the mass conservation law and thus the velocity of cell 

movement v  is given by 

 iv = λF C  

where λ is the maximum rate of cell proliferation and F(Ci) is the scaling function for the 
nutrient/chemical species dependent proliferation. The function F(Ci) is obtained empirically 

from several experiments. In [MI148] the rate of cell proliferation is represented  by 

 
1
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C C
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where Gi’s are fitting parameters for the measured data (subscript a stands for oxygen, b for 
glucose, and g for hydrogen ion concentration). The weakness of function F is that it is 

always positive and hence is not able to describe any necrotic cores in the tumour.  

Solving the equations for spherical symmetry leads to the following equation for the radial 
cell velocity vr at a point inside the spheroid and the rate of growth of the tumour boundary R: 

   2
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r iv r = λ F C dr
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   2

0

1
R

r i

dR
= v R = λ F C dr

dt R   

The above mentioned model of proliferation constitutes the basic version which can be 
generalized in several ways. It can be enriched by describing the tumour as a conglomerate 
of several phases of the cellular “material”. A separate description of cell movements (by 
random diffusive movement) and cell deaths can also be taken into account. The general 
formulation in this case is as follows: 

       i
i i i i i i i i i i

Φ
+ vΦ = D Φ +λ Φ ,C µ Φ ,C ,

t


   


 

where for each phase/type i which occupies the volume Φi (all Φi sum up to the total volume 
1) the velocity vi is determined by diffusion with coefficient Di . The terms λi and µi represent 

production and degradation respectively. 

In this general form the model seems to be too complicated since there are too many 
parameters to be experimentally determined for validation purposes. The simplest case 
addressing only two phases i.e.  living and dead cells has been treated  in [MI190,MI191]. If n 

is the living cell density and  m  the dead cell density the following relation is obtained  

       n i i

n
+ v n = D n + λ n,C µ n,C

t


   


 

   m i

m
+ v m = µ n,C

t





 

If the average volumes of living cells (VL ) and dead cells (VD ) are given, by assuming   
constant volume nVL + mVD = 1  and the same velocities for the dead and living cells the 
following equation can be obtained  

      L i L i L Dv= D n V + λ n,C V µ n,C V V      

This equation can be solved in a way similar to the one applied to the radial symmetry case. 
This can be done mainly because of the force balance which allows to take into account 
momentum changes between the particular phases.  

There are several other possible modifications aiming at a qualitative description of the 
possible evolution of the nutrient-limited tumour spheroid. For example use of time delays 
could explain oscillations in tumour spheroids growth as were studied by Burkowski [MI206] 
and Byrne [MI207]. 

Until now consideration of any mechanical aspects of tumour growth have been avoided by 
assuming radial symmetry. Although this facilitates understanding of the chemical processes 
involved, biomechanics cannot be ignored in the clinical context. 

Some simple initial models calculated the tumour cell interaction with normal tissue by 
computing the internal pressure within the tumour. This has been done by Greenspan 
[MI174] and Byrne and Chaplain [MI208]. By omitting technical details in general such 
models correlate cell velocity with pressure by using Darcy’s law of fluid dynamics which can 
be expressed by the following equation 
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v = µ p   

where µ is a positive constant accounting for the viscosity properties of tumour cells. 

Combining this equation with the above mentioned equation for velocity and using 
proliferation parameters the following equation for the internal pressure within a spheroid is 
obtained 

 2

iµ p = λF C   

The movement of the tumour boundary along an outwards pointing normal unit vector  n  is 

then given by 

dr
n = v n = µ p n

dt
      

Furthermore, two boundary conditions are given. The first one states that the pressure on the 
tumour boundary is in equilibrium with the pressure of the outer environment. The second 
one proposed in [MI208] connects nutrient concentration with boundary curvature by 
assuming that nutrient is the source of energy of cell adhesion. It is described by the Gibbs-

Thompson relation  ,c=c 2γ1 where γ is the surface tension and κ is the mean 

curvature.  

Regarding experimental measurements there is still much to be done. Direct measurement of 
the pressures in tumour tissue is almost technically impossible. However, a method 
proposed  by Helmlinger et al. [MI212] has been widely discussed. Instead of measuring 
pressure directly the influence of the outer pressure on tumour growth is calculated by 
cultivating tumours in differing stiffness agarose gels. Both the experimental and theoretical 
aspects of this approach have been addressed in many other publications [MI209, 
MI210,MI211]. 

The notion of internal cell pressure, inspired by models of fluids does not reflect the internal 
structure of a cell. Threfore, it could be partly replaced in the future by more informative 
notions which would take into account the subcellular micro skeleton structures. Theoretical 
work presented in [MI214] and [213] has pointed towards that direction.  

Mathematically, the link between the molecular/sub-cellular, cellular and tissue levels has to 
be referred to the parameters (growth, death, uptake or absorption, degradation rates, 
threshold densities, diffusion coefficients, drift velocities, etc.) characterizing the model.  

 

4.3 Models of Prevascular Tumour Response to Chemotherapy and 
Radiotherapy   

In order to describe drug flow in the organism the concept of compartments has been 
proposed. Common pharmacokinetics models [MI25] make use of diffusion and 
compartmental modeling to investigate cellular drug uptake and intracellular drug interactions 
as well as to provide insight into the cellular mechanisms contributing to drug resistance. The 
flux between compartments is commonly described by the equation 

 
     

i

j

ji

i

ij

j

CkCk=
dt

dC
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where 
 iC is concentration of drug in the compartment i and ijk represents the rate of 

transfer between compartments. 

Drug cytotoxicity is described by pharmacodynamics [MI27]. The mechanisms contributing to 
the drug effects are still not completely known. Several phenomenological models 
adequately describe the fractional cell survival S as a function of concentration and time 

exposure history. The Hill type model is frequently used 

 mAx+
=S

1

1
 

where A,m are constants, x is a measure of the cellular damage proportional to extra- or 
intracellular area under (the) curve (AUC) of the concentration of drug as a function of time. 

AUC = C dt  

Another possibility is an exponential kill model. 

kxe=S 
 

where x is a suitable measure of damage and k is a constant. 

The linear-quadratic model is often used in order to quantify the biological response to 
radiation. The surviving fraction is expressed as 

2βDαD+e=S  

where D is the dose in Gy. The α and β  parameters depend on the cell type and the cell 

cycle phase. 

 

4.4 Modeling  Angiogenesis, Invasion and Metastasis 

 

4.4.1 “Hollow” Capillary Networks 

This model has been inspired by the tumour-induced angiogenesis model proposed by 
Anderson & Chaplain [MI8]. It is assumed that endothelial cells migrate through  random 
motility,  chemotaxis in response to TAF (tumour angiogenic factor) released by the tumour 
and haptotaxis in response to fibronectin (FN) gradients in the extracellular matrix. Let n  be 
the endothelial cell density per unit area. The equation describing endothelial cell 
conservation is as follows 

)())((2 fncncnD
t

n





  

The chemotactic migration is representd  by the function    δc+χ=cχ 1/  which reflects the 

decrease in chemotactic sensitivity with increased TAF concentration c. The coefficients D, 
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χ , ρ  characterize the random, chemotactic, and haptotactic cell migration respectively. f 

stands for fibronectin concentration. 

TAF and the extracellular matrix-macromolecule FN bind to specific membrane receptors on 
endothelial cells and subsequently trigger molecular cascades inside the ECs, activating cell 
migratory machinery. One consequence of this activation process is the production of matrix 
degrading enzymes (MDEs). The endothelial cells become able to exert the traction forces 
required to propel themselves during migration. In the initial model [MI8] endothelial cell 
densities and their global influence on TAF and FN concentrations were considered in a 
continuous formulation. In the model under development the focus will be on local effects 
and the influence of each individual cell on its local environment will be considered. The 
model can then be formulated through the following set of equations: 

cηn=
t

c
i




 

γmfβn=
t

f
i 




 

νmmε+αn=
t

m
i 



 2
 

where c represents the TAF concentration, f represents  the FN concentration, m represents 

the MDE concentration and in is a Boolean parameter (1 or 0) indicating the presence or 

absence of an endothelial cell at a given position. The parameters β and α characterize the 

production rate of FN and MDE by an individual endothelial cell respectively and η  its TAF 

consumption rate. The MDE, once produced, diffuses locally with diffusion coefficient ε , and 

is spontaneously degraded at a rate ν  . 

The displacement of each individual endothelial cell located at the tips of each growing 
sprout is given by the discretized form of the endothelial cell mass conservation equation. 
The migration of each cell is consequently determined by a set of coefficients emerging from 
this equation. They are related  to the likelihood of the cell remaining stationary, moving left, 
moving right, moving up, or moving down (in 2 dimensions for simplicity). These coefficients 
incorporate the effects of random, chemotactic and haptotactic movement and depend on the 
local chemical environment (FN and TAF concentrations). Proliferation of the endothelial 
cells at the capillary tips and branching at capillary tips are implemented in the model at the 
discrete level. Tip branching depends on the TAF concentration at a given spatial location .  

4.4.2 Blood Flow 

Blood is a very complex biphasic medium, composed of many different constituents, 
including red blood cells (erythrocytes), white blood cells (leukocytes), and platelets involved 
in clotting cascades.Because of its biphasic nature, blood does not behave as a continuum 

and the relative viscosity rel  measured while flowing at different rates in microvessels is not 

constant. 
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where 0.45μ  is the viscosity corresponding to the normal average value of the discharge 

hematocrit ( DH  = 0.45), R is the vessel radius, and  DHf  is a function of the hematocrit. 

In the case of a non-Newtonian fluid the local relationship between  pressure gradient ΔP  
and flow Q at the scale of a single capillary element of length L and radius R can be 

approximated by the following Poiseuille- like expression: 

 LHR,

ΔPπR
=Q

Dapp

4

8μ
 

 

where  app D rel plasmaμ R,H = μ μ  is the product of relative and plasma viscosities. When 

considering flow calculations through a network of interconnected capillary elements having 
distributed radii simple conservation of mass or flow (if the fluid is incompressible) at each 
junction where the capillary elements meet has to be applied. 

4.4.3 Adaptation and remodelling 

Blood rheological properties and microvascular network remodelling are interrelated issues 
as blood flow creates stresses on the vascular wall (shear stress, pressure, tensile stress) 
that lead to the adaptation of the vascular diameters via either vasodilation or 
vasoconstriction. 

The wall shear stress is given by 

 refwwss τ+τ=S log  

where 

 
 Q

πR

HR,
=τ

3

D
w

4μ
 

and refτ  is a constant included to avoid singular behaviour at low shear rates. 

The intravascular pressure is given by  

  Pτk=S ePp log  

where Pk  is a constant that dictates the relative intensity of the stimulus, P is the local 

intravascular pressure and  accounts for the dependence of wall shear stress on pressure. 

The metabolic hematocrit-related stimulus is given by 

log 1
ref

m m

D

Q
S = k +

QH

 
 
 

 

where refQ  is a reference flow,  refQ  corresponds to the flow in the parent vessel, DH  

represents the discharge hematocrit in the vessels, Q stands for the flow in the vessel under 
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consideration and mk  is a constant characterizing the relative intensity of the metabolic 

stimulus. 

The vessel  adaptation R  is provided by the following equation 

 

 wss p m sΔR= S +S +S k R Δt  

 

The additional term sk  represents the shrinking tendency of a vessel. 

The vessel branching probability Pbranching  is given by  

max
TAF

TAF

max

wss
normalizebranching

C

C

τ

τ
P=P  

where CTAF  stands for the TAF concentration. 

 

4.4.4  Invasion 

A tumour experiences unstable growth due to a diffusional instability caused by the 
competition of the growth of tumour mass and the surface tension (cell adhesive forces) that 
tends to oppose this growth [MI28]. The instability is enhanced by the development of a 
necrotic core and its associated volume sink. The presence of the inhomogeneous nutrient 
field due to angiogenesis tends  to further destabilize the tumour because the tumour tends 
to co-opt the complexly shaped neovasculature in order to maximize nutrient transfer [MI29]. 
Gatenby et al. [MI30] have addressed in their modeling work the change of extra cellular pH 
that helps tumour invasion. Malignant cells exhibit characteristically altered metabolic 
patterns when compared with normal mammalian cells with increased reliance on anaerobic 
metabolism of glucose to lactic acid even in the presence of abundant oxygen. This leads to 
normal cell death via p53-dependent apoptosis pathways, as well as degradation of the 
interstitial matrix, loss of intercellular gap junctions, enhanced angiogenesis, and inhibition of 
the host immune response to tumour antigens. Transformed cells maintain their proliferative 
capacity in acidic extracellular pH because of mutations in p53 or some other component in 
the apoptotic pathways.   

 

4.4.5 Metastasis 

Metastasis is characterized by a complex series of events in which cancer cells leave the 
original tumour site and migrate to other parts of the body via the bloodstream or the 
lymphatic system. To do so malignant cells break away from the primary tumour and attach 
to and degrade proteins that make up the surrounding extracellular matrix (ECM) which 
separates the tumour from the adjacent tissue. By degrading these proteins cancer cells are 
able to breach the ECM and escape. The body resists metastasis by a variety of 
mechanisms through the actions of a class of proteins known as metastasis suppressors of 
which about a dozen are known. One of the critical events required is the growth of a new 
network of blood vessels called tumour angiogenesis. It has been found that angiogenesis 
inhibitors would therefore prevent the growth of metastases. 
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4.5 Particuliarities of Glioblastoma and Lung Cancer  

 

4.5.1 Glioblastoma 

Glioblastoma multiforme is characterized by the presence of small areas of necrotic tissue  
that is surrounded by anaplastic cells (pseudopalisading necrosis). This characteristic in 
conjunction with the presence of hyperplastic blood vessels differentiates the tumour from 
grade 3 astrocytomas which do not exhibit these features. Although glioblastoma multiforme 
can be formed from lower-grade astrocytomas post-mortem autopsies have revealed that 
most glioblastomas multiforme are not caused by previous lesions in the brain. 

Glioblastomas multiforme (GBM) can form in either the gray matter or the white matter of the 
brain. Most GBM however arise from the deep white matter and quickly infiltrate the brain 
often becoming very large before producing symptoms. The tumour may extend to the 
meningeal or ventricular  wall leading to a high protein content of cerebrospinal fluid(CSF) (> 
100 mg/dL) as well as an occasional pleocytosis  of 10 to 100 cells, mostly lymphocytes. 
Malignant cells carried in the CSF may spread to the spinal cord or cause meningeal 
gliomatosis. However, metastasis of GBM beyond the central nervous system is extremely 
rare. About 50% of GBM occupy more than one lobe of a hemisphere or are bilateral. 
Tumours of this type usually arise from the cerebrum and may exhibit the classic infiltration 
across the corpus callosum producing a butterfly (bilateral) glioma. The tumour may take on 
a variety of appearances depending on the amount of hemorrhage,necrosis or its age. A CT 
scan usually shows a nonhomogeneous mass with a hypodense center and a variable ring of 
enhancement surrounded by edema. The mass effect from the tumour and edema may 
compress the ventricles and cause hydrocephalus. 

Some recent models incorporate anatomical features to help model tumour growth in a more 
realistic way based on the characteristics of heterogeneous brain tissue. Some of these 
models extend the conventional modeling approach of gliomas at the macroscopic scale to 
explain tumour invasion at the microscopic cellular level. Certain models take into account 
the fact that glioma diffusion  through white and gray matter is different. Differential motility is 
estimated using the Fisher’s approximation [MI32]. 

 

4.5.2 Lung cancer 

The vast majority of lung cancers are carcinomas i.e. malignancies that arise from epithelial 
cells. There are two main types of lung carcinoma categorized by the size and appearance of 
the malignant cells as seen by a histopathologist under the microscope: non small cell 
(80.4%) and small cell (16.8%) lung carcinoma. This classification based on histological 
criteria has important implications for clinical management and prognosis of the disease. 

The non small cell lung carcinomas are grouped together because their prognosis and 
management are similar. There are three main subtypes of non small cell carcinoma: 
squamous cell lung carcinoma, adenocarcinoma, and large cell lung carcinoma. Accounting 
for 31.2% of lung cancers, squamous cell lung carcinoma usually starts near a central 
bronchus. Cavitation and necrosis within the center of the tumour is a common finding. Well 
differentiated squamous cell lung cancers often grow more slowly than other cancer types. 
Adenocarcinoma accounts for 29.4% of lung cancers. It usually originates in peripheral lung 
tissue. Most cases of adenocarcinoma are associated with smoking; however, among people 
who have never smoked (“never-smokers”), adenocarcinoma is the most common form of 
lung cancer. A subtype of adenocarcinoma, the bronchioloalveolar carcinoma, is more 
common in female never-smokers and may have different responses to treatment. Small cell 
lung carcinoma (SCLC, also called “oat cell carcinoma”) is less common. It tends to arise in 
the larger airways (primary and secondary bronchi) and grows rapidly becoming quite large. 
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The “oat” cell contains dense neurosecretory granules (vesicles containing neuroendocrine 
hormones) which are responsible for an endocrine/paraneoplastic syndrome association. 
While initially more sensitive to chemotherapy it ultimately carries a worse prognosis and is 
often metastatic at presentation. Small cell lung cancers are divided into limited stage and 
extensive stage disease. This type of lung cancer is strongly associated with smoking.The 
lung is also a common place for metastasis from tumours in other parts of the body. These 
cancers are identified by the site of origin; thus, a breast cancer metastasis to the lung is still 
known as breast cancer. They often have a characteristic round appearance on chest x-ray. 
Primary lung cancers themselves most commonly metastasize to the adrenal glands, liver, 
brain, and bone. 

 

4.6  The Digital Biological Cell (DBC) Approach  

In this section some representative high level features of the Digital Biological Cell (DBC or 
dbc) approach are briefly outlined.   DBC is a generic microscopic biomodeling method that 
has been adopted for the development of the microscopic tumour models within the 
framework of the ContraCancrum project. A central mathematical feature of the approach is 
the extensive use of the diffusion equation. A detailed mathematical formalism of the basics 
of the method has also been developed [MI19]. 

 

4.6.1 The Environment Model 

The environment of the biological system under consideration is modeled at two different 
levels. At the local level it posseses a lattice structure to allow relatively precise calculations. 
Its global structure is handled by an oriented graph which is suitable for the description of the 
topological structure of the domain. All relevent pieces of information are integrated into a 
graph of locations characterized by the following features   

1. nodes (local environments). Each node (environment) is represented by a discrete  
lattice. A lattice site contains a homogeneous concentration of vaxes [entities that can 
interact] and dbcs. A lattice can be dynamically subdivided into sublattices. The ratio 
of the volumes of two neighborhood sites can take values up to 1:6. 

2. edges (connections between local environments over a long distance). They describe 
the transfer of vaxes and dbcs. An edge represents the connection of a set of sites in 
a source node and a set of sites in a destination node as well as the temporal transfer 
function of vaxes and dbcs. 

 

4.6.2 Vaxes 

In order to  simulate  chemical reactions and signaling  the vax notion denoting an entity that 
can interact  is utilized [MI1, MI19, MI31].   The complementary notions of provax (a vax in 
the environment that is not bound to a dbc) and revax (a vax bound to a membrane) are also 
used. 

4.6.3 Digital Biological Cells (dbcs)  

Cells are represented by dbcs [MI19] [MI31]. Some representative dbc features ( Figure MI3) 
are listed below 

 Membrane system (a dbc membrane) [MI26].  

 Membrane  enclosed part of the environment. It defines the dbc shape and divides a 
lattice into inner and outer lattice cells.  

 Membrane elements which correspond to the boundaries of two lattice cells. They 
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contain revaxes. A revax can be oriented into the inner or the outer part of a lattice 
cell.  

 External membrane.  An external membrane determines the boundaries of a dbc.  

 Revax reaction functions.  They define reactions among provaxes/revaxes and 
revaxes. [MI1,MI31,MI34].  

 Seasonal/cumulative vax sets. Such sets  determine the most influencing revaxes 
during some period e.g. those that maximize the revax reaction function. A seasonal 
vax set determines the state of a dbc. 

 Vax gradient  

 Cost resources 

 Zygotic graphs  (ZG).  Their nodes represent vaxes. Oriented edges determine 
actions ( Figure MI4) [MI31]  . Basic features of the zygotic graphs are the following 

 nodes representing vaxes  

 edges representing actions (producing provaxes, adding revaxes, moving, 
dividing, death as well as their parameters and costs) 

 an action is not performed if there are not enough resources  

 provaxes and revaxes can be distributed homogeneously or inhomogeneously  

 A zygotic graph can have the following main subgraphs:  

 production (sub)graph. It determines how many and which vaxes will 
be spilled into the environment (for each membrane)  

 revax (sub)graph. It determines how many and which vaxes will be 
added to the membranes  

 motion/growth (sub)graph. It determines a dbc movement or a change 
of shape. 

 The number of non used revaxes decreases with  time  

 dbc membrane division  

 a dividing action is determined from the  ZG  

 the number of revaxes on a membrane reaches the maximum revax number  

 division transformation  

 a membrane is divided into two membranes and its resources are 
distributed to each one of the new membranes (homogeneously or 
non-homogeneously)  

 a direction of division is selected 

 a time of division is determined  

 abnormalities during division are determined and performed 

 dbc membrane death 

 the number of revaxes on a membrane reaches the minimum revax number. 
The  dbc membrane disappears (model of apoptosis)  

 resources are not enough or the number of internal  provaxes of the 
membrane reaches its maximum . The dbc membrane cracks and spills  its 
resources into the environment  (model of necrosis)  

 Membrane transfer function. It determines a transfer of provaxes through a 
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membrane  

 Each action has a time range within which it can be performed.  For example 
interactions of chemicals take ms whereas cell  cycling can take hours 

 The state of a dbc is determined by the number of revaxes and by the number of 
provaxes in the inner and the outer environment and their reactions 

 The state of a dbc is changing with time depending on changes in the inner and the 
outer environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure MI3. A digital biological cell (DBC or dbc) on the two dimensional domain  
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Figure MI4. An example of zygotic graph 

 

 

 

 

 

 

 

Figure MI5. dbc model of avascular tumor growth with small adhesion and diffusion 

 

 

 

 

 

 

 

Figure MI6. dbc model of vasculogenesis with chemotaxis and haptotaxis 
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Figure MI7. Cooperation of angiogenesis module and avascular tumour growth module as source sink 
cooperation 

 

 

 

Figure MI8. Workflow diagram 
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Figure MI9. Compartmental model 

 

4.7 Digital Biological Cell (DBC) Models of Avascular Tumour 
Growth, Invasion, Angiogenesis and Treatment Response 
 
An adaptive discrete and discretized continuous approach (Figure MI3) has been adopted in 
order to model avascular tumour growth, invasion, angiogenesis and drug interactions 
(Figure MI5, Figure MI6, Figure MI7, Figure MI8). The tumour is considered a spatiotemporal 
distribution of discrete cells and chemicals/ligands (e.g. oxygen, nutrients, drugs) regions.  
 
The envisaged main features and functioning of the corresponding microscopic cancer 
modeling module in the research setting will be as follows (Figure MI8) 

i. The microscopic imaging data of the tumour (e.g. microphotographs of 
histopathological sections) are provided. 

ii. The data is processed so that certain characteristics of tumour cells and the 
cell system (including shapes and states) are quantified. 

iii. The pre-treatment spatial distribution of non imageable tumour cells within the 
patient from whom the tissue has been excised is estimated.  

iv. An editor of microenviromental changes provides the utility to change the 
micro-environment parametrers.  

v. Molecular data (e.g. diffusion, stoicheiometry, status, amplification and 
expressions of critical genes which have been shown to drastically affect the 
response of the tumour under consideration to the treatment addressed, 
receptors present etc.) are provided. Estimates (even semi-qualitative) of their 
production and state changes are made. 

vi. The compartmental model of Figure MI9 is used as a reference for the study 
of cell shape, cell-drug interactions, energetic conditions and other tumour 
dynamics aspects. 
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vii. The model parameters are estimated based on the previously mentioned data 
as well as literature based information. 

viii. Appropriate rules are applied at every time scale considered. These refer to 
state changes, cell proliferation, cell death, cell-drug/chemical interaction, cell 
movement, cell shape changes etc. The outcome is an update of the 
spatiotemporal cell states of the tumour cells over the tumour. 

ix. An avascular tumour growth submodule (TM) provides sources of TAF to the 
angiogenesis module (AM).  AM in turn provides sources of chemicals to TM 
(Figure MI7). 

 
 

In parallel with the solution of the biological problem a physical refinement concerning 
shapes,convective movement etc. will take place based on minimazition of action 
(e.g. according to the cellular Q-Potts models). Any physical data available (primarily 
through literature) will be utilized to this end. 
 
Acceleration of the simulation code will be addressed in order to significantly lower 
the computing time demands. Execution of the code on fast computing systems 
(eventually including clusters and/or  grid)  have been planned. 
 
The prediction of the spatiotemporal cell state and shape of a non macroscopically 
imageable tumour will be made for both the free growth and the rsponse to treatment 
(chemotherapy, radiotherapy) cases. Several visualization forms of the predictions 
(graphs, 3D and 4D rendering etc.) will be offered. 
 
The simulated treatment outcome will be compared with any relevant data following 
treatment (e.g. microphotographs of histology slides after surgery) and an 
optimization loop of the parameters estimation (and if necessary of the model 
algorithm) will be implemented. 

 

4.8 Testing of  the Microscopic Models  

The quantitative connection of mathematical models with biological observations is 
represented by the mathematical model parameters. Each parameter of the model under 
consideration refers to a particular phenomenon and has a particular effect on a specific cell 
population or a chemical substance or a sub-cellular process within a given cell type. Certain 
parameters can be evaluated from biological assays, obtained from generic databases or 
derived from mathematical models which justify the increasing effort to develop a quantitative 
and structural information infrastructure suitable to support physiological modeling [MI85]. 

Up to now only very few experimentally validated models considering cell population and 
nutrient interactions have appeared. The link between the microscopic and the macroscopic 
description remains an open problem [MI75]. The reason is that subcellular and cellular 
models involve a more detailed dynamics dependent on the state of the cells whereas this 
kind of information is largely lost in macroscopic models. A plausible approach to tackle this 
problem is the ‘summarise and jump’ strategy outlined in Chapter 1. Section 4.7 contains i.a. 
a high level consideration of the microscopic model testing approach to be adopted. 

Each modeling approach be it discrete or continuous assumes a time and space scale and a 
specific nature of the physical or biological interactions involved. Indeed the continuous 
evolution equation for the cell population densities essentially describes mean field like 
cellular interactions.  Cellular automata or agent-based models rely on local or short-range 
interactions. Generally both types of interactions can occur. In addition, the balance between 
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determinism and stochasticity depends on the time and length scale on which the questions 
are posed. At the molecular level protein-protein and protein-DNA interactions are stochastic 
but at the cellular level and for a long time span average concentrations can be statistically 
defined so that their evolutions can be described by deterministic equations. Moreover, 
unknown or incompletely understood biological mechanisms that play a role in the 
phenomena considered can lead to stochastic model descriptions. 

It is noted that the main role of the development of microscopic models within 
ContraCancrum is to provide insight into and better understanding of the biological 
mechanisms of cancer so that i.a. refinement of the imageable tumour models (Chapters 6 
and 7)  can be achieved. Therefore, the clinical validation focus within ContraCancrum 
(Chapter 5) is on the latter rather on the microscopic models themselves. 
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5. Medical Data to be Used for the Adaptation, Optimization 
and Validation of the Models of Clinical Tumour Growth 
and Response to Treatment [Code: DA] 

This chapter lists the various types of (pseudo)anonymized multiscale medical data to be 
provided by the participating clinical partners and used for the adaptation, optimization and 
validation of the imageable tumour models which are described mainly in Chapters 6 and 7. 

 

5.1 Glioma (glioblastoma) cases 

 

A1. TREATMENT DATA 

 

Detailed description of the treatment (chemotherapy and/or radiotherapy) scheme 
including  

1. Drug(s) names and/or type of ionizing radiation 
2. Actual treatment session dates 
3. Actual dose(s) for each treatment session  
4. Any other relevant data (eg. individualized pharmacokinetic data if available) 

 

A2. NORMAL TISSUE COMPLICATION DATA 

 

1. Side effects that will be measured are in case of patients with gliomas mainly 
due to irradiation. To describe these side effects the Common Terminology 
Criteria for Adverse Events (CTCAE) v3.0 will be used [DA1].  

2. Most important are skin reactions and neurological side effects 

3.  Haematological toxicity will only be analysed in patients who have received 
chemotherapy.  

4. Especially in patients with gliomas who develop new neurological symptoms it 
is sometime impossible to distinguish between tumour progression and side 
effects of treatment. In this respect the simulation of normal tissue reactions 
has limited potential. 

 

A3. CLINICAL DATA 

1. Age 
2. Sex 
3. Description of eventual previous treatments 
4. Any other pertinent clinical data  

 

A4. IMAGING DATA 
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In the case of glioma the following imaging data will be made available: 

1. T1 Gadolinium-enhanced MRI (dense coverage of the region of interest)  
2. T2 MRI (dense coverage of the region of interest) 
3. Additional imaging data are desirable and will be used in the project if they are 

available for a patient. These imaging data are: 
i. Diffusion anisotropy MRI 
ii. PET 
iii. SPECT 
iv. fMRI 

 

All imaging data sets correspond to a known time point before treatment initiation, 
eventually several time points during treatment (if this is possible) and at least one 
known time point after completion of treatment. 

 

A5. SEGMENTATION DATA 

 

1. External “conventional”boundaries of the tumour based on T2 MRI 
2. External “conventional” boundaries of the tumour based on T1-gadolinium-

enhanced MRI 
3. Boundaries of the necrotic (“dark appearing”) region based on T1-

gadolinium-enhanced MRI 
4. Boundaries of any additional tumour structures lying within the previously 

mentioned “conventional” boundaries of the tumour (including their 
macroscopic characterization) 

5. Desirably: boundaries of adjacent normal tissue structures with annotation.  
6. Estimate of tumour volume (including calculation method) 

 

A6. HISTOPATHOLOGICAL DATA 

In the case of glioma the following histological data will be made available: 

1. Detailed description of the tumour subtype including grade and stage 
2. Microphotographs of indicative histopathology slices. However, due to the 

surgical procedure in most cases it is impossible to correlate the histology to 
the region of the tumour from which the bioptic material has been extracted. 

3. Estimates of the amount of dead cells (necrotic, apoptotic)  
4. Estimates of the spatial tumour cell density for proliferative cells (Ki67 

staining)   
5. The degree of neovascularization for selected cases. 

The microscopic imaging data are processed in such a way that the density of 
tumour cells as well as the percentages of proliferative cells (Ki67) and dead 
cells are calculated. In few cases, in which such data are available, a mapping 
of the bioptic areas and the imaging will be done. This will lead to a relatively 
refined consideration of the tumour spatial inhomogeneities in different areas of 
the tumour. In all other cases where such information is not possible to get the 
information from the biopsy will be extrapolated to the whole tumour, knowing 
that this is only a rough approximation. 

 

A7. MOLECULAR DATA 
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In the case of glioma the following data will be made available: 

1. An extended number of novel glioma expressed antigens reactive with 
patients’ auto-antibodies will be identified.  

2. The seroreactivity of antigens will be measured using a novel  automated 
image analysis system.  

3. Information of the reactivity of the immunogenic antigens against sera of 
healthy controls will be provided.  

4. Each glioma antigen will be classified according to its reactivity against 
normal sera and sera of glioma patients. AUC values for the antigens will 
be determined to rank them according to their information content. 

5. Cytogenetic data will be provided for those glioma that can be used for 
short term tissue culture.   

6. cDNA expression data will be provided for those glioma that are available 
as frozen tissues.  

 

V. Lung cancer cases 

 

B1. TREATMENT DATA 

 

Detailed description of the treatment (chemotherapy and/or radiotherapy) scheme 
including  

1. Drug(s) names and/or type of ionizing radiation 
2. Actual treatment session dates 
3. Actual dose(s) for each treatment session  
4. Any other relevant data (eg. individualized pharmacokinetic data if available) 

 

B2. NORMAL TISSUE COMPLICATION DATA 

 

1. Side effects that will be measured are in case of patients with lung cancer 
mainly due to irradiation. To describe these side effects the Common 
Terminology Criteria for Adverse Events (CTCAE) v3.0 [DA1] will be used.  

2. Most important are skin reactions and acute pneumonitis in case of lung 
cancer.  

3. Haematological toxicity will only be analysed in patients who have received 
chemotherapy.  

 

B3. CLINICAL DATA 

1. Age 
2. Sex 
3. Description of eventual previous treatments 
4. Any other pertinent clinical data  

 

B4. IMAGING DATA 

 

In case of lung cancer the following imaging data will be made available: 
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1. CT (dense coverage of the region of interest) 
2. Any modality providing metabolic information (eg. PET, SPECT, fMRI) 

All imaging data sets correspond to a known time point before treatment initiation, 
eventually several time points during treatment (if this is possible) and to at least 
one known time point after completion of treatment. 

 

B5. SEGMENTATION DATA 

 

1. External “conventional”boundaries of the tumour based on CT 
2. Boundaries of the highly metabolically active and necrotic regions based on 

any modality providing metabolic information 
3. Boundaries of any additional tumour structures lying within the previously 

mentioned “conventional” boundaries of the tumour (including their 
macroscopic characterization) 

4. Desirably: boundaries of adjacent normal tissue structures with annotation.  
5. Estimate of tumour volume (including calculation method) 

 

B6. HISTOPATHOLOGICAL DATA 

In case of lung cancer the following histological data will be made available: 

1. Detailed description of the tumour subtype including grade and stage. 
2. Microphotographs of indicative histopathology slices from surgically 

resected specimens and from biopsy specimens. The former will include 
central and peripheral parts of the tumour, the latter will be representative 
for the peripheral/ endobronchial part of the tumour. 

3. Estimates of the spatial tumour cell density will be given. The amount of 
dead (necrotic, apoptotic) cells will be estimated. 

4. Estimates of the spatial tumour cell density for prolferative cells (Ki67 
staining) will be given. 

5. The degree of neovascularisation is given for selected cases.  

The microscopic imaging data are processed in such a way that the density of 
tumour cells as well as the percentages of proliferative cells (Ki67) and dead cells 
are calculated. In few cases, in which such data are available, a mapping of the 
bioptic areas and the imaging will be done. This will lead to a relatively refined 
consideration of the tumour spatial inhomogeneities in different areas of the 
tumour. In all other cases where such information is not possible to get, the 
information from the biopsy will be extrapolated to the whole tumour, knowing that 
this is only a rough approximation. 

 

B7. MOLECULAR DATA 

 
In  the case of lung cancer the following data will be made available: 
1. The mutational status of EGFR known to play a critical role in the response 

to targeted therapeutics will be provided. No other mutational analysis will 
be done. 

2. Autologous antibodies against tumour specific antigens will be measured in 
all cases using a modified SEREX method.  
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6. Modelling Clinical Tumour Growth and Response to 
Treatment: Continuum Based Modelling Approach [Code: 
CO] 

6.1 Workflow of the continuum based tumour dynamics simulator 

Concerning tumour simulation two major approaches have been adopted. According to the 
first one i.e. the continuum approach, the tumour (and in particular a glioma) is considered a 
spatiotemporal  distribution of continuous cell density which follows the generic diffusion-
reaction  law. According to the second approach (see chapter 7) the tumour is considered a 
spatiotemporal distribution of discrete cells (and cell death products) belonging to several 
proliferative potential categories and cell cycling phases.   

Pertinent clinical data from the list included in chapter 5 will be used in order to adapt, 
optimize and validate the simulators. Details regarding the types of data applicable to each 
particular tumour type are also provided in chapter 5.  

The tumour dynamics simulator based on the continuum assumption will function as desribed 
below (Figure  CO1).  

i. The macroscopic imaging data of the patient (e.g. contrast enhanced MRI, CT, 
PET etc) are collected at baseline 

ii. The macroscopic imaging data are segmented by the clinician (delineation of 
tumour boundaries, necrotic areas etc.), interpolated, three dimensionally 
reconstructed and eventually fused if more than one modalities are to be used. 
Both anatomy and spatial metabolic activity are the features to be provided by the 
processed imaging data.  

iii. NOTE Macroscopic imaging data are used as input for the simulation and the 
patient specific adaptation of the model. With the help of imaging it is possible to 
construct input data of a patient specific model by measuring spatially resolved 
anatomical and physiological parameters. Macroscopic imaging data of a patient 
as defined above is collected at several points in time before, during, and after 
therapy. Furthermore, images of different imaging modalities (CT, MRI, PET, 
etc.), allow to measure different parameters of the patient’s tissue and physiology. 
Therefore, in order to spatially align the information from different image 
modalities a registration and fusion step is necessary. The tools provided by WP7 
in conjunction with the infrastructure of provided by WP3 will allow to perform this 
registration step. The registration results will be written together with the patient’s 
images to the ContraCancrum database.After aligning the patient’s images to fuse 
the information, a segmentation step is required. In this step different tissues or 
different physiological regions of the tumour are segmented in order to simplify 
modelling. A necrotic area within the tumour as well as proliferating areas will be 
identified. WP7 and WP3 will provide the basis for sharing segmentation results 
with WP4. A viewing tool to compare the segmentation results with the original 
images is provided as well by WP7. 
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iv. The microscopic imaging data of the tumour (photographs of histopathological 
sections of bioptic material etc.) are provided. 

v. The microscopic imaging data are processed in such a way that the density of 
tumour cells as well as the percentages of the populations of the various 
proliferative potential categories and cell cycling phases can be estimated. 
Mapping of the areas from which the biopsies stem onto the imaging data (if and 
when feasile) could lead to a refined cosideration of the tumour spatial 
inhomogeneities. 

vi. The microscopic imaging data of the tumour (photographs of histopathological 
sections of bioptic material etc.) are provided. 

vii. The microscopic imaging data are processed in such a way that the density of 
tumour cells as well as the percentages of proliferative cells (Ki67) and dead cells 
are calculated. In few cases, in which such data are available, a mapping of the 
bioptic areas and the imaging will be done. This will lead to a relatively refined 
consideration of the tumour spatial inhomogeneities in different areas of the 
tumour. In all other cases where such information is not possible to get, the 
information from the biopsy will be extrapolated to the whole tumour, knowing that 
this is only a rough approximation. 

viii. The pre-treatment spatial distribution of imageable and non imageable tumour cell 
density is estimated based on literature. Non imageable tumour cell distribution 
refers primarily to gliomas where tumour growth exhibits markedly diffusive 
patterns.  

ix. Along with information based on histopathological slides eventual tumour cell 
cycling information (e.g. duration of cell cycle for the particular tumour) based on 
cell cultures is provided. 

x. A discretization mesh is superimposed upon the three dimensionally 
reconstructed tumour. An initial tumour cell density and net proliferative rate is 
assigned to each node of the mesh.  

xi. The molecular data (e.g. status, amplification and expressions of critical genes, 
which have been shown to drastically affect the response of the tumour under 
consideration to the treatment addressed) are provided.  Estimates (even semi-
qualitative) of their effect on the cell kill ratio per cell due to the treatment 
considered are also provided based on pertinent literature (e.g. [CO1]). The idea 
is to use the cell kill ratio value provided by the Food and Drug Administration 
(FDA) or general literature as a cell kill ratio reference value (e.g. for a given area 
under curve or radiation dose) and then to perturb it based on the effect of the 
molecular and/or histological profile of the tumour in order to achieve higher 
patient individualization of the simulation. 

xii. The diffusion equation for the cell density including  sources (cell division) and 
sinks (cell death due to necrosis, spontaneous apoptosis and response to 
treatment) is numerically solved for the initialized  discretization mesh. One of the 
methods to numerically formulate and solve the diffusion eqation is the Crank 
Nicholson Method or θ-method whereas one of the methods to solve the 
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emerging linear system is the Conjugate Gradient Method. Annex A provides 
some details on a treatment approximating the solution and deriving such  a linear 
system.  

xiii. In parallel with the solution of the biological problem a mechanical refinement can 
take place based on the Fimite Element Method (Workpackage WP6). To this end 
any mechanical data available (primarily through literature) will be utilized in 
conjunction with the imaging data. 

xiv. NOTE  Using imaging data, a three-dimensional biomechanical model of the brain 
and lung will be built. Both models will aim at assessing the changes in 
mechanical environment around the tumour during growth as well as the 
deformation of the surrounding tissues. Two different scenarios will be tested; 
First the finite element method will be used to calculate only the mechanical 
environment around the tumour while diffusion of the cancerous cells in healthy 
tissue will be simulated using the continuous approach described above and the 
discrete approach described in Chaper7. Second, both cell diffusion and 
mechanical environment will be calculated using the finite element method. This 
approach will link the cellular approach described to the macroscopic level. 

xv. Acceleration of the simulation code will be envisaged in order to significantly lower 
the computing time demands. Execution of the code on fast computing systems 
(eventually including clusters and/or  grid)  will also take place. 

xvi. The outcome of the simulation will be the prediction of the distribution of tumour 
cell density and metabolism for both the case of free tumour growth [no treatment] 
and tumour response to treatment (chemotherapy / radiotherapy). Several forms 
of prediction visualization (graphs, 3D and 4D rendering etc.) will be offered. 

xvii. The simulated outcome will be compared with the actual (primarily) imaging data 
following treatment and an optimization loop of the parameters estimation [and if 
necessary of the model algorithm] will be implemented. 

xviii. Glioma free growth patterns will be compared with embryological brain 
development patterns in order to study any eventual similarities and underlying 
common mechanisms. Tumour cell growth (cell divisions and differentiation), 
vascularisation, and invasiveness (cell migration) are the most important steps in 
the development of gliomas. By also taking into account molecular and 
histopathological mechanisms it is hoped that a better understanding of both 
processes will be achieved. 
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Figure CO1. Continuum based tumour and normal tissue simulator workflow 
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6.2 Mathematical Treatment of the Diffusion Based Simulation 
Module Using the Crank Nicolson in Conjunction with the 
Conjugate Gradient method 

6.2.1 Introduction 

Dynamic tumour behaviour including i.a. invasion to the surrounding normal tissues has 
great implications on tumour diagnosis and treatment. The boundaries between tumour and 
normal tissue sometimes cannot be clearly determined. This may complicate tumour 
detection and delineation although considerable progress in medical imaging has been 
achieved. Consequently, it is often difficult to determine the underlying tumour dynamics. 
Gliomas is a characteristic example of such a behaviour and their aggressive diffuse invasion 
contributes to their resistance to treatment and their practically inevitable recurrence.  

Mathematical modeling of such phenomena is a plausible approach in order to describe 
tumour dynamics (including expansion, shrinkage due to treatment etc.). Within this context a 
number of multiscale clinical tumour growth models are being developed within the 
ContraCancrum context.  The continuum based models will predict tumour growth, 
morphological features, invasion into the surrounding tissue as well as the response of the 
tumour to treatment (radiotherapy and/or chemotherapy).  

By exploiting tumour imaging data the model will be able to suggest the spatial distribution of 
the macroscopically undetectable component of the tumour as well as its concentration 
distribution.  

Tumour structure and morphology are affected by diffusion gradients. As a consequence the 
continuum based model is based on the diffusion equation and a number of pertinent 
alternative numerical algorithms for its solution.  

6.2.2  Mathematical Basics 

In an  oversimplified way tumour growth and invasion can be expressed by the following 
statement  [CO15A], [CO2]: 

‘Rate of Change of Tumour Cell Population= Diffusion (motility) of tumour cells + Net 
proliferation of tumour cells’ 

Mathematically, the above statement can be described by the following partial differential 
equation [CO15A], [CO6]: 

ccD
t

c





)(  

c  represents the cell concentration at any position and time t , D  denotes the diffusion 

coefficient [CO5] and represents the active motility of tumour cells [CO2] and   is the net 

rate of growth of tumour cells including proliferation, loss and death. 

 

The same equation can be written more analytically as follows [CO3, page803]: 
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in three spatial dimensions and more specifically on the domain [CO3, page 730]: 

},,|),,{( fzedycbxazyxR     

The model formulation is completed by Dirichlet boundary conditions ( , , , ) ( , , )c x y z t g x y z  

along all the sides for all ( , , )x y z R  and initial conditions ( , , ,0) ( , , )c x y z x y z , where 

( , , )x y z defines the initial spatial distribution of malignant cells [CO2].  

The objective is to approximate the value of the exact solution to the boundary value problem 
at a discrete set of points. The finite difference approximation is obtained by replacing each 
derivative which appears in the problem with an appropriate finite difference formula. This 
converts the continuous partial differential equation into a system of discrete algebraic 
equations. In general a continuous problem such as one formulated through differential 
equations has to be replaced by a discrete problem and be represented by a finite amount of 
data, for instance by its value at a finite number of points at its domain, even though this 
domain is a continuum [CO8]. 

The first step in the approximation process is to introduce a discretizing computational grid. 
In our case the computational domain is a cubic mesh that is applied on the anatomic region 
of interest. The domain is decomposed into a number of sub-domains. The descretization 
proceeds in two stages. First we descretize the space variables, then the time variable.  

 

To achieve the spatial descretization, the intervals [ , ],[ , ],[ , ]a b c d e f  are divided into 

, ,N M L  equal  sized subintervals, respectively.  , ,N M L are positive integers. For 

convenience, let  

    
b a d c f e

x y z h
N M L

  
          

By inference, the computational grid consists of the following points (xj, yk, zl),  

,  

,  

j

k

l

x a j x

y c k y

z e l z

  

  

  

 

for 0,1,2......, , 0,1,2......, , 0,1,2......,j N k M l L   . To complete the descretization of 

the equation the time axis is divided into uniform steps of length t .  

Let  

nt n t   

for 0,  1,  2 .n   and so on. Values for the approximation solution will be obtained at these 

discrete time levels. At each node of the descritizing mesh a value of cell density is assigned. 
Time is initialized and the continuous diffusion – reaction equation is formulated, discretized 
and applied on the mesh nodes. 

 

6.2.3 Numerical Procedures 

Having defined the computational grid, the goal is to calculate ( , , , )c x y z t  at each interior 

point for 0t  . In the clinical tumour growth context analytical solutions of the diffusion 

equation, although they may provide some high level insight, are not able to address the high 
spatiotemporal complexity including initial and boundary conditions of the biosystem. 
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Therefore, the problem has to be solved numerically. The finite difference method has 
proved to be a good choice in this context. 

Several different numerical approaches to solve multidimensional parabolic initial / boundary 
value problems have been proposed. The following [CO7] three indicative methods are 
widelu used 

1. The explicit method.  It uses a forward difference at time nt  and is conditionally 

stable.  

2. The implicit method.  It uses a backward difference at time  1nt  .  

3. The Crank-Nicolson method. Iit uses the central difference at time  1 /  2nt  .  

Each method has its strengths and weaknesses. The analysis of numerical methods for initial 
value problems focuses on the discretization error and on the three important properties of 
consistency, convergence and stability. 

In order to solve the tumour growth-invasion equation under consideration the Crank-
Nicolson method has been one choice and is outlined in this section. The Crank-Nicholson 
method  is the most accurate scheme for small time steps in contrast with the explicit method 
which although the easiest to implement is the least accurate and the most unstable. The 
implicit scheme works best for large time steps. Crank-Nicolson method is second order 
accurate in both time and space and unconditionally stable. Numerical stability is an 
important notion in numerical analysis. An algorithm is termed numerically stable if an error, 
whatever its cause, does not grow to become much larger during calculation [CO8].  

Possesing these two characteristics the Crank-Nicolson method is considered the method of 
choice for many diffusion problems. For the three dimenional problem under consideration 
the Crank - Nicolson scheme by omitting the net proliferation term is given by [CO9]: 

 

1 1 1 1 1 1 1 1 1 1

, , , , 1, , , , 1, , , 1, , , , 1, , , 1 , , , , 1

2 2 2
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c c c c c c
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where
t

kjic ,,  is the finite difference approximation of c at the grid point  ,  ,  i j k  at time  t . In 

order to take into account the effects of source and decay terms an approach analogous to 
the one described in [CO3,  page 874] will be implemented. 

The Crank-Nicolson method can be formulated in matrix form [CO3] for one - dimensional 
problems as following ([CO3,page 832]): 

( 1) ( 1) ( ) ( ) ( 1) ( )( ) ( ) ( )
2 2

n n n n n nt t
I A B w I A B w b b     
           

where 
2. / [2( ) ]D t     and 

   n

nb b t  contating boundary conditions.   

B  is the diagonal matrix  

           1 2 3 1 ( , , ,  , )NB diag x t x t x t x t       
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and   is the negative value of the net rate of growth of tumor cells  .   

NOTE: The minus sign has been used in order to be consistent with the more generic 
formulation of the diffusion equation as it appears in e.g. [CO3]. It is also noted that the 
source term can be expressed as the product of the net growth rate multiplied by the 
concentration of tumour cells. This implies that tumour cells themselves are the only real 
source of the entity undergoing diffusion. 

The vector  

w
               ( )

1 2 3 1 [ .   ]
n n n n n T

Nw w w w    

is the fully discrete approximation to the solution  that is  ( )  n

j j nw c t .  

Finally  

 

 

A = 

2 1

1 1

1 2

0

0

 
 
  
 

 

 

 

The Crank-Nicolson method dictates the solution of  a linear system at each time step. The 
resulting system of equations may be written equivalently in the form [CO11]: 

 

A x b  

 

To find the structure of the coefficient matrix A  the lexicographic ordering common 
numbering scheme has been used. The number appearing next to the location of each 

unknown is the lexicographic number associated with that unknown. The matrix A  that is 
produced is a block tridiagonal matrix. 

Suppose m denotes the number of nodes in the computational mesh. Then the matrix A  
mmR ,  is a sparse, symmetric and positive definite .  x mR  denotes a vector that contains 

an approximation of the solution c  at the mesh nodes at time nt t , where  

, 0nt n t t     

 

A major point is the achievement of convergence. The algorithm chosen should generate a 
sequence of approximations that converges to the desired solution as rapidly as possible. 
There are two principal ways of solving linear systems of equations [CO10]: Direct methods 
such as LU and Cholesky and iterative methods which are more efficient. In contrast to direct 
methods iterative methods are not expected to terminate in a number of steps. Starting from 
an initial guess iterative methods form successive approximations that converge to the exact 
solution only in the limit. A convergence criterion is specified in order to decide when a 
sufficiently accurate solution has (hopefully) been found. Furthermore, when using an 
iterative technique there is no need to store the coefficient matrix. The only piece of 
information  that must be known is the structure of the equations. On top of that an iterative 
solution requires fewer total operations and is insensitive to roundoff error. 

  

http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Limit
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Iterative methods that are used mainly for sparse problems can be divided into stationary 
iterative methods such as the Gauss-Seidel method and non stationary such as the 
Conjugate Gradient (CG) and other Krylov type methods. Non stationary iterative methods 
can basically be described by a generic iterative scheme. The next iteration point is the sum 
of the value of the initial point plus the correction terms of all iterations. The correctors are 
vectors implying that they posses both magnitude and direction.  

In practice numerical methods such as Jacobi (simultaneous relaxation), Gauss-Seidel 
(successive relaxation), SOR (successive overrelaxation) are not used due to their slow 
convergence which is achieved after many iterations. Instead the multigrid method and the 
Krylov subspace based methods, including the conjugate gradient method, are widely used 
for the solution of sparse linear systems.  

The conjugate gradient method, which is a popular choice for the solution of large sparse 
systems [CO4] and a fundamental method on which many others are based, belongs to a 
class of techniques that is based on the equivalence between the solution of a linear system 
and the minimization of an associated quadratic functional [CO3]: 

 

 
1

2

T TE x x A x b x c    

where A  is a matrix, b and  x  are vectors and c is a scalar constant. If A  is a symmetric 

and positive definite  E x  is minimized by the solution Ax b . 

The above mentioned technique starts with an initial guess 
(0)x  and generates the sequence 

 ( )mx  for the solution of the equation    Ax b , according to the rule 

( 1) ( ) ( )m m m

mx x d    

The vector   
 m

d  is called the search direction and the scalar m  is the step size.  

Basically, in each iteration step the new value   
 1m

x


  equals the previous value plus m  

times the directional factor 
 m

d    equal to the residual plus a fraction   of the previous 

direction factor. m   and m  are determined by the orthogonal residual condition [CO10].  

That is 

( 1) ( 1) ( )m m m

md r d    

where 
( )mr  is just the residual associated with the approximation 

( )mx . The scalar m  is 

chosen so that the search direction 
( 1)md 

 is A-conjugate to the direction 
( )md . 

 

By seeing conjugate gradients as an energy minimizing algorithm, CG iteration minimizes 

 E x  on the growing Krylov subspaces. The gradient of  
1

2

T TE x x A x b x c    is 

exactly Ax b . Every cycle of CG chooses m  to minimize  E x in the new search 

direction
( 1) ( ) ( )m m m

mx x d   . The last cycle gives the overall minimizer   
1

nx x A b   

[CO12]. 
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Figure CO2. Each new residual is orthogonal to all previous residuals and search directions and each 
new search direction is constructed (from the residual) to be A-orthogonal to all previous residuals and 

search directions. The error term is  2
e . 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure CO3. The Conjugate Gradient method. Each ellipsoidal curve has a constant  E x  

 

A pseudocode implementing the Conjugate Gradient method is the following [CO3] (Figure 
CO2, Figure CO3): 

 



CONTRACANCRUM – FP7-223979  D4.1 

 

 
64 

(0) (0)

(0) (0)

(0) (0) (0)

( )

( ) ( )

( 1) ( ) ( )

( 1) ( )

 

 0,1, 2,...

             =

             /

             

             

             

m

m m

m

m m m

m

m m

m

r A x b

d r

set δ r r

for m

set u Ad

λ δ d u

x x λ d

r r λ u

set 









 

 







 

 

( 1) ( 1) ( 1)

( 1) ( 1)

( 1) ( )

( 1) ( 1) ( )

             ,    

             /

             

Tm m m

m m

m m

m

m m m

m

δ r r

if  δ TOL OUTPUT x

α δ δ

d r α d

  

 



 







  

 

The inputs to this routine are the coefficient matrix A , the right – hand side vectorb , the 

initial vector   
 0

x , which represents the initial guess, and the convergence tolerance TOL.  

This method always produces the exact solution to an   n x n  system in at most n iterations. 

6.3 Mathematical Treatment of the Diffusion Based Simulation 
Module using the Euler (forward and backward) and the  - Method. 
Treatment of Diffusion Anisotropy  

 

6.3.1 Introduction 

This section deals with a complementary mathematical treatment of tumour growth based on 

the diffusion equation where the Euler and the    method.  Diffusion anisotropy is also 

considered. 

6.3.2 Diffusive Models  

Cancer cells divide at varying rates among different cancers. It has been observed that 
metastases in lung grow according to a simple exponential law [CO14]. This has turned out 
to be the fire-lighter for intensive research efforts regarding quantification of tumour growth. 
However, this law fails when considering infiltrative cancers such as glioma because cell 
motility has not been included in the model. On the other hand it has been a good 
approximation to the microscopic behaviour of glioma. In order to take macroscopic 
behaviour into account diffusive models have been proposed. 

The first proposer of a diffusive model for glioma growth was Murray in 1989 [CO15A]. 
Murray proposed the diffusion-reaction formalism as 
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Source Term Treatment LawDiffusion LawGBM Concentration Evolution

, ,
c

div J S c t T c t
t


  


 

 

(6.3.2.Eq.1) 

 

 

where 

c denotes tumour cell concentration, 

 J  is the diffusion flux of cells that follows Flick’s law, i.e. J D c   , where  is the 

gradient operator and D is the diffusion coefficient 

S(c,t) denotes the source term representing the GBM cell reproduction 

T(c,t) denotes the treatment representing the GBM cell loss due to treatment. This is zero 

when no treatment is applied. 

The initial state of the model,    ,0c x f x , is defined as the initial distribution of 

cancerous cells. 

This equation constitute the basis of the most of the proposed methods for glioma growth 
and invasion modeling. In 1995 Tracqui studied the evolution of cell concentration by using 
two characteristics of tumour growth i.e.  proliferation and invasion [CO16]. He proposed that 
the cells proliferate at exponential rate, thus he modified Equation (6.3.2Eq.1) to  

   

 
c

D c c
t




  


 
(6.3.2.Eq.2) 

 

where ρ denotes the proliferation rate of cells. 

One of the key issues has been to estimate parameters D and ρ. The first estimation [CO16] 

made use of two groups of glioma cells: the common ones and the resistant-to-first-

chemotherapy ones. Parameter D was first estimated to be 
2 210 /D cm day  with the 

percentage of cells resistant to chemotherapy being  8% or 
3 210 /D cm day  without 

resistant cells while ρ was estimated as 
2=10 / day 

 [CO17]. Moreover, the derived 2-D 

model had the following characteristics [CO17].  First, tumour cells could not migrate either 
outside the skull boundaries or into the ventrical region. Secondly, brain tissue was 
considered homogenous and lastly the simulated tumour was a sphere having 3cm diameter 
at the time of diagnosis and 6cm at the time of death. 

One of the next steps was to model cancer evolution after ectomy [CO16,CO18]. This was 
achieved by setting the concentration of the ectomized area equal to zero and then allowing 
the surrounding malignant cells proliferate and diffuse until the sphere reaches a diameter of 
6cm. 

It is noted that all these simulations studied high-grade gliomas due to their remarkably fast 
invasion. However, studying low-grade gliomas is important as well. Hence, Woodward 
suggested that the speed of growth in low-grade tumours should be 10% of the respective 
speed in high-grade gliomas, yielding satisfactory results [CO17].  

Subsequently, Mandonnet proposed that low-grade gliomas grow slowly but linearly [CO19]. 
This is mathematically derivable from Equation (6.3.2Eq.2) since the expanding velocity of a 
population which follows only the diffusion and growth laws of Equation (6.3.2Eq.2) is 
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2 ρD . Mandonnet et al used data of 27 patients to show that the average tumour velocity is 

2mm per year.  

Heterogeneity. Taking  heterogeneity of the brain matter into account has led to the 
refinement of the previously mentioned models. It is known that proliferation in white brain 
tissue is faster than in grey tissue [CO20]. Swanson incorporated white and gray matter 
differentiation in the diffusion coefficient D of Equation (6.3.2Eq.2). As stated above D 

represets cell motility. Thus, by modifying D cell motility can be adapted to the local 
conditions. Equation (6.3.2Eq.2) continues  to hold but D is now variable.  

  

 

   ρ
c

D x c c
t


  


 

(6.3.2Eq.3) 

 

( )D x  varies according to position with ( )D x =
gD  or wD , i.e. being constant for x  within the 

grey and the white brain matter respectively. A brain atlas (BrainWeb database [CO21] ) has 
been used in order to acquire information about the white and grey matter areas.  

Anisotropy. Jbabdi et al. proposed to also take into account brain tissue anisotropy [CO22], 
dealing with the fact that glioma cell migration is facilitated in the direction of white matter 
fibers [CO23][CO24]. This work could also be supported by the Diffusion Tensor Magnetic 
Resonance imaging (DT MRI), that gives a very good 3D reconstruction of white matter 
fibers. Jbabdi used Equation (6.3.2Eq.3) in the following form  

  

 

   ρ
c

D x c c
t


  


 

(6.3.2Eq.4 ) 

 

where  D is the diffusion tensor that describes cell diffusion i.e. a 3x3 symmetric positive 
definite matrix that models local anisotropy and can be expressed as   
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where ( )ijD x are the components of ( )D x  at position x . 1,2,3  correspond to the axes x,y,z 

respectively.  

Parameters. According to [CO25] Figure CO4 can be used as an index for estimating the 
values of the parameters D and ρ according to glioma grade the growth velocities and the 
ratio D/ρ. This log-log graph includes all parameter values estimated up to Jan. 2007 for both 

low- and high grade gliomas. Low grade gliomas (LGG) are mapped on the bottom left 
rectangle (LGG) for 2mm/yr average velocities. Respectively, high grade gliomas (HCG) are 

mapped on the large rectangle defined by D/ρ of 2 to 20
2cm  and average velocities from 

10mm/yr to 200mm/yr.  
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Figure CO4. Log-log graph of D vs ρ, for high- and low- grade gliomas 
(from [CO25] H. L. P. Harpold, E. C. Alvord, Jr., K. R. Swanson: Visualizing Beyond the Tip of the 
Iceberg: The Evolution of Mathematical Modeling of Glioma Growth and Invasion. Journal of 
Neuropathology and Experimental Neurology, 66(1):1—9, (2007))  

 

For the case of heterogenous brain matter [CO20] and for high grade gliomas a typical  
estimated value of ρ  is ρ=0.0012 /day. A typical estimated value for low grade gliomas is 

ρ=0.00012 /day. Therefore,  by assuming 5w gD D , the values of 
2 210 /wD mm day  and 

3 22 10 /gD mm day   can be used [CO22]. 

A list of typical parameter values used in duffusive glioma models is provided in Table CO1 
[CO26] 
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Table CO1.  The parameters of the diffusive model as proposed in the last 2 decades 
(from [CO26] Powathil G, Kohandel M, Oza A, and Milosevic M,  Mathematical modeling of brain 
tumors: effects of radiotherapy and chemotherapy, Phys. Med. Biol. 52, 3291—3306 (2007)) 
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7.  Modelling Clinical Tumour Growth and Response to 
Treatment: Discrete Event/Entity Based Modelling 
Approach [Code: DI] 

7.1 Workflow of the discrete event/entity based tumour dynamics 
simulator 

Although a continuum based  description of tumour growth using the diffusion equation is a 
good model for pronounced tumour invasion it does not allow for an in depth simulation of 
numerous biological mechanisms most of which have a discrete character (e.g. cell cycle 
phases, differing radiosensitivities and chemosensitivities for different cell cycle phases, 
stem, progenitor, differentiated cell categories  etc.). Since the latter is of utmost clinical 
importance, in parallel with the continuum based models discrete event/entity simulation 
models are being developed focusing primarily on tumour response to treatment. These 
models incorporate numerous biological mechanisms and their interdependences and are 
based on the top-down tumour dymamics simulation approach developed by the In Silico 
Oncology Group, ICCS, National Technical University of Athens  ( http://www.in-silico-
oncology.iccs.ntua.gr/ ).  

Pertinent clinical data from the list included in Chapter 5 will be used in order to adapt, 
optimize and validate the discrete simulator. Details regarding the types of data applicable to 
each particular tumour type (gliomas and lung cancer) are also provided in Chapter 5.  

According to the discrete event/entity based modelling approach the tumour is considered a 
spatiotemporal distribution of discrete cells (and cell death products) belonging to several 
proliferative potential categories and cell cycling phases.  The discrete simulator module will 
function as follows (Figure  DI1) 

i. The macroscopic imaging data of the patient (e.g. contrast enhanced MRI, 
CT, PET etc) are collected at baseline 

ii. The macroscopic imaging data are segmented by the clinician (delineation of 
tumour boundaries, necrotic areas etc.), interpolated, three dimensionally 
reconstructed and eventually fused if more than one modalities are used. Both 
anatomy and spatial metabolic activity are the features to be ideally provided 
by the processed imaging data.  

iii. The microscopic imaging data of the tumour (photographs of 
histopathological sections of bioptic material etc.) are provided. 

iv. The microscopic imaging data are processed in such a way that the density of 
tumour cells as well as the percentages of the populations of the various cell 
categories and cell cycling phases are estimated. Mapping of the areas from 
which the biopsies stem onto the imaging data could lead to a relatively 
refined cosideration of the tumour spatial inhomogeneities. 

http://www.in-silico-oncology.iccs.ntua.gr/
http://www.in-silico-oncology.iccs.ntua.gr/
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v. Along with information based on histopathological slides tumour cell cycling 
information (e.g. duration of cell cycle for the particular tumour) is provided 
from literature 

vi. The pre-treatment spatial distribution of imageable and non imageable tumour 
cell density is estimated based on both imaging data and literature. Non 
imageable tumour cell distribution refers primarily to gliomas where tumour 
growth exhibits markedly diffusive patterns.  

vii. A discretization mesh is superimposed upon the three dimensionally 
reconstructed tumour. In contrast with the mesh nodes that are used in the 
continuum approach the geometrical cells formed by the discretization mesh 
constitute the elementary spatial units of the problem in the discrete 
event/entity based approach. Within each geometrical cell biological cells are 
clustered together based primarily on their mitotic potential, their cell 
proliferation phase and the treatment killing effect upon them. Based on 
mitotic potential they may be stem cells (having theoretically infinite mitotic 
potential), progenitor cells (having limited mitotic potential that is defined by 
the number of mitoses that can still undergo), differentiated cells (no mitoses 
possible anymore) and dead cells.  Based on the cell proliferation phase in 
which they are found they may belong to the G1 or the S or the G2 or the 
Mitosis or the G0 or the necrosis or the apoptosis equivalence class. Based 
on the treatment killing effect they may be treatment hit or treatment non hit 
cells. A careful hierarchical positioning of the various equivalence classes is 
adopted in order to avoid ambiguities in the description of a biological cell or 
biological cell cluster.  

viii. The molecular data (e.g. status, amplification and expressions of critical 
genes, which have been shown to drastically affect the response of the 
tumour under consideration to the treatment addressed) are provided. Details 
concerning the two tumour types considered (gliomas and lung cancer) are 
provided in Chapter 5. Estimates (even semi-qualitative) of their effect on the 
cell kill ratio per cell due to the treatment considered are also provided based 
on pertinent literature [e.g. DI1]. The idea is to use the cell kill ratio value 
provided by the Food and Drug Administration (FDA) or general literature as a 
cell kill ratio reference value (e.g. for a given area under curve or radiation 
dose) and then perturb it based on the effect of the molecular and/or 
histological profile of the tumour in order to achieve higher patient 
individualization of the simulation. 

ix. The model parameters are estimated based on the previously mentioned data 
as well as literature based information. 

x. The discretization mesh is scanned every time unit and on each geometrical 
cell metabolic, cell cycling, survival following treatment and simple mechanical 
laws are applied. The outcome is an update of the spatiotemporal distribution 
of the various tumour cell categories and cell cycling phases over the entire 
tumour. 

xi. In parallel with the solution of the biological problem a mechanical refinement 
can take place based on the Fimite Element Method (Workpackage WP6). To 
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this end any mechanical data available (primarily through literature) will be 
utilized in conjunction with the imaging data. 

xii. NOTE Acceleration of the simulation code will be envisaged in order to 
significantly lower the computing time demands. Execution of the code on fast 
computing systems (eventually including clusters and/or  grid)  will also take 
place. Tumour growth simulators can estimate the evolution of tumour volume 
and the various cell category populations in function of the time (see Section 
7.2), however, the execution time of each simulation instance of e.g. the 
ACGT Oncosimulator (a precursor of the ContraCancrum integrated simulator) 
currently takes several minutes, which makes it far from an interactive tool. 
Modern graphics processing units (GPUs) provide not only a powerful 
graphics engine but also a highly parallel programmable processor featuring 
peak arithmetic and memory bandwidth that substantially outpaces its CPU 
counterpart. A state-of-the-art GPU can perform over 500 billion arithmetic 
operations per second, and this represents a tremendous computational 
resource that can now be utilised for general purpose computing as a result of 
recent advances in GPU hardware and software architecture.  By 
programming an NVIDIA GPU device with the CUDA (Compute Unified 
Device Architecture) extension of the C language, we shall design parallel 
algorithms to parallelise the whole time-consuming process of tumour 
simulation on the GPU.Tumour evolution is computed by hourly scanning in 
order to allow the local application of basic biological rules; this leads to the 
spatiotemporal simulation of the tumour system. At each iteration, we shall 
assign one thread to each GC (geometrical cell) and execute the following 3 
scanning steps via parallel GPU kernels:1)Cell growing. Each parallel 
computing thread computes all the cell cycle phase transitions and any cell 
that has died due to chemotherapy or radiotherapy within the GC.2) Cell 
transfer in the GC neighbourhood – unloading the remaining or excess cells 
into the surrounding 26 GCs of the current GC. This can be implemented on 
GPU by 27 subpasses by interleaving the 27 neighbouring GCs at each 
subpass.  This GPU implementation takes advantage of all of the GPU 
resources made available under the CUDA programming model. All the cell 
transferences between 27 local neighbouring GCs (a box) are evaluated in a 
single thread, with each thread block responsible for a row of boxes. All 
threads in a block simultaneously iterate through the neighbouring GCs in 
shared memory, computing the transfers on the boxes in their individual 
registers. Since all threads in a block access the same shared memory 
location, data are broadcast to all threads by the hardware, and no bank 
conflict penalty is incurred. 3) Differential tumour shrinkage. This frees the 
GCs that contain too few cells or creates new GCs for differential tumour 
expansion. It also deals with the restoration of tumour contiguity in cases 
where tumour fragmentation has occurred. 

xiii. A prediction of the spatiotemporal distribution of the tumour cell categories 
and the cell cycling phases for free tumour growth [no treatment] and/or  
tumour response to treatment (chemotherapy / radiotherapy) is obtained. 
Several forms of prediction visualization (graphs, 3D and 4D rendering etc.) 
are offered. 

xiv. The simulated outcome is compared with the actual (primarily) imaging data 
following treatment and an optimization loop of the parameters estimation 
[and if necessary of the model algorithm iself ] is initiated. 
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Figure DI1. Discrete event based tumour and normal tissue simulator workflow 
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7.2 A Brief Outline of the Fundamentals of Discrete Event Based 
Simulation Modelling 

Although considerable extensions and improvements of discrete event simulators will take 
place during the ContraCancrum lifetime a detailed presentation of their theoretical, 
mathematical and computational fundamentals can be found in publications [DI2-DI18]. In 
the following only a high level brief outline of the basics is presented. 

The tree dimensionally reconstructed tumour (based on the segmentation of the imaging 
data) is discretized using a cubic mesh. Discrimination between the well and poorly 
vascularized regions of the tumour - when possible - can be exploited by the model. Each 
elementary cube of the mesh is called a geometrical cell (GC) and is used as the unit for the 
description of the biological activity of an imageable tumour. Each GC of volume 1mm3 is 
assumed to contain 106 biological cells according to the classical radiobiological assumption.  
The following categories of tumour cells are considered: 

 Stem cells 
 Limited mitotic potential or progenitor cells (LIMP cells) 
 Differentiated cells 
 Dead cells 

Proliferating stem cells as well as proliferating LIMP cells are further discriminated according 
to their cell cycle phase. Dead cells are divided into necrotic and apoptotic. Within each GC, 
cells are clustered into equivalence classes based primarily on their proliferative potential 
(e.g. stem, progenitor, differentiated, dead cell categories) and on the cell cycling phases 
(e.g. G1, S, G2, Mitosis phases) in which they (temporarily) belong. Distribution of the cells 
into the various equivalence classes is dictated by the metabolic activity of their 
neighbourhood as estimated from the imaging data. In order to simulate the statistical 
character of reality local perturbations of the populations of each equivalence class are 
achieved through the use of pseudo-random numbers (generic Monte Carlo technique). 

The discretization mesh is scanned every time unit (e.g. hour) and the fundamental rules of 
metabolism, cell cycling (Figure DI2), mechanics and cell survival following treatment 
(chemotherapy and/or radiotherapy) are applied. This may lead to cell category and cell 
phase transitions. Cell kill probabilities per cell, per treatment session and for a given 
treatment dose are calculated based on pharmacokinetics-pharmacodynamics and/or 
radiobiology principles and data.  

In order to effectively simulate tumour expansion or shrinkage a provisionally acceptable 
upper limit (NBCupper) and a provisionally acceptable lower limit (NBClower) of the number of 
cells that can be contained within each GC are defined. If the number of tumour cells within a 
given GC becomes less than NBClower during the simulation process, a procedure that 
attempts to “unload” the remaining cells in the neighbouring GCs is initiated. If the given GC 
becomes empty it “attracts” cells from its neighbourhood so that no artificial voids are created 
within the tumour (“horror vacui”). An appropriate shift of a chain of GCs intended to fill in the 
“vacuum” leads to tumour shrinkage. Similarly differential tumour expansion is achieved by 
an appropriate shift of a chain of GCs towards the boundaries of the tumour. In order to 
further refine the mechanical handling of the tumour, fusion of the simulator with the 
biomechanics module being developed within the framework of WP6 has been planned.  

By also taking into account a number of restrictions and many other details the simulator 
provides at each simulated time point a spatial prediction of the tumour volume (Figure DI3) 
along with the spatial distribution of its cells over proliferative potential categories, cell cycling 
phases (e.g. G1, S, G2, Mitosis phases) etc.  
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The simulator predictions are visualized using several techniques (standard graphs, 2D, 3D, 
4D animations, virtual cuts through the tumour etc.) . Based on pertinent clinical criteria the 
predicted outcome of the treatment is juged as favourable or unfavourable for the individual 
patient.  

The cellular and higher biocomplexity levels simulator will serve as the basis for the 
development of the integrated ContraCancrum simulator which is envisaged to finally serve 
as a patient individualized  treatment optimization support system.  

 

 

 

 
 
 
 

Figure DI2. A generic cytokinetic model for free tumour growth. STEM: stem cells. LIMP: Limited 
proliferative potential cells (progenitor cells). DIFF: terminally differentiated cells. An extension of the 
diagram includes also the effect of treatment on the cell [DI17,DI18] 
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Figure DI3 : A typical 3D tumour visualization of the response of an actual large clinical tumour 
treated with chemotherapy (from the ACGT project). Upper panel: tumour four days before treatment 
initiation, lower panel: predicted tumour three days after completion of the treatment course.  
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8.  Modelling Normal Tissue Response  to Treatment 
[Code: NO] 

The limitations imposed by the adverse effects of treatment (chemotherpy / radiotherapy) on 
normal tissues will be addressed by either or both of the following approaches (Figure NO1) : 

8.1 First Approach  

Based on toxicological (preclinical and clinical) data, upper clinically acceptable limits for the 
treatment dose are available for a number of treatment modalities. In case that a candidate 
treatment scheme leads to unacceptable side effects based on the above limits no 
consideration for actual treatment [i.e. candidate scheme simulation] based on this scheme is 
allowed. 

8.2 Second Approach  

Simple simulation models based on cell cycling and homeostasis for flexible (e.g. brain) 
[NO1] and/or hierarchical (e.g. blood) normal tissues are developed. The outcome of the 
simulation of the response of normal tissues to the candidate tumour treatment is visualized 
through several techniques. The prediction in conjunction with any limits based on 
toxicological studies may be used in order to allow or not further consideration of the 
treatment scheme. The simulation outcome is compared with any known actual side effects, 
thus  leading to the optimization of the normal tissue simulation module.  

Details regarding the complication data to be provided by the clinical partners in order to 
adapt, optimize and validate the models are included in Chapter 5. 
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Figure NO1. Two alternatives to take into account the response of normal tissues to treatment 
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9. Conclusions [Code: CC] 

A high level outline of the various simulation modules that constitute the cell and higher 
biocomplexity level tumour dynamics simulator of the ContraCancrum project has been 
provided. An introduction to the emerging field of in silico oncology in conjunction with a brief 
literature review have preceded the basics of the models. The latter refer to several 
fundamental microscopic mechanisms of tumour growth and response to treatment 
(including i.a. prevascular tumour growth, prevascular tumour response to treatment i.e. 
chemotherapy and/or radiotherapy, angiogenesis, invasion, metastasis etc.) as well as to the 
dynamics (growth and treatment response) of (imageable) clinical tumours. In order to 
address large tumours two mutually complementary approaches have been adopted. The 
first one is based on a continuum treatment of the tumour via the diffusion equation whereas 
the second one is based on discrete event/entity simulation techniques that make use of 
cellular automata, the Monte Carlo method, cell clustering into equivalence classes as well 
as numerous dedicated algorithms. In this way both diffusion phenomena and complex 
multiscale biological mechanisms of a predominantly discrete character have been 
addressed. Alternative ways to consider the treatment side effects have been delineated. 
Since gliomas  and lung cancer constitute the ContraCancrum modeling paradigms, a 
description of the multiscale data to be provided by the clinical partners in order to drive, 
adapt, optimize and validate the imageable tumour models has also been presented.. 
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ANNEX A 

Numerical Solution of the Diffusion Equation in Three 
Dimensional Heterogenous and Anisotropic Brain 

I. 3D expansion 

The diffusion equation  
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is expanded in 3 dimensions so that it can be solved numerically 
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Direct substitution into the diffusion equation yields after some straightforward algebraic 
manipulations 
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(A1) 

 

 

II. Finite Differences.  

A detailed procedure on how to derive a linear system that expresses the diffusion – reaction 
equation is presented. The forward Euler method is studied first, then the backward Euler 

method and last the  - method.  The Crank-Nicolson method is a subcase of the θ-method 

approach. 

III. Forward Euler 

The Forward Euler method is applied in order to approximate the local derivatives in (A1).   

If   , ,, , , n

i j kc n T i X j Y k Z C     , 0,..., 1, 0,..., 1, 0,..., 1X Y Zi N y N k N      then the 

partial derivatives of (A1) at the point  , ,i X j Y k Z   can be approximated as

   



CONTRACANCRUM – FP7-223979  D4.1 

 

 
84 

1

, , , ,

1, , 1, ,

, 1, , 1,

, , 1 , , 1

2
1, , , , 1, ,

2 2

2
, 1, , , , 1,

2 2

2
, , 1

2

2

2

2

2

2

2

n n

i j k i j k

n n

i j k i j k

n n

i j k i j k

n n

i j k i j k

n n n

i j k i j k i j k

n n n

i j k i j k i j k

n

i j k

C Cc

t T

C Cc

x X

C Cc

y Y

C Cc

z Z

C C Cc

x X

C C Cc

y Y

C Cc

z



 

 

 

 

 






 




 




 




 

 


 

 


 






, , , , 1

2

2 2
1, 1, 1, 1, 1, 1, 1, 1,

2 2
1, , 1 1, , 1 1, , 1 1, , 1

4

4

n n

i j k i j k

n n n n

i j k i j k i j k i j k

n n n n

i j k i j k i j k i j k

C

Z

C C C Cc c

x y y x X Y

C C C Cc c

x z z x X Z



       

       





   
 

     

   
 

     
 

 
 
 
 
 
 
 
 

 
(A2) 
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Substituting the (A2) approximations into leads to the following expression  
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(A3) 

Introducing for each point P(i,j,k)  the constants below 
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(A5) 

Using the vector form of 
, ,

n

i j kC  

0,0,0 0,0,1 0,0, 1 0,1,0 0, 2, 1 0, 1,0 0, 1, 1 1,0,0 1, 1, 1... ... ... ...
Z Y Z Y Y Z X Y Z

X Y Z

T

m m m m m m m m m m

N N N N N N N N N

N N N

C C C C C C C C C C        

 
 
 
   

 

(A6) 

the overall solution of the equation at the time point n+1 can be found by solving 

                                                             

1n n
nC C

AC
T

 


  

where A  is a X Y Z X Y Z
N N N N N N matrix with its elements defined as 
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      (A7) 

 

 

This is a 
X Y Z X Y Z

N N N N N N sparse matrix with 19 diagonals, as shown in Figure A1. In Figure 

A.1 the light areas correspond to zero values whereas the black lines correspond to the non-
zero diagonals. Note that the thicker lines represent  3 consecutive diagonals while the thin 
ones represent isolated diagonals. 

 

 

Figure A1. The sparse matrix A 

Matrix A is tridiagonal with fringes. It posseses one central and four additional tridiagonal 

areas as well as four single diagonal areas. Having acquired the A   matrix a direct solution 
can be found simply by calculating 
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 1n nC I T A C  +      (A8) 

 

This is a very easy to implement solution since there is no need to solve a linear system of 
equations but just to perform direct substitution. However, numerical stability is the main 
issue. As proven in [CO15] the method is stable and thus provides reliable results if 

 

       , ,
11 22 33

2 2 2

1 1
min

, , , , , ,2x y z
T

D x y z D x y z D x y z

X Y Z

 
 

   
   
    

 

 

(A9) 

 

IV. Backward Euler  

Now the Backward Euler method is addressed. The approximate expressions for the local 
derivatives (Equation A1) at the internal points of the mesh are given below. A solution 
achieved using the Backward Euler is preferrable to its Forward Euler counterpart since there 
are no constraints regarding numerical stability. According to the Backward Euler method the 
local derivatives can be approximated as  
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In a way similar to the one followed by the Forward Euler method the following equation is 
derived  

1
1

n n
nC C

AC
T





  

 
where A is exactly the same sparse matrix that was  derived using the Forward Euler 

method. Therefore, finding a solution to the equation 

1
1

n n
nC C

AC
T







 is equivalent to 

finding a solution to the linear system 
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  1n nI T A C C   

(A10) 

 

where I is the X Y Z X Y Z
N N N N N N  identity matrix. One of the methods that can be used to 

solve this linear system is the Conjugate Gradient Method (see Section 6.2.3) 

Stability and accuracy are the main advantages of the Backward Euler method (in relation to 
the Forward Euler method) at the expense of increased computational and storage demands. 
 

V. The θ-method  
 

The  -method when applied to approximate the local derivatives leads to the equation 

 
1

1 1
n n

n nC C
AC AC

T
 




  


 

or equivalently  

    1 1n nI T A C T A I C        

where A  is exactly the same sparse matrix as the one derived by the Forward Euler 

method. As stated  in [CO22]   is optimally chosen if 
1

1Te






. Moreover, selection of 

θ=1/2  produces the Crank-Nicolson method. Here again an iterative numerical method to 
solve the linear system (A11) is to be applied. 

                                         
 

    1 1n nI T A C T A I C        
(A11) 

 

Both  the  - and the  Crank Nicolson methods are stable and more accurate than the 

Backward Euler [CO22] but their computational and storage requirements are higher. 
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List of Abbreviations 

 

ACGT Advancing ClinicoGenomic Trials on Cancer  

AUC Area Under Curve 

BED University of Bedfordshire 

CG Conjugate Gradient 

CT Computerized Tomography 

DBC Digital Biological Cell 

EC European Commission 

EC Endothelial Cell 

ECM Extracellular Matrix  

FN Fibronectin 

FORTH-ICS Foundation for Research and Technology – Hellas, Institute of 
Computer Science 

GC Geometrical Cell 

GBM Glioblastoma Multiforme 

HGG High Grade Glioma 

ICCS-NTUA Institute of Communication and Computer Systems – National 
Technical University of Athens  

LGG Low Grade Glioma 

MCS Monte Carlo Steps 
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MDE Matrix Degrading Enzyme 

MFF CUNI Charles University in Prague Faculty of Mathematics and Physics 

MRI Magnetic Resonance Imaging 

ODE Ordinary Differential Equation 

PDE Partial Differential Equation 

PFL-H Philips Technologie GmbH Forschungslaboratorien 

TAF Tumour Angiogenesis Factor 

UBERN Universität Bern 

USAAR Universität des Saarlandes 

WP Workpackage 

 

 

 

 


