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Publishable Executive Summary

The present document contains high level technical descriptions of the cellular and tissue models of tumour growth and response to treatment that will constitute the ContraCancrum cellular and tissue simulation module. Diagrams depicting information flows enhance and clarify the descriptions. The document begins with an introduction to multiscale cancer modelling and the emerging field of in silico oncology focusing on the techniques adopted by the ContraCancrum project. A brief literature review precedes the main technical part of the document. The latter consists of descriptions of models at several spatiotemporal scales. Two cancer types are addressed by the ContraCancrum project: gliomas and lung cancer. Specific agent based models of microscopic mechanisms of tumour growth and response to treatment including i.a. prevascular tumour growth, prevascular tumour response to treatment (chemotherapy, radiotherapy), angiogenesis, invasion and metastasis are delineated. Their main purpose within the project is to enhance our understanding of tumour dynamics related phenomena on the microscopic level so that refinement of the imageable tumour modeling approach could be achieved. Subsequently, the focus is moved onto large (imageable) clinical tumours. Before the modelling part itself a description of the multiscale medical data to be used for the driving, adaptation, optimization and validation of the models is provided. Modelling of such tumours is achieved via two major approaches: a continuum based modelling approach exploiting primarily diffusion theory and a discrete entity/event modelling approach exploiting the potential of cellular automata, the Monte Carlo method, cell clustering into equivalence classes as well as numerous dedicated algorithms. In this way both diffusion phenomena (e.g. tumour invasion) and complex multiscale biological mechanisms of a predominantly discrete character (e.g. symmetric and asymmetric stem cell division) are addressed. High level descriptions of the corresponding simulation strategies along with particuliarities and limitations are provided. A brief description of alternative ways to consider the reponse of normal tissues to treatment is also presented. 
1. Introduction [Code: IN]

Understanding and effectively modeling the dynamics of cancer and treatment affected normal tissues at all biocomplexity levels by using any efficient combination of mathematical and computer modeling approaches (discrete, continuous, deterministic, stochastic, analytical, numerical etc.) is a fundamental research challenge in oncology. Obviously this target presupposes success in understanding and modeling numerous critical mechanisms involved in cancer and affected normal tissue development and treatment response, as well as the subsequent integration of all those modeling modules. As the demands of such an endeavour are especially high, a parallelism with the history of Newtonian physics might serve as a source of guidance and inspiration [IN1]. 

It has been suggested that cancer epitomizes the entire biology. In this context a title like: "Philosophiae Naturalis Principia Mathematica: Pars II, Materia Vivens" (Mathematical Principles of Natural Philosophy: Part II, Living Matter) might to some extent describe the collaborative and heavily multidisciplinary efforts on a worldwide scale to apply the analytical way of thinking on the description of natural phenomena (mechanisms) involving living matter and especially on those related to cancer. Obviously stochasticity is one of the key players in such an approach. A thorough, quantitative, rigorously clinically validated and exploitable understanding of such multi-scale phenomena is expected to dramatically accelerate the achievement of cancer cure on a patient individualized basis through treatment optimization in silico (on the computer). In this context the term In Silico Oncology has been proposed to denote a new scientific, technological and clinical discipline aiming at both understanding the multiscale cancer and related biological phenomena and optimize treatment in the patient individualized context [IN1].

Within this context the ContraCancrum project aims at advancing In Silico Oncology by developing and clinically testing clinically driven multiscale models of tumour growth and response to various treatment modalities. Two cancer types are adddressed: gliomas and lung cancer. The practical goal of this approach is to provide a clinically trustable support system for the optimization of patient individualized cancer treatment [IN2]. 

Since a central feature of the ContraCancrum project is the development of an integrated multilevel tumour dynamics simulator, being the main goal of workpackage WP8, a brief delineation of the latter is provided below. This may help in acquiring a broad picture of the entire ContraCancrum project since workpackage WP4 to which this deliverable belongs will also serve as the basis for the integration of several modeling modules into the ContraCancrum Integrated Simulator. The latter will be used for the execution of the simulation tasks as submitted by the end users. Logical and technical validation of the composite simulator (integrator) will be performed before the clinical testing, optimization and validation and will take place in tight interaction with workpackage WP9. It is noted that there will be a strong interaction of WP8 with all the other simulation workpackages throughout most of the project’s lifetime in order to optimally orchestrate and harmonize the development of all modules to be finally combined or fused.

The ContraCancrum integrated simulation system will function briefly as follows. Provided that the system has been validated (retrospectively and prospectively) for a specific tumour type, the imaging, histopathological, molecular and clinical data of any given patient following pertinent preprocessing are introduced into the “MULTI-LEVEL CANCER SIMULATOR FOR TUMOUR AND NORMAL TISSUE RESPONSE SIMULATION” module. This module executes the simulation code for a defined candidate treatment scheme (Figure IN1). The prediction is judged by the clinician and if a decision is made to test a further scheme in silico this is done in an analogous way. Alternatively a large number of candidate schemes can be executed concurrently on a cluster or grid platform. Finally the clinician decides on the optimal treatment scheme to be administered to the patient based on his or her formal medical education and knowledge and the predictions of the ContraCancrum integrated simulator. Subsequently comparison of the predictions with the real outcome provides a feedback signal to be exploited for the optimization of the ContraCancrum integrated simulator. The most fundamental processes to be implemented by the ContraCancrum are the following:  Processed molecular data is used in order to perturb the radiobiological or pharmacodynamic cell-kill parameters about their population-based mean values. At the heart of the simulation approach lies a prototype system of quantizing cell clusters included within each geometrical cell of a discretizing mesh, covering the anatomic area of interest. Cell-cycle phase durations and imaging-based metabolism distribution define the quantization equivalence classes considered. Several algorithms will be developed so as to simulate various macroscopic mechanisms such as tumour expansion or shrinkage and mechanics, as well as the effects of particular drugs and radiation on the tumorous and normal tissue under consideration.

[image: image290.jpg]
Figure IN1. A generic functional outline of the ContraCancrum integrated simulator
Figure IN2 outlines  an example of the “summarize and jump” strategy aiming at a pragmatic biocomplexity “level jumping” and integration. The latter plays a fundamental role in the development of a multiscale simulator. This approach serves as the core philosophy for the multilevel integration of biological data and mechanisms involved in cancer modelling within the framework of ContraCancrum.

[image: image291.png]
Figure IN2. An example of the “summarize and jump” strategy as applied to the case of tumour response to teatment modlling in the clinical setting. Only three (clusters of) levels are depicted  for simplification purposes.
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1. Objectives of the Deliverable [Code: OB]

The objectives of the deliverable are the following

1. To provide a brief literature review of models of tumour growth and response to treatment with emphasis on gliomas and lung cancer as well as to provide the goals of workpackage WP4.

2. To outline agent based models of microscopic mechanisms of tumour growth and response to treatment including i.a. prevascular tumour growth, prevascular tumour response to treatment (chemotherapy / radiotherapy), angiogenesis, invasion and metastasis. Their main purpose within the project is to enhance understanding of the tumour dynamics related phenomena in the microscopic level so that refinement of the imageable tumour modeling approach can be achieved.

3. To list the multiscale medical data to be used for the adaptation, optimization and validation of the imageable tumour dynamics models.

4. To provide a high level description of the continuum (diffusion) based models of imageable tumour growth and response to treatment (chemotherapeutic, radiotherapeutic).

5. To provide a high level description of the discrete entity/event based models of imageable tumour growth and response to treatment (chemotherapeutic, radiotherapeutic).

6. To provide a brief description of alternative ways to consider the reponse of normal tissues to treatment.

3. A Brief Overall Literature Review and Workpackage WP4 Tasks [Code: LI]
3.1 Literature Review 

Over the past decades considerable progress has been made regarding the development of mathematical and computational models simulating various aspects of cancer behaviour. The majority of the models adopt the “bottom-up” approach i.e. they address biocomplexity by starting from its lower levels (molecular or cellular) and subsequently they try to reach higher and higher levels. Such models refer primarily to the in vitro development of tumour spheroids or the non imageable preangiogenetic and further development of tumourlets within the organism by focusing on several mechanisms or combinations of mechanisms [LI1-LI6]. Angiogenesis has been addressed by several investigators [LI7-LI9]. Invasion has also been the subject of a number of theoretical investigations primarily addressing glioma cell diffusion [LI10,LI11,LI13,L14]]. Concerning the modeling of imageable large in vivo tumours most models tend to focus on the growth aspect by trying to predict the shape of the tumour as a function of time [LI13-LI14]. Nevertheless, a synoptic consideration of treatment response also been included in some of them. Certain models have been developed in order to simulate the response of numbers of non mutually interacting tumour cells or small non imageable tumourlets to therapeutic interventions [LI15-LI31] In the clinical context such models are potentially useful in order to provide a rough estimate of the relative effectiveness of various candidate treatments on non imageable tumourlets. This is the case when only some population based statistical knowledge is available concerning the invasiveness and/or diffusiveness of a specific tumour type instead of exact imaging data (i.e. non imageable glioblastoma micrometastases).  

From the clinical point of view, however, it is usually the prediction of the response of an already grown clinical tumour to candidate therapeutic schemes (chemotherapeutic, radiotherapeutic, combined etc.) that is of primary importance.  This is also the context  where tumour models can in principle be validated in a quantitative manner (based on multiscale medical data). Theefore, clinical validation is best achieved within the clinical environment and preferrably in conjunction with clinical trials. Within this framework the In Silico Oncology Group, Institute of Communication and Computer Systems, National Technical University of Athens [LI50] has developed the “top-down” discrete event/entity treatment simulation approach which starts from the macroscopic imaging data of the patient and subsequently integrates information stemming from lower and lower biocomplexity levels (histological, molecular etc. ). In collaboration with experimentalists, radiobiologists and clinicians it has produced a number of treatment simulation models addressing  both tumour and treatment affected normal tissue behaviour that are based on the individual data of the patient [LI29- LI49]. 

[image: image292.png]
Figure LI1. Irradiation response simulation of an imageable glioblastoma tumour according to the standard fractionation scheme (2 Gy once a day, 5 days per week, 60 Gy in total). Left panel: 3-D sections of the tumor shown in the right panel. Top row: before the beginning of irradiation. Second row: one fictitious day after the beginning of irradiation. Third row: two fictitious days after the beginning of irradiation. Bottom row: three fictitious days after the beginning of irradiation. Color code red: proliferating cell layer; green: dormant cell layer (G ); blue: dead cell layer. The colouring criterion “99.8%” used to visualize the predictions has been defined as follows. “For a geometrical cell of the discretizing mesh, if the percentage of dead cells is lower than 99.8% then f if percentage of proliferating cells > percentage of G cells, then paint the geometrical cell red (proliferating cell layer), else paint the geometrical cell green (G cell layer)g else paint the geometrical cell blue (dead cell layer).” The values of certain parameters (e.g., cell loss) have been deliberately exaggerated in order to facilitate the demonstration of the ability of the model to simulate the shrinkage effect. Adapted from [G.S.Stamatakos, D.D.Dionysiou, E.I.Zacharaki, N.A.Mouravliansky, K.Nikita, N.Uzunoglu, “In silico radiation oncology: combining novel simulation algorithms with current visualization techniques”, Proceedings of the IEEE, vol. 90, No 11, pp.1764-1777, Nov. 2002.]
Figure LI1 shows a typical three-dimensional rendering of these models’ predictions. An initial clinical trial based retrospective validation of some models has already been achieved [LI35,LI45] whereas within the EC funded ACGT project new in silico oncology “top-down” models have been developed and tested by exploiting actual running clinicogenomic trials [LI46-LI49]. The primary target of this approach is to provide the clinician or the researcher with a system of simulators in order to perform in silico experiments regarding the likely outcome of several candidate therapeutic schemes/schedules for any given individual patient. The experiments refer to both tumour behaviour and to a lesser degree of detail to normal tissue treatment response. The simulators will act as dynamic integrators of the multilevel data and mechanisms corresponding to the spatiotemporal natural phenomenon of cancer as is manifest in the individual patient. Subsequently, following a rigorous clinical optimization and validation, the clinician is expected to be able to decide on the optimal treatment scheme and/or schedule to be administered to the particular patient based on the predictions of the simulators and his or her own formal medical education, experience and logic.

3.2 Tasks of workpackage WP4 

The cell and higer biocomplexity level simulators of the project will be primarily based on the “top-down” simulation approach described above which will be applied for the first time to the simulation of treatment response of lung cancer. The same approach will also be considerably refined and adapted for the case of gliomas. Special emphasis will be put on stem and limited mitotic potential tumour cells. In this way multilevel information will be being extracted and used in a realistic level of detail by always taking into account that the whole endeavour is to be confined within the clinical setting. However, the “bottom-up”approach will also be adopted in simulating non-imageable tumour growth, especially the process of glioblastoma local invasion. It is noted that in parallel with the tumour response models, rather simple experimentally and clinically based toxicology models potentially in combination with discrete simulation of the replenishment of normal tissue stem, transit and differentiated cells will provide safety limits beyond which any candidate treatment scheme would be clinically unacceptable regardless of its tumour control predicted outcome. The multilevel clinical testing, optimization and validation processes to be performed mainly within the framework of workpackages WP8 and WP9 will constitute per se another novelty of the project in the context of gliomas and lung cancer.

3.3 Mathematical Notation Convention

The following mathematical notation convention has been adopted throughout the document unless otherwise stated or clearly  implied: 

A bare letter denotes a scalar quantity (e.g. “c” stands for tumour cell concentration)

A letter with a right arrow on top of it denotes a vector quantity (e.g.  “
[image: image2.wmf]J

r

” stands for the diffusion flux of tumour cells)

A letter with a left-right arrow on top of it denotes a tensor or matrix (e.g. “
[image: image3.wmf]D

t

” stands for the tumour cell diffusion tensor)
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4. Modelling Basic Mechanisms of Microscopic Tumour Growth and Response to Treatment [Code: MI]

This chapter begins with a specialized literature review of models pertaining to microscopic mechanisms of tumour growth and response to treatment including i.a. prevascular tumour growth, non imageable tumour response to treatment (chemotherapy / radiotherapy), angiogenesis, invasion and metastasis. Subsequently an agent based unified approach to treat these mechanisms is delineated. The main purpose of the development of these microscopic models within the ContraCancrum framework is to enhance our understanding of the tumour dynamics related phenomena on the microscopic level so that refinement of the imageable tumour models (Chapters 6 and 7) can be achieved. Figure MI1 depicts the basic branches of the microscopic model.
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Figure MI1. The basic branches of the microscopic model
4.1 A Brief Overview

[image: image294.png]
Figure MI2 The microscopic tumour growth scene

The mathematical models of tumour growth and tumour induced interactions with other cells (Figure MI2) fall into four major categories:

i. Continuum models that treat cell density and chemical species like continuous variables that evolve according to the reaction-diffusion system

ii. Discrete, cell-based models in which cells are treated as units and where the cells move, grow and divide according to the prescribed rules

iii. Hybrid or multilevel/multiscale models that uses discrete models at certain levels of complexity, and continuous models at another levels of complexity and integrate solutions together

iv. Agent based models where every entity is an “intelligent” agent with some prescribed (not necessarily same) rules and where these entities interact with each other

v. Discrete event/entity models in which cells are clustered into dynamic equivalence classes, each one characterized by its own fate and rules of interaction with the other classes. This is an efficient approach to simulate the response of large imageable tumours to treatment  in a discrete way and therefore to retain the potential of a detailed multiscale biological simulation able to address i.a. different cell categories (stem, progenitor, differentiated, dead cells), different  cell cycle phases, different cell phase dependent treatment sensitivities etc. Chapter 7 deals with this approach.

All basic features of cancer biology demonstrate that tumour growth is a multiscale natural phenomenon. The complexity of cancer progression manifests itself at least in the following three scales that can be readily distinguished and described by mathematical models: molecular/sub-cellular, cellular and tissue scale. More specifically 

· The molecular and sub-cellular scale refers to phenomena that take place within the cell or at its plasma membrane. Examples of such phenomena include gene mutations or changes in gene expression patterns, alterations of signaling cascades and/or metabolic pathways, cytoskeleton rearrangement and altered membrane activity, progression through and control of the cell cycle, etc.  

· The cellular scale refers to cellular interactions between tumour and host cells such as endothelial cells, macrophages, lymphocytes, and even the local components of the extracellular matrix (ECM). This pathological communication between tumour and stroma is mediated through the synthesis and secretion of stimulatory growth factors and cytokines by neoplastic and host cells [MI49]. In addition, this level includes cellcell and cellmatrix adhesion mechanisms that determine cell aggregation properties, remodeling of the adjacent ECM that seems to be a necessary step in the microinvasion of cancer cells, etc. 

· The tissue scale is concerned with processes occurring at the tissue level such as cell migration, convection and diffusion of nutrients and chemical factors, mechanical stress, rupture of capsules or basement membranes and invasion of nearby tissues, etc. 

Several combinations of these scales have been addressed by cancer modellers. Some examples related to ContraCancrum can be found in [MI64, MI215-MI233].
4.1.1 Avascular tumour growth

Mathematical models of avascular tumour growth are usually based on the biological model of multicellular tumour spheroids [MI215], [MI14],[MI16]. Spheroids are aggregates of tumour cells that can be grown in precisely externaly controlled nutrient conditions. The spheroids nutrient supply is provided through diffusion from their surface. Spheroids develop many features identical with characteristics of avascular tumours such as altered metabolism, proliferation arrest, necrotic death and therapy resistance. Data from experiments with multicellular tumour spheroids can be used to determine model parameters and to validate simulation results.

Models of avascular tumour growth take into account many processes such as cell proliferation and growth, nutrient consumption and diffusion, waste material production and diffusion, effects of growth promoting and inhibitory factors, intracellular adhesion, cell-environment interactions as well as the geometry of the tumour and the individual cells.

Continuum models describe cells and chemicals density using continuous variables according to a reaction-diffusion system [MI1]. Several possible growth laws including exponential, Gompertz and logistic growth have been utilized. Some models take also into account the interaction of the tumour with immune cells [MI2]. The interaction between immune and tumour cells can be described in a predator-prey way where the role of the predator is played by immune cells whereas the role of the prey by tumour cells.

Discrete, hybrid and agent based models take the cell cycle state into account. Cells behave differently depending on the cell cycle state in which they are found. It is also important to efficiently describe tumour growth and its interaction with the local microenvironment.

On the cellular level certain hybrid models make use of discrete lattice/graphs with some deterministic [19] or stochastic rules regarding cell growth, proliferation, death and/or intercellular adhesion (e.g. some Monte Carlo models, the  extended large-Q Potts model etc.). On the subcellular level a simplified expression regulatory network (Boolean protein expression regulatory network [MI16]) may control the cell cycle state [MI19].  On the tissue level a system of differential equations usually describes the diffusion, consumption and production of nutrients, metabolites, growth promoters and inhibitors [MI16], [MI19].

4.1.2 Tumour induced angiogenesis

A typical continuum model consists of a balance number of endothelial cells (EC) which is coupled nonlinearly with a set of mass balances describing selected factors in the EC environment [MI18]. The models assume that endothelial cells migrate through random motility, chemotaxis (i.e. a directed migratory response of cells to soluble, diffusible growth factors) in response to tumour angiogenic factors released by the tumour, and haptotaxis (i.e. a directed migration response of cells to insoluble, nondiffusible molecules) in response to fibronectin gradients in an extracellular matrix [MI8].

Blood rheological properties (viscosity, hematocrit, etc.) and microvascular network remodeling represent  interrelated issues as blood flow creates stress on the vascular wall (shear stress) that leads to an adaptation of the vascular diameter via vasodilatation or constriction. This in turn leads to adaptation and relaxation of the microvascular network architecture. The flow of blood, a non-Newtonian fluid, can be approximated by a Poiseuille-like expression. This leads to a dynamic adaptive tumour induced angiogenesis [MI9].

On the tissue level certain hybrid models of angiogenesis (e.g. [MI17]) describe the diffusion, uptake and decay of the tumour-secreted pro-angiogenic factor by means of differential equations. On the cellular level the cellular Potts model which is based on the system-energy reduction has been used in order to describe endothelial cell migration, growth, division, and cellular adhesion.

4.1.3 Response to Treatment

Models of tumour response to treatment take into account several  factors and treatment modalities (e.g. chemotherapy, irradiation). Immune response may also play some role in the treatment outcome [MI1], [MI2]. One  way to model tumour response to  chemotherapy is by adding a specific drug killing function [MI217],[MI221], [MI2], [MI12] for each type of cells and by changing the cell cycle state to necrosis or apoptosis depending on the current cell cycle state and its treatment sensitivity. Other supporting drugs such as anti-angiogenic drugs [MI12] can also be taken into account as inhibitory factors. 

Irradiation can be modeled by a linear quadratic model [MI20] or extended by a multiscale model that takes into account the key regulation signals (e.g. hypoxia) influencing tumour growth by a Boolean genetic network ([MI3]) or by discrete models of cell cycle [MI216], [MI218], [MI219], [MI3], [MI15] that lead to apoptosis/necrosis depending on the previous cycle state. A crucial phenomenon in understanding tumour response to treatment is that drug and nutrients delivery/diffusion is non homogeneous throughout the tumour. Besides there is a clear dependence of radiosensitivity and chemosensitivity on the cell cycle phase [MI216-MI221], [MI223-MI229], [MI5], [MI13], [MI4], [MI6], [MI7], [MI10], [MI11].

Several methods have been used in order to model drug delivery and drug-tumour interactions such as ordinary differential equations, stochastic differential equations, S-system formalism, power law equations, partial differential equations, molecular dynamics, variants of the Petri nets, discrete cellular automata, agent based methods, Pi Calculus, discrete event/entity formalism etc.  [MI21], MI6], [MI217],[MI221].

4.2 Prevascular Tumour Growth Models

In general, there are two main approaches to model avascular tumour growth. The first one is usually termed continuous since it is based on modelling physical and chemical processes through partial differential equations. The second one is usually termed discrete and focuses on modelling the behaviour of single cells and their mutual communication. The mathematical apparatus for the latter is usually based on the cellular automata theory. Multiscale approaches are also possible. In a multiscale approach, each level is described in terms of distinct models and all of them are coupled in a single model, [MI215], [MI70-MI72]. 

 In mathematical terms, the tumour and its host environment can be described by a macroscopic state vector 
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 whose components can include cell population densities, concentrations of the nutrients and chemical factors, mechanical quantities, such as pressure, describing the response of the tissue to external forces. Cell populations are characterized by the internal functional state of each of their cells specified by a discrete or continuous variable. 

In the following a short presentation of the main ideas applied on most approaches will be made and subsequently the approaches to be adopted for the development of the microscopic models of the ContraCancrum project will be commented on.

All computations involved in the continuous approach make use of statistical data i.e.  they deal with average densities of both cell numbers and chemical concentrations in the environment. Basically these processes are focused on three different areas: reaction kinetics, diffusion of chemicals and convection. Each area is described by a set of suitable equations. Quite extensive research has also been taking place in the field of the mechanical aspects of the interaction between tumour cells and their surrounding cells.

A usual assumption is that diffusion in conjunction with nutrient consumption limits tumour growth. This approach was firstly proposed by Burton [MI149]. There has been published a wide range of papers using similar approaches [MI147],[MI148-MI205]. The following excerpt from [MI24] outlines this fundamental basis of most models dealing with tumour nutrition: 

“Tumour cells consume nutrients. Nutrients diffuse into the tumour tissue from the surrounding tissue. Therefore, if the tumour is very large, the nutrients cannot reach all parts of the tumour tissue. This leads to a decrease in tumour cell proliferation and eventual cell death in regions lacking nutrients. The steady size of the tumour spheroid is reached when the cell proliferation in regions rich in nutrients balances cell death in regions poor in nutrients.”

A way to formulate the above mentioned statement in the language of partial differential equations is given below by summariazing the paper by Casciari, Sotirchos and Sutherland [MI148].  In this context the tumour is assumed to be a spheroid and therefore all calculations have been done within this framework. 

On the molecular/sub-cellular level interacting molecules within sub-cellular compartments (e.g. nucleus, cytosol and plasma membrane) are usually modelled through stoichiometric and reaction kinetics approaches. 

In the continuous approach ordinary differential equations (ODEs) are derived on the basis of kinetic principles. This can be applied on reactions involving molecular interactions and flows between adjacent subcompartments or extracellular microenvironment.

Subcellular models can supply parameters to the cellular  and tissue models.  Synthesized molecules   and their derivatives determine the cell phenotype (state). These  products may be put on the cell surface or may be excreted or diffused through  the whole tissue. A typical continuous formulation  [MI73] can be expressed as

Reaction equation
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Compartment flow equations
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The cell state is determined on the basis of the concentration of chemicals.  

The conservation equations for the chemical species are


[image: image10.wmf]i

ii

C

+N=P,

t

¶

Ñ×

¶

r


where Ci are concentrations of the chemical species (oxygen, glucose, lactate ion, carbon dioxide, bicarbonate ion, chloride ion and hydrogen ion concentration are considered); 
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 is the flux inside the tumour spheroid and Pi is the net rate of consumption/production of the chemical species (including mutual reactions of chemical species as well as tumour cells consumption/production).

The flux is calculated according to Fick’s law of diffusion but since some of the chemicals are ionic electric field driven charge migration has also to be considered. The resulting equations can thus take the following form
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[image: image13.wmf]
where Di are (positive) constant diffusion coefficients; zi is the ionic charge of species, ui is the mobility, F is the Faraday constant, and Φ is the electrical potential (the first term vanishes in the case of uncharged chemicals i.e. glucose, oxygen, and carbon dioxide).

Casciari, Sotirchos, and Sutherland [MI148] have choosen ui to be given by the Nernst–Einstein equation
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where Rg is the gas constant and T is the absolute temperature. By applying the assumption that there is zero net electrical current so that 
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 the equation for the flux of the ionic species can be rewritten in the form
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In this way all ionic species are entangled and their flow is dependent on the concentrations of other ionic chemicals.

Moreover, from the part dealing with chemical reactions the authors of [MI148] consider breakdown of glucose through glycolysis and the Krebs cycle and include the detailed metabolic pathway for pH regulation. An overview of these equations can be found in  [MI24] or [MI148].

The cellular level is usually described in terms of ordinary differential equations [MI75,MI76] or cellular automata evolution rules [MI66],[MI67] for the size 
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 (i = 1, 2, . . . , n) of each cell population and the functional state of every cell . The dynamics is determined by intra- and intercellular interactions that can modify the state of the interacting cells and generate cell replication and death.  
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where 
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 is a macroscopic state vector whose components can include cell population densities, concentrations of the nutrients and chemical factors, mechanical quantities, such as pressure, describing the response of the tissue to external forces. The internal evolution 
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 takes into account all those intracellular phenomena such as phenotypic transitions triggered by mutations that change the functional state of a cell.  The conservative interactions 
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 represent cell-cell interactions which change the functional state of one or both interacting cells, but do not lead to cell replication or death. Proliferation is accounted for by the term 
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 whereas cell destruction by the term 
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. The term 
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 associated with external sources or sinks refers to processes such as the production of immune cells, the destruction of tumour cells by medical treatments or the injection of cells. The simplest expression of the conservative interactions 
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 is provided  by the following quadratic form
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where 
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 is the transition rate of the i th-cell type to the state 
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.  The initial state is 
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 and the state of the interacting cells belonging to the j th-population is 
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.  The first term of 
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 takes into account those cells that end up with a state
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. The second one is a loss term related to those cells that transit from the state 
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 into another state following pair interactions with other cells.

An alternative approach at the cellular level is based on cellular automata models [MI79,MI80]. In the cellular automata framework a set of evolution rules for the discrete state variables inspired by generic features of the system dynamics is suggested. These rules (deterministic or stochastic) are local in space and  in time. They replace a set of  ODEs used in continuous models to describe the evolution in time of the system at the cellular level.  All the components of the system have their states updated in parallel. 

The Q-state Potts model 

A discrete lattice is used in this model [MI23]. Each lattice site has a state 
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. The domains of the lattice sites with the same index describe cells while the links between lattice sites with different indices correspond to cell surfaces. The free energy of the system is described by the Potts Hamiltonian 
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. A lattice site is chosen at random and a new trial index is also chosen at random from one of the other Q – 1 states. The probability of changing the index at the chosen lattice site to the new index is:
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 denotes the difference between the total energy before and after the index reassignment, and T is temperature. 
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 represents the dissipation costs involved in deforming a boundary. A Potts model simulation measures time in Monte Carlo Steps (MCS): one MCS is defined as as many trial substitutions as the number of lattice sites.
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represents the state of site 
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 with respect to the cell surface adhesive energy, 
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 stands for  the chemical potential, 
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stands for  the chemical concentration at site 
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, 
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 stands for the cell type rigidity , v is the current volume and 
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 is  the type dependent target volume. The latter depends on the cell cycle since the cell may be growing.

The first term of the energy represents the cell type dependent adhesion energy. The second term represents all bulk properties of the cell such as membrane elasticity, cytoskeletal properties and osmotic pressure. The third term represents chemotaxis where the chemical potential determines if cells move towards or away from higher chemical concentrations. 

At the tissue level, a continuous approach is based on the assumption that there is a sufficiently large number of cells and relevant molecules in order to define average continuous values for the macroscopic variables. Continuum models are mathematically formulated in terms of PDEs in the area of fluid and continuum mechanics. The majority of them establish an evolution equation for the field 
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 representing cells and chemical substances, the derivation of the corresponding evolution equations follow  from the mass balance principle applied to each element volume:
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where
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is the convective velocity, 
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 is the diffusion coefficient, 
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 is the proliferation term per unit volume, and 
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 is the death coefficient of the j th - cell type population density or concentration. The evolution equation depends on sinks, sources and appropriate boundary conditions determined by the distribution of cells and blood vessels, leading generally to the so-called moving boundary problems [MI81]. For the complete specification of the macroscopic model, it is necessary to introduce constitutive laws to characterize for instance the mechanical properties of the tumour [MI82-MI84]. 

Tumour growth is modelled using the mass conservation law and thus the velocity of cell movement 
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 is given by
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where λ is the maximum rate of cell proliferation and F(Ci) is the scaling function for the nutrient/chemical species dependent proliferation. The function F(Ci) is obtained empirically from several experiments. In [MI148] the rate of cell proliferation is represented  by
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where Gi’s are fitting parameters for the measured data (subscript a stands for oxygen, b for glucose, and g for hydrogen ion concentration). The weakness of function F is that it is always positive and hence is not able to describe any necrotic cores in the tumour. 

Solving the equations for spherical symmetry leads to the following equation for the radial cell velocity vr at a point inside the spheroid and the rate of growth of the tumour boundary R:
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The above mentioned model of proliferation constitutes the basic version which can be generalized in several ways. It can be enriched by describing the tumour as a conglomerate of several phases of the cellular “material”. A separate description of cell movements (by random diffusive movement) and cell deaths can also be taken into account. The general formulation in this case is as follows:
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where for each phase/type i which occupies the volume Φi (all Φi sum up to the total volume 1) the velocity vi is determined by diffusion with coefficient Di . The terms λi and µi represent production and degradation respectively.

In this general form the model seems to be too complicated since there are too many parameters to be experimentally determined for validation purposes. The simplest case addressing only two phases i.e.  living and dead cells has been treated  in [MI190,MI191]. If n is the living cell density and  m  the dead cell density the following relation is obtained 
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If the average volumes of living cells (VL ) and dead cells (VD ) are given, by assuming   constant volume nVL + mVD = 1  and the same velocities for the dead and living cells the following equation can be obtained 
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This equation can be solved in a way similar to the one applied to the radial symmetry case. This can be done mainly because of the force balance which allows to take into account momentum changes between the particular phases. 

There are several other possible modifications aiming at a qualitative description of the possible evolution of the nutrient-limited tumour spheroid. For example use of time delays could explain oscillations in tumour spheroids growth as were studied by Burkowski [MI206] and Byrne [MI207].

Until now consideration of any mechanical aspects of tumour growth have been avoided by assuming radial symmetry. Although this facilitates understanding of the chemical processes involved, biomechanics cannot be ignored in the clinical context.

Some simple initial models calculated the tumour cell interaction with normal tissue by computing the internal pressure within the tumour. This has been done by Greenspan [MI174] and Byrne and Chaplain [MI208]. By omitting technical details in general such models correlate cell velocity with pressure by using Darcy’s law of fluid dynamics which can be expressed by the following equation
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where µ is a positive constant accounting for the viscosity properties of tumour cells. Combining this equation with the above mentioned equation for velocity and using proliferation parameters the following equation for the internal pressure within a spheroid is obtained
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The movement of the tumour boundary along an outwards pointing normal unit vector  
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 is then given by
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Furthermore, two boundary conditions are given. The first one states that the pressure on the tumour boundary is in equilibrium with the pressure of the outer environment. The second one proposed in [MI208] connects nutrient concentration with boundary curvature by assuming that nutrient is the source of energy of cell adhesion. It is described by the Gibbs-Thompson relation 
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where γ is the surface tension and κ is the mean curvature. 

Regarding experimental measurements there is still much to be done. Direct measurement of the pressures in tumour tissue is almost technically impossible. However, a method proposed  by Helmlinger et al. [MI212] has been widely discussed. Instead of measuring pressure directly the influence of the outer pressure on tumour growth is calculated by cultivating tumours in differing stiffness agarose gels. Both the experimental and theoretical aspects of this approach have been addressed in many other publications [MI209, MI210,MI211].

The notion of internal cell pressure, inspired by models of fluids does not reflect the internal structure of a cell. Threfore, it could be partly replaced in the future by more informative notions which would take into account the subcellular micro skeleton structures. Theoretical work presented in [MI214] and [213] has pointed towards that direction. 

Mathematically, the link between the molecular/sub-cellular, cellular and tissue levels has to be referred to the parameters (growth, death, uptake or absorption, degradation rates, threshold densities, diffusion coefficients, drift velocities, etc.) characterizing the model. 

4.3 Models of Prevascular Tumour Response to Chemotherapy and Radiotherapy  

In order to describe drug flow in the organism the concept of compartments has been proposed. Common pharmacokinetics models [MI25] make use of diffusion and compartmental modeling to investigate cellular drug uptake and intracellular drug interactions as well as to provide insight into the cellular mechanisms contributing to drug resistance. The flux between compartments is commonly described by the equation
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where 
[image: image79.wmf](

)

i

C

is concentration of drug in the compartment i and 
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represents the rate of transfer between compartments.

Drug cytotoxicity is described by pharmacodynamics [MI27]. The mechanisms contributing to the drug effects are still not completely known. Several phenomenological models adequately describe the fractional cell survival S as a function of concentration and time exposure history. The Hill type model is frequently used
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where A,m are constants, x is a measure of the cellular damage proportional to extra- or intracellular area under (the) curve (AUC) of the concentration of drug as a function of time.


[image: image82.wmf]AUC=Cdt

ò


Another possibility is an exponential kill model.
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where x is a suitable measure of damage and k is a constant.

The linear-quadratic model is often used in order to quantify the biological response to radiation. The surviving fraction is expressed as
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where D is the dose in Gy. The 
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and
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 parameters depend on the cell type and the cell cycle phase.

4.4
Modeling  Angiogenesis, Invasion and Metastasis
4.4.1 “Hollow” Capillary Networks

This model has been inspired by the tumour-induced angiogenesis model proposed by Anderson & Chaplain [MI8]. It is assumed that endothelial cells migrate through  random motility,  chemotaxis in response to TAF (tumour angiogenic factor) released by the tumour and haptotaxis in response to fibronectin (FN) gradients in the extracellular matrix. Let n  be the endothelial cell density per unit area. The equation describing endothelial cell conservation is as follows
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The chemotactic migration is representd  by the function
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 which reflects the decrease in chemotactic sensitivity with increased TAF concentration c. The coefficients D, 
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, 
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 characterize the random, chemotactic, and haptotactic cell migration respectively. f stands for fibronectin concentration.

TAF and the extracellular matrix-macromolecule FN bind to specific membrane receptors on endothelial cells and subsequently trigger molecular cascades inside the ECs, activating cell migratory machinery. One consequence of this activation process is the production of matrix degrading enzymes (MDEs). The endothelial cells become able to exert the traction forces required to propel themselves during migration. In the initial model [MI8] endothelial cell densities and their global influence on TAF and FN concentrations were considered in a continuous formulation. In the model under development the focus will be on local effects and the influence of each individual cell on its local environment will be considered. The model can then be formulated through the following set of equations:
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where c represents the TAF concentration, f represents  the FN concentration, m represents the MDE concentration and 
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is a Boolean parameter (1 or 0) indicating the presence or absence of an endothelial cell at a given position. The parameters 
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and 
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characterize the production rate of FN and MDE by an individual endothelial cell respectively and 
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 its TAF consumption rate. The MDE, once produced, diffuses locally with diffusion coefficient 
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, and is spontaneously degraded at a rate 
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 .

The displacement of each individual endothelial cell located at the tips of each growing sprout is given by the discretized form of the endothelial cell mass conservation equation. The migration of each cell is consequently determined by a set of coefficients emerging from this equation. They are related  to the likelihood of the cell remaining stationary, moving left, moving right, moving up, or moving down (in 2 dimensions for simplicity). These coefficients incorporate the effects of random, chemotactic and haptotactic movement and depend on the local chemical environment (FN and TAF concentrations). Proliferation of the endothelial cells at the capillary tips and branching at capillary tips are implemented in the model at the discrete level. Tip branching depends on the TAF concentration at a given spatial location . 

4.4.2 Blood Flow

Blood is a very complex biphasic medium, composed of many different constituents, including red blood cells (erythrocytes), white blood cells (leukocytes), and platelets involved in clotting cascades.Because of its biphasic nature, blood does not behave as a continuum and the relative viscosity 
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 measured while flowing at different rates in microvessels is not constant.
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where 
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 is the viscosity corresponding to the normal average value of the discharge hematocrit (
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 = 0.45), R is the vessel radius, and 
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 is a function of the hematocrit.

In the case of a non-Newtonian fluid the local relationship between  pressure gradient 
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 and flow Q at the scale of a single capillary element of length L and radius R can be approximated by the following Poiseuille- like expression:
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where 
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 is the product of relative and plasma viscosities. When considering flow calculations through a network of interconnected capillary elements having distributed radii simple conservation of mass or flow (if the fluid is incompressible) at each junction where the capillary elements meet has to be applied.

4.4.3 Adaptation and remodelling

Blood rheological properties and microvascular network remodelling are interrelated issues as blood flow creates stresses on the vascular wall (shear stress, pressure, tensile stress) that lead to the adaptation of the vascular diameters via either vasodilation or vasoconstriction.

The wall shear stress is given by
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and 
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 is a constant included to avoid singular behaviour at low shear rates.

The intravascular pressure is given by 
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where 
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 is a constant that dictates the relative intensity of the stimulus, P is the local intravascular pressure and  accounts for the dependence of wall shear stress on pressure.

The metabolic hematocrit-related stimulus is given by
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where 
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 is a reference flow,  
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 corresponds to the flow in the parent vessel, 
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 represents the discharge hematocrit in the vessels, Q stands for the flow in the vessel under consideration and 
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 is a constant characterizing the relative intensity of the metabolic stimulus.

The vessel  adaptation 
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 is provided by the following equation
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The additional term 
[image: image120.wmf]s

k

 represents the shrinking tendency of a vessel.

The vessel branching probability Pbranching  is given by 
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where CTAF  stands for the TAF concentration.

4.4.4  Invasion

A tumour experiences unstable growth due to a diffusional instability caused by the competition of the growth of tumour mass and the surface tension (cell adhesive forces) that tends to oppose this growth [MI28]. The instability is enhanced by the development of a necrotic core and its associated volume sink. The presence of the inhomogeneous nutrient field due to angiogenesis tends  to further destabilize the tumour because the tumour tends to co-opt the complexly shaped neovasculature in order to maximize nutrient transfer [MI29]. Gatenby et al. [MI30] have addressed in their modeling work the change of extra cellular pH that helps tumour invasion. Malignant cells exhibit characteristically altered metabolic patterns when compared with normal mammalian cells with increased reliance on anaerobic metabolism of glucose to lactic acid even in the presence of abundant oxygen. This leads to normal cell death via p53-dependent apoptosis pathways, as well as degradation of the interstitial matrix, loss of intercellular gap junctions, enhanced angiogenesis, and inhibition of the host immune response to tumour antigens. Transformed cells maintain their proliferative capacity in acidic extracellular pH because of mutations in p53 or some other component in the apoptotic pathways.  

4.4.5 Metastasis

Metastasis is characterized by a complex series of events in which cancer cells leave the original tumour site and migrate to other parts of the body via the bloodstream or the lymphatic system. To do so malignant cells break away from the primary tumour and attach to and degrade proteins that make up the surrounding extracellular matrix (ECM) which separates the tumour from the adjacent tissue. By degrading these proteins cancer cells are able to breach the ECM and escape. The body resists metastasis by a variety of mechanisms through the actions of a class of proteins known as metastasis suppressors of which about a dozen are known. One of the critical events required is the growth of a new network of blood vessels called tumour angiogenesis. It has been found that angiogenesis inhibitors would therefore prevent the growth of metastases.

4.5
Particuliarities of Glioblastoma and Lung Cancer 

4.5.1 Glioblastoma

Glioblastoma multiforme is characterized by the presence of small areas of necrotic tissue  that is surrounded by anaplastic cells (pseudopalisading necrosis). This characteristic in conjunction with the presence of hyperplastic blood vessels differentiates the tumour from grade 3 astrocytomas which do not exhibit these features. Although glioblastoma multiforme can be formed from lower-grade astrocytomas post-mortem autopsies have revealed that most glioblastomas multiforme are not caused by previous lesions in the brain.

Glioblastomas multiforme (GBM) can form in either the gray matter or the white matter of the brain. Most GBM however arise from the deep white matter and quickly infiltrate the brain often becoming very large before producing symptoms. The tumour may extend to the meningeal or ventricular  wall leading to a high protein content of cerebrospinal fluid(CSF) (> 100 mg/dL) as well as an occasional pleocytosis  of 10 to 100 cells, mostly lymphocytes. Malignant cells carried in the CSF may spread to the spinal cord or cause meningeal gliomatosis. However, metastasis of GBM beyond the central nervous system is extremely rare. About 50% of GBM occupy more than one lobe of a hemisphere or are bilateral. Tumours of this type usually arise from the cerebrum and may exhibit the classic infiltration across the corpus callosum producing a butterfly (bilateral) glioma. The tumour may take on a variety of appearances depending on the amount of hemorrhage,necrosis or its age. A CT scan usually shows a nonhomogeneous mass with a hypodense center and a variable ring of enhancement surrounded by edema. The mass effect from the tumour and edema may compress the ventricles and cause hydrocephalus.

Some recent models incorporate anatomical features to help model tumour growth in a more realistic way based on the characteristics of heterogeneous brain tissue. Some of these models extend the conventional modeling approach of gliomas at the macroscopic scale to explain tumour invasion at the microscopic cellular level. Certain models take into account the fact that glioma diffusion  through white and gray matter is different. Differential motility is estimated using the Fisher’s approximation [MI32].

4.5.2 Lung cancer

The vast majority of lung cancers are carcinomas i.e. malignancies that arise from epithelial cells. There are two main types of lung carcinoma categorized by the size and appearance of the malignant cells as seen by a histopathologist under the microscope: non small cell (80.4%) and small cell (16.8%) lung carcinoma. This classification based on histological criteria has important implications for clinical management and prognosis of the disease.

The non small cell lung carcinomas are grouped together because their prognosis and management are similar. There are three main subtypes of non small cell carcinoma: squamous cell lung carcinoma, adenocarcinoma, and large cell lung carcinoma. Accounting for 31.2% of lung cancers, squamous cell lung carcinoma usually starts near a central bronchus. Cavitation and necrosis within the center of the tumour is a common finding. Well differentiated squamous cell lung cancers often grow more slowly than other cancer types. Adenocarcinoma accounts for 29.4% of lung cancers. It usually originates in peripheral lung tissue. Most cases of adenocarcinoma are associated with smoking; however, among people who have never smoked (“never-smokers”), adenocarcinoma is the most common form of lung cancer. A subtype of adenocarcinoma, the bronchioloalveolar carcinoma, is more common in female never-smokers and may have different responses to treatment. Small cell lung carcinoma (SCLC, also called “oat cell carcinoma”) is less common. It tends to arise in the larger airways (primary and secondary bronchi) and grows rapidly becoming quite large. The “oat” cell contains dense neurosecretory granules (vesicles containing neuroendocrine hormones) which are responsible for an endocrine/paraneoplastic syndrome association. While initially more sensitive to chemotherapy it ultimately carries a worse prognosis and is often metastatic at presentation. Small cell lung cancers are divided into limited stage and extensive stage disease. This type of lung cancer is strongly associated with smoking.The lung is also a common place for metastasis from tumours in other parts of the body. These cancers are identified by the site of origin; thus, a breast cancer metastasis to the lung is still known as breast cancer. They often have a characteristic round appearance on chest x-ray. Primary lung cancers themselves most commonly metastasize to the adrenal glands, liver, brain, and bone.

4.6  The Digital Biological Cell (DBC) Approach 

In this section some representative high level features of the Digital Biological Cell (DBC or dbc) approach are briefly outlined.   DBC is a generic microscopic biomodeling method that has been adopted for the development of the microscopic tumour models within the framework of the ContraCancrum project. A central mathematical feature of the approach is the extensive use of the diffusion equation. A detailed mathematical formalism of the basics of the method has also been developed [MI19].

4.6.1 The Environment Model

The environment of the biological system under consideration is modeled at two different levels. At the local level it posseses a lattice structure to allow relatively precise calculations. Its global structure is handled by an oriented graph which is suitable for the description of the topological structure of the domain. All relevent pieces of information are integrated into a graph of locations characterized by the following features  

1. nodes (local environments). Each node (environment) is represented by a discrete  lattice. A lattice site contains a homogeneous concentration of vaxes [entities that can interact] and dbcs. A lattice can be dynamically subdivided into sublattices. The ratio of the volumes of two neighborhood sites can take values up to 1:6.

2. edges (connections between local environments over a long distance). They describe the transfer of vaxes and dbcs. An edge represents the connection of a set of sites in a source node and a set of sites in a destination node as well as the temporal transfer function of vaxes and dbcs.

4.6.2 Vaxes
In order to  simulate  chemical reactions and signaling  the vax notion denoting an entity that can interact  is utilized [MI1, MI19, MI31].   The complementary notions of provax (a vax in the environment that is not bound to a dbc) and revax (a vax bound to a membrane) are also used.

4.6.3 Digital Biological Cells (dbcs) 
Cells are represented by dbcs [MI19] [MI31]. Some representative dbc features ( Figure MI3) are listed below

· Membrane system (a dbc membrane) [MI26]. 

· Membrane  enclosed part of the environment. It defines the dbc shape and divides a lattice into inner and outer lattice cells. 

· Membrane elements which correspond to the boundaries of two lattice cells. They contain revaxes. A revax can be oriented into the inner or the outer part of a lattice cell. 

· External membrane.  An external membrane determines the boundaries of a dbc. 

· Revax reaction functions.  They define reactions among provaxes/revaxes and revaxes. [MI1,MI31,MI34]. 

· Seasonal/cumulative vax sets. Such sets  determine the most influencing revaxes during some period e.g. those that maximize the revax reaction function. A seasonal vax set determines the state of a dbc.

· Vax gradient 

· Cost resources

· Zygotic graphs  (ZG).  Their nodes represent vaxes. Oriented edges determine actions ( Figure MI4) [MI31]  . Basic features of the zygotic graphs are the following

· nodes representing vaxes 

· edges representing actions (producing provaxes, adding revaxes, moving, dividing, death as well as their parameters and costs)

· an action is not performed if there are not enough resources 

· provaxes and revaxes can be distributed homogeneously or inhomogeneously 

· A zygotic graph can have the following main subgraphs: 

· production (sub)graph. It determines how many and which vaxes will be spilled into the environment (for each membrane) 

· revax (sub)graph. It determines how many and which vaxes will be added to the membranes 

· motion/growth (sub)graph. It determines a dbc movement or a change of shape.

· The number of non used revaxes decreases with  time 

· dbc membrane division 

· a dividing action is determined from the  ZG 

· the number of revaxes on a membrane reaches the maximum revax number 

· division transformation 

· a membrane is divided into two membranes and its resources are distributed to each one of the new membranes (homogeneously or non-homogeneously) 

· a direction of division is selected

· a time of division is determined 

· abnormalities during division are determined and performed

· dbc membrane death

· the number of revaxes on a membrane reaches the minimum revax number. The  dbc membrane disappears (model of apoptosis) 

· resources are not enough or the number of internal  provaxes of the membrane reaches its maximum . The dbc membrane cracks and spills  its resources into the environment  (model of necrosis) 

· Membrane transfer function. It determines a transfer of provaxes through a membrane 

· Each action has a time range within which it can be performed.  For example interactions of chemicals take ms whereas cell  cycling can take hours

· The state of a dbc is determined by the number of revaxes and by the number of provaxes in the inner and the outer environment and their reactions

· The state of a dbc is changing with time depending on changes in the inner and the outer environment.
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Figure MI3. A digital biological cell (DBC or dbc) on the two dimensional domain 
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Figure MI4. An example of zygotic graph
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Figure MI5. dbc model of avascular tumor growth with small adhesion and diffusion
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Figure MI6. dbc model of vasculogenesis with chemotaxis and haptotaxis
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Figure MI7. Cooperation of angiogenesis module and avascular tumour growth module as source sink cooperation
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Figure MI8. Workflow diagram
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Figure MI9. Compartmental model

4.7 Digital Biological Cell (DBC) Models of Avascular Tumour Growth, Invasion, Angiogenesis and Treatment Response

An adaptive discrete and discretized continuous approach (Figure MI3) has been adopted in order to model avascular tumour growth, invasion, angiogenesis and drug interactions (Figure MI5, Figure MI6, Figure MI7, Figure MI8). The tumour is considered a spatiotemporal distribution of discrete cells and chemicals/ligands (e.g. oxygen, nutrients, drugs) regions. 

The envisaged main features and functioning of the corresponding microscopic cancer modeling module in the research setting will be as follows (Figure MI8)

i. The microscopic imaging data of the tumour (e.g. microphotographs of histopathological sections) are provided.

ii. The data is processed so that certain characteristics of tumour cells and the cell system (including shapes and states) are quantified.

iii. The pre-treatment spatial distribution of non imageable tumour cells within the patient from whom the tissue has been excised is estimated. 

iv. An editor of microenviromental changes provides the utility to change the micro-environment parametrers. 

v. Molecular data (e.g. diffusion, stoicheiometry, status, amplification and expressions of critical genes which have been shown to drastically affect the response of the tumour under consideration to the treatment addressed, receptors present etc.) are provided. Estimates (even semi-qualitative) of their production and state changes are made.

vi. The compartmental model of Figure MI9 is used as a reference for the study of cell shape, cell-drug interactions, energetic conditions and other tumour dynamics aspects.

vii. The model parameters are estimated based on the previously mentioned data as well as literature based information.

viii. Appropriate rules are applied at every time scale considered. These refer to state changes, cell proliferation, cell death, cell-drug/chemical interaction, cell movement, cell shape changes etc. The outcome is an update of the spatiotemporal cell states of the tumour cells over the tumour.

ix. An avascular tumour growth submodule (TM) provides sources of TAF to the angiogenesis module (AM).  AM in turn provides sources of chemicals to TM (Figure MI7).

In parallel with the solution of the biological problem a physical refinement concerning shapes,convective movement etc. will take place based on minimazition of action (e.g. according to the cellular Q-Potts models). Any physical data available (primarily through literature) will be utilized to this end.

Acceleration of the simulation code will be addressed in order to significantly lower the computing time demands. Execution of the code on fast computing systems (eventually including clusters and/or  grid)  have been planned.

The prediction of the spatiotemporal cell state and shape of a non macroscopically imageable tumour will be made for both the free growth and the rsponse to treatment (chemotherapy, radiotherapy) cases. Several visualization forms of the predictions (graphs, 3D and 4D rendering etc.) will be offered.

The simulated treatment outcome will be compared with any relevant data following treatment (e.g. microphotographs of histology slides after surgery) and an optimization loop of the parameters estimation (and if necessary of the model algorithm) will be implemented.

4.8
Testing of  the Microscopic Models 

The quantitative connection of mathematical models with biological observations is represented by the mathematical model parameters. Each parameter of the model under consideration refers to a particular phenomenon and has a particular effect on a specific cell population or a chemical substance or a sub-cellular process within a given cell type. Certain parameters can be evaluated from biological assays, obtained from generic databases or derived from mathematical models which justify the increasing effort to develop a quantitative and structural information infrastructure suitable to support physiological modeling [MI85].

Up to now only very few experimentally validated models considering cell population and nutrient interactions have appeared. The link between the microscopic and the macroscopic description remains an open problem [MI75]. The reason is that subcellular and cellular models involve a more detailed dynamics dependent on the state of the cells whereas this kind of information is largely lost in macroscopic models. A plausible approach to tackle this problem is the ‘summarise and jump’ strategy outlined in Chapter 1. Section 4.7 contains i.a. a high level consideration of the microscopic model testing approach to be adopted.
Each modeling approach be it discrete or continuous assumes a time and space scale and a specific nature of the physical or biological interactions involved. Indeed the continuous evolution equation for the cell population densities essentially describes mean field like cellular interactions.  Cellular automata or agent-based models rely on local or short-range interactions. Generally both types of interactions can occur. In addition, the balance between determinism and stochasticity depends on the time and length scale on which the questions are posed. At the molecular level protein-protein and protein-DNA interactions are stochastic but at the cellular level and for a long time span average concentrations can be statistically defined so that their evolutions can be described by deterministic equations. Moreover, unknown or incompletely understood biological mechanisms that play a role in the phenomena considered can lead to stochastic model descriptions.

It is noted that the main role of the development of microscopic models within ContraCancrum is to provide insight into and better understanding of the biological mechanisms of cancer so that i.a. refinement of the imageable tumour models (Chapters 6 and 7)  can be achieved. Therefore, the clinical validation focus within ContraCancrum (Chapter 5) is on the latter rather on the microscopic models themselves.
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5. Medical Data to be Used for the Adaptation, Optimization and Validation of the Models of Clinical Tumour Growth and Response to Treatment [Code: DA]

This chapter lists the various types of (pseudo)anonymized multiscale medical data to be provided by the participating clinical partners and used for the adaptation, optimization and validation of the imageable tumour models which are described mainly in Chapters 6 and 7.

5.1 Glioma (glioblastoma) cases

A1. TREATMENT DATA

Detailed description of the treatment (chemotherapy and/or radiotherapy) scheme including 

1. Drug(s) names and/or type of ionizing radiation

2. Actual treatment session dates

3. Actual dose(s) for each treatment session 

4. Any other relevant data (eg. individualized pharmacokinetic data if available)

A2. NORMAL TISSUE COMPLICATION DATA

1. Side effects that will be measured are in case of patients with gliomas mainly due to irradiation. To describe these side effects the Common Terminology Criteria for Adverse Events (CTCAE) v3.0 will be used [DA1]. 

2. Most important are skin reactions and neurological side effects

3.  Haematological toxicity will only be analysed in patients who have received chemotherapy. 

4. Especially in patients with gliomas who develop new neurological symptoms it is sometime impossible to distinguish between tumour progression and side effects of treatment. In this respect the simulation of normal tissue reactions has limited potential.

A3. CLINICAL DATA

1. Age

2. Sex

3. Description of eventual previous treatments

4. Any other pertinent clinical data 

A4. IMAGING DATA

In the case of glioma the following imaging data will be made available:

1. T1 Gadolinium-enhanced MRI (dense coverage of the region of interest) 

2. T2 MRI (dense coverage of the region of interest)

3. Additional imaging data are desirable and will be used in the project if they are available for a patient. These imaging data are:

i. Diffusion anisotropy MRI

ii. PET

iii. SPECT

iv. fMRI

All imaging data sets correspond to a known time point before treatment initiation, eventually several time points during treatment (if this is possible) and at least one known time point after completion of treatment.

A5. SEGMENTATION DATA

1. External “conventional”boundaries of the tumour based on T2 MRI

2. External “conventional” boundaries of the tumour based on T1-gadolinium-enhanced MRI

3. Boundaries of the necrotic (“dark appearing”) region based on T1-gadolinium-enhanced MRI

4. Boundaries of any additional tumour structures lying within the previously mentioned “conventional” boundaries of the tumour (including their macroscopic characterization)

5. Desirably: boundaries of adjacent normal tissue structures with annotation. 

6. Estimate of tumour volume (including calculation method)

A6. HISTOPATHOLOGICAL DATA

In the case of glioma the following histological data will be made available:

1. Detailed description of the tumour subtype including grade and stage

2. Microphotographs of indicative histopathology slices. However, due to the surgical procedure in most cases it is impossible to correlate the histology to the region of the tumour from which the bioptic material has been extracted.

3. Estimates of the amount of dead cells (necrotic, apoptotic) 

4. Estimates of the spatial tumour cell density for proliferative cells (Ki67 staining)  

5. The degree of neovascularization for selected cases.

The microscopic imaging data are processed in such a way that the density of tumour cells as well as the percentages of proliferative cells (Ki67) and dead cells are calculated. In few cases, in which such data are available, a mapping of the bioptic areas and the imaging will be done. This will lead to a relatively refined consideration of the tumour spatial inhomogeneities in different areas of the tumour. In all other cases where such information is not possible to get the information from the biopsy will be extrapolated to the whole tumour, knowing that this is only a rough approximation.

A7. MOLECULAR DATA

In the case of glioma the following data will be made available:

1. An extended number of novel glioma expressed antigens reactive with patients’ auto-antibodies will be identified. 

2. The seroreactivity of antigens will be measured using a novel  automated image analysis system. 

3. Information of the reactivity of the immunogenic antigens against sera of healthy controls will be provided. 
4. Each glioma antigen will be classified according to its reactivity against normal sera and sera of glioma patients. AUC values for the antigens will be determined to rank them according to their information content.
5. Cytogenetic data will be provided for those glioma that can be used for short term tissue culture.  

6. cDNA expression data will be provided for those glioma that are available as frozen tissues. 

V. Lung cancer cases

B1. TREATMENT DATA

Detailed description of the treatment (chemotherapy and/or radiotherapy) scheme including 

1. Drug(s) names and/or type of ionizing radiation

2. Actual treatment session dates

3. Actual dose(s) for each treatment session 

4. Any other relevant data (eg. individualized pharmacokinetic data if available)

B2. NORMAL TISSUE COMPLICATION DATA

1. Side effects that will be measured are in case of patients with lung cancer mainly due to irradiation. To describe these side effects the Common Terminology Criteria for Adverse Events (CTCAE) v3.0 [DA1] will be used. 

2. Most important are skin reactions and acute pneumonitis in case of lung cancer. 

3. Haematological toxicity will only be analysed in patients who have received chemotherapy. 

B3. CLINICAL DATA

1. Age

2. Sex

3. Description of eventual previous treatments

4. Any other pertinent clinical data 

B4. IMAGING DATA

In case of lung cancer the following imaging data will be made available:

1. CT (dense coverage of the region of interest)

2. Any modality providing metabolic information (eg. PET, SPECT, fMRI)

All imaging data sets correspond to a known time point before treatment initiation, eventually several time points during treatment (if this is possible) and to at least one known time point after completion of treatment.

B5. SEGMENTATION DATA

1. External “conventional”boundaries of the tumour based on CT

2. Boundaries of the highly metabolically active and necrotic regions based on any modality providing metabolic information

3. Boundaries of any additional tumour structures lying within the previously mentioned “conventional” boundaries of the tumour (including their macroscopic characterization)

4. Desirably: boundaries of adjacent normal tissue structures with annotation. 

5. Estimate of tumour volume (including calculation method)

B6. HISTOPATHOLOGICAL DATA

In case of lung cancer the following histological data will be made available:

1. Detailed description of the tumour subtype including grade and stage.

2. Microphotographs of indicative histopathology slices from surgically resected specimens and from biopsy specimens. The former will include central and peripheral parts of the tumour, the latter will be representative for the peripheral/ endobronchial part of the tumour.

3. Estimates of the spatial tumour cell density will be given. The amount of dead (necrotic, apoptotic) cells will be estimated.

4. Estimates of the spatial tumour cell density for prolferative cells (Ki67 staining) will be given.

5. The degree of neovascularisation is given for selected cases. 

The microscopic imaging data are processed in such a way that the density of tumour cells as well as the percentages of proliferative cells (Ki67) and dead cells are calculated. In few cases, in which such data are available, a mapping of the bioptic areas and the imaging will be done. This will lead to a relatively refined consideration of the tumour spatial inhomogeneities in different areas of the tumour. In all other cases where such information is not possible to get, the information from the biopsy will be extrapolated to the whole tumour, knowing that this is only a rough approximation.

B7. MOLECULAR DATA

In  the case of lung cancer the following data will be made available:

1. The mutational status of EGFR known to play a critical role in the response to targeted therapeutics will be provided. No other mutational analysis will be done.

2. Autologous antibodies against tumour specific antigens will be measured in all cases using a modified SEREX method. 

References
DA1. https://webapps.ctep.nci.nih.gov/webobjs/ctc/webhelp/welcome_to_ctcae.htm
6. Modelling Clinical Tumour Growth and Response to Treatment: Continuum Based Modelling Approach [Code: CO]

6.1 Workflow of the continuum based tumour dynamics simulator

Concerning tumour simulation two major approaches have been adopted. According to the first one i.e. the continuum approach, the tumour (and in particular a glioma) is considered a spatiotemporal  distribution of continuous cell density which follows the generic diffusion-reaction  law. According to the second approach (see chapter 7) the tumour is considered a spatiotemporal distribution of discrete cells (and cell death products) belonging to several proliferative potential categories and cell cycling phases.  

Pertinent clinical data from the list included in chapter 5 will be used in order to adapt, optimize and validate the simulators. Details regarding the types of data applicable to each particular tumour type are also provided in chapter 5. 

The tumour dynamics simulator based on the continuum assumption will function as desribed below (Figure  CO1). 

i. The macroscopic imaging data of the patient (e.g. contrast enhanced MRI, CT, PET etc) are collected at baseline

ii. The macroscopic imaging data are segmented by the clinician (delineation of tumour boundaries, necrotic areas etc.), interpolated, three dimensionally reconstructed and eventually fused if more than one modalities are to be used. Both anatomy and spatial metabolic activity are the features to be provided by the processed imaging data. 

iii. NOTE Macroscopic imaging data are used as input for the simulation and the patient specific adaptation of the model. With the help of imaging it is possible to construct input data of a patient specific model by measuring spatially resolved anatomical and physiological parameters. Macroscopic imaging data of a patient as defined above is collected at several points in time before, during, and after therapy. Furthermore, images of different imaging modalities (CT, MRI, PET, etc.), allow to measure different parameters of the patient’s tissue and physiology. Therefore, in order to spatially align the information from different image modalities a registration and fusion step is necessary. The tools provided by WP7 in conjunction with the infrastructure of provided by WP3 will allow to perform this registration step. The registration results will be written together with the patient’s images to the ContraCancrum database.After aligning the patient’s images to fuse the information, a segmentation step is required. In this step different tissues or different physiological regions of the tumour are segmented in order to simplify modelling. A necrotic area within the tumour as well as proliferating areas will be identified. WP7 and WP3 will provide the basis for sharing segmentation results with WP4. A viewing tool to compare the segmentation results with the original images is provided as well by WP7.

iv. The microscopic imaging data of the tumour (photographs of histopathological sections of bioptic material etc.) are provided.

v. The microscopic imaging data are processed in such a way that the density of tumour cells as well as the percentages of the populations of the various proliferative potential categories and cell cycling phases can be estimated. Mapping of the areas from which the biopsies stem onto the imaging data (if and when feasile) could lead to a refined cosideration of the tumour spatial inhomogeneities.

vi. The microscopic imaging data of the tumour (photographs of histopathological sections of bioptic material etc.) are provided.

vii. The microscopic imaging data are processed in such a way that the density of tumour cells as well as the percentages of proliferative cells (Ki67) and dead cells are calculated. In few cases, in which such data are available, a mapping of the bioptic areas and the imaging will be done. This will lead to a relatively refined consideration of the tumour spatial inhomogeneities in different areas of the tumour. In all other cases where such information is not possible to get, the information from the biopsy will be extrapolated to the whole tumour, knowing that this is only a rough approximation.
viii. The pre-treatment spatial distribution of imageable and non imageable tumour cell density is estimated based on literature. Non imageable tumour cell distribution refers primarily to gliomas where tumour growth exhibits markedly diffusive patterns. 

ix. Along with information based on histopathological slides eventual tumour cell cycling information (e.g. duration of cell cycle for the particular tumour) based on cell cultures is provided.

x. A discretization mesh is superimposed upon the three dimensionally reconstructed tumour. An initial tumour cell density and net proliferative rate is assigned to each node of the mesh. 

xi. The molecular data (e.g. status, amplification and expressions of critical genes, which have been shown to drastically affect the response of the tumour under consideration to the treatment addressed) are provided.  Estimates (even semi-qualitative) of their effect on the cell kill ratio per cell due to the treatment considered are also provided based on pertinent literature (e.g. [CO1]). The idea is to use the cell kill ratio value provided by the Food and Drug Administration (FDA) or general literature as a cell kill ratio reference value (e.g. for a given area under curve or radiation dose) and then to perturb it based on the effect of the molecular and/or histological profile of the tumour in order to achieve higher patient individualization of the simulation.

xii. The diffusion equation for the cell density including  sources (cell division) and sinks (cell death due to necrosis, spontaneous apoptosis and response to treatment) is numerically solved for the initialized  discretization mesh. One of the methods to numerically formulate and solve the diffusion eqation is the Crank Nicholson Method or θ-method whereas one of the methods to solve the emerging linear system is the Conjugate Gradient Method. Annex A provides some details on a treatment approximating the solution and deriving such  a linear system. 

xiii. In parallel with the solution of the biological problem a mechanical refinement can take place based on the Fimite Element Method (Workpackage WP6). To this end any mechanical data available (primarily through literature) will be utilized in conjunction with the imaging data.

xiv. NOTE  Using imaging data, a three-dimensional biomechanical model of the brain and lung will be built. Both models will aim at assessing the changes in mechanical environment around the tumour during growth as well as the deformation of the surrounding tissues. Two different scenarios will be tested; First the finite element method will be used to calculate only the mechanical environment around the tumour while diffusion of the cancerous cells in healthy tissue will be simulated using the continuous approach described above and the discrete approach described in Chaper7. Second, both cell diffusion and mechanical environment will be calculated using the finite element method. This approach will link the cellular approach described to the macroscopic level.

xv. Acceleration of the simulation code will be envisaged in order to significantly lower the computing time demands. Execution of the code on fast computing systems (eventually including clusters and/or  grid)  will also take place.

xvi. The outcome of the simulation will be the prediction of the distribution of tumour cell density and metabolism for both the case of free tumour growth [no treatment] and tumour response to treatment (chemotherapy / radiotherapy). Several forms of prediction visualization (graphs, 3D and 4D rendering etc.) will be offered.

xvii. The simulated outcome will be compared with the actual (primarily) imaging data following treatment and an optimization loop of the parameters estimation [and if necessary of the model algorithm] will be implemented.

xviii. Glioma free growth patterns will be compared with embryological brain development patterns in order to study any eventual similarities and underlying common mechanisms. Tumour cell growth (cell divisions and differentiation), vascularisation, and invasiveness (cell migration) are the most important steps in the development of gliomas. By also taking into account molecular and histopathological mechanisms it is hoped that a better understanding of both processes will be achieved.

[image: image302.png]
Figure CO1. Continuum based tumour and normal tissue simulator workflow

6.2 Mathematical Treatment of the Diffusion Based Simulation Module Using the Crank Nicolson in Conjunction with the Conjugate Gradient method

6.2.1 Introduction

Dynamic tumour behaviour including i.a. invasion to the surrounding normal tissues has great implications on tumour diagnosis and treatment. The boundaries between tumour and normal tissue sometimes cannot be clearly determined. This may complicate tumour detection and delineation although considerable progress in medical imaging has been achieved. Consequently, it is often difficult to determine the underlying tumour dynamics. Gliomas is a characteristic example of such a behaviour and their aggressive diffuse invasion contributes to their resistance to treatment and their practically inevitable recurrence. 

Mathematical modeling of such phenomena is a plausible approach in order to describe tumour dynamics (including expansion, shrinkage due to treatment etc.). Within this context a number of multiscale clinical tumour growth models are being developed within the ContraCancrum context.  The continuum based models will predict tumour growth, morphological features, invasion into the surrounding tissue as well as the response of the tumour to treatment (radiotherapy and/or chemotherapy). 

By exploiting tumour imaging data the model will be able to suggest the spatial distribution of the macroscopically undetectable component of the tumour as well as its concentration distribution. 

Tumour structure and morphology are affected by diffusion gradients. As a consequence the continuum based model is based on the diffusion equation and a number of pertinent alternative numerical algorithms for its solution. 

6.2.2  Mathematical Basics

In an  oversimplified way tumour growth and invasion can be expressed by the following statement  [CO15A], [CO2]:

‘Rate of Change of Tumour Cell Population= Diffusion (motility) of tumour cells + Net proliferation of tumour cells’

Mathematically, the above statement can be described by the following partial differential equation [CO15A], [CO6]:
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 represents the cell concentration at any position and time 
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 denotes the diffusion coefficient [CO5] and represents the active motility of tumour cells [CO2] and 
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 is the net rate of growth of tumour cells including proliferation, loss and death.

The same equation can be written more analytically as follows [CO3, page803]:
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in three spatial dimensions and more specifically on the domain [CO3, page 730]:
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The model formulation is completed by Dirichlet boundary conditions 
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defines the initial spatial distribution of malignant cells [CO2]. 
The objective is to approximate the value of the exact solution to the boundary value problem at a discrete set of points. The finite difference approximation is obtained by replacing each derivative which appears in the problem with an appropriate finite difference formula. This converts the continuous partial differential equation into a system of discrete algebraic equations. In general a continuous problem such as one formulated through differential equations has to be replaced by a discrete problem and be represented by a finite amount of data, for instance by its value at a finite number of points at its domain, even though this domain is a continuum [CO8].
The first step in the approximation process is to introduce a discretizing computational grid. In our case the computational domain is a cubic mesh that is applied on the anatomic region of interest. The domain is decomposed into a number of sub-domains. The descretization proceeds in two stages. First we descretize the space variables, then the time variable. 

To achieve the spatial descretization, the intervals 
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 equal  sized subintervals, respectively.  
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are positive integers. For convenience, let 
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By inference, the computational grid consists of the following points (xj, yk, zl), 
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. To complete the descretization of the equation the time axis is divided into uniform steps of length 
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and so on. Values for the approximation solution will be obtained at these discrete time levels. At each node of the descritizing mesh a value of cell density is assigned. Time is initialized and the continuous diffusion – reaction equation is formulated, discretized and applied on the mesh nodes.

6.2.3 Numerical Procedures

Having defined the computational grid, the goal is to calculate 
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 at each interior point for
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. In the clinical tumour growth context analytical solutions of the diffusion equation, although they may provide some high level insight, are not able to address the high spatiotemporal complexity including initial and boundary conditions of the biosystem. Therefore, the problem has to be solved numerically. The finite difference method has proved to be a good choice in this context.

Several different numerical approaches to solve multidimensional parabolic initial / boundary value problems have been proposed. The following [CO7] three indicative methods are widelu used

1. The explicit method.  It uses a forward difference at time 
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 and is conditionally stable. 

2. The implicit method.  It uses a backward difference at time
[image: image145.wmf] 1

n

t

+
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3. The Crank-Nicolson method. Iit uses the central difference at time
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Each method has its strengths and weaknesses. The analysis of numerical methods for initial value problems focuses on the discretization error and on the three important properties of consistency, convergence and stability.

In order to solve the tumour growth-invasion equation under consideration the Crank-Nicolson method has been one choice and is outlined in this section. The Crank-Nicholson method  is the most accurate scheme for small time steps in contrast with the explicit method which although the easiest to implement is the least accurate and the most unstable. The implicit scheme works best for large time steps. Crank-Nicolson method is second order accurate in both time and space and unconditionally stable. Numerical stability is an important notion in numerical analysis. An algorithm is termed numerically stable if an error, whatever its cause, does not grow to become much larger during calculation [CO8]. 

Possesing these two characteristics the Crank-Nicolson method is considered the method of choice for many diffusion problems. For the three dimenional problem under consideration the Crank - Nicolson scheme by omitting the net proliferation term is given by [CO9]:
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 is the finite difference approximation of c at the grid point 
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. In order to take into account the effects of source and decay terms an approach analogous to the one described in [CO3,  page 874] will be implemented.

The Crank-Nicolson method can be formulated in matrix form [CO3] for one - dimensional problems as following ([CO3,page 832]):
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and 
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 is the negative value of the net rate of growth of tumor cells 
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.  

NOTE: The minus sign has been used in order to be consistent with the more generic formulation of the diffusion equation as it appears in e.g. [CO3]. It is also noted that the source term can be expressed as the product of the net growth rate multiplied by the concentration of tumour cells. This implies that tumour cells themselves are the only real source of the entity undergoing diffusion.

The vector 
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is the fully discrete approximation to the solution  that is
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The Crank-Nicolson method dictates the solution of  a linear system at each time step. The resulting system of equations may be written equivalently in the form [CO11]:
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To find the structure of the coefficient matrix 
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 the lexicographic ordering common numbering scheme has been used. The number appearing next to the location of each unknown is the lexicographic number associated with that unknown. The matrix 
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 that is produced is a block tridiagonal matrix.

Suppose m denotes the number of nodes in the computational mesh. Then the matrix 
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 denotes a vector that contains an approximation of the solution 
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A major point is the achievement of convergence. The algorithm chosen should generate a sequence of approximations that converges to the desired solution as rapidly as possible. There are two principal ways of solving linear systems of equations [CO10]: Direct methods such as LU and Cholesky and iterative methods which are more efficient. In contrast to direct methods iterative methods are not expected to terminate in a number of steps. Starting from an initial guess iterative methods form successive approximations that converge to the exact solution only in the limit. A convergence criterion is specified in order to decide when a sufficiently accurate solution has (hopefully) been found. Furthermore, when using an iterative technique there is no need to store the coefficient matrix. The only piece of information  that must be known is the structure of the equations. On top of that an iterative solution requires fewer total operations and is insensitive to roundoff error.

Iterative methods that are used mainly for sparse problems can be divided into stationary iterative methods such as the Gauss-Seidel method and non stationary such as the Conjugate Gradient (CG) and other Krylov type methods. Non stationary iterative methods can basically be described by a generic iterative scheme. The next iteration point is the sum of the value of the initial point plus the correction terms of all iterations. The correctors are vectors implying that they posses both magnitude and direction. 

In practice numerical methods such as Jacobi (simultaneous relaxation), Gauss-Seidel (successive relaxation), SOR (successive overrelaxation) are not used due to their slow convergence which is achieved after many iterations. Instead the multigrid method and the Krylov subspace based methods, including the conjugate gradient method, are widely used for the solution of sparse linear systems. 

The conjugate gradient method, which is a popular choice for the solution of large sparse systems [CO4] and a fundamental method on which many others are based, belongs to a class of techniques that is based on the equivalence between the solution of a linear system and the minimization of an associated quadratic functional [CO3]:
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The above mentioned technique starts with an initial guess 
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The vector   
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 is called the search direction and the scalar 
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Basically, in each iteration step the new value   
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 are determined by the orthogonal residual condition [CO10].  That is
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By seeing conjugate gradients as an energy minimizing algorithm, CG iteration minimizes 
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Figure CO2. Each new residual is orthogonal to all previous residuals and search directions and each new search direction is constructed (from the residual) to be A-orthogonal to all previous residuals and search directions. The error term is 
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Figure CO3. The Conjugate Gradient method. Each ellipsoidal curve has a constant 
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A pseudocode implementing the Conjugate Gradient method is the following [CO3] (Figure CO2, Figure CO3):
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The inputs to this routine are the coefficient matrix
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, the right – hand side vector
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, the initial vector   
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, which represents the initial guess, and the convergence tolerance TOL. 

This method always produces the exact solution to an 
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 system in at most n iterations.

6.3 Mathematical Treatment of the Diffusion Based Simulation Module using the Euler (forward and backward) and the 
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6.3.1 Introduction

This section deals with a complementary mathematical treatment of tumour growth based on the diffusion equation where the Euler and the  
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 method.  Diffusion anisotropy is also considered.
6.3.2 Diffusive Models 

Cancer cells divide at varying rates among different cancers. It has been observed that metastases in lung grow according to a simple exponential law [CO14]. This has turned out to be the fire-lighter for intensive research efforts regarding quantification of tumour growth. However, this law fails when considering infiltrative cancers such as glioma because cell motility has not been included in the model. On the other hand it has been a good approximation to the microscopic behaviour of glioma. In order to take macroscopic behaviour into account diffusive models have been proposed.

The first proposer of a diffusive model for glioma growth was Murray in 1989 [CO15A]. Murray proposed the diffusion-reaction formalism as
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	(6.3.2.Eq.1)




where

c denotes tumour cell concentration,
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 is the diffusion flux of cells that follows Flick’s law, i.e. 
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, where 
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is the gradient operator and D is the diffusion coefficient

S(c,t) denotes the source term representing the GBM cell reproduction

T(c,t) denotes the treatment representing the GBM cell loss due to treatment. This is zero when no treatment is applied.

The initial state of the model, 
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, is defined as the initial distribution of cancerous cells.

This equation constitute the basis of the most of the proposed methods for glioma growth and invasion modeling. In 1995 Tracqui studied the evolution of cell concentration by using two characteristics of tumour growth i.e.  proliferation and invasion [CO16]. He proposed that the cells proliferate at exponential rate, thus he modified Equation (6.3.2Eq.1) to 
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	(6.3.2.Eq.2)


where ρ denotes the proliferation rate of cells.

One of the key issues has been to estimate parameters D and ρ. The first estimation [CO16] made use of two groups of glioma cells: the common ones and the resistant-to-first-chemotherapy ones. Parameter D was first estimated to be 
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 [CO17]. Moreover, the derived 2-D model had the following characteristics [CO17].  First, tumour cells could not migrate either outside the skull boundaries or into the ventrical region. Secondly, brain tissue was considered homogenous and lastly the simulated tumour was a sphere having 3cm diameter at the time of diagnosis and 6cm at the time of death.

One of the next steps was to model cancer evolution after ectomy [CO16,CO18]. This was achieved by setting the concentration of the ectomized area equal to zero and then allowing the surrounding malignant cells proliferate and diffuse until the sphere reaches a diameter of 6cm.
It is noted that all these simulations studied high-grade gliomas due to their remarkably fast invasion. However, studying low-grade gliomas is important as well. Hence, Woodward suggested that the speed of growth in low-grade tumours should be 10% of the respective speed in high-grade gliomas, yielding satisfactory results [CO17]. 

Subsequently, Mandonnet proposed that low-grade gliomas grow slowly but linearly [CO19]. This is mathematically derivable from Equation (6.3.2Eq.2) since the expanding velocity of a population which follows only the diffusion and growth laws of Equation (6.3.2Eq.2) is 
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. Mandonnet et al used data of 27 patients to show that the average tumour velocity is 2mm per year. 

Heterogeneity. Taking  heterogeneity of the brain matter into account has led to the refinement of the previously mentioned models. It is known that proliferation in white brain tissue is faster than in grey tissue [CO20]. Swanson incorporated white and gray matter differentiation in the diffusion coefficient D of Equation (6.3.2Eq.2). As stated above D represets cell motility. Thus, by modifying D cell motility can be adapted to the local conditions. Equation (6.3.2Eq.2) continues  to hold but D is now variable. 
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 within the grey and the white brain matter respectively. A brain atlas (BrainWeb database [CO21] ) has been used in order to acquire information about the white and grey matter areas. 

Anisotropy. Jbabdi et al. proposed to also take into account brain tissue anisotropy [CO22], dealing with the fact that glioma cell migration is facilitated in the direction of white matter fibers [CO23][CO24]. This work could also be supported by the Diffusion Tensor Magnetic Resonance imaging (DT MRI), that gives a very good 3D reconstruction of white matter fibers. Jbabdi used Equation (6.3.2Eq.3) in the following form 
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where  
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t

is the diffusion tensor that describes cell diffusion i.e. a 3x3 symmetric positive definite matrix that models local anisotropy and can be expressed as  
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where 
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Parameters. According to [CO25] Figure CO4 can be used as an index for estimating the values of the parameters D and ρ according to glioma grade the growth velocities and the ratio D/ρ. This log-log graph includes all parameter values estimated up to Jan. 2007 for both low- and high grade gliomas. Low grade gliomas (LGG) are mapped on the bottom left rectangle (LGG) for 2mm/yr average velocities. Respectively, high grade gliomas (HCG) are mapped on the large rectangle defined by D/ρ of 2 to 20
[image: image239.wmf]2
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 and average velocities from 10mm/yr to 200mm/yr. 
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Figure CO4. Log-log graph of D vs ρ, for high- and low- grade gliomas

(from [CO25] H. L. P. Harpold, E. C. Alvord, Jr., K. R. Swanson: Visualizing Beyond the Tip of the Iceberg: The Evolution of Mathematical Modeling of Glioma Growth and Invasion. Journal of Neuropathology and Experimental Neurology, 66(1):1—9, (2007)) 

For the case of heterogenous brain matter [CO20] and for high grade gliomas a typical  estimated value of ρ  is ρ=0.0012 /day. A typical estimated value for low grade gliomas is ρ=0.00012 /day. Therefore,  by assuming 
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 can be used [CO22].

A list of typical parameter values used in duffusive glioma models is provided in Table CO1 [CO26]

Table CO1.  The parameters of the diffusive model as proposed in the last 2 decades

(from [CO26] Powathil G, Kohandel M, Oza A, and Milosevic M,  Mathematical modeling of brain tumors: effects of radiotherapy and chemotherapy, Phys. Med. Biol. 52, 3291—3306 (2007))
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7. 
Modelling Clinical Tumour Growth and Response to Treatment: Discrete Event/Entity Based Modelling Approach [Code: DI]

7.1 Workflow of the discrete event/entity based tumour dynamics simulator

Although a continuum based  description of tumour growth using the diffusion equation is a good model for pronounced tumour invasion it does not allow for an in depth simulation of numerous biological mechanisms most of which have a discrete character (e.g. cell cycle phases, differing radiosensitivities and chemosensitivities for different cell cycle phases, stem, progenitor, differentiated cell categories  etc.). Since the latter is of utmost clinical importance, in parallel with the continuum based models discrete event/entity simulation models are being developed focusing primarily on tumour response to treatment. These models incorporate numerous biological mechanisms and their interdependences and are based on the top-down tumour dymamics simulation approach developed by the In Silico Oncology Group, ICCS, National Technical University of Athens  ( http://www.in-silico-oncology.iccs.ntua.gr/ ). 

Pertinent clinical data from the list included in Chapter 5 will be used in order to adapt, optimize and validate the discrete simulator. Details regarding the types of data applicable to each particular tumour type (gliomas and lung cancer) are also provided in Chapter 5. 

According to the discrete event/entity based modelling approach the tumour is considered a spatiotemporal distribution of discrete cells (and cell death products) belonging to several proliferative potential categories and cell cycling phases.  The discrete simulator module will function as follows (Figure  DI1)

i. The macroscopic imaging data of the patient (e.g. contrast enhanced MRI, CT, PET etc) are collected at baseline

ii. The macroscopic imaging data are segmented by the clinician (delineation of tumour boundaries, necrotic areas etc.), interpolated, three dimensionally reconstructed and eventually fused if more than one modalities are used. Both anatomy and spatial metabolic activity are the features to be ideally provided by the processed imaging data. 

iii. The microscopic imaging data of the tumour (photographs of histopathological sections of bioptic material etc.) are provided.

iv. The microscopic imaging data are processed in such a way that the density of tumour cells as well as the percentages of the populations of the various cell categories and cell cycling phases are estimated. Mapping of the areas from which the biopsies stem onto the imaging data could lead to a relatively refined cosideration of the tumour spatial inhomogeneities.

v. Along with information based on histopathological slides tumour cell cycling information (e.g. duration of cell cycle for the particular tumour) is provided from literature

vi. The pre-treatment spatial distribution of imageable and non imageable tumour cell density is estimated based on both imaging data and literature. Non imageable tumour cell distribution refers primarily to gliomas where tumour growth exhibits markedly diffusive patterns. 

vii. A discretization mesh is superimposed upon the three dimensionally reconstructed tumour. In contrast with the mesh nodes that are used in the continuum approach the geometrical cells formed by the discretization mesh constitute the elementary spatial units of the problem in the discrete event/entity based approach. Within each geometrical cell biological cells are clustered together based primarily on their mitotic potential, their cell proliferation phase and the treatment killing effect upon them. Based on mitotic potential they may be stem cells (having theoretically infinite mitotic potential), progenitor cells (having limited mitotic potential that is defined by the number of mitoses that can still undergo), differentiated cells (no mitoses possible anymore) and dead cells.  Based on the cell proliferation phase in which they are found they may belong to the G1 or the S or the G2 or the Mitosis or the G0 or the necrosis or the apoptosis equivalence class. Based on the treatment killing effect they may be treatment hit or treatment non hit cells. A careful hierarchical positioning of the various equivalence classes is adopted in order to avoid ambiguities in the description of a biological cell or biological cell cluster. 

viii. The molecular data (e.g. status, amplification and expressions of critical genes, which have been shown to drastically affect the response of the tumour under consideration to the treatment addressed) are provided. Details concerning the two tumour types considered (gliomas and lung cancer) are provided in Chapter 5. Estimates (even semi-qualitative) of their effect on the cell kill ratio per cell due to the treatment considered are also provided based on pertinent literature [e.g. DI1]. The idea is to use the cell kill ratio value provided by the Food and Drug Administration (FDA) or general literature as a cell kill ratio reference value (e.g. for a given area under curve or radiation dose) and then perturb it based on the effect of the molecular and/or histological profile of the tumour in order to achieve higher patient individualization of the simulation.

ix. The model parameters are estimated based on the previously mentioned data as well as literature based information.

x. The discretization mesh is scanned every time unit and on each geometrical cell metabolic, cell cycling, survival following treatment and simple mechanical laws are applied. The outcome is an update of the spatiotemporal distribution of the various tumour cell categories and cell cycling phases over the entire tumour.

xi. In parallel with the solution of the biological problem a mechanical refinement can take place based on the Fimite Element Method (Workpackage WP6). To this end any mechanical data available (primarily through literature) will be utilized in conjunction with the imaging data.

xii. NOTE Acceleration of the simulation code will be envisaged in order to significantly lower the computing time demands. Execution of the code on fast computing systems (eventually including clusters and/or  grid)  will also take place. Tumour growth simulators can estimate the evolution of tumour volume and the various cell category populations in function of the time (see Section 7.2), however, the execution time of each simulation instance of e.g. the ACGT Oncosimulator (a precursor of the ContraCancrum integrated simulator) currently takes several minutes, which makes it far from an interactive tool. Modern graphics processing units (GPUs) provide not only a powerful graphics engine but also a highly parallel programmable processor featuring peak arithmetic and memory bandwidth that substantially outpaces its CPU counterpart. A state-of-the-art GPU can perform over 500 billion arithmetic operations per second, and this represents a tremendous computational resource that can now be utilised for general purpose computing as a result of recent advances in GPU hardware and software architecture.  By programming an NVIDIA GPU device with the CUDA (Compute Unified Device Architecture) extension of the C language, we shall design parallel algorithms to parallelise the whole time-consuming process of tumour simulation on the GPU.Tumour evolution is computed by hourly scanning in order to allow the local application of basic biological rules; this leads to the spatiotemporal simulation of the tumour system. At each iteration, we shall assign one thread to each GC (geometrical cell) and execute the following 3 scanning steps via parallel GPU kernels:1)Cell growing. Each parallel computing thread computes all the cell cycle phase transitions and any cell that has died due to chemotherapy or radiotherapy within the GC.2) Cell transfer in the GC neighbourhood – unloading the remaining or excess cells into the surrounding 26 GCs of the current GC. This can be implemented on GPU by 27 subpasses by interleaving the 27 neighbouring GCs at each subpass.  This GPU implementation takes advantage of all of the GPU resources made available under the CUDA programming model. All the cell transferences between 27 local neighbouring GCs (a box) are evaluated in a single thread, with each thread block responsible for a row of boxes. All threads in a block simultaneously iterate through the neighbouring GCs in shared memory, computing the transfers on the boxes in their individual registers. Since all threads in a block access the same shared memory location, data are broadcast to all threads by the hardware, and no bank conflict penalty is incurred. 3) Differential tumour shrinkage. This frees the GCs that contain too few cells or creates new GCs for differential tumour expansion. It also deals with the restoration of tumour contiguity in cases where tumour fragmentation has occurred.

xiii. A prediction of the spatiotemporal distribution of the tumour cell categories and the cell cycling phases for free tumour growth [no treatment] and/or  tumour response to treatment (chemotherapy / radiotherapy) is obtained. Several forms of prediction visualization (graphs, 3D and 4D rendering etc.) are offered.

xiv. The simulated outcome is compared with the actual (primarily) imaging data following treatment and an optimization loop of the parameters estimation [and if necessary of the model algorithm iself ] is initiated.

[image: image306.png]
Figure DI1. Discrete event based tumour and normal tissue simulator workflow

7.2 A Brief Outline of the Fundamentals of Discrete Event Based Simulation Modelling

Although considerable extensions and improvements of discrete event simulators will take place during the ContraCancrum lifetime a detailed presentation of their theoretical, mathematical and computational fundamentals can be found in publications [DI2-DI18]. In the following only a high level brief outline of the basics is presented.

The tree dimensionally reconstructed tumour (based on the segmentation of the imaging data) is discretized using a cubic mesh. Discrimination between the well and poorly vascularized regions of the tumour - when possible - can be exploited by the model. Each elementary cube of the mesh is called a geometrical cell (GC) and is used as the unit for the description of the biological activity of an imageable tumour. Each GC of volume 1mm3 is assumed to contain 106 biological cells according to the classical radiobiological assumption.  The following categories of tumour cells are considered:

· Stem cells

· Limited mitotic potential or progenitor cells (LIMP cells)

· Differentiated cells

· Dead cells

Proliferating stem cells as well as proliferating LIMP cells are further discriminated according to their cell cycle phase. Dead cells are divided into necrotic and apoptotic. Within each GC, cells are clustered into equivalence classes based primarily on their proliferative potential (e.g. stem, progenitor, differentiated, dead cell categories) and on the cell cycling phases (e.g. G1, S, G2, Mitosis phases) in which they (temporarily) belong. Distribution of the cells into the various equivalence classes is dictated by the metabolic activity of their neighbourhood as estimated from the imaging data. In order to simulate the statistical character of reality local perturbations of the populations of each equivalence class are achieved through the use of pseudo-random numbers (generic Monte Carlo technique).

The discretization mesh is scanned every time unit (e.g. hour) and the fundamental rules of metabolism, cell cycling (Figure DI2), mechanics and cell survival following treatment (chemotherapy and/or radiotherapy) are applied. This may lead to cell category and cell phase transitions. Cell kill probabilities per cell, per treatment session and for a given treatment dose are calculated based on pharmacokinetics-pharmacodynamics and/or radiobiology principles and data. 

In order to effectively simulate tumour expansion or shrinkage a provisionally acceptable upper limit (NBCupper) and a provisionally acceptable lower limit (NBClower) of the number of cells that can be contained within each GC are defined. If the number of tumour cells within a given GC becomes less than NBClower during the simulation process, a procedure that attempts to “unload” the remaining cells in the neighbouring GCs is initiated. If the given GC becomes empty it “attracts” cells from its neighbourhood so that no artificial voids are created within the tumour (“horror vacui”). An appropriate shift of a chain of GCs intended to fill in the “vacuum” leads to tumour shrinkage. Similarly differential tumour expansion is achieved by an appropriate shift of a chain of GCs towards the boundaries of the tumour. In order to further refine the mechanical handling of the tumour, fusion of the simulator with the biomechanics module being developed within the framework of WP6 has been planned. 

By also taking into account a number of restrictions and many other details the simulator provides at each simulated time point a spatial prediction of the tumour volume (Figure DI3) along with the spatial distribution of its cells over proliferative potential categories, cell cycling phases (e.g. G1, S, G2, Mitosis phases) etc. 

The simulator predictions are visualized using several techniques (standard graphs, 2D, 3D, 4D animations, virtual cuts through the tumour etc.) . Based on pertinent clinical criteria the predicted outcome of the treatment is juged as favourable or unfavourable for the individual patient. 

The cellular and higher biocomplexity levels simulator will serve as the basis for the development of the integrated ContraCancrum simulator which is envisaged to finally serve as a patient individualized  treatment optimization support system. 

[image: image307.emf]
Figure DI2. A generic cytokinetic model for free tumour growth. STEM: stem cells. LIMP: Limited proliferative potential cells (progenitor cells). DIFF: terminally differentiated cells. An extension of the diagram includes also the effect of treatment on the cell [DI17,DI18]

[image: image308.emf]
Figure DI3 : A typical 3D tumour visualization of the response of an actual large clinical tumour treated with chemotherapy (from the ACGT project). Upper panel: tumour four days before treatment initiation, lower panel: predicted tumour three days after completion of the treatment course. 
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8. 
Modelling Normal Tissue Response  to Treatment [Code: NO]
The limitations imposed by the adverse effects of treatment (chemotherpy / radiotherapy) on normal tissues will be addressed by either or both of the following approaches (Figure NO1) :

8.1 First Approach 

Based on toxicological (preclinical and clinical) data, upper clinically acceptable limits for the treatment dose are available for a number of treatment modalities. In case that a candidate treatment scheme leads to unacceptable side effects based on the above limits no consideration for actual treatment [i.e. candidate scheme simulation] based on this scheme is allowed.

8.2 Second Approach 

Simple simulation models based on cell cycling and homeostasis for flexible (e.g. brain) [NO1] and/or hierarchical (e.g. blood) normal tissues are developed. The outcome of the simulation of the response of normal tissues to the candidate tumour treatment is visualized through several techniques. The prediction in conjunction with any limits based on toxicological studies may be used in order to allow or not further consideration of the treatment scheme. The simulation outcome is compared with any known actual side effects, thus  leading to the optimization of the normal tissue simulation module. 

Details regarding the complication data to be provided by the clinical partners in order to adapt, optimize and validate the models are included in Chapter 5.

[image: image309.jpg]
Figure NO1. Two alternatives to take into account the response of normal tissues to treatment
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9. Conclusions [Code: CC]

A high level outline of the various simulation modules that constitute the cell and higher biocomplexity level tumour dynamics simulator of the ContraCancrum project has been provided. An introduction to the emerging field of in silico oncology in conjunction with a brief literature review have preceded the basics of the models. The latter refer to several fundamental microscopic mechanisms of tumour growth and response to treatment (including i.a. prevascular tumour growth, prevascular tumour response to treatment i.e. chemotherapy and/or radiotherapy, angiogenesis, invasion, metastasis etc.) as well as to the dynamics (growth and treatment response) of (imageable) clinical tumours. In order to address large tumours two mutually complementary approaches have been adopted. The first one is based on a continuum treatment of the tumour via the diffusion equation whereas the second one is based on discrete event/entity simulation techniques that make use of cellular automata, the Monte Carlo method, cell clustering into equivalence classes as well as numerous dedicated algorithms. In this way both diffusion phenomena and complex multiscale biological mechanisms of a predominantly discrete character have been addressed. Alternative ways to consider the treatment side effects have been delineated. Since gliomas  and lung cancer constitute the ContraCancrum modeling paradigms, a description of the multiscale data to be provided by the clinical partners in order to drive, adapt, optimize and validate the imageable tumour models has also been presented..

ANNEX A

Numerical Solution of the Diffusion Equation in Three Dimensional Heterogenous and Anisotropic Brain

I. 3D expansion
The diffusion equation 
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is expanded in 3 dimensions so that it can be solved numerically
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The product of the diffusion tensor 
[image: image247.wmf](

)

Dx

t

r

 multiplied by the standard base vectors 
[image: image248.wmf]123

,,

eee

rrr

 yields


[image: image249.wmf](

)

[

]

(

)

[

]

(

)

111213

1212223112131

313233

111213

2212223122232

313233

111213

3212223

313233

1

0,

0

0

1,

0

0

0

1

T

T

DDD

DxeDDDDDD

DDD

DDD

DxeDDDDDD

DDD

DDD

DxeDDDD

DDD

éùéù

êúêú

==

êúêú

êúêú

ëûëû

éùéù

êúêú

==

êúêú

êúêú

ëûëû

éùéù

êúêú

==

êúêú

êúêú

ëûëû

t

rr

t

rr

t

rr

[

]

132333

T

DD


Direct substitution into the diffusion equation yields after some straightforward algebraic manipulations
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Term grouping 
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leads to the expression
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II. Finite Differences. 

A detailed procedure on how to derive a linear system that expresses the diffusion – reaction equation is presented. The forward Euler method is studied first, then the backward Euler method and last the 
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- method.  The Crank-Nicolson method is a subcase of the θ-method approach.

III. Forward Euler

The Forward Euler method is applied in order to approximate the local derivatives in (A1).  
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Substituting the (A2) approximations into leads to the following expression 
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Introducing for each point P(i,j,k)  the constants below
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Using the vector form of 
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	the overall solution of the equation at the time point n+1 can be found by solving

                                                             
[image: image265.wmf]1

nn

n

CC

AC

T

+

-

=

D

rr

tr


where 
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 is a 
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matrix with its elements defined as
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This is a 
[image: image269.wmf]XYZXYZ
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sparse matrix with 19 diagonals, as shown in Figure A1. In Figure A.1 the light areas correspond to zero values whereas the black lines correspond to the non-zero diagonals. Note that the thicker lines represent  3 consecutive diagonals while the thin ones represent isolated diagonals.
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Figure A1. The sparse matrix A
Matrix A is tridiagonal with fringes. It posseses one central and four additional tridiagonal areas as well as four single diagonal areas. Having acquired the 
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  matrix a direct solution can be found simply by calculating
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This is a very easy to implement solution since there is no need to solve a linear system of equations but just to perform direct substitution. However, numerical stability is the main issue. As proven in [CO15] the method is stable and thus provides reliable results if
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IV. Backward Euler 

Now the Backward Euler method is addressed. The approximate expressions for the local derivatives (Equation A1) at the internal points of the mesh are given below. A solution achieved using the Backward Euler is preferrable to its Forward Euler counterpart since there are no constraints regarding numerical stability. According to the Backward Euler method the local derivatives can be approximated as 
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In a way similar to the one followed by the Forward Euler method the following equation is derived 
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 where 
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is exactly the same sparse matrix that was  derived using the Forward Euler method. Therefore, finding a solution to the equation 
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 is equivalent to finding a solution to the linear system
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where 
[image: image279.wmf]I

t

is the 
[image: image280.wmf]XYZXYZ
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 identity matrix. One of the methods that can be used to solve this linear system is the Conjugate Gradient Method (see Section 6.2.3)
Stability and accuracy are the main advantages of the Backward Euler method (in relation to the Forward Euler method) at the expense of increased computational and storage demands.

V. The θ-method 

The
[image: image281.wmf]

 EMBED Equation.DSMT4  [image: image282.wmf]q

-method when applied to approximate the local derivatives leads to the equation
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where 
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 is exactly the same sparse matrix as the one derived by the Forward Euler method. As stated  in [CO22] 
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 is optimally chosen if 
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. Moreover, selection of θ=1/2  produces the Crank-Nicolson method. Here again an iterative numerical method to solve the linear system (A11) is to be applied.

	
[image: image288.wmf](

)

(

)

(

)

1

1

nn

ITACTAIC

qq

+

-D=-D+

trtr

tt


	(A11)


Both  the 
[image: image289.wmf]q

- and the  Crank Nicolson methods are stable and more accurate than the Backward Euler [CO22] but their computational and storage requirements are higher.
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