

Deliverable No. 5.1.3

The final CHIC technical architecture

Grant Agreement No.: 600841

Deliverable No.: D5.1.3

Deliverable Name: The final CHIC technical architecture

Contractual Submission Date: 30/11/2016

Actual Submission Date: 31/03/2017

Dissemination Level

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 2 of 180

PU Public

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services) X

CO Confidential, only for members of the consortium (including the Commission Services)

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 3 of 180

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: CHIC

Project Full Name: Computational Horizons In Cancer (CHIC): Developing Meta- and

Hyper-Multiscale Models and Repositories for In Silico Oncology

Deliverable No.: D5.1.3

Document name: The final CHIC technical architecture

Nature (R, P, D, O)1 P

Dissemination Level (PU, PP,

RE, CO)2

RE

Version: 2.0

Actual Submission Date: 31/03/2017

Editor:

Institution:

E-Mail:

Giorgos Zacharioudakis

FORTH

gzaxar@ics.forth.gr

ABSTRACT:

This document reports on the final version of the CHIC technical architecture and it describes the

most important views of the architecture based on the IEEE 1471 standard. We describe the

functionality of the CHIC platform, its functional components and their programming interfaces, the

type of information handled and the technical details behind the implementation of this

architecture.

KEYWORD LIST:

CHIC technical architecture, views, viewpoints, requirements, functionality, functional components,

interactions, information, deployment, technical resources, programming interfaces.

The research leading to these results has received funding from the European Union Seventh

Framework Programme under grant agreement no 600841.

1 R=Report, P=Prototype, D=Demonstrator, O=Other
2 PU=Public, PP=Restricted to other programme participants (including the Commission Services), RE=Restricted to a group

specified by the consortium (including the Commission Services), CO=Confidential, only for members of the consortium

(including the Commission Services)

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 4 of 180

The author is solely responsible for its content, it does not represent the opinion of the European

Community and the Community is not responsible for any use that might be made of data appearing

therein.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 5 of 180

MODIFICATION CONTROL

Version Date Status Author

1.0 12/06/2014 Initial version

submitted to EC

Giorgos Zacharioudakis

1.1 19/02/2016 Updated version,

draft

Giorgos Zacharioudakis

1.2 29/07/2016 Draft Giorgos Zacharioudakis

1.3 07/11/2016 Draft Giorgos Zacharioudakis

1.4 13/01/2017 Draft Giorgos Zacharioudakis

1.5 24/03/2017 Draft, internal

review

Giorgos Zacharioudakis

2.0 31/03/2017 Final version

submitted to EC

Giorgos Zacharioudakis

List of contributors

 Georgios Stamatakos, ICCS

 Fay Misichroni, ICCS

 Nikolaos Tousert, ICCS

 Manolis Tsiknakis, TEI-C & FORTH

 Kostas Marias, FORTH

 Giorgos Zacharioudakis, FORTH

 Stelios Sfakianakis, FORTH

 Ioannis Karatzanis, FORTH

 Elias Neri, Custodix

 Marco Viceconti, USFD

 Daniele Tartarini, USFD

 Debora Testi, CINECA

 Simone Bna, CINECA

 Philippe Buechler, UBERN

 Roman Niklaus, UBERN

 Pierre Grenon, UCL

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 6 of 180

 Norbert Graf, USAAR

 Feng Dong, BED

 Nigel Mcfarlane, BED

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 7 of 180

Contents

1 EXECUTIVE SUMMARY .. 8

2 INTRODUCTION .. 9

3 ARCHITECTURAL APPROACH ... 10

3.1 ARCHITECTURAL DESCRIPTION - THE IEEE 1471 STANDARD .. 10

3.2 VIEWS OF THE ARCHITECTURE... 11

3.3 VIEWS OF THE CHIC ARCHITECTURE .. 13

4 ARCHITECTURAL DRIVERS IN CHIC .. 15

4.1 STAKEHOLDERS... 15

4.2 GOALS, CONSTRAINTS, PRINCIPLES, CONCERNS, REQUIREMENTS OF THE CHIC STAKEHOLDERS 16

4.3 EVOLUTION AND REFINEMENT OF THE ARCHITECTURE ... 18

5 FUNCTIONAL VIEW ... 20

5.1 INTRODUCTION - HIGH LEVEL VIEW .. 20

5.2 PRESENTATION LAYER .. 22

5.3 SERVICE LAYER ... 30

5.4 DATA LAYER .. 64

5.5 INFRASTRUCTURE LAYER ... 147

6 DEPLOYMENT VIEW .. 155

6.1 INTRODUCTION – HIGH LEVEL VIEW ... 155

6.2 PRESENTATION LAYER .. 155

6.3 SERVICE LAYER ... 158

6.4 DATA LAYER .. 167

6.5 INFRASTRUCTURE LAYER ... 171

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 8 of 180

1 Executive Summary

This document reports on the design of the CHIC technical architecture. We describe the CHIC

technical architecture following the IEEE 1471 - ISO/IEC 42010:2007 approach. In order to describe

the architecture we select a set of views and viewpoints such as the Functional, the Information, the

Security and the Deployment view that provide the necessary information to understand what the

system does, its main functional components, their programming interfaces, their user interfaces,

what information is stored or exchanged in the system and the technical details of the reference

implementation and the execution environment.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 9 of 180

2 Introduction

The CHIC project developed a software platform consisting of tools, services and infrastructure that

support the creation of multiscale cancer hypermodels (integrative models). CHIC aspires to make a

breakthrough in multiscale cancer modeling through greatly facilitating multi-modeller cancer

hypermodelling and its clinical adaptation and validation. Standardization of model description and

model “fusion” are two of the core means to achieve this goal. The creation of such elaborate

hypermodels is expected to accelerate the clinical translation of multiscale cancer models and

oncosimulators following their prospective clinical validation (in silico oncology).

Towards this goal, the CHIC project developed a suite of tools, services and infrastructure that

supports accessibility and reusability of VPH mathematical and computational hypermodels. These

include a hypermodelling infrastructure consisting primarily of a hypermodelling editor and a

hypermodelling execution environment, an infrastructure for semantic metadata management, a

hypermodel repository, a clinical data repository, a metadata repository and an in silico trial

repository for the storage of executed simulation scenarios. All these tools and services are

connected through appropriate security services. Multiscale models and data are semantically

annotated using the ontological and annotating tools. An image processing and visualization toolkit

have been developed, as well as cloud and virtualization services have been deployed to support this

platform. The CHIC tools, services, infrastructure and repositories may provide the community with a

collaborative interface for exchanging knowledge and sharing work in an effective and standardized

way and a number of open source features and tools will enhance usability and accessibility.

The tools and facilities described above comprise a complex software system, which calls for a

systematic approach to design, implement and document its architecture. In this document, we

describe the software architecture using the approach of the ISO/IEC 42010:2007 standard.

The rest of this document is organized as following: In chapter 3 we briefly present our architectural

approach. In chapter 4 we present the architectural drivers behind the CHIC platform, its

stakeholders and their concerns. In chapter 5 we elaborate on the Functional view of the CHIC

architecture and its functional components. In chapter 6 we present the Deployment view of the

architecture, the technical details and the execution environment of the platform.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 10 of 180

3 Architectural approach

In order to comprehend a complex computer system, we have to understand what each of its

important parts actually do, how they work together, and how they interact with their environment –

in other words, its architecture. Over the years a number of approaches have been proposed to

describe and document software architectures. In this section we briefly describe some of the most

well-known ones.

3.1 Architectural description - The IEEE 1471 standard

The IEEE 1471 standard3 “Recommended practice for Architecture Description of Software-Intensive

Systems” addresses the activities of the creation, analysis, and sustainment of architectures of

software-intensive systems, and the recording of such architectures in terms of architectural

descriptions. A conceptual framework for an architectural description is established and the content

of an architectural description is defined. It also provides in annexes the rationale for key concepts

and terminology, the relationships to other standards and examples of usage. This recommended

practice has been also adopted since 2007 as an ISO standard, ISO/IEC 42010:2007. Figure 1

illustrates the conceptual model of the architectural description, as defined in IEEE 1471.

Figure 1 Conceptual model of architectural description from IEEE1471

3 IEEE 1471 - ISO/IEC 42010:2007 standard. http://www.iso-architecture.org/ieee-1471

http://www.iso-architecture.org/ieee-1471

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 11 of 180

According this conceptual model, a system has an architecture and this can be described in an

architectural description (AD). Note the distinction between the architecture of a system, which is

conceptual, from the description of this architecture, which is concrete. The architectural description

is defined as “a collection of products to document an architecture”. The AD can be divided into one

or several views. Each view covers one or more stakeholder concerns.

 A view is defined as “a representation of a whole system from the perspective of a related

set of concerns”. A view is created according to rules and conventions defined in a

viewpoint.

 A viewpoint is defined as “a specification of the conventions for constructing and using a

view. A pattern or template from which to develop individual views by establishing the

purposes and audience for a view and the techniques for its creation and analysis”.

An AD selects one or more viewpoints for use and this choice depends on the concerns of the

stakeholders that need to be addressed by the architectural description. A view may consist of one or

more models and a model may participate in one or more views. Each such model is defined

according to the methods established in the corresponding viewpoint definition. The AD aggregates

the models, organized into views.

The IEEE 1471/ISO/IEC 42010:2007 standard defines a set of requirements for conforming

architectural descriptions that can be summarized as:

 Identification, version, and overview information of an architectural documentation (AD)

 Identification of the system stakeholders and their concerns

 Specification of each viewpoint that has been selected and the rationale for those selections

 One or more architectural views

 A record of all known inconsistencies among the AD’s required constituents

 A rationale for selection of the architecture

It is evident from the above that this standard is largely based on the definition of the most

important viewpoints and the corresponding views but it does not provide any concrete definition of

those. The selection of specific views and viewpoints is largely depended on the specific architect -

the stakeholders, requirements, constraints etc.

3.2 Views of the architecture

For the selection of specific views and viewpoints of the architecture, there are a number of different

architectural frameworks supporting and proposing different views and viewpoints, such as the 4+1

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 12 of 180

views model4, the Reference Model of Open Distributed Processing (RM-ODP)5, the Zachman

framework6, the Department of Defense Architecture Framework (DoDAF)7, etc.

In the 4+1 model, the views that are used to describe an architecture are:

 The Logical view, which describes the functionality of the system.

 The Development view, which describes the implementation of the system.

 The Process view, which describes the runtime behaviour, such as concurrency and

performance issues.

 The Physical view, which describes the deployment and the physical topology of the system.

 The Scenarios or Use Case view, which is a central view (the “+1”) that describes the system

from the end user viewpoint and is used both for illustrating as well as validating the general

architecture.

In the work of Rozanski and Woods8 they prescribed a similar set of viewpoints to be used in

documenting software architectures. They have essentially extended the 4+1 model by providing the

Information viewpoint to deal with data related concerns, like structure, ownership, distribution, etc.

and the Operational viewpoint in order to describe how the system is installed, monitored etc. Their

six viewpoints are the following:

 The functional view documents the system’s functional elements, their responsibilities,

interfaces, and primary interactions. A functional view is the cornerstone of most

architecture documents and is often the first part of the documentation that stakeholders try

to read. It drives the shape of other system structures such as the information structure,

concurrency structure, deployment structure, and so on. It also has a significant impact on

the system’s quality properties, such as its ability to change, its ability to be secured, and its

runtime performance.

 The information view documents the way that the architecture stores, manipulates,

manages, and distributes information. The ultimate purpose of virtually any computer

system is to manipulate information in some form, and this viewpoint develops a complete

but broad view of static data structure and information flow. The objective of this analysis is

to answer the important questions around content, structure, ownership, latency,

references, and data migration.

4 Kruchten, Philippe. “Architectural Blueprints - The 4+1 View Model of Software Architecture.” IEEE Software,

12(6):42–50, November 1995.
5 Reference Model of Open Distributed Processing. ITU-T Rec. X.901-X.904 / ISO/IEC 10746, http://www.rm-

odp.net/
6 Zachman framework. http://www.zachman.com/about-the-zachman-framework
7 Department of Defense Architecture Framework (DoDAF). http://dodcio.defense.gov/dodaf20.aspx
8 Rozanski, Nick, and Woods, Eoin. Software Systems Architecture: Working with Stakeholders Using

Viewpoints and Perspectives, 2nd Edition. Addison Wesley, 2011.

http://www.rm-odp.net/
http://www.rm-odp.net/
http://www.zachman.com/about-the-zachman-framework
http://dodcio.defense.gov/dodaf20.aspx

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 13 of 180

 The concurrency view describes the concurrency structure of the system and maps

functional elements to concurrency units to clearly identify the parts of the system that can

execute concurrently and how this is coordinated and controlled. This entails the creation of

models that show the process and thread structures that the system will use and the inter-

process communication mechanisms used to coordinate their operation.

 The development view describes the architecture that supports the software development

process. Development views communicate the aspects of the architecture of interest to

those stakeholders involved in building, testing, maintaining, and enhancing the system.

 The deployment view describes the environment into which the system will be deployed,

including capturing the dependencies the system has on its runtime environment. This view

captures the hardware environment that the system needs, the technical environment

requirements for each element, and the mapping of the software elements to the runtime

environment that will execute them.

 The operational view describes how the system will be operated, administered, and

supported when it is running in its production environment. For all but the simplest systems,

installing, managing, and operating the system is a significant task that must be considered

and planned at design time. The aim of the operational view is to identify system-wide

strategies for addressing the operational concerns of the system’s stakeholders and to

identify solutions that address these.

3.3 Views of the CHIC architecture

Based on the architectural drivers of the CHIC project, the stakeholders, the requirements, the

constraints and the general principles that are given in more detail in chapter 3, we used the

following subset of the views of the Rozanski and Woods model for the architecture description:

 The Functional view, to describe the functionality and the functional elements of the

architecture

 The Information view, to describe the type of information, its flow and its management in

the system

 The Deployment view, to describe the technical implementation details, the execution

environment and the deployment configuration

In the initial version of the technical architecture, due to the high importance of the security aspects

in the CHIC project in order to address the legal and security requirements, we had included a

dedicated Security view to describe the security issues of the architecture. However, in this final

version of the architecture we do not elaborate on the security aspects since they are covered in

exhaustive detail in CHIC deliverable D5.2.2 “Final version of security tools and guidelines”.

Similarly, in the initial version of the architecture we elaborated on the Information view but in this

final version it is not described in deep since all details regarding the design and implementation of

the CHIC Repositories can be found in the deliverable D8.4 “Report on the final system”.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 14 of 180

A view that is often used for the description of the architecture, as proposed also by Rozanski and

Woods, is the Operational view. This information however, depends on the deployment model of

the architecture and the specific operational context and for the current deployment model most of

the necessary information is given in the deployment view. For other deployment models, we discuss

the effects and the operational consequences in D5.1.2 “Deployment models of the CHIC technical

architecture and its private cloud”.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 15 of 180

4 Architectural drivers in CHIC

As a general principle, the development of a system is successful when it delivers the functionality

requested by its users. So the most important factors to take into account when designing the

architecture of a system are the stakeholders involved, their requirements and any existing

constraints, such as technical or legal issues that must be met. Below we present the drivers behind

the design of the CHIC architecture, as defined in the Technical Annex of the project, the deliverables

of the project and the feedback we have collected from the consortium partners.

4.1 Stakeholders

The general groups of stakeholders involved or concerned about the CHIC project are the CHIC

consortium partners, the patients, the users (current or future) of the developed tools and the

European Commission.

The consortium partners as well as the external users of the CHIC platform and tools can be further

categorized into distinct stakeholder groups; the clinical partners, such as clinicians, clinical

researchers and data providers, and the technical partners such as the modellers, researchers in

various domains, especially in the clinical, biological or bioinformatics domain, the software

developers and the administrators of the final platform.

While each stakeholder might have different concerns or requirements over the CHIC platform, some

of them might share in parallel more than one role. For example a clinical partner might both be a

clinical data provider and a clinical researcher; a technical partner may both be a model provider and

a software developer. For this reason, for the sake of clarity and better understanding of each

stakeholder category, the requirements and the functionality they need, the categorization given

below is based on the distinct virtual roles participating in the project than the actual end-users or

stakeholders. Due to simplicity, the architecture does not enforce any separation of the roles in the

functionality of the system. The separation of functionality, or access control, is achieved in the

implementation of the architecture by introducing relevant mechanisms and policies (described in

briefly in paragraph 5.3.3 and in more detail in deliverable D5.2.2 “Final version of security tools and

guidelines”).

Below we list a brief description of the stakeholders; a more elaborate description is given later in

the following section.

Table 1 Stakeholders of CHIC

Stakeholder Remarks

Data providers The data providers are the end users who will be providing data into the
CHIC platform. The main tasks of those users will be to de-identify, upload
and annotate data for usage by other users or components of the platform.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 16 of 180

Model providers The model providers upload, annotate and execute already available
models. They also develop and execute hypermodels (integrative models)
using the CHIC platform.

Researchers This is a general user group which contains clinicians, bioinformaticians,
mathematicians, physicists etc. whose main task is to design, compose or
execute hypermodels in CHIC.
They edit, manage, execute, publish hypermodels or use the visualization
and imaging tools to conduct their research.

Clinicians The clinicians search and execute hypermodels or imaging tools that are
already available in the platform and they operate them on appropriate data
sets in order to find answers into specific clinical questions.

Legal partners The legal partners of the consortium are neither clinical nor technical
partners; they can be seen as a representative both of the patients, the EC
and the State, making sure that all legal aspects are met.

Software developers They develop and test the IT infrastructure (development phase)

Administrators They operate the IT infrastructure (production/operation phase)

Patients They consent to give their personal data for research, or they are interested
in having access to results of research which might relate to their own
disease.

External users This user category contains all users outside of the CHIC consortium.
External users may want to access and use the CHIC IT platform or results of
research conducted with it. They are not officially related to the CHIC
project.

European Commission The EU is funding the CHIC project and has a contract with the CHIC
consortium members for the delivery of the final CHIC outcome.

4.2 Goals, constraints, principles, concerns, requirements of the CHIC

stakeholders

4.2.1 Data providers

Data providers are usually clinicians or clinical researchers who share data in order to be able to use

it for their own research, and to the benefit of their patients. The goal of the data providers, inside

the CHIC platform, is to be able to easily upload and share the data they own. Their main concern is

to be able to protect the anonymity and the legal rights of the persons whose data are used in CHIC

and also to retain, as much as possible, the right to use/update/withdraw these data –in other

words, to have clear terms of ownership and control.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 17 of 180

4.2.2 Model providers

Model providers come from different domains; they often are IT researchers, physicists,

mathematicians, bioinformaticians, biologists, clinical researchers. They develop models using a

variety of technologies (outside the context of CHIC) and they want to upload, share, and execute

them in the context of CHIC in order to validate them, or to expand them by finding other models

and composing hypermodels (integrative models). A main concern that they have, similar to the data

providers, is to retain control over what they share or its results –in other words, the intellectual

property rights (IPR) management. An important goal also for CHIC is to ensure the technical

compatibility between the technologies that the modellers use and the ones supported by CHIC.

4.2.3 Researchers

The researchers group is a general group consisting of people from different domains, similarly to the

model providers. Their main goal into the CHIC platform is to find available models and data sets that

relate to their scientific research, to combine those models, forming hypermodels (integrative

models) and to execute them. Their main concerns relate to the scientifically sound outcome of this

integrative approach and all the related engineering aspects in order to achieve this task.

4.2.4 Clinicians

The clinicians are a distinct subset of the researchers’ user group, whose main goal and concern is to

find answers into concrete clinical questions. They usually don’t have as a goal to develop models or

hypermodels, but to find and execute already developed tools in order to gain knowledge that will

help their patients.

4.2.5 Legal partners

The legal partners, share concerns with the data and model providers in terms of the IPR

management, the legal constraints concerning the handling of personal and sensitive data, and the

adherence to the legal constraints of the overall platform, such as the auditing, authentication and

authorization mechanisms. This group of stakeholders can be seen as a representative of the

patients, the EC and the State, who makes sure that all procedures followed as well as the final

system meet the legal and ethical constraints.

4.2.6 Software developers

The software developers, the IT partners of the consortium have as primary goal to deliver the CHIC

platform with all the necessary functionality, with the time and budget constraints that are imposed

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 18 of 180

by their contractual obligations with the rest of the consortium partners and the EC. Their primary

concerns are to overcome the IT engineering difficulties and deliver a state of the art infrastructure.

4.2.7 Administrators

The administrators can be considered as a subset of the IT partners whose main task is to run the

CHIC infrastructure when it enters a production phase. The primary concern of those users is having

an infrastructure that works robustly and the availability of tools that will make their job easier for

the management of the whole platform.

4.2.8 Patients

This user group is not officially involved in the CHIC project, but their concerns are implicitly shared

through the data providers, the legal partners and the EC. The main concern of this user group is

respecting their personal data and having their informed consent in whatever clinical practice

concerns them, and at the same time to be able to benefit from state of the art research and clinical

trials that could help them into their individual clinical case.

4.2.9 External users

This user group is the general public who are not officially related with the CHIC. Researchers from

the wider scientific community who are interested in gaining knowledge from the CHIC research,

sharing data or models, or interested in collaborating in whatever means. The CHIC platform should

be built having an open architecture, using standards and exposing information and knowledge with

such a way that will promote the research collaboration and that will disseminate knowledge and

experience.

4.2.10 European Commission

The European Commission is the stakeholder who, on behalf of the taxpayers, is concerned over

having a functioning system delivered timely, with the financial and other contractual restrictions

met, and by ensuring that the overall project meets the research goals that are foreseen and highly

expected.

4.3 Evolution and refinement of the architecture

The architecture aims to address the requirements and concerns of the stakeholders, so it is natural

to be refined and adapted in the development course if any requirements change and as feedback

from the end users is collected and re-iterated in the design process.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 19 of 180

Some major requirement modifications that emerged in the course of the project that required

major changes in the initial architecture are the following:

 Private cloud. The initial CHIC Technical Annex had the plan to deploy a private cloud for the

design and implementation of the project tools and components and then to migrate all

services and data to a public cloud, in a more stable, robust and resource-rich operational

environment. However, critical review comments that we received from the project

reviewers strongly advised the consortium to modify this planning and to not deploy any

project data, especially sensitive biomedical data, into any public cloud; irrespective from the

fact that the design of the architecture would have installed all the necessary policies,

mechanisms and precautions for such a utilization of 3rd party infrastructure. This

modification in the design constituted a major turn in the course of the project that affected

not only the infrastructure layer of the architecture but also a number of the technical

components.

 Focus on the Clinical functionality of the project. The initial Technical Annex had the vision to

implement a prototype of a technical platform that would provide functionality to a variety

of end user categories, such as modellers, researchers, clinicians, bioinformaticians.

However, taking into account the time, budget and resource constraints of the project this

vision proved that it probably was too ambitious; such an endeavour would go beyond the

scope of the project and wouldn’t have allowed to focus and elaborate on many technical or

research issues of the project. Thus, the reviewers suggested that the project should

primarily focus on delivering the clinical functionality of the project. Again, this requirement

modification changed the focus of the project. A number of technical tools were given higher

priority in the implementation and some new functionality was introduced in order to

address mainly the requests and the functionality required from the clinical end users. Most

important modification was the introduction of the CRAF tool, in order to provide the clinical

functionality of the project through a desktop application. This modification downgraded the

importance of other tools such as the Data Upload Tool, the Hypermonitor (hypermodelling

execution monitoring) and the User Portal, since CRAF integrated their functionality that was

addressed to clinical users.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 20 of 180

5 Functional view

5.1 Introduction - High level view

In this section we describe the Functional view of the system; the way that the system interacts with

the end users or other systems and fulfils their requirements. The functionality of the system results

from the functionality of its constituent functional components. Some functional components,

mostly the ones in the user interface (presentation) layer, are meant to be used by end-users so their

functionality is provided by a graphical user interface, while other components are meant to be used

or interact programmatically with other software components and consequently they provide an

application programming interface (API).

In order to describe the functional view of the system, we need a list of its functional elements, their

responsibilities, their interactions and their interfaces, either user interfaces or programmatic

interfaces.

In Figure 2 we depict a high level view of the main functional components of the CHIC platform,

organized into layers and functional groups:

 On top is the Presentation layer which includes the components that provide a graphical

user interface (GUI). These components are the point of access and interaction of the end

users with the CHIC platform. Two major subgroups on this layer are the desktop-based and

the web-based applications.

 Below is located the Service layer which includes the back-end services, the tools and

components that provide business logic to the CHIC platform and mostly interact with other

components via application programming interfaces (API).

 The Data layer sits below, and includes the repositories of the system. The functionality of

these components is described in this section but an elaborate description of the information

they store can be found in the corresponding deliverable D8.4 “Report on the final system”

that describes the CHIC repositories.

 The Infrastructure layer is located on the bottom, providing support and physical resources

to the other functional components.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 21 of 180

Figure 2 : Functional view: A high level view of the CHIC functional components

The layering described above is a conceptual separation which serves in order to better illustrate the

functional groups and their role in the overall functionality of the platform. However, there is not any

strict separation of the interaction between the various layers; the user applications also interact

with the data integration layer and the repositories, and the service layer also interacts directly with

the infrastructure layer. The implementation of these functional groups during the development

phase of CHIC is roughly depicted in the separation of work packages in the Technical Annex of CHIC:

ID Functional groups WP(-s)

1 Integrated platform (CRAF, Portal) WP10

2 Image processing and visualisation toolkits WP9

3 Hypermodelling infrastructure WP7

4 Data management system (data and model repositories) WP8

5 Cloud infrastructure (storage and computation) WP5, WP10

6 Semantics framework (annotation of data and models) WP7, WP8

7 Security framework WP5

In order to describe the functional view of the system we present below an elaborate list of its

functional elements and the functionality they provide, their interactions with other CHIC

components and their interfaces, either user interface (UI) or programmatic interface (API).

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 22 of 180

5.2 Presentation layer

5.2.1 Clinical Research Application Framework (CRAF)

5.2.1.1 Description

The aim of the Clinical Research Application Framework (CRAF) is to provide a suite of tools in the

clinical domain for the clinicians to run the CHIC models that have been verified for clinical use in

order to gain potentially valuable information for the best treatment or diagnosis of their patients. Its

main responsibility therefore is to request the execution of the CHIC hypermodels for the given

patient data and to present their results to the clinical users. In addition to that, CRAF is also

responsible for the upload of the patient data to the clinical domain of CHIC and their proper

categorization and indexing, and in general for the provision of a unified interface to the whole CHIC

platform for the clinical purposes.

5.2.1.2 Functionality

ID Functionality

1 Allow the enrolment of patients by the authorized clinical stuff and the upload of
the relevant clinical data.

2 Support the selection of the most relevant hypermodels to run based on the
profile and characteristics of a given patient.

3 Support the execution of the selected hypermodels for a specific patient based
on a relevant clinical question and the presentation of their results.

5.2.1.1 CHIC components interaction

The main controller of CRAF is responsible for aggregating information from a variety of CHIC

components in order to provide a unified interface and a single point of access for the CHIC clinical

users (see Figure 3). These components include:

 The Model Repository, which is the model registry of CHIC. CRAF retrieves the list of the

available, clinically relevant, hyper models from this repository and presents them to the

user to be selected.

 The VPH-HF execution framework that is responsible for the actual model execution using

the user supplied patient data.

 The inSilico Trial Repository, which stores the results of the executions alongside with the

input data used and any other relevant information, such as starting and ending time, the

identity of the users that triggered the execution, etc.

 The Clinical Data Repository for the storage and the indexing of the patient data that the

users upload through CRAF. These sets of data are subsequently used for the execution of

the CHIC hypermodels, so CRAF also keeps enough information about what have been

uploaded, by whom, etc.

 The Semantic services and the semantic infrastructure are the curator of rich metadata

annotations using domain specific ontologies for the models, their parameters, and their

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 23 of 180

outputs. CRAF contacts the semantic infrastructure to acquire these annotations and make

intelligent decisions on the values of the parameters of the hypermodels or the specific

patient data that should be used for each execution.

 The security related set of services, such as the Identity Provider/Secure Token Service, the

Authorization Service, and the Personal Information Management Service (PIMS) are vital for

providing the security layer in the CHIC clinical domain. CRAF contacts the Authorization

Service in order to make authorization decisions based on the users’ identity and roles

before any access or modification to the sensitive patient data and prior to any model

execution. No patient specific (identifying) information is stored in CRAF. Instead, during the

registration of a new patient, it forwards patient demographics and identifiers to PIMS and

gets back the patient pseudonym. All data managed by CRAF are tagged with the patient

pseudonyms. Whenever, for usability purposes, it needs to present the patients’

demographics to the user, CRAF contacts PIMS again to do the reverse mapping, from the

pseudonym to the real patient identity.

In addition to the above components, CRAF also integrates with the auditing and monitoring services

of the cloud infrastructure so that the administrators of the platform and responsible personnel have

a detailed view of its health and usage.

Figure 3 The architecture of the CHIC clinical domain and CRAF as its core

5.2.1.2 API interface/User Interface

The end-user facing application of CRAF is accessible through a web browser, although a desktop

version of it is also available but it’s considered deprecated. CRAF does not expose any programmatic

CHIC in the context of a Hospital

or a Clinical Trial

CHIC Infrastructure

Model

Repository

User

Clinical Data

Objects

Model
Model

Model
Model

Model

Repository

Model

Execution

CRAF UI

(frontend)

IdProvider

Authorization

Service

CRAF

Server

(backend)

Patient

Management

User Settings

Management

CDR

PIMS

inSilico Trial

Repository
Experiment

Repository

Semantic

Services
Metadata

Repository

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 24 of 180

interface (API) apart from the one used for its own purposes, i.e. the communication between the

client HTML and Javascript based interface and the server side.

The following pictures show some of its functionality and the user interface it supports. More details

about its features and interface can be found in Deliverables 6.2 (“Initial standardized cancer

hypermodels “) and 10.5 (“The CHIC Clinical Research integrated platform”).

Figure 4 The main CRAF window

Figure 5 Patient selection

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 25 of 180

Figure 6 Overview of the input/output parameters before the execution of the chosen hypermodel for the

selected patient and the chosen question

5.2.2 DrEye - Image processing toolkit

5.2.2.1 Description

The Doctor Eye suite serves as a flexible and extendable basis for the image processing toolkit. The

suite offers a plugin-environment, for which a variety of image processing modules are being

developed (e.g. for skull-stripping of brain images). The stand-alone software can process and

visualize multimodal medical images (such as multimodal Magnetic Resonance Images) for

qualitative as well as quantitative three-dimensional analysis of tumor shape. The plugins are

developed using the state-of-the-art image processing library “Insight Registration & Segmentation

Toolkit” (ITK) from Kitware.

5.2.2.2 Functionality

ID Functionality

1 Loading and Writing of medical image data. Supported formats:

 DICOM (.dcm)

 Metaimage with embedded header (.mha)

 Metaimage with separate header (.mhd + .raw)

2 Visualization of medical image data.

3 General image processing capabilities (

 image smoothing,

 resampling,

 and more…

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 26 of 180

4 Statistical analysis on selected regions of interest.

 Surface/volume estimation.

 Computation of several statistics magnitudes

 Histogram charts

 and more…

5 Offers a variety of tools for definition and refinement of manual annotations (Magic wand,
Contouring tool and many manual selection tools for accurate delineations with voxel
precision.).

6 Extendable through plugins

5.2.2.1 CHIC components interaction

The DrEye application interacts mainly with the CCGVis component for the visualization of tumour

and simulations. Implicit, manual interaction also takes place with the Clinical Data Repository for

downloading of patient data and the CRAF application for the uploading of the segmentation results

back to the CHIC platform and through the CHIC security services.

5.2.2.2 User Interface

Doctor Eye requires .NET framework (4.0. or higher). The integrated image processing routines rely

on the Insight Registration and Segmentation Toolkit (ITK) library.

The figure below shows a screenshot of the graphical user interface of Dr. Eye (Version 4.7). As an

exemplary case a T1-weighted post-contrast MR image of the brain is loaded with an annotated

tumour (glioblastoma).

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 27 of 180

Figure 7 Screenshot of DrEye

Figure 8 Side by side comparison of DICOM slides on two different time points, overview of the histograms

and of the statistics magnitudes for the corresponding ROIs.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 28 of 180

5.2.3 Hypermodelling editor

5.2.3.1 Description

The hypermodelling editor is the end user application used by modellers, researchers, and other

domain experts for the construction of the hypermodels. The objective of this editor is to provide a

user-friendly environment where the models and data are presented in a visual way and the users

can integrate them into higher level modelling constructs.

Since the Editor is targeting the hypermodel design tasks, it mainly interacts with the model

repositories, the VPH-HF execution framework, and the semantic infrastructure. In the following

paragraphs we provide details on these interactions.

5.2.3.2 Functionality

ID Functionality

1 List the available hypo and hyper models by contacting the relevant model
repositories. This functionality is further enhanced by the ability to filter the
available models based on user submitted search terms, annotation properties,
etc. that are translated to proper semantic queries.

2 Provide a visual representation of the models in an intuitive graphical interface.
In addition to the basic descriptive metadata such as the model descriptions,
authors, citations, etc., it also presents the model’s inputs, parameters, and
outputs with their semantic and syntactic type information.

3 Provide information about compatible datasets that can be used for the
invocation of the selected models based on the semantic and syntactic
information that models and data are annotated with. Such annotation
information and relevant metadata are retrieved by the corresponding CHIC
model and data repositories.

4 Support the visual linking and fusion of the models for the construction of higher
level, more complex models (hyper-models). The semantic based descriptions of
the models (meta models) are taken into account in order to facilitate this
hyper-model construction.

5 Storage and retrieval of the built hyper-models with complete provenance and
version control.

6 Export the designed hypermodels in the hypermodelling language adopted in
CHIC

7 Submit the hypermodels for instantiation as computational entities and their
subsequent execution to the Hypermodelling Orchestrator.

5.2.3.1 CHIC components interaction

The following is the complete list of the CHIC architectural elements that the Hypermodelling Editor

interacts with:

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 29 of 180

 Model Repository. The Editor retrieves the model information from the Model Repository

and presents it to the user as a list of available hypomodels to be used in the design of a new

hypermodel. It also stores the designed hypermodels as new models in the Model Repository

so that they can become hypomodels for even more complex hypermodels.

 Semantic Services. These services are used by the Editor in order to retrieve semantic

metadata for the models and their parameters. Such rich semantic annotations are then

used in order to guide the construction of new hypermodels and validate the integration and

linking of different hypomodels.

 VPH-HF model execution services. The Editor submits the new hypermodels in the

serialization format that is compatible with the CHIC Hypermodelling Language to the

execution services so that they become executable artifacts of the architecture. When a

given hypermodel is deployed in the execution framework, the Editor and the rest of the

CHIC platform (most prominently, CRAF) can request its execution for some specified input

parameter values and data.

 Security services. Being part of the CHIC platform, the Editor complies with the security

framework of CHIC for the users’ authentication and authorization. The Editor contacts the

CHIC Identity Provider for the user authentication using the SAML-compliant mechanisms

and the Secure Token Service (STS) for getting tokens to contact the backend CHIC services.

5.2.3.2 API interface/User Interface

The editor is accessible through a web user interface integrated into the CHIC portal. Additionally, it

supports a web service read-only API for retrieving the constructed hypermodels and relevant

information, such as the participating (hypo) models and their usage. This API is secured

(authenticated and authorized) according to the adopted security framework in CHIC.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 30 of 180

Figure 9 User interface of the hypermodelling editor.

5.3 Service layer

5.3.1 Hypermodelling execution framework

5.3.1.1 Description

The VPH Hypermodelling Framework (VPH-HF) is a collaborative computational platform providing a

complete Problem Solving Environment9 (PSE) to execute, on distributed architectures, sophisticated

predictive models involving patient medical data or specialized repositories. It is based on a fully-

fledged prototype developed in a previous VPH project, the Osteoporotic VPH10 (VPH-OP), which

addressed the estimation of bone fracture risk due to osteoporosis. For further information, the

interested reader can refer to CHIC deliverable D7.411.

9 “Computer as thinker/doer: problem-solving environments for computational science,” IEEE Computational

Science and Engineering. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=326669. [Accessed: 29-Oct-2014].
10 http://www.vphop.eu
11 FP7 - ICT - 600841, CHIC - Computational Horizons in Cancer, WP7: Hypermodelling infrastructure, D7.4 Final

Hypermodelling framework deployed on test node, 2016

http://www.vphop.eu/

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 31 of 180

The aim of VPH-HF is to improve the effectiveness of diagnosis, prognosis and treatment of specific

diseases in clinical practice with the ultimate objective to foster the personalized medicine paradigm

and perform in silico clinical trials12. In particular, the VPH-HF is customized for the oncological needs

targeting two primary users: the clinician and the researcher. The former needs easy out-of-the-box

software tools to analyse patient medical data and simulate cancer behaviour to address specific

clinical questions. The latter has a broader profile that includes the creation, modification, and

validation of complex integrative models13. Researchers can populate the CHIC data and model

repositories with their experimental data and provide the integrative/predictive models

implemented in the computational format of their convenience.

Following the use case described above, the VPH Hypermodelling Framework has been designed and

developed as a technology with the aim to provide services and tools to allow:

● Integration of models, which can be developed with different software tools or libraries and
be deployed in the PSE on different hardware and/or operating systems;

● Communication between the models, which can be classified into two types:

○ the control flow, which is the set of instructions that needs to be passed from one
sub-model to another or to the system for its execution;

○ the data flow, which is the data input-output of each sub-model; in order to define
this, the data formats used in both input and output by each sub-model have to be
identified.

The underlying assumption is that a hypermodel (i.e. an integrative model or a

composition/orchestration of models) can be described as a workflow where its composite

hypomodels (i.e. models) are connected to produce an output result from a given input and data

from repositories and/or patient specific data. Therefore, a workflow can be represented as a graph

where the nodes are models or data repositories, while connections are data or control flows. Two

models are connected when an output of the first is an input of the second, while data repositories

can be connected to any of the models. In order to build a workflow, hypermodels and hypomodels

can be considered as black boxes with a standardized abstract interface exposing input and output

ports and control data flow. This interface is well defined within the CHIC project and it ensures the

interoperability between all the provided hyper- and hypomodels: it is called Component Model

Generic Stub. The VPH-HF is compliant with this interface and provides a software implementation

that follows the Wrapper pattern14. It allows the actual integration of any of the computational

instances of the models in a workflow including data and control flow by adapting the parameters

from the format used in the actual model to the standard one of the Component Model Generic Stub

Interface.

12 G. Clermont, J. Bartels, R. Kumar, G. Constantine, Y. Vodovotz, and C. Chow, “In silico design of clinical trials:

A method coming of age,” Critical Care Medicine, vol. 32, no. 10, pp. 2061–2070, Oct. 2004.
13 J. Borgdorff, M. Mamonski, B. Bosak, K. Kurowski, M. Ben Belgacem, D. Groen, and A. G. Hoekstra,

“Distributed multiscale computing with MUSCLE 2, the Multiscale Coupling Library and Environment,” Journal

of Computational Science, vol. 5, no. 5, pp. 719–731, Sep. 2014.
14 Coveney, PV; Saksena, RS; Zasada, SJ; McKeown, M; Pickles, S; (2007) The application hosting environment:

Lightweight middleware for grid-based computational science. COMPUT PHYS COMMUN , 176 (6) 406 - 418.

10.1016/j.cpc.2006.11.011.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 32 of 180

5.3.1.2 Functionality

ID Functionality

1 Deploy automatically the models in the computational infrastructure in order to be
run from VPH-HF.

2 Authorise the execution requests and the access to the necessary input data using
the CHIC authentication services.

3 Orchestrate the execution of a hypermodel with a given input set, managing both
the control flow and the data flow among the hypomodels that compose it.

4 Maintain a global log of all hypomodel executions and of their orchestration, to
allow debugging and execution monitoring.

5 Replicate in the in silico trials repository the results of the hypermodel execution
for a given input set.

5.3.1.1 CHIC components interaction

The hypermodelling execution framework interacts with the following CHIC components:

1. Authentication Service: VPH-HF is a non-browser REST client of the CHIC authentication

service

2. CRAF: CRAF interacts with VPH-HF for the submission and monitor of hypermodel executions

3. Hypermodelling editor: the hypermodelling editor is responsible for the creation of

hypermodels in the xMML language which is one of the format accepted by VPH-HF for the

submission of workflows

4. CHIC repositories (Model repository, Clinical Data repository, InSilicoTrial repository): VPH-

HF interacts with the Clinical Data repository for the retrieval of input medical data for the

workflow execution; interacts with the InSilicoTrial repository for the update of the status

and the upload of the output of workflow executions; interacts with the Model repository to

get descriptive model information which are used for the automatic deployment of models.

5.3.1.2 API interface/User Interface

5.3.1.2.1 User Interface

The User Interfaces are the components which are used by the end-users to interact with the back-

end of the VPH hypermodelling framework to allow the creation, submission, and monitoring of a

hypermodel execution. The CRAF application is an external component of the VPH-HF that allows

selection and execution of existing hypermodels in the cancer domain in order to address clinical

questions. From CRAF it is also possible to monitor the execution of the hypermodel and to visualize

the output results. Inside the hypermodelling framework a basic web interface (called “Admin panel-

dashboard”) was designed and implemented to execute existing hypermodels on available patient’s

data and a dashboard to monitor the execution, retrieve the results and analyse the logs. The latter

was implemented in order to provide a simple and direct interface to VPH-HF for independent testing

and not intended to be used directly by the CHIC users.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 33 of 180

The final version of the VPH-HF admin panel-dashboard allows the user to:

● login into the system (by connecting to the authentication service);

● see the available hypomodels, hypermodels and input datasets (by connecting to the
registry service);

● add new input dataset/hypomodel/hypermodel with the core metadata (by connecting
to the storage/registry services);

● submit and start a hypermodel for execution to the WMS with the necessary data (by
connecting to the Director service);

● see logs/status of the already submitted executions (by connecting to the Director);

● retrieve the output of the workflow execution (by connecting to Director/SMS).

Figure 10 shows a snapshot of the admin panel-dashboard.

Figure 10 VPH-HF admin panel-dashboard

5.3.1.2.2 API Interface

One of the components of the hypermodelling framework that interacts with the rest of the CHIC

platform is the Director service. Director acts as an interface between the end-user application

(CRAF, dashboard) and the backend hypermodel technology and exposes the APIs to access the

different VPH-HF functionalities needed from outside the framework. It aims to provide the

functionalities to manage the request of a hypo/hypermodel execution. In particular, it submits the

execution to the workflow management service passing it the required inputs/parameters, polls the

workflow management service to get information on the status and other parameters of the

hypo/hypermodel execution and calls the storage services to save the output in a storage repository.

The description of the APIs are reported below (as reported in Deliverable D7.4).

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 34 of 180

HTTP Method: GET URL: /api/director/workflowlist/

Description Get a list of all the workflows submitted to Director by the user

Returns 200 http status code and a Json object containing the list of
workflow objects if the request has finished successfully

 400 http status code if a bad request error occurs

 403 http status code if authentication token is not provided or not
verified

 500 http status code if an internal server error occurs

HTTP Header Name: Authorization Value: SAML auth=<Base 64

Encoded compressed SAML
token>

HTTP Method: POST URL: /api/director/workflowlist/

Description Submit a new workflow

Encoding multipart/form-data

Parameters passed
through request body

workflow_title Not Required – title of the workflow

 workflow_description Not Required – description of the
workflow

 workflow_comment Not Required – comments about the
workflow

 experiment_id Required

 subject_out_id Required

 model_url Required

 inputset_url Required

Returns 201 http status code and a Json object containing the new created workflow object if
the request has finished successfully

 400 http status code if a bad request error occurs

 403 http status code if authentication token is not provided or not verified

 500 http status code if an internal server error occurs

HTTP Header Name: Authorization Value: SAML auth=<Base 64

Encoded compressed SAML token>

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 35 of 180

HTTP Method: GET URL: /api/director/workflowlist/{id}/

Description Get the model data of the workflow {id}

Returns 200 http status code and a Json object containing the workflow
object if the request has finished successfully

 400 http status code if a bad request error occurs

 403 http status code if authentication token is not provided or not
verified

 404 http status code if the workflow {id} is not found

 500 http status code if an internal server error occurs

HTTP Header Name: Authorization Value: SAML auth=<Base 64

Encoded compressed SAML
token>

HTTP Method: DELETE URL: /api/director/workflowlist/{id}/

Description Delete the workflow {id}

Returns 204 http status code if the request has finished successfully

 400 http status code if a bad request error occurs

 403 http status code if authentication token is not provided or not
verified

 404 http status code if the workflow {id} is not found

 500 http status code if an internal server error occurs

HTTP Header Name: Authorization Value: SAML auth=<Base 64

Encoded compressed SAML
token>

HTTP Method: GET URL: /api/director/workflowlist/{id}/status

Description Get the status of the workflow run

Returns 200 http status code and a Json object containing the workflow
status of the workflow object {id} if the request has finished

successfully

 400 http status code if a bad request error occurs

 403 http status code if authentication token is not provided or not

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 36 of 180

verified

 404 http status code if the workflow {id} is not found

 500 http status code if an internal server error occurs

HTTP Header Name: Authorization Value: SAML auth=<Base 64

Encoded compressed SAML
token>

HTTP Method: PUT URL: /api/director/workflowlist/{id}/status

Description Change the status of the workflow

Encoding multipart/form-data

Parameters passed through request body workflow_status Required

Returns 200 http status code and a Json object containing the workflow
status of the workflow object {id} if the request has finished

successfully

 400 http status code if a bad request error occurs

 403 http status code if authentication token is not provided or not
verified

 404 http status code if the workflow {id} is not found

 500 http status code if an internal server error occurs

HTTP Header Name: Authorization Value: SAML auth=<Base 64

Encoded compressed SAML
token>

HTTP Method: GET URL: /api/director/workflowlist/{id}/modellog

Description Get the logs of the workflow

Returns 200 http status code and a Json object containing the logs of the
hypomodels run in the workflow {id} if the request has finished

successfully

 400 http status code if a bad request error occurs

 403 http status code if authentication token is not provided or not
verified

 404 http status code if the workflow {id} is not found

 500 http status code if an internal server error occurs

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 37 of 180

HTTP Header Name: Authorization Value: SAML auth=<Base 64

Encoded compressed SAML
token>

HTTP Method: GET URL: /api/director/workflowlist/{id}/createtime

Description Get the time when the workflow has been created

Returns 200 http status code and a Json object containing the start time of
the workflow object {id} if the request has finished successfully

 400 http status code if a bad request error occurs

 403 http status code if authentication token is not provided or not
verified

 404 http status code if the workflow {id} is not found

 500 http status code if an internal server error occurs

HTTP Header Name: Authorization Value: SAML auth=<Base 64

Encoded compressed SAML
token>

HTTP Method: GET URL: /api/director/workflowlist/{id}/starttime

Description Get the time when the workflow has been started

Returns 200 http status code and a Json object containing the start time of
the workflow object {id} if the request has finished successfully

 400 http status code if a bad request error occurs

 403 http status code if authentication token is not provided or not
verified

 404 http status code if the workflow {id} is not found

 500 http status code if an internal server error occurs

HTTP Header Name: Authorization Value: SAML auth=<Base 64

Encoded compressed SAML
token>

HTTP Method: GET URL: /api/director/workflowlist/{id}/finishtime

Description Get the time when the workflow {id} has been finished

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 38 of 180

Returns 200 http status code and a Json object containing the finish time
of the workflow object {id} if the request has finished successfully

 400 http status code if a bad request error occurs

 403 http status code if authentication token is not provided or not
verified

 404 http status code if the workflow {id} is not found

 500 http status code if an internal server error occurs

HTTP Header Name: Authorization Value: SAML auth=<Base 64

Encoded compressed SAML
token>

HTTP Method: GET URL: /api/director/workflowlist/{id}/expirytime

Description Get the time when the workflow {id} has been expired

Returns 200 http status code and a Json object containing the expiry time
of the workflow object {id} if the request has finished successfully

 400 http status code if a bad request error occurs

 403 http status code if authentication token is not provided or not
verified

 404 http status code if the workflow {id} is not found

 500 http status code if an internal server error occurs

HTTP Header Name: Authorization Value: SAML auth=<Base 64

Encoded compressed SAML
token>

HTTP Method: GET URL: /api/director/workflowlist/{id}/exitcode

Description Get the exit code of the workflow run {id}

Returns 200 http status code and a Json object containing the exit code of
the workflow object {id} if the request has finished successfully

 400 http status code if a bad request error occurs

 403 http status code if authentication token is not provided or not
verified

 404 http status code if the workflow {id} is not found

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 39 of 180

 500 http status code if an internal server error occurs

HTTP Header Name: Authorization Value: SAML auth=<Base 64

Encoded compressed SAML
token>

CRAF communicates with the Director of the VPH-HF server using the SAML standard data format

over the HTTPS protocol in order to submit and execute a hypermodel. This is a synchronous

communication over the HTTP protocol where the response contains the identification (UUID) of the

newly created run of the corresponding hyper model. On the other hand, since the exact completion

time point is not known, and a continuous “polling” mechanism would be too inefficient, the

execution status information is sent asynchronously. In particular, CRAF receives back notifications

from VPH-HF about the status of the hypermodel (OPERATING, FINISHED_SUCCESSFULLY,

FINISHED_ERRONEOUSLY) with RabbitMQ as intermediary. Following this approach CRAF and

VPH-HF are operationally decoupled. VPH-HF sends all the notifications to RabbitMQ using a topic

and “durable exchange” named “vphhf” with a routing key set to

“workflow.<workflow_uuid>.status”, where <workflow_uuid> is a unique identifier

of the workflow run. CRAF instead creates a message queue bound to the ‘vphhf’ exchange with a

binding key set to workflow.*.status” in order to listen to the status of all the workflows.

The Registry application is the component of the hypermodelling framework that provides to the

CHIC platform a list of all the models accessible within the VPH-HF instance and the automatic

deployment of models stored in the Model Repository within the hypermodelling infrastructure. The

models that are successfully deployed can be included in a hypermodel workflow and executed in the

computational infrastructure. The description of the APIs are reported below (in addition to what has

been reported in deliverable 7.4).

HTTP Method: GET URL: /api/registry/modellist/mr-chic-vph-eu

Description Get the list of models registered in the Model repository

Returns 200 http status code and a Json object containing the list of
model objects

 400 http status code if a bad request error occurs

 403 http status code if authentication token is not provided or not
verified

 500 http status code if an internal server error occurs

HTTP Header Name: Authorization Value: SAML auth=<Base 64

Encoded compressed SAML
token>

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 40 of 180

HTTP Method: GET URL: /api/registry/modellist/mr-chic-vph-eu/{id}

Description Get the data of the model {id} registered in the Model Repository

Returns 200 http status code and a Json object containing the model
object

 400 http status code if a bad request error occurs

 403 http status code if authentication token is not provided or not
verified

 404 http status code if the model {id} is not found

 500 http status code if an internal server error occurs

HTTP Header Name: Authorization Value: SAML auth=<Base 64

Encoded compressed SAML
token>

HTTP Method: GET URL: /api/registry/modellist/mr-chic-vph-eu/{id}/binariesandscripts/deploy

Description Deploy the model {id} registered in the Model Repository in the
hypermodelling infrastructure

Returns 200 http status code

 400 http status code if a bad request error occurs

 403 http status code if authentication token is not provided or not
verified

 404 http status code if the model {id} is not found

 500 http status code if an internal server error occurs

HTTP Header Name: Authorization Value: SAML auth=<Base 64

Encoded compressed SAML
token>

HTTP Method: GET URL: /api/registry/modellist/mr-chic-vph-eu/{id}/tests/run

Description Run the unit tests for the deployed model {id} registered in the
Model Repository

Returns 200 http status code

 400 http status code if a bad request error occurs

 403 http status code if authentication token is not provided or not
verified

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 41 of 180

 404 http status code if the model {id} is not found

 500 http status code if an internal server error occurs

HTTP Header Name: Authorization Value: SAML auth=<Base 64

Encoded compressed SAML
token>

The last two APIs delegates to a job queue the tasks of deploying the binaries and scripts and running

the unit tests since immediate results cannot be computed. Following the Publish/Subscribe pattern,

the status and the message error are notified back asynchronously. All the notifications are sent to

RabbitMQ using a topic and “durable exchange” named “vphhf” with a routing key set to

“model.<model_id>.deployment.detailed_status” for the deployment notifications

and a routing key set to “model.<model_id>.tests.detailed_status” for the unit test

report notifications, where <model_id> is the id of the model registered in the Model repository.

The content of the message is a JSON object containing the status of the task and the message error

(the message error is “null” if the task finishes successfully).

5.3.2 Visualization toolkit

5.3.2.1 Description

The visualization toolkit developed within CHIC will consist on a set of modular functionalities

allowing the different users to perform from basic to advanced visualization operations. The

intention is to allow end-users, such as clinicians and practitioners, to access the toolkit through the

plug-in enabled software.

5.3.2.2 Functionality

ID Functionality

1 Visualization of the model and data repository structures

2 Visualization of the information related to models such as their parameters and execution
results

5.3.2.1 CHIC components interaction

In the CHIC architecture, CCGVis is launched by DrEye.

5.3.2.2 User Interface

CCGVis is the CHIC tool for visualizing and comparing tumours and simulations. CCGVis can import,

register and visualize medical data, segmentation data and simulations. It can import various

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 42 of 180

formats, singly or as time series, including dicom, mha, nifti and CHIC simulations. Visualizations

include slice and orthoslice views in 2D and 3D, isosurfaces in 3D, comparisons between real and

simulated tumours, and plots of tumour growth. CCGVis can be executed as a standalone desktop

application, or it can be launched from another application with command-line arguments. Input

and output data is exchanged via the local file system, in directories specified by the command line

arguments.

The user interface consists of a display window on the left, a widget panel for interactive control on

the right, and menus for loading data and launching visualization tasks. The display window and

widget panel are empty on startup.

Figure 11 CCGVis user interface

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 43 of 180

Figure 12 CCGVis loading data

The “Load Data” menu allows the user to manually import datasets. Data formats are mha/mhd,

nifti, dicom and CHIC simulation format. Datasets can be single images, image/segmentation pairs,

or time series. The “View Loaded Data” menu item displays the current list of loaded datasets.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 44 of 180

Figure 13 CCGVis task execution

The “CHIC Tasks” menu displays the list of visualization tasks. Selecting a task invokes a search of the

loaded data for compatible input data, and then displays the visualization. If more than one

compatible dataset is found, the user is asked to choose from the list. The “End current task” item

clears the visualization and returns to the default blank screen.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 45 of 180

Figure 14 CCGVis interactive 2D visualization

The clinical tumour (left) and the simulation (right) can be compared in parallel with an interactive

2D visualization. The tumour volume is displayed in an info panel near the lower right.

Figure 15 CCGVis interactive 3D visualization

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 46 of 180

The clinical tumour (left) and the simulation (right) can be compared in parallel with an interactive

3D visualization.

Figure 16 CCGVis comparison of simulation using superimposed isosurfaces

The clinical images and simulations can be compared with each other at different timesteps in 3D as

superimposed isosurfaces. This shows the day 25 simulation (green) compared with the baseline

tumour on day 0 (red).

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 47 of 180

Figure 17 CCGVis plot view

The “Plot View” tab shows a graph of simulated tumour volume against time. Data points (red

crosses) show the actual volume of the clinical tumour.

Figure 18 CCGVis saving a report

The “Save to report” button saves an output image of the current image or plot in the main window.

A caption describing the image is added to a text file. The “Create video” button creates and saves

an animated 360° video of a 3D visualization. The outputs are sent to the output directory specified

in the command line arguments.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 48 of 180

5.3.2.3 API interface

Command line arguments allow data to be preloaded and tasks to be launched on execution.

This allows CCGVis to be launched from a batch file or from another program. Command

line flags are also available for setting the input and output directories.

Valid flags

--Scenario: “Lung”, “Nephroblastoma”, “Prostate”, “Glioblastoma”. Not currently used.

--Dataset: Starts a new dataset.

--Format str: specifies format of dataset.

--ImageSegPair: (optional) indicates that the following 2 files are a pair: image plus segmentation. A
pair counts as one data item with two components.

--TimeSeries n: (optional) the dataset is a time series containing n items.

--InputDir: the next item specifies a general default path for input data.

--OutputDir: the next item is the path where CCGVis will put its output.

--Task str: specify task to run on launch

--ShowMaximised: request window maximised on launch

--AutoVideo: create video output when task is launched without user interaction.

Valid format strings
“Mha” “DicomDir”

“Nifti” “ChicSimRaw”

Valid task strings
“ViewImage2D” “ViewDicomDir2D”

“ViewImage3D” “ViewDicomDirOrtho”

“ViewImagePair2D” “ViewMhaPair2D”

“ViewImagePair3D” “ViewMha”

“ViewImagePairSeries3D” “ViewMhaSeries”

“ViewChicSim” “CompareMhaChicSimOrtho”

“CompareMhaChicSim2D” “CompareMhaChicSimSuperimposed”

“CompareTwoDicomSegmentations3D” “CompareTwoNiftiSegmentations3D”

“DoNothing”

Command line Examples

1) Load single image in dicom format (note that filenames must be full paths)
--Dataset --Format DicomDir <file1>

2) Load image and its segmentation, both in Mha format
--Dataset --Format Mha --ImageSegPair <imfile> <segfile>

3) Load mha time series consisting of 3 image/segmentation pairs.
--Dataset –TimeSeries 3 --Format Mha –ImageSegPair <im1> <seg1> <im2>

<seg2> <im3> <seg3>

4) Load CHIC simulation series (no need for TimeSeries flag as it can’t be anything else)
--Dataset --Format ChicSimRaw <dir>

5) Load 2 datasets: an mha time series and its corresponding simulation
--Dataset –TimeSeries 2 --Format Mha –ImageSegPair <im1> <seg1> <im2>

<seg2>

--Dataset --Format ChicSimRaw <pathSim>

6) Set CCGVis default data directory and leave user to browse
--InputDir <path>

7) Specify directory for CCGVis output.
--OutputDir <path>

8) Load 2 datasets as in (5) and launch 2D comparison view. Launch with window maximised.
--Dataset –TimeSeries 2 --Format Mha –ImageSegPair <im1> <seg1> <im2>

<seg2>

--Dataset --Format ChicSimRaw <pathSim>

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 49 of 180

--OutputDir <path>
--Task CompareMhaChicSim2D

--ShowMaximised

9) Load 2 datasets as in (5) and launch superimposed isosurface comparison view.
Create automatic video output on launch.
--Dataset –TimeSeries 2 --Format Mha –ImageSegPair <im1> <seg1> <im2>

<seg2>

--Dataset --Format ChicSimRaw <pathSim>

--OutputDir <path>

--Task CompareMhaChicSim2D

--ShowMaximised

--AutoVideo

5.3.3 Security services framework

5.3.3.1 Description

The security framework is not a concrete software component but a set of tools, which deal with the

security aspects of CHIC’s technological platform, ranging from user authentication, authorization,

and auditing, to data integrity and privacy.

The security tools and policies of this framework enforce the legal and regulatory compliance and

encompass the appropriate auditing mechanisms which are needed by the legislation.

The security framework contains the following tools & components:

1. Authentication and Identity Management Components

a. Identity and Access Management Site (IAM)

User enrolment and management site and services through which users can be

enrolled, revoked, edited …

b. Identity Provider (IdP)

A service which is responsible for authentication within CHIC. It provides identity

assertions to web sites accessed from a browser.

c. Secure Token Service (STS)

A service which is responsible for authentication within CHIC. It provides identity

assertions to services accessed from a non-browser client.

2. Authorization components

a. Policy Decision Point (PDP)

A PDP is the entity which takes authorization decisions. A PDP accepts authorization

requests.

b. Policy Administration Point (PAP)

A PAP is the endpoint which manages policies. The PAP provides the PDP with all

policies required to produce an authorization decision. The PAP also consists of

management services where authorization rules can be configured generating

authorization policies.

c. Policy Information Point (PIP)

Policies evaluated by the PDP need information (attributes) about the actors to be

able to take an authorization decision. Most attributes are typically provided through

the authorization requests. A PIP is responsible for providing the missing attributes

to the PDP.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 50 of 180

d. Policy Enforcement Point (PEP)

A PEP is the component which integrates with application code. The PEP is

responsible for creating the authorization request and sends it to the PDP.

3. Audit Service

4. Security gateway/proxy

5. Integration modules and extensions

a. Various integration modules are available within CHIC to integrate JAVA, PHP and

.NET applications into the security framework.

b. Extensions

c. Liferay Extension

6. De-identification tool (CATS)

An elaborate documentation of the security framework is given in the CHIC deliverable D5.2.2 “Final

version of security tools and guidelines”. In this section we give a brief overview of the functionality

of the security framework for the sake of clarity and coherence when referring to it while discussing

the rest of the architecture.

5.3.3.2 IAM (Identity and Access Management site)

5.3.3.2.1 Description

Through the CHIC central Identity and Access Management site, users and user credentials can be

created and managed. IAM allows in addition the attributes of a user such as his roles, rights and

group memberships to be managed.

5.3.3.2.2 Functionality

ID Functionality

1 User enrolment (registration and activation)

2 Credential recovery (both username as password)

3 Management of user roles and rights, group memberships, attributes

4 User account revocation

5 Profile management allow users to manage their own demographic
information/profile.

5.3.3.2.3 Programmatic/User Interface

IAM features a web based graphical user interface towards end users and user administrators.

IAM publishes web services to allow programmatic integration so that users can be enrolled and

managed through other CHIC applications.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 51 of 180

5.3.3.3 IdP (Identity Provider)

5.3.3.3.1 Description

The IdP is responsible for authentication users who access CHIC from a browser. It provides identity

assertions to web sites accessed from a browser.

5.3.3.3.2 Functionality

ID Functionality

1 User Authentication (Web Browser)

2 Issue Identity Assertions (SAML)

5.3.3.3.3 Programmatic/User Interface

HTTP interfaces as defined in the SAML Web Browser SSO Profile. More detailed information on

security profiles can be found in D5.2.2.

5.3.3.4 STS (Secure Token Service)

5.3.3.4.1 Description

The STS is responsible for authenticating users and clients who wish to access CHIC through web

services. Web services are typically accessed through non browser clients. The STS will issue, after

successful authentication, tokens that can be used by a client to access a CHIC web services. The STS

can also validate, renew and cancel tokens.

5.3.3.4.2 Functionality

ID Functionality

1 User Authentication (web service client)

2 Issue Identity Assertions (SAML tokens)

3 Validate Identity Assertions

4 Renew Identity Assertions

5 Cancel Identity Assertions

5.3.3.4.3 Programmatic/User Interface

The STS provides web services that can be used by a client to issue, renew, validate and cancel SAML

tokens.

5.3.3.5 PDP (Policy Decision Points)

5.3.3.5.1 Description

A PDP is the entity which takes authorization decisions by responding on authorization requests.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 52 of 180

5.3.3.5.2 Functionality

ID Functionality

1 Take authorization decisions: permit or deny

5.3.3.5.3 Programmatic/User Interface

A web services interface is available allowing other components and services to call the authorization

service.

5.3.3.6 PAP (Policy Administration Point)

5.3.3.6.1 Description

The PAP’s management interfaces allow the configuration of authorization rules through which

policies are generated. These are then provided to the PDP so that the PDP can use them to produce

authorization decisions.

5.3.3.6.2 Functionality

ID Functionality

1 Create Authorization policies

2 Provide the PDP with Authorization policies

5.3.3.6.3 Programmatic/User Interface

A web based graphical user interface is available through which the authorization policies can be

managed. Web services allow the PDP to query the PAP for policies.

5.3.3.7 PIP (Policy Information Point)

5.3.3.7.1 Description

Policies evaluated by the PDP need information (attributes) about the actors to be able to take

authorization decision. Most attributes are typically provided through the authorization request. A

PIP is responsible for providing the missing attributes to the PDP.

Within CHIC any component which could provide information on the subject or resource of a request

is able to act as a PIP. Possible PIPs are the central user repository and the portal.

5.3.3.7.2 Functionality

ID Functionality

1 Query a subject or resource attribute

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 53 of 180

5.3.3.7.3 Programmatic/User Interface

A Web Service should be published by a PIP, which would be query-able by the PDP.

5.3.3.8 PEP (Policy Enforcement Point)

5.3.3.8.1 Description

A PEP is a software component or library which integrates with applications that should create

authorization requests and call the PDP.

5.3.3.8.2 Functionality

ID Functionality

1 Create an authorization request, send it to the PDP and parse the PDP
response.

5.3.3.8.3 Programmatic/User Interface

The PEP is typically a programming interface that can be integrated with application code.

5.3.3.9 Audit Services

5.3.3.9.1 Description

Through the CHIC Audit Interfaces secured CHIC services should log all actions performed. These

audit logs allow the detection of system breaches or the misuse of access rights. In additions audit

logs can be used through usage patterns to automatically identify suspicious behaviour.

5.3.3.9.2 Functionality

ID Functionality

1 Provides a central audit bus to which all CHIC services can send audit
logs.

2 Provides a management interface through which audit messages can
be viewed and searched.

5.3.3.9.3 Programmatic/User Interface

Web Services (and other protocol endpoints such as syslog) are available through which audit

messages can be logged. A web based graphical user interface provides a view on the logged audit

messages.

5.3.3.10 Security Gateway

5.3.3.10.1 Description

Not every service provider can easily integrate with the CHIC security framework. To enable these

services to be integrated with the security framework a security gateway is available which is

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 54 of 180

responsible for handling all security protocols. Identity information is then passed by the gateway to

backend service providers through HTTP headers.

5.3.3.10.2 Functionality

ID Functionality

1 Handle the security protocols to hide it from backend applications.
This implies the following functionality

1. Authentication

2. Authorization

3. Auditing

5.3.3.10.3 Programmatic/User Interface

The security gateway is deployed as a gateway or proxy in between the application server and the

client. It thus mimics the backend application’s interface.

5.3.3.11 Security Integration Modules and extensions

5.3.3.11.1 Description

Modules and libraries are available within CHIC which integrate the security framework in various

programming languages (e.g. Java, PHP, .NET), web server implementations (e.g. Apache HTTP,

Apache Tomcat) and applications (e.g. Liferay). These modules are described in more detail in

deliverable D5.2.2.

5.3.3.12 De-Identification

5.3.3.12.1 Description

The legal requirements and constraints of the CHIC stakeholders require us to de-identify all private

and patient-specific information from the clinical data that will be used in the context of CHIC. The

de-identification functionality is implemented by CATS. This component provides all the necessary

functionality to meet these requirements. The de-identification services are described in more detail

in deliverable D4.3.1 “Development of the data protection and copyright framework for CHIC first

iteration”.

5.3.3.12.2 Functionality

ID Functionality

1 Upload data to CHIC

2 De-identify uploaded data

3 Manage and create privacy profiles (a privacy profile defines how a data file should be de-
identified).

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 55 of 180

5.3.3.12.3 Programmatic/User Interface

CATS consists of a web based graphical user interface and a set of rich clients.

Programmatic REST and SOAP interfaces are also available through which files can be uploaded.

Through a CATS library client-side pseudonymisation functionality can be integrated in client

applications.

5.3.4 Semantic services

5.3.4.1 Ontology-based semantic services

5.3.4.1.1 Description

Ontology-based semantic services include:

1. Ontology oriented: services providing access to the knowledge base.

2. Metadata oriented: services that provide access to the metadata stored in the metadata

repository.

2.1. accessing the metadata only

2.2. accessing the metadata through query expansion via access to the knowledge base (i.e.,

using services from #1 and #2.1)

5.3.4.1.2 Functionality

ID Functionality

1 Query knowledge base

2 Add terms to the knowledge base

3 Query of the metadata repository

4 Query the metadata repository using search term expansion i.e. using #1

5.3.4.1.1 API Interface

Ontology-based semantic services are wrapping services around the Metadata Repository and

around the Knowledge Base.

The base line for these solutions is adapted from the output of the VPH project RICORDO.

REST services are used to access the Metadata Repository.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 56 of 180

REST services are used to access the Knowledge Base.

A dedicated RDF database back end is deployed and can be interacted with directly through its

SPARQL endpoint. In addition to this, a convenience middleware (RDF store services) is available to

perform query and write operations to the store via a set of predefined templates. This support is

discussed in the RDFstore documentation reproduced here as the API is derived from these

elements.

SPAQRL is the query language for RDF data. In our context, a template is a SPARQL query which can

comport up to ten parameters. Rdfstore reduces SPARQL to a matter of filling-in-the-blanks, namely,

one blank for each parameter. Templates can be written specifically to answer specific metadata

management needs. Furthermore, a given template may therefore be used while varying the values

of its parameters.

Example: The SPARQL query to find all things which are "part-of" the class "acids"

SELECT DISTINCT ?part

 WHERE

 {

 ?part <http://example.com/ontology#part-of>

<http://example.com/ontology#acids>

 }

Now suppose you want a generic form for "find all things 'part-of' the class

'X'", where the end-user fills in X.

Example: Create a template file with a name like "get_parts_of.txt" with contents

SELECT DISTINCT ?part

 WHERE

 {

 ?part <http://example.com/ontology#part-of>

<[0]>

 }

Here, [0] is a variable. Other available variables are [1] through [9].

Templates should be stored in a template directory in the form of a text file. When you run Rdfstore,

use the command line to tell Rdfstore which directory the templates are stored in (unless you use the

default directory). The template's name (minus ".txt") will become part of Rdfstore's GUI.

Assuming the template in the above example has been loaded by Rdfstore, the template can be

accessed at an address like

 http://yoururl.org:20060/get_parts_of/?0=acids

Adding template to a running Rdfstore instance is not supported and the addition of templates

requires restarting Rdfstore.

At the beginning of a template file, certain special commands can be issued.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 57 of 180

Example: You can give a name to a variable, as in the following example

 # 0 = whole

 SELECT DISTINCT ?part

 WHERE

 {

 ?part <http://example.com/ontology#part-of> <[0]>

 }

In this example, the command is that first line, #0 = whole. It says that the name of the variable 0 is

'whole' (so the template is searching for 'parts' of the 'whole'). This is how the Rdfstore demo

GUI knows which placeholder text to put in the different form fields.

The other type of command you can use here is a preprocessor command, as in the following

example:

Example: Preprocessor command

#0 = whole

#Preprocessor0 =

http://localhost:20080/terms/%s?longURI=yes&json=yes

 SELECT DISTINCT ?part

 WHERE

 {

 ?part <http://example.com/ontology#part-of> <[0]>

 }

The command,

Preprocessor0 =

http://localhost:20080/terms/%s?longURI=yes&json=yes

indicates that the contents of variable 0 will be passed through the indicated preprocessor. For

example, if the user enters 'FMA_50801' for variable 0, Rdfstore will replace the '%s' in the

Proprocessor0 string with 'FMA_50801' to get the URL:

http://open-

physiology.org:20080/terms/FMA_50801?longURI=yes&json=yes

which points to OWLKB and gets a list of subclasses of FMA_50801. Rdfstore will use that list of

subclasses, and query the triplestore for all things which are part-of any subclass of FMA_50801.

API type Description Example

RDFstore API Rdfstore has a dynamic
API. The API is defined by
the templates loaded
when Rdfstore is started.
For each template, there

. If the template is named X.txt, and
depends on parameters [0], [1], and [2],
then the API command looks like:
http://localhost:20060/X/?

0=fill_this_in

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 58 of 180

is a corresponding API
command

&1=also_fill_this&2=this_too

Query A low level command
allows wrapping (URL
encoded) SPARQL queries.

select ?x ?y ?z where {?x ?y

?z} limit 10

http://localhost.org:20060/

Raw_SPARQL/?0=s

elect%20%3Fx%20%3Fy%20%3Fz%20

where%20{%3Fx%20%3Fy%20%3Fz}

%20limit%2010

Insertion A low level command
allows inserting a triple
(SPAQRL INSERT DATA):

http://localhost:20060/

Insert_Triple_%28Fuseki%29/

?0=a&1=b&2=c

Deletion A low level command
allows inserting a triple
(SPAQRL INSERT DATA):

http://localhost.org:20060/

Delete_Triple_%28Fuseki%29/

?0=a&1=b&2=c

5.3.4.2 Folksonomy semantic services

5.3.4.2.1 Description

The folksonomy service provides annotation and tag management, which enables the user to add

free tags to the component and the model. The generated tags will be consolidated to revise the

ontology.

5.3.4.2.2 Functionality

ID Functionality

1 Add tags to a resource identified by URI

2 Delete tags

3 Edit tags

4 Query tags by resource, user

5 Generate community tags

5.3.4.2.1 API interface/User Interface

The folksonomy service is provided as a web-based client with RESTful APIs. The web client allows

the user

 to add tags to a resource with suggestions from existing tags and ontology terms (e.g. Gene

Ontology, Cell Ontology), see Figure 19 for a snapshot of the initial version;

 to view tags, edit or delete them, see Figure 20 for a snapshot of the initial version;

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 59 of 180

 to view community tags, see Figure 21 for a snapshot of the initial version.

The RESTful APIs provide the following functions:

 add a tag to a resource;

 edit/delete a tag by id;

 view all available tags;

 view an individual tag;

 view tags grouped by resource;

 view tags grouped by user.

Figure 19 Folksonomy service snapshot – add a tag to a resource

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 60 of 180

Figure 20 Folksonomy service snapshot – view/edit/delete tags

Figure 21 Folksonomy service snapshot – view community tags

5.3.4.3 Knowledge base

5.3.4.3.1 Description

The knowledge base is a store for ontologies. Ontologies specify the theory of a domain that is

relevant to the annotation of CHIC resources.

5.3.4.3.2 Functionality

ID Functionality

1 Storage of ontologies

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 61 of 180

2 Inferencing

5.3.4.3.1 API Interface

The base line for these solutions is adapted from the output of the VPH project RICORDO. In

RICORDO, ontologies were maintained in the language OWL and a knowledge base was maintained

in a dedicated OWL database system that facilitated OWL reasoning.

OWLKB launches a server listening for connections and responding to the following types of

requests.

NOTE: The "eqterms" type of request is special. Unlike the other commands, "eqterms" will
actually create a new class and add it to the selected ontology, if no equivalent class already exists.
This is one of the main features of OWLKB, creation of so called composite terms.

In the following, the string “[SERV]” stands for the address of the OWLKB server, for example:

http://localhost:20080, i.e. on port 20080 of localhost.

Command Description Example

subterms Finds all subterms of the
indicated term. For
example, "amino acid"
is a subterm of "acid".

[SERV]/subterms/CHEBI_33709

parents Finds all the direct parents
(i.e., the direct
superclasses) of the
indicated term

[SERV]/ parents/CHEBI_33709

children Finds all the direct children
(i.e., the direct subclasses)
of the indicated term.

[SERV]/ children/CHEBI_33709

siblings Finds all siblings of the
indicated term. A 'sibling' is
defined to be an immediate
subterm of an immediate
superterm of the indicated
term.

[SERV] /siblings/CHEBI_33709

subhierarchy Finds all subterms of the
indicated term, and
displays them in a
hierarchical format (using
JSON).

[SERV]

/subhierarchy/CHEBI_33709

eqterms Finds all terms equivalent [SERV] /eqterms/

http://localhost:20080/

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 62 of 180

to the indicated term. For
example, the class of all
"animal cells"

(CL_0000548) capable of
some "reproductive
process"

(GO_0022414) is
equivalent to the class of all
"germ line stem
cells" (CL_0000039).
If there are no equivalent
terms, a new class is
created, defined to be
equivalent to the indicated
term. The new class is
saved to the ontology
(unless saving to hard-drive
was disabled by command-
line argument).

CL_0000548+and+

(capable_of+some+GO_0022414)

terms Finds all terms and all
subterms of the indicated
term. Note that unlike
"eqterms", this API
command will not create a
new class if no equivalent
classes are found.

[SERV] /terms/

CL_0000548+and+(

capable_of+some+GO_0022414)

instances Finds all instances of the
indicated class. For
example, "IN-VITRO-
CCTYPE" might be an

instance of "TYPE-OF-
CLINICAL-CONTEXT".
(This is, of course, only for
ontologies that include
named individuals;
otherwise "instances"
will always return the
empty result set.)

[SERV]/instances/TYPE-OF-

CLINICAL-CONTEXT

labels Finds all labels annotated
to the indicated term
(specifically, all
rdfs:label's). For
example, the label
"Brain" is annotated to
FMA_50801.

[SERV]20080/labels/FMA_50801

search Finds all classes in the
ontology with the given
label (specifically, the given
rdfs:label). Note that

[SERV]/search/Brain

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 63 of 180

this is an exact, case-
sensitive search--a search
for "Brai" or "brain"

will not return "Brain" for
instance.

addlabel Adds a label to a class that
was created with
"eqterms". For syntax,
see the example above. To
be more precise, the label
which is added is an
<rdfs:label>. Multiple
labels can be added for a
single class. This command
triggers OWLKB to save
changes to the ontology to
the hard drive (unless
saving has been disabled
via command line).

[SERV]/addlabel/RICORDO12345=

volume+of+blood+in+aorta

Furthermore, there are three ways to coerce data into JSON format:

1. Include an URL parameter 'json'.

Example: http://localhost:20080/subterms/FMA_50801?json

2. Include an URL parameter 'verbose'. In addition to changing the command output to json, this

also causes the command to send additional information (most importantly, it will send labels along

with terms).

Example: http://localhost:20080/siblings/FMA_50801?verbose

3. Send a request header "Accept: application/json". This has the same effect as method

number 1 from above.

Example: curl --header "Accept: application/json"

"http://localhost:20080/subterms/CHEBI_33709"

Additionally, because of backward-compatibility considerations, the default form of OWLKB results is

sparse (including nothing but raw terms in most cases, whereas the user is probably interested in the

labels of those terms as well). In order to get labels along with terms, use the 'verbose' URL

parameter. Note that this will also coerce the results into JSON format.

Example: http://localhost:20080/subterms/CHEBI_33709?verbose

Finally, the strength of OWLKB is that in all the API commands where a term is expected, a

compound term can be indicated using Manchester Syntax. Of course, when passing Manchester

Syntax in an URL, it should be url-encoded.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 64 of 180

Here are some examples of Manchester Syntax (we've replaced spaces with +'s so these examples

can be used in URLs):

All subclasses of (GO_0000111 intersect GO_0000112): "GO_0000111+and+GO_0000112"

All things that are GO_0000111 and part-of some GO_0000112: "GO_0000111+and+part-

of+some+GO_0000112"

All things that are (GO_0000111 intersect GO_0000112) and part-of some GO_0000113:

"(GO_0000111+and+GO_0000112)+and+part-of+some+GO_0000113"

All things that are GO_0000111 and part-of some (GO_0000112 intersect GO_0000113):

"GO_0000111+and+part-of+some+(GO_0000112+and+GO_0000113)"

5.4 Data layer

5.4.1 Model repository

5.4.1.1 Description

The Model Repository permanently hosts multiscale cancer models that have been developed in the

context of the CHIC project. It also hosts tools such as linkers and data transformation tools which

are needed for the construction of hypermodels. For each model, the Model Repository contains all

the related information, including descriptive information (abstract and detailed description,

references, etc.), input and output parameters (for proper linking with other models and tools),

source files, documentation and executables of the models. Moreover, information about model

authorship, ownership, and access permissions are also stored in the Model Repository database. In

order for the user to be able to interact with the Repository, a web-based interface has been

designed and implemented. Apart from the aforementioned graphical interface, many web services

have been developed so as to be able to expose the contents of the Repository to other tools

developed in the CHIC project, such as the hypermodelling Editor, the CRAF (Clinical Research

Application Framework) and the Hypermodelling Framework. Up to now, more than 10 hypomodels,

4 hypermodels and 1 tool have been permanently and safely stored in the Repository in the context

of CHIC project, and all this information is available to the user either through the user interface of

the Model Repository15, or through the user interface of the other CHIC components, such as the

Hypermodelling Editor and the CRAF. The user is now able to store in an elegant and user-friendly

way new models in the Model Repository through a five-step wizard, or even browse, view, change

and delete the content of the Repository.

5.4.1.2 Functionality

ID Functionality

15 https://mr.chic-vph.eu

https://mr.chic-vph.eu/

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 65 of 180

1 Adding a new (hyper)model or tool, including all its related information
(descriptive information, input and output parameters, executable and
documentation, files etc). The functionality is provided to the end user through a
five-step wizard.

2 Updating any information stored in the repository. The functionality is provided to
the end user through a graphical user interface and to other components through
web services.

3 Deleting a (hyper)model or tool. The functionality is provided to the end user
through a graphical user interface and to other components through web services.

4 Filtering stored (hyper)models according to their categorization. The
aforementioned categorization constitutes a metamodeling description of the
corresponding model based on the CHIC 13 perspective approach. The
functionality is provided to the end user through a graphical user interface and to
other components through web services.

5 Storing hypermodels constructed by the hypermodeling editor using web services.

6 Automatically storing into the CHIC RDF triplestore information related to the
categorization of the models depending on the perspective from which they are
viewed in the basic science context. The aforementioned information is
represented in the form of subject-predicate-object expressions.

7 Publishing events to the other CHIC components (Hypermodelling Framework,
CRAF, Hypermodelling Editor) through AMQP protocol, whenever the content of
the Repository changes.

8 Deployment of the binaries of the models into the Hypermodelling Infrastructure
in order for them to be tested by the Hypermodelling Framework.

9 Automatically “freezing” the successfully deployed models. According to the
“freezing” mechanism, all successfully deployed models cannot be changed
anymore.

10 Cloning the “freezed” models. Since the “freezed” models cannot be updated
anymore by their owners, the Model Repository offers the service of cloning.
According to the aforementioned service, the user is able to clone a “freezed”
model into a new one with identical information but with different title. The clone
is linked to its ancestor through a pointer and its version is incremented by one.

11 Access control to the model repository (Single sign on)

5.4.1.1 CHIC components interaction

The Model Repository exposes its content to the other CHIC components through the already

developed web services. Thereafter, the Hypermodelling Framework, the CRAF (Clinical Research

Application Framework) and the Hypermodelling Editor are able to retrieve, update and delete the

content of the Model Repository. Table 2 briefly outlines the interaction of the Model Repository

with the rest of the CHIC components and Figure 22 presents the interconnections.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 66 of 180

Table 2 Interactions of the Model Repository with the other CHIC components

Interaction of the Model Repository with the other CHIC components

Interaction with CRAF CRAF retrieves information related to
hypermodels (description, parameters, etc.)

The Model Repository notifies CRAF through
AMQP protocol whenever the content of the
Repository changes

Interaction with the Hypermodelling Editor The Hypermodelling Editor retrieves
information related to hypomodels
(description, parameters, etc.)

The Hypermodelling Editor stores in the
Model Repository new hypermodels in the
form of xMML

The Model Repository notifies the
Hypermodelling Editor through AMQP
protocol whenever the content of the
Repository changes

Interaction with the Hypermodelling
Framework

The Hypermodelling Framework retrieves the
binaries and the dependencies of the stored
hypomodels.

The Hypermodelling Framework retrieves the
descriptive language of the stored
hypermodels in the form of xMML

The Model Repository notifies the
Hypermodelling Framework through AMQP
protocol whenever the content of the
Repository changes

Interaction with the CHIC RDF triplestore The Model Repository stores into the CHIC
RDF triplestore information related to the
categorization of the models depending on
the perspective from which they are viewed
in the basic science context

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 67 of 180

Figure 22 Interactions of the Model Repository with the other CHIC components

5.4.1.2 User interface

A web based interface has been designed and implemented in order to allow users (modellers,

researchers) to interact with the Repository. The aforementioned interface makes the interaction

with the user self-explanatory, efficient, enjoyable and user-friendly. It has been given special

emphasis during the development of the Model Repository to provide a user interface where the

user will need to provide minimal input to achieve the desired output and where the Repository will

minimize undesired outputs to the user.

Figure 23 presents the main page of the Model Repository. As shown in the aforementioned figure,

right after the authentication and authorization processes, the user is able to store a new model

through a wizard, or browse the content of the Repository in order to view or even update the

models that have been stored.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 68 of 180

Figure 23 The main page of the Model and Tool Repository

The wizard that has been implemented for the Model Repository allows the user to store a new

model through a single page. More specifically, the user is able through this wizard to store all the

related information of the new model, including:

 Basic information of the new model (title, description, additional comments, etc.).

 Definition of the input and output parameters of the new model.

 Categorization of the new model based on the 13 Perspectives that have been designed
within CHIC.

 References related to the new model (journal articles, conference proceedings, etc.)

Figure 24 presents the third step of the wizard where the user is able to upload a variable number of

files associated with the new model (source code, executable, documentation, etc.), while Figure 25

presents the fourth step of the wizard. As shown in Figure 25, the user is able through the fourth step

to categorize their new model based on the 13 perspectives that have been defined within CHIC.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 69 of 180

Figure 24 The third step of the wizard. The user uploads a variable number of files related to the new model

(source code, executables, documentation, etc.)

Figure 25 The fourth step of the wizard. The user categorizes their new model based on the 13 perspectives

that have been defined within CHIC.

Apart from the wizard that has been developed in order to facilitate the storing procedure of a new

model, the user is also able through the Model Repository to browse or even update the available

models and their related information (parameters, categorization, references, files, etc.). Based on

the feedback received mainly from some modelling partners (WP6), the user interface of the Model

Repository has been improved and now the user is able to view the content of the Repository in a

more elegant way. In addition to the advance concerning the graphics and the illustration of the

corresponding web pages, the new design aims to facilitate the interactions between the Repository

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 70 of 180

and the user in a way that common tasks and activities can be accomplished easily and efficiently.

For instance, if required, the user is able to view in the same page all the information related to a

specific model (parameters, categorization, etc.). Moreover, since the filtering of the models based

on their categorization is now feasible through the Repository, the user can easily and instantly view

the models of his choice without browsing the full content of the database.

A screenshot of the content of the Model Repository is presented in Figure 26. As shown in the

aforementioned figure, the available models are rendered by using tables and panels. The basic

information of each model (unique identifier, name of the executable, description, etc.) is available in

the corresponding table and pagination is being used in order to browse all the models. As shown in

the screenshot of figure 5, the Model Repository displays the descriptive information of the models

named Wilms Oncosimulator, Nephroblastoma phenomenological hypermodel and Lung

Oncosimulator.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 71 of 180

Figure 26 A screenshot of part of the content of the Model Repository

Apart from browsing the available models, the user is also able through the same page to perform

some actions on the desired model. For instance, they are able to delete the model, view the

parameters of the model, view the categorization of the model, update the parameters, etc. Figure

27 presents all the available actions that can be applied to a model, after pressing the button

“Choose action for this model”

Figure 27 The user may apply many actions to a model (view the parameters, view the files, etc.)

For a complete guide regarding the user interface of the Model and Tool Repository, the reader may

refer to the CHIC deliverable “D8.4 Report on the final system”.

5.4.1.3 API Interface

The Model and Tool Repository makes use of RESTful web services. The web services of the Model

Repository are mainly based on the interfaces described in CHIC deliverable “D10.2 – Design of the

orchestration platform, related components and interfaces”. The description of the web service, the

HTTP method used, the parameters of the service, the URL and the returned object of the service are

all described in the following tables. Each table is related to a specific RESTful web service.

5.4.1.3.1 Model/Tool

The following web services (Table 3 - Table 8) should be used whenever the client needs to store,

retrieve or delete descriptive information (title, description, comments) of the model/tool.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 72 of 180

Table 3 Information for calling storeTool web service

storeTool

Description This method stores the basic descriptive information of the
model/tool and returns the id

URL https://mr.chic-vph.eu/model_app/storeTool

Encoding application/x-www-form-urlencoded

HTTP Method POST

Parameters passed through
request body

title= Required - Title of the
model/tool

description= Not required – Description of
the model/tool

comment= Not required – Comments on
the model/tool

version= Required – version of the
model/tool (version should be
in the format X.X where X is an
integer)

semtype= Not required – url representing
semantic information about this
model/tool

extra_parameters= Not required – string consisted
of flag-value pairs that should
be included in the command
line argument list of the model

executable_path= Not required – The relative path
of the executable inside the
compressed package

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code If no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Example Response

The JSON object returned by method storeTool has one key, named id, and one value which is
associated with this key.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 73 of 180

Table 4 Information for calling getAllTools web service

getAllTools

Description This method returns all the models/tools and the corresponding
descriptive information stored (id, uuid, title, description,
comment, version, semtype, executable_path, extra_parameters,
strongly_coupled). It returns null when no model/tool stored in the
repository.

URL https://mr.chic-vph.eu/model_app/getAllTools

Encoding application/x-www-form-urlencoded

HTTP Method GET

Parameters No parameters required

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getAllTools are as many as the different
models/tools stored in the model/tool repository. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents
the column name of mr_tool entity (see figure 3) and each value of this nested object represents the
information of the corresponding column

Table 5 Information for calling getToolById web service

getToolById

Description This method returns the descriptive information stored under the
id (uuid, title, description, comment, version, semtype,
strongly_coupled, executable_path, extra_parameters) and null
when not existing

URL https://mr.chic-vph.eu/model_app/getToolById

Encoding application/x-www-form-urlencoded

HTTP Method GET

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 74 of 180

Parameter (parameter should
be passed through the URL –
query string parameter)

id= Required – Id of the model/tool

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getToolById has thirteen keys named title, uuid, description,
comment, version, strongly_coupled, extra_parameters, executable_path, semtype, created_on,
created_by, modified_on and modified_by, and thirteen values associated with those keys.

Table 6 Information for calling getToolByParameterId web service

getToolByParameterId

Description This method returns the descriptive information of the model/tool
(mr_tool table) to which the given parameter belongs.

URL https://mr.chic-vph.eu/model_app/getToolByParameterId

Encoding application/x-www-form-urlencoded

HTTP Method GET

Parameter (parameter should
be passed through the URL –
query string parameter)

id= Required – id of the given
parameter

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 75 of 180

The JSON object returned by method getToolByParameterId has fourteen keys named id, uuid, title,
description, comment, version, strongly_coupled, extra_parameters, executable_path, semtype,
created_on, created_by, modified_on and modified_by, and fourteen values associated with those
keys.

Table 7 Information for calling getToolByUuid web service

getToolByUuid

Description This method returns the descriptive information stored under the
uuid (id, title, description, comment, version, semtype,
strongly_coupled, executable_path, extra_parameters) and null
when not existing

URL https://mr.chic-vph.eu/model_app/getToolByUuid

Encoding application/x-www-form-urlencoded

HTTP Method GET

Parameter (parameter should
be passed through the URL –
query string parameter)

uuid= Required – uuid of the
model/tool

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getToolByUuid has thirteen keys named id, title, description,
comment, version, strongly_coupled, extra_parameters, executable_path, semtype, created_on,
created_by, modified_on and modified_by, and thirteen values associated with those keys.

Table 8 Information for calling deleteToolById web service

deleteToolById

Description This method deletes the descriptive information, the files, the
parameters, and property values of a model/tool.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 76 of 180

URL https://mr.chic-vph.eu/model_app/deleteToolById

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – id of model/tool

Returns 200 OK if model/tool has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

5.4.1.3.2 Parameter

The following web services (Table 9 - Table 15) should be used whenever the client needs to store,

retrieve or delete information related to parameters (name, description, data_type, data_range,

etc.).

Table 9 Information for calling storeParameter web service

storeParameter

Description This method stores the parameter information of a tool and
returns the id

URL https://mr.chic-vph.eu/model_app/storeParameter

Encoding application/x-www-form-urlencoded

HTTP Method POST

PARAMETERS (parameters
passed through request body)

tool_id= Required - id of the tool to which
the parameter belongs

name= Required – name of the
parameter

description= Not Required – description of
the parameter

data_type= Required – the type of the
parameter (number, string, file)

unit= Not Required – the units in
which the parameter is

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 77 of 180

represented (only applicable if
the parameter is a number)

data_range= Required – Data range of the
parameter

 Discrete values example:
value1,value2,value3

 Min value example: 3-

 Max value example: -10

 Min max values
example: 3-5

default_value= Required – the value that will be
used if a parameter value is not
provided to the tool

is_mandatory= Required – 1 if the parameter is
mandatory, 0 if it is optional

is_output= Required – 1 if the parameter is
output, 0 if it is input

is_static= Required – 1if the parameter is
static, 0 if it is dynamic

comment= Not Required – comments on the
parameter

semtype= Not required – url representing
semantic information about this
parameter

flag= Not required – the flag which
accompanies the parameter in
the command line argument list

Returns 200 OK & JSON object *

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeParameter has one key, named id, and one value which is
associated with this key.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 78 of 180

Table 10 Information for calling deleteParameter web service

deleteParameter

Description This method deletes a certain parameter

URL https://mr.chic-vph.eu/model_app/deleteParameter

Encoding application/x-www-form-urlencoded

HTTP method Delete

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – id of the parameter

Returns 200 OK if parameter has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 11 Information for calling getParametersByToolId web service

getParametersByToolId

Description This method returns the information of all the parameters of a
given tool

URL https://mr.chic-vph.eu/model_app/getParametersByToolId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through the
URL – query string parameter

tool_id= Required – the id of the tool to
which the parameters belong

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 79 of 180

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getParametersByToolId are as many as the different
parameters belonging to the tool. Each value associated with a specific key is represented by a
nested JSON object. Each key of the aforementioned nested JSON object represents the column
name of the mr_parameter entity (see figure 3) and each value of the nested JSON object represents
the information of the corresponding column.

Table 12 Information for calling getParameterById web service

getParameterById

Description This method returns the descriptive information of the parameter
stored under the given id (mr_parameter table).

URL https://mr.chic-vph.eu/model_app/getParameterById

Encoding application/x-www-form-urlencoded

HTTP Method GET

Parameter (parameter should
be passed through the URL –
query string parameter)

id= Required – id of the given
parameter

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The Json object returned by method getParameterById has eighteen keys named tool, name,
description, data_type, unit, flag, uuid, data_range, default_value, is_mandatory, is_output, is_static,
comment, semtype, created_on, created_by, modified_on, modified_by and eighteen values
associated with those keys.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 80 of 180

Table 13 Information for calling getMandatoryParametersByToolId web service

getMandatoryParametersByToolId

Description This method returns the information of the mandatory parameters of
a given tool

URL https://mr.chic-
vph.eu/model_app/getMandatoryParametersByToolId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through
the URL – query string
parameter

tool_id= Required - the id of the tool to
which the mandatory parameters
belong

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getMandatoryParametersByToolId are as many as
the different mandatory parameters belonging to the tool. Each value associated with a specific key
is represented by a nested JSON object. Each key of the aforementioned nested JSON object
represents the column name of the mr_parameter entity (see figure 3) and each value of the nested
JSON object represents the information of the corresponding column.

Table 14 Information for calling getInputParametersByToolId web service

getInputParametersByToolId

Description This method returns the information of the input parameters of a
given tool

URL https://mr.chic-vph.eu/model_app/getInputParametersByToolId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter tool_id= Required – the id of the tool to

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 81 of 180

should be passed through the
URL – query string parameter

which the input parameters
belong

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getInputParametersByToolId are as many as the
different input parameters belonging to the tool. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents
the column name of the mr_parameter entity (see figure 3) and each value of the nested JSON object
represents the information of the corresponding column.

Table 15 Information for calling getOutputParametersByToolId web service

getOutputParametersByToolId

Description This method returns the information of the output parameters of a
given tool

URL https://mr.chic-vph.eu/model_app/getOutputParametersByToolId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through the
URL – query string parameter

tool_id= Required – the id of the tool to
which the output parameters
belong

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getOutputParametersByToolId are as many as the

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 82 of 180

different output parameters belonging to the tool. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents
the column name of the mr_parameter entity (see figure 3) and each value of the nested JSON object
represents the information of the corresponding column.

5.4.1.3.3 Property

The following web services (Table 16 - Table 22) should be used whenever the client needs to store,

retrieve or delete information related to properties (perspectives) (property name, property value,

property description, property comments).

Table 16 Information for calling storeProperty web service

storeProperty

Description This method stores the basic descriptive information of a property
(perspective) and returns the id

URL https://mr.chic-vph.eu/model_app/storeProperty

Encoding application/x-www-form-urlencoded

HTTP Method POST

PARAMETERS (parameters
passed through request body)

name= Required – the name of the
property

description= Not required – description of
the property

comment= Not required – comments on
the property

 semtype= Not required – url representing
semantic information about this
property

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeProperty has one key, named id, and one value which is
associated with this key.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 83 of 180

Table 17 Information for calling getAllProperties web service

getAllProperties

Description This method returns all the properties (perspectives) and the
corresponding descriptive information stored (id, name,
description, comment, semtype)

URL https://mr.chic-vph.eu/model_app/getAllProperties

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETERS No parameters required

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getAllProperties are as many as the different
properties (perspectives) stored in the model/tool repository. Each value associated with a specific
key is represented by a nested JSON object. Each key of the aforementioned nested JSON object
represents the column name of the mr_property entity (see figure 3) and each value of the nested
JSON object represents the information of the corresponding column.

Table 18 Information for calling getPropertyById web service

getPropertyById

Description This method returns the descriptive information stored under the
property (perspective) id (name, description, comment)

URL https://mr.chic-vph.eu/model_app/getPropertyById

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – the id of the
property

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 84 of 180

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getPropertyById has four keys named name, description,
comment, semtype, and four values associated with those keys.

Table 19 Information for calling storePropertyValue web service

storePropertyValue

Description This method stores the value of a property for a tool and returns
the id

URL https://mr.chic-vph.eu/model_app/storePropertyValue

Encoding application/x-www-form-urlencoded

HTTP Method POST

PARAMETERS (parameters
passed through request body)

tool_id= Required – the id of the tool

property_id= Required – the id of the
property

value= Required – the value of the
property

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storePropertyValue has one key, named id, and one value
which is associated with this key.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 85 of 180

Table 20 Information for calling deletePropertyValue web service

deletePropertyValue

Description This method deletes the property value for a certain tool

URL https://mr.chic-vph.eu/model_app/deletePropertyValue

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETER (parameter
should be passed through the
URL – query string parameter)

id= Required – the id of the record
which holds the property value

Returns 200 OK if property value has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 21 Information for calling getPropertyValuesByToolId web service

getPropertyValuesByToolId

Description This method retrieves all the property (perspective) – value pairs for
a given tool

URL https://mr.chic-vph.eu/model_app/getPropertyValuesByToolId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through the
URL – query string parameter)

tool_id= Required – the id of the tool
with which the property – value
pairs are associated

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 86 of 180

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getPropertyValuesByToolId are as many as the
different properties (perspectives) that describe or/and classify the given tool. Each value associated
with a specific key is represented by a nested JSON object. The keys of the aforementioned nested
JSON object are named name, description, comment, value, semtype.

Table 22 Information for calling deletePropertyById web service

deletePropertyById

Description This method deletes the property (perspective) which is associated
with the given id and the corresponding values

URL https://mr.chic-vph.eu/model_app/deletePropertyById

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETER (parameter
should be passed through the
URL – query string parameter)

id= Required – the id of the record
which holds property’s
descriptive information

Returns 200 OK if property has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

5.4.1.3.4 Reference

The following web services (Table 23 - Table 25) should be used whenever the client needs to store,

retrieve or delete information related to references (reference title, reference authors, reference

type, etc.).

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 87 of 180

Table 23 Information for calling storeReference web service

storeReference

Description This method stores information of the reference. The reference
should be associated with a model/tool.

URL https://mr.chic-vph.eu/model_app/storeReference

Encoding application/x-www-form-urlencoded

HTTP Method POST

PARAMETERS (parameters
passed through request body)

tool_id= Required – the id of the tool
with which the reference is
associated

title= Required – the title of the
reference

type= Required – the type of the
reference (book, journal article,
etc.)

creator= Required – the creator(s) of the
resource

issued= Required - the date of formal
issuance

bibliographic_citation= Not required – the bibliographic
citation of the resource

is_part_of= Not required – the related
resource that this resource is
part of

source= Not required – the related
resource from which the
described resource is derived
from

 doi= Not required – digital object
identifier of the resource

 pmid= Not required – the pubmed
identifier

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 88 of 180

token>

Json Response

The JSON object returned by method storeReference has one key, named id, and one value which is
associated with this key.

Table 24 Information for calling deleteReferenceById web service

deleteReferenceById

Description This method deletes a specific reference

URL https://mr.chic-vph.eu/model_app/deleteReferenceById

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETER (parameter
should be passed through the
URL – query string parameter)

id= Required – the id of the
reference

Returns 200 OK if reference has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 25 Information for calling getReferencesByToolId web service

getReferencesByToolId

Description This method returns all the references of a given tool

URL https://mr.chic-vph.eu/model_app/getReferencesByToolId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through the
URL – query string parameter)

tool_id= Required – the id of the tool
with which the references are
associated

Returns 200 OK & JSON object

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 89 of 180

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML

token>

Json Response

The keys of the JSON object returned by method getReferencesByToolId are as many as the different
references which are associated with the given tool. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents
the column name of the mr_reference entity (see figure 3) and each value of the nested JSON object
represents the information of the corresponding column.

5.4.1.3.5 File

The following web services (Table 26 - Table 31) should be used whenever the client needs to store,

retrieve or delete information related to files (title of file, description of file, the file itself, etc.).

Table 26 Information for calling storeFile web service

storeFile

Description This method stores the file information and returns the id

URL https://mr.chic-vph.eu/model_app/storeFile

Encoding Multipart/form-data

HTTP Method POST

PARAMETERS (parameters
passed through request body)

tool_id= Required – the id of the tool
with which the file is associated

title= Required – the title of the file

description= Not required – description of
the file

kind= Not required – defines what this
file is (document, source code,
binary, etc.)

license= Not required – the license
associated with this file

Sha1sum= Not required – the sha1
checksum of the file

comment= Not required – comments on

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 90 of 180

the file

engine= Not required – the engine that
is suitable for executing this file

file= Required – the actual file (blob)

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeFile has one key, named id, and one value which is
associated with this key.

Table 27 Information for calling deleteFile web service

deleteFile

Description This method deletes a certain file

URL https://mr.chic-vph.eu/model_app/deleteFile

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – the id of the file

Returns 200 OK if file has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 91 of 180

Table 28 Information for calling getFileById web service

getFileById

Description This method returns the given file (attachment)

URL https://mr.chic-vph.eu/model_app/getFileById

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – the id of the file

Returns
(Content-Type:
application/force-download
Content-Disposition:
attachment)

200 OK & attachment

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 29 Information for calling getPackageByToolId web service

getPackageByToolId

Description This method returns the file (attachment) which is of kind
"compressed package with binary and dependencies" and belongs
to the model with id=tool_id. This method returns 200 O.K. +
attachment.

URL https://mr.chic-vph.eu/model_app/getPackageByToolId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter should
be passed through the URL –
query string parameter)

tool_id= Required – the id of the
model/tool to which the
“compressed package with
binary and dependencies"
belongs

Returns
(Content-Type:

200 OK & attachment

400 http status code if bad request

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 92 of 180

application/force-download
Content-Disposition:
attachment)

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 30 Information for calling getFilesOfKind web service

getFilesOfKind

Description This method returns the information of all the files of a specific
kind of a given tool

URL https://mr.chic-vph.eu/model_app/getFilesOfKind

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETERS (parameters
should be passed through the
URL – query string parameter)

tool_id= Required – the id of the tool

kind= Required - kind of file
(document, source code, binary,
etc.)

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getFilesOfKind are as many as the different files of a
specific kind which are associated with the given tool. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents
the column name of the mr_file entity (see figure 3) and each value of the nested JSON object
represents the information of the corresponding column.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 93 of 180

Table 31 Information for calling getFilesByToolId web service

getFilesByToolId

Description This method returns information (only metadata, not attachment)
for all the files that are associated with the given model/tool.

URL https://mr.chic-vph.eu/model_app/getFilesByToolId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETERS (parameters
should be passed through the
URL – query string parameter)

tool_id= Required – the id of the tool
with which the files are
associated

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getFilesByToolId are as many as the different files
that are associated with the given model/tool. Each value associated with a specific key is
represented by a nested JSON object. The keys of the aforementioned nested JSON object are named
id, title, description, kind, source, license, sha1sum, comment, engine, created_on, created_by,
modified_on, modified_by and 13 values associated with those keys.

5.4.2 Clinical data repository

5.4.2.1 Description

The clinical data repository hosts all the medical data produced or collected by the CHIC project. The

data provided by the clinical environment pass through de-identification and (pseudo)-

anonymization processes, as described in the following chapter. Additionally, there are appropriate

interfaces that allow to import and export the contents of the clinical data repository. In this way the

data can be sustained after the expiration of the project’s lifetime and reused and exploited

continuously within the limits allowed by the legal framework of the project. The clinical data

repository contains for each patient all the relevant medical data including imaging data, clinical

data, histological data and genetic data.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 94 of 180

5.4.2.2 Functionality

ID Functionality

1 Provide an interface to store and retrieve pseudonymized clinical data.

2 Provide data annotation such as ontology or object type/modality.

3 Linking of datasets to find related data.

4 Semantically driven search to find datasets containing the required anatomical
structures.

5 Access control to the clinical data repository (Single sign on, sharing of
information)

5.4.2.1 CHIC components interaction

5.4.2.1.1 Authentication

The clinical data repository makes use of the security framework described in deliverable “D5.2.2 –

Final version of security tools and guidelines”. Therefore, the users are not directly authenticated by

the clinical data repository (Service Provider) itself but rather by the CHIC authentication broker

(Identity Provider) to support Single Sign-On (SSO). This procedure is called brokered authentication.

The CHIC security framework further distinguishes between brokered authentication for web services

including REST and for web sites. As the clinical data repository provides complete access to the

features of the database with the help of REST interfaces, the Security Token Service (STS) provided

by CHIC is fully integrated in the authentication process. Before calling a REST interface of the clinical

data repository the client needs to send a SOAP (Simple Object Access Protocol) request containing

an RST (RequestSecurityToken) to the STS. The STS then returns the identity assertion as a SAML

token, embedded in a RSTR (RequestSecurityTokenResponse). The SAML token can then be passed to

the REST interface through the HTTP authorization header.

The following procedure is needed in order to supply a SAML token to the clinical data repository:

1. Get the SAML token from the CHIC Security Token Service.

2. ZLIB (RFC 1950) compress the retrieved SAML token.

3. Base64 (RFC 4648) encode the compressed SAML token.

4. Supply an "Authorization" header with content "SAML auth=" followed by the encoded
string.

The brokered authentication for the clinical data repository web site makes use of SAML Web

Browser SSO Profile as suggested by the CHIC security framework. The SAML Web Browser SSO

Profile is initiated by an end user who visits the protected clinical data repository web site, also called

a Service Provider (SP). The SP redirects the user to the assertion provider (also called Identity

Provider (IdP)) passing through an authentication request. The IdP will request the user to

authenticate and upon successful authentication the IdP will issue an identity assertion for the user

containing all information on the user needed by the SP to authenticate and authorise him. The

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 95 of 180

assertion is then sent back to the SP that will use it to determine whether the user is allowed to

access the requested resource.

Figure 28 Brokered Authentication Flow with the clinical data repository

5.4.2.1.2 Data flow

The intention of the data flow described below (Figure 29) is to limit the additional workload on the

clinical side, while providing all the relevant information with the data. The trial data collection on

the clinical side is not covered. Once the data is uploaded to the CHIC infrastructure it must be

impossible to know the origin of the data nor any of the patient information without being

authorized to translate the used pseudonyms by the TTP. A good example for this workflow is a

cryptographic hash function. A cryptographic hash function is considered practically impossible to

invert if only the hash value is known. However, the same input data will result always in the same

hash code. This one-way concept can be applied to the general workflow for data upload in the CHIC

context.

With this concept in mind, it is straightforward to understand the problems and limitations of the

data upload pipeline. A critical requirement to meet is to keep track of the patient throughout the

anonymization process. Therefore, it is necessary that the same pseudonym is used for the same

patient across different file formats. A unique patient identifier will ensure that the repository

receiving the data is able to keep the links between datasets obtained from the same patient, even if

the data are uploaded at different time points. The information is critical for the CHIC platform, since

the modelling tool and other services rely on all the information collected on each individual patient.

Another important aspect is the fact that datasets cannot be properly annotated once uploaded to

the CHIC infrastructure, because the data uploader does not know where the dataset is actually

stored. Due to the pseudonymization requirement, it is necessary to perform the annotation prior to

data upload and to transfer this information together with the data file.

Therefore, the system must find a compromise between the requirements associated to the data

protection, limited time available by the clinician to process the data and the information necessary

to run the in-silico trials in the CHIC infrastructure. The analysis of these constraints resulted in the

following proposition for the data upload workflow:

 A special trial-patient-identifier will be used across all the datasets collected on each patient.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 96 of 180

 The datasets will be annotated before upload in a way that ensures a reliable extraction of
the meta-information by the repositories.

 The semantic annotations will be stored in a triplestore (providing generalized search
functionalities) only after retrieval of the meta-information by the clinical data repository.

The general workflow for data upload involves 6 distinct parties which are briefly described in Table

32 and the general workflow is illustrated in Figure 29.

Figure 29: The general workflow for data upload

The steps required to store clinical data in the CHIC environment, including the related semantic

annotation is the following:

1. The trial partner enters the patient in the trial center which generates the special trial-
patient-identifier.

2. The trial partner provides the data to the trial center.

a. The trial partner enters the clinical study data available in raw format into the
tool provided by the trial center (e.g. ObTiMA).

b. The trial partner provides the imaging data to the trial center.

c. The trial partner provides the genetic data to the trial center.

3. The trial center makes sure that the trial-patient-identifier is used accordingly.

a. The trial center exports the study data in standardized format (e.g. ObTiMA to
CDISC ODM).

b. The trial center adds the trial-patient-identifier to the imaging data and creates
the annotation file.

c. The trial center adds the trial-patient-identifier to the genetic data and creates
the annotation file.

4. The trial center creates the special file containing annotations and other metadata.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 97 of 180

5. The trial center imports the data in the upload tool.

6. The upload tool applies the first pseudonymization round.

7. The upload tool uploads the data to the trusted third party.

8. The trusted third party applies the second pseudonymization round.

9. The trusted third party uploads the data to the data repository.

10. The data repository extracts the annotations and provides them to the triplestore.

Table 32 Parties involved in the general workflow for data upload

Party Description

Trial Partner The trial partner conducts the clinical trial and gathers all data to
be stored in the CHIC infrastructure.

Trial Center The trial center coordinates the clinical trial and ensures that the
unique trial-patient-identifier is used across all supported file
formats accordingly.

Data Manager The data manager is responsible to upload compliant data provided
by the trial center to the trusted third party after a first
pseudonymization round.

Trusted Third Party The trusted third party accepts data uploaded by the data manager
and uploads it to the data repository after a second
pseudonymization round.

Data Repository The data repository stores clinical, imaging and genetic data.
Related data is linked and annotated with ontology terms.

RICORDO RICORDO provides services to search ontology terms, to store
annotation triples, to conduct semantically driven search queries
and to perform automated semantic reasoning.

5.4.2.1.3 Auditing

Auditing is an examination of the management controls within an information technology (IT)

infrastructure. The evaluation of obtained evidence determines if the information systems are

safeguarding assets, maintaining data integrity, and operating effectively to achieve the desired goals

or objectives. In order to track activities by individual people, systems, accounts or other entities so-

called audit trails are required. An audit trail (also called audit log) is a security-relevant chronological

record, set of records, and/or destination and source of records that provide documentary evidence

of the sequence of activities that have affected at any time a specific operation, procedure, or event.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 98 of 180

The clinical data repository makes use of the updated audit data model called XDASv216 introduced in

deliverable D5.2. An implementation in C# of the audit data model has been published17 as open-

source on the GitHub platform under the MIT license.

Figure 30: The audit data model XDASv2 used by the clinical data repository for auditing.

The architecture of the auditing within the clinical data repository has been designed to support

different and multiple audit systems at the same time. As illustrated in Figure 31 the clinical data

repository relies on the elastic stack. The elastic stack consists of Filebeat, Logstash, Elasticsearch and

Kibana. All previously listed components are licensed under the Apache License Version 2.0. This

ensures the legal compliance with other dependencies of the clinical data repository.

16 XDASv2, “The XDASv2 specification provides a standardized classification for audit events.”, [Online].

Available: https://www.netiq.com/documentation/edir88/pdfdoc/edirxdas_admin/edirxdas_admin.pdf.

[Accessed 9 August 2016].
17 XDASv2Net, “XDASv2Net is a .NET library containing the model of the XDASv2 specification.”, [Online].

Available: https://github.com/niklr/XDASv2Net. [Accessed 9 August 2016].

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 99 of 180

Figure 31: The components of the audit systems and the interactions with the clinical data repository

Filebeat is a lightweight, open-source shipper for log file data. As the next-generation Logstash

Forwarder, Filebeat tails logs and quickly sends this information to Logstash for further parsing and

enrichment or to Elasticsearch for centralized storage and analysis.

Logstash is an open-source data collection engine with real-time pipelining capabilities. Logstash can

dynamically unify data from disparate sources and normalize the data into destinations of choice.

Elasticsearch is a highly scalable open-source full-text search and analytics engine. It allows to store,

search, and analyze big volumes of data quickly and in near real time. It is generally used as the

underlying engine/technology that powers applications that have complex search features and

requirements.

Kibana is an open-source analytics and visualization platform designed to work with Elasticsearch. It

can be used to search, view, and interact with data stored in Elasticsearch indices. Kibana makes it

easy to perform advanced data analysis and to visualize data in a variety of charts, tables, and maps.

5.4.2.1.4 Semantic integration with RICORDO

The clinical data repository is one of the CHIC components that makes use of the higher level

services, which are provided by the CHIC semantic infrastructure. It can be accessed either by

website or by web service. The former is geared towards end users and the latter for third-party

applications but both use the same core. The common core relies on a relational database which

makes use of the Structured Query Language (SQL). Standard file formats as described in D8.1

supported by the clinical data repository include DICOM, MetaImage, Analyze and Nifti for medical

imaging data, CDISC ODM XML for clinical data and MINiML XML for genetic / molecular data. One

objective is to extract selected metadata from the files during the upload process to the clinical data

repository automatically. Another objective is to let users such as clinicians, researchers and others

annotate the objects of the clinical data repository manually. Both objectives have in common that

the annotations will be exported to the semantics infrastructure provided by RICORDO within CHIC.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 100 of 180

Figure 32: A visual representation of interactions between clinical data repository and RICORDO

components.

RICORDO offers three components called LOLS, Rdfstore and OWLKB which are relevant within CHIC.

The intended purpose of Local Ontology Lookup Service (LOLS) is to translate between standardized

(but not human readable) identifier strings used for triplestores, and human-readable labels

describing them for a given set of ontologies. Rdfstore is a metadata wrapper based on templates

serving as a messenger between SPARQL endpoint and end-user, obviating the need to learn

complicated SPARQL syntax. OWLKB is a semantic reasoner which enables to query semantic data

loaded from an ontology. Both components LOLS and OWLKB have the same set of ontologies in

common.

5.4.2.1.4.1 Interactions with the Local Ontology Lookup Service

A connection with LOLS is required to enable clinicians, researchers and others to annotate objects of

the clinical data repository manually. An exemplary use case is the annotation of an object with

anatomical regions. As shown in Figure 33, the user starts to type the name of the anatomical region

and the autocomplete function offered by LOLS returns a list of matching entries. The user selects

the correct entry from the list which completes this step of the annotation process. In this case, it

would not make sense to present matching entries other than those from the Foundational Model of

Anatomy (FMA) ontology to the user. Therefore, the crucial functionality to filter the range of

ontologies to be searched by the autocomplete function is required.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 101 of 180

Figure 33: User dialog to annotate an object with anatomical regions using the autocomplete function

offered by the Local Ontology Lookup Service (LOLS).

5.4.2.1.4.2 Interactions with the Rdfstore

Metadata can be extracted during the upload process by the clinical data repository automatically, if

standard file formats are used. However, in the majority of cases the extracted metadata is not in the

form to be stored directly in the Rdfstore. Therefore, the metadata must be processed to triples

before being exported to the Rdfstore. This is one of the reasons the clinical data repository stores

the extracted metadata in the relational database. Another reason is the export process itself which

requires a reliable retry logic. Last but not least, the clinical data repository needs to be able to

display the information associated with each object without fetching it from the Rdfstore every time.

The Rdfstore itself already offers the functionality to add and delete triples in order to enable

interactions with the clinical data repository.

Adding and deleting triples to/from the Rdfstore is merely a means to an end. The main objective is

to leverage the powerful search capabilities offered by its very nature of the semantic technology.

For this purpose the Rdfstore offers an extensible template system which can be used for querying. A

simple query such as “get all objects having more than one file” can be achieved by the Rdfstore

directly. Once the query involves information stored in an ontology such as “get all objects which are

part of FMA Head" the Rdfstore relies on the semantic reasoner offered by OWLKB. A direct

interaction between the clinical data repository and the OWLKB is not intended.

To enable interactions with the Rdfstore, two libraries have been developed and published as open-

source on the GitHub platform under the MIT license. RdfMapperNet18 is a .NET library to map

classes to RDF triples and RdfstoreNet19 is a .NET library for the Rdfstore API.

18 RdfMapperNet, “A .NET library to map classes to RDF triples.”, [Online]. Available:

https://github.com/niklr/RdfMapperNet. [Accessed 9 August 2016].
19 RdfstoreNet, “A .NET library for the Open Physiology Rdfstore API.”, [Online]. Available:

https://github.com/niklr/RdfstoreNet. [Accessed 9 August 2016].

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 102 of 180

5.4.2.2 User interface

The implementation of the web-based user interface offers a main view illustrated in Figure 34 which

serves as entry point for almost all functionalities described throughout the user guide introduced in

the deliverable “D8.2 – Prototype implementation of the CHIC repositories”. On top, an input field

enables the end-user to search for datasets (1). On the left side, the folder explorer enables the user

to organize data (2). MyData is the location of the user’s data; MyGroups is the default collaboration

folder accessible to all group members; MyProjects are folders to organize data into personal

projects; SharedFolder are folders of others which are shared to the user. In the middle of the main

view, the toolbox enables the user to initiate batch commands for multiple objects or folders (3). A

preview image assists the user to identify datasets (4). Several icons enable the user to display

additional information about the corresponding dataset as requested (5). The file name introduced

by the clinical data repository is based on a constructed template (6). The template is updated if the

information is available otherwise XX is used as a placeholder.

Figure 34: The web-based user interface main view of the clinical data repository

Since deliverable D8.3 a new functionality has been integrated to conduct sophisticated search

queries. The query builder can be accessed by hitting the button with the magnifier symbol in the

browse view (3).

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 103 of 180

Figure 35: The dynamic search query builder integrated in the web-based user interface

The search case covered in Figure 35 has the purpose to find patients for whom we have imaging,

clinical and miRNA nephroblastoma data. On the top left it is possible to select if the objects or the

related objects should be searched. In this case, objects of type subject should be returned. Next to

the source selection are the two supported logical operators. Next to the logical operators it is

possible to add or remove groups. Inside a group multiple conditions are allowed. A condition

consists of a source field, a comparison operator and input value of the user.

The query builder itself makes use of AngularJS, Bootstrap, jQuery and Underscore. It has been

published20 as open-source on the GitHub platform under the MIT license.

5.4.2.3 API interface

The clinical data repository makes use of the REST (Representational State Transfer) architectural

principle to exchange data between applications in a loosely coupled way. Consumers of the REST

API only need to know the resource address and how to make a request to that resource. How the

resource actually gets its data is completely hidden from the consumer. This chapter describes the

HTTP methods used, the applied pagination concept, resource addresses, accepted parameters,

possible requests, responses and errors. For more information reference is made to deliverable

“D8.3 – Implementation of the interfaces of the CHIC repositories”.

5.4.2.3.1 HTTP method definitions

A method refers to HTTP methods (sometimes referred to as verbs) which indicate the desired action

to be performed on the identified resource. The clinical data repository interprets the received HTTP

methods as follows:

20 Angular-query-builder, “Dynamic query building UI written in Angular and Bootstrap.”, [Online]. Available:

https://github.com/niklr/angular-query-builder. [Accessed 9 August 2016].

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 104 of 180

Table 33 HTTP methods supported by the clinical data repository REST API

HTTP method Description

GET Getting a resource. (idempotent)

POST Creating a resource. (not idempotent)

PUT Updating a resource. (idempotent)

DELETE Deleting a resource. (idempotent)

OPTIONS Getting information about the options available on the specific resource.

An idempotent HTTP method can be called many times without different outcomes.

Additionally, the REST API embraces the Open Data protocol (OData21). OData offers many different

query options but the current implementation of the clinical data repository using ASP.NET Web API

makes use of $filter only. This query option is very powerful when it comes to filtering large result

sets based on multiple conditions.

Although ASP.NET Web API22 supports JavaScript Object Notation (JSON) and Extensible Markup

Language (XML) by default, the implemented and tested REST API makes use of JSON only to send

and receive data. Only the UTF-8 character encoding is supported for both requests and responses.

5.4.2.3.2 Pagination

Pagination is the process of dividing a document into discrete pages in order to keep the loading time

at a predictable level. Requests with large result sets may timeout or be truncated, therefore most

resources returning a large result set are paginated by default.

Table 34 The pagination concept applied to large result sets returned by the clinical data repository.

Parameter name Value type Default value Description

rpp int 25 Defines the amount of included results per
page.
Allowed values: 10, 25, 50, 100, 250, 500

page int 0 Defines the current page index.
Allowed values: 0, 1, 2, ...

Example Request

GET https://cdr.chic-vph.eu/api/objects?rpp=25&page=3

Example Response

{

21 OData, “An open protocol to allow the creation and consumption of queryable and interoperable RESTful

APIs in a simple and standard way.”, [Online]. Available: http://www.odata.org. [Accessed 9 August 2016].
22 ASP.NET Web API, “ASP.NET Web API is a framework that makes it easy to build HTTP services that reach a

broad range of clients, including browsers and mobile devices.”, [Online]. Available: http://www.asp.net/web-

api. [Accessed 9 August 2016].

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 105 of 180

 "totalCount": 99,

 "pagination": {

 "rpp": 25,

 "page": 3

 },

 "items": [

 ...

],

 "nextPageUrl": "https://cdr.chic-vph.eu/api/objects?rpp=25&page=4"

}

5.4.2.3.3 Include

Include is a special parameter supported by several resources. It enables the caller to define which

properties should be included in the response. This will reduce the amount of calls needed to get all

information. Includable properties are marked under additional information of the resource

response description. It is possible to include multiple properties at the same time by delimiting the

property names by a comma.

Table 35 The includable attribute demonstrated on the basis of the groups resource implemented by the

clinical data repository

Name Description Type Additional information

Id The identifier of the group integer None.

Name The name of the group. string Filterable

Chief The chief of the group. BaseViewModel Includable

SelfUrl The URL to the resource. string None.

Example Request without include

GET https://cdr.chic-vph.eu/api/groups/1

Example Response without include

{

 "id": 1,

 "name": "Test group",

 "chief": {

 "selfUrl": "https://cdr.chic-vph.eu/api/users/2"

 },

 "selfUrl": "https://cdr.chic-vph.eu/api/groups/1"

}

Example Request with include

GET https://cdr.chic-vph.eu/api/groups/1?include=chief

Example Response with include

{

 "id": 1,

 "name": "Test group",

 "chief": {

 "id": 2,

 "username": "niklr1",

 "selfUrl": "https://cdr.chic-vph.eu/api/users/2"

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 106 of 180

 },

 "selfUrl": "https://cdr.chic-vph.eu/api/groups/1"

}

5.4.2.3.4 Requests, Responses, and Errors

A successful completion of a request returns one of three possible states:

Table 36 The possible return states used by the clinical data repository to indicate a successful completion of

a request.

HTTP status code Description

200 OK The default state. On GET requests, the response contains all the requested
objects. On PUT and POST requests, the requested updates have been done
correctly on the persistence layer.

201 Created Returned on successful POST requests when one or more new objects have
been created. The response contains information on the newly created
objects, e.g. identification values.

204 No Content Returned on successful DELETE requests.

An unsuccessful completion of a request returns one of six possible states:

HTTP status code Description

400 Bad Request The format of the URL and/or of values in the parameter list is not valid. Or
the URL indicates a non-existing action.

401 Unauthorized Either the request does not contain required authentication information or
the authenticated used is not authorized to get a requested object or to do
the request updated operation.

404 Not Found The URL is correct, but the requested object does not (or no longer) exist.

405 Method Not
Allowed

Different action methods may be restricted to one or more of the HTTP
methods (GET, PUT, or POST). The received request uses one that is not
allowed with the action method specified in the URL. In this case, other
parts of the URL are not validated.

500 Internal Server
Error

When a method causes an exception that has no adequate handling in the
method itself. Developers of client systems are kindly requested to report
these response states to the developing team and to transmit information
about the respective request and the response objects.

501 Not Implemented May occur during development. The requested action has been specified
and documented, but not yet implemented.

Table 37: The possible return states used by the clinical data repository to indicate an unsuccessful

completion of a request.

5.4.2.3.5 Resource description template

In order to describe the input and output of the API endpoint resources the following template is

used.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 107 of 180

HTTP Method Resource name Requires Authentication? Yes / No

Description A short text describing the resource.

Content-Type The Content-Type entity-header field indicates the media type of the entity-
body sent to the recipient or, in the case of the HEAD method, the media
type that would have been sent had the request been a GET.

Parameters A list of all parameters accepted by the resource.

Example Request

An example request which can be sent to the resource.

Example Response

An example response returned by the resource.

Table 38: The template used to describe the API endpoint resources of the clinical data repository

5.4.2.3.6 Dynamic search

The sophisticated search queries introduced in the web-based user interface chapter are supported

by the API as well. For this purpose the API has been extended with two new endpoints listed

consecutively.

OPTIONS dynamic_search

Description Returns the available options for this resource.

Example Request

OPTIONS https://cdr.chic-vph.eu/api/dynamic_search HTTP/1.1

Example Response

{

 "logicalOperators": [

 {

 "name": "And",

 "displayName": "AND",

 "position": 1

 },

 {

 "name": "Or",

 "displayName": "OR",

 "position": 2

 }

],

 "sourceTypes": [

 {

 "name": "Objects",

 "displayName": "Objects",

 "position": 1,

 "sourceFields": [

 ...

]

 },

 {

 "name": "RelatedObjects",

 "displayName": "Related Objects",

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 108 of 180

 "position": 2,

 "sourceFields": [

 ...

]

 }

]

}

POST dynamic_search?include={include}

Description Returns the result of the sophisticated search query.

Content-Type application/json

Parameters include (string) Allowed properties to be included:

 See GET objects (D8.3)

Example Request

{

 "sourceType":{

 "name":"Objects"

 },

 "logicalOperator":{

 "name":"And"

 },

 "conditions":[

 {

 "sourceField":{

 "name":"ObjectType",

 "displayName":"Type"

 },

 "comparisonOperator":{

 "name":"Equals",

 "displayName":"="

 },

 "inputItem":{

 "data":"Subject",

 "displayName":"Subject",

 "isTypeahead":true

 }

 }

],

 "groups":[

 {

 "sourceType":{

 "name":"RelatedObjects"

 },

 "logicalOperator":{

 "name":"And"

 },

 "conditions":[

 {

 "sourceField":{

 "name":"AnatomicalRegion",

 "displayName":"Anatomical Region"

 },

 "comparisonOperator":{

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 109 of 180

 "name":"Equals",

 "displayName":"="

 },

 "inputItem":{

 "data":7203,

 "displayName":"Kidney",

 "isTypeahead":true

 }

 },

 {

 "sourceField":{

 "name":"ObjectType",

 "displayName":"Type"

 },

 "comparisonOperator":{

 "name":"Equals",

 "displayName":"="

 },

 "inputItem":{

 "data":"RawImage",

 "displayName":"Raw Image",

 "isTypeahead":true

 }

 },

 {

 "sourceField":{

 "name":"ObjectType",

 "displayName":"Type"

 },

 "comparisonOperator":{

 "name":"Equals",

 "displayName":"="

 },

 "inputItem":{

 "data":"ClinicalStudyData",

 "displayName":"Clinical Study Data",

 "isTypeahead":true

 }

 },

 {

 "sourceField":{

 "name":"ObjectType",

 "displayName":"Type"

 },

 "comparisonOperator":{

 "name":"Equals",

 "displayName":"="

 },

 "inputItem":{

 "data":"GenomicSample",

 "displayName":"Genomic Sample",

 "isTypeahead":true

 }

 }

]

 }

]

}

Example Response

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 110 of 180

{

 "totalCount": 7,

 "pagination": {

 "rpp": 25,

 "page": 0

 },

 "items": [

 ...

],

 "nextPageUrl": null

}

5.4.3 In Silico trial repository

5.4.3.1 Description

Since biological simulations require many computational resources, especially when the simulations

involve multiscale imaging data, the In Silico Trial Repository is a critical component. The In Silico Trial

Repository has been designed and developed in order to be able to persistently store all the

simulation scenarios and the in silico predictions. The input data (the original state of the patient),

the simulation scenario (the in silico treatment) and the output data (the state of the patient after

the in silico treatment) are store persistently after the completion of the simulation scenario. The

aforementioned data are readily available for evaluation, comparison, and validation without the

need for executing the same simulation again. More specifically, the In Silico Trial Repository

contains for each in silico trial all the related information including:

 model input (processed medical data that can be used as input to the specific model or
hypermodel used in the simulation).

 model or hypermodel (not the actual model/hypermodel code used in the simulation but
information about it).

 model output

The content of the In Silico Trial Repository is available to the users (researchers, modellers,

clinicians) through the user interface that has been developed (https://istr.chic-vph.eu), and to the

other CHIC components through the corresponding web services. Consequently, the user is now able

either through the user interface of the Repository, or through other CHIC components, to easily

store and retrieve all the data concerning a complete in silico trial (i.e. a set of simulation runs) that

they or someone else has run.

5.4.3.2 Functionality

ID Functionality

1 Adding a new instance of an in-silico trial. The instance can be partially created
(input data and/or hypermodel) or can be fully created (input data, hypermodel
and results). The functionality is provided to the end user through a graphical user
interface and to other components through web services.

https://istr.chic-vph.eu/

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 111 of 180

2 Updating an instance of an in-silico trial. The functionality is provided to the end
user through a graphical user interface and to other components through web
services.

3 Deleting any information stored in the repository (in silico trials, in silico
experiments, results, etc.) The functionality is provided to the end user through a
graphical user interface and to the other CHIC components through web services.

4 Filter the instances of an in-silico trial according to specific criteria. For example
the instances related to a specific hypermodel or to a specific patient may be
presented. The functionality is provided to the end user through a graphical user
interface.

5 Access control to the in-silico trials repository (Single sign on)

5.4.3.1 CHIC components interaction

The In Silico Trial Repository exposes its content to the other CHIC components through the already

developed web services which are presented in chapter 2.5. Thereafter, the Hypermodelling

Framework, the CRAF (Clinical Research Application Framework) and the Hypermodelling Editor are

able to retrieve, update and delete the content of the In Silico Trial Repository. Table 39 briefly

outlines the interaction of the In Silico Trial Repository with the rest of the CHIC components and

Figure 36 presents the interconnections.

Table 39 Interactions of the In Silico Trial Repository with the other CHIC components

Interaction of the In Silico Trial Repository with the other CHIC components

Interaction with CRAF CRAF creates in the In Silico Trial Repository
new in silico trials and new in silico
experiments

CRAF retrieves from the In Silico Trial
Repository information related to the
completed in silico experiments and their
results

Interaction with the Hypermodelling Editor The Hypermodelling Editor creates in the In
Silico Trial Repository new in silico trials and
new in silico experiments

Interaction with the Hypermodelling
Framework

The Hypermodelling Framework stores in the
In Silico Trial Repository the results of the
simulation (output files of the hypermodel,
PDF report, etc.)

The Hypermodelling Framework notifies the
In Silico Trial Repository about the status of
the pending in silico experiment (FINISHED
SUCCESSFULLY, FINISHED ERRONEOUSLY,
etc.)

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 112 of 180

Figure 36 Interactions of the In Silico Trial Repository with the other CHIC components

5.4.3.2 User Interface

A web-based user interface has been designed and implemented in order to allow users to interact

with the In Silico Trial Repository. The user has the ability to easily store and retrieve all the data

concerning a complete in silico trial (i.e. a set of simulation runs) that they or someone else has run.

The user interface of the In Silico Trial Repository has been designed with the intention of improving

the experience of the user when interacting with the Repository. Special emphasis has been given

during the development of the Repository to provide a user interface where the user will need to

provide minimal input for inspecting and evaluating the results of the in silico experiments.

After the authentication of the user, the user is redirected to the main page of the In Silico Trial

Repository which is depicted in Figure 37. As shown in this figure, the user is able to store a new in

silico experiment through a wizard, or browse the content of the Repository in order to view or even

update the available simulations and their status.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 113 of 180

Figure 37 The main page of the In Silico Trial Repository

The wizard that has been created for the In Silico Trial Repository allows the user to store the

simulation scenarios and the in silico predictions. Although the persistent storage of the input and

output simulation data can be performed by the other CHIC components (CRAF, Hypermodelling

framework) through the corresponding web services of the In Silico Trial Repository, this wizard

provides an alternative way for saving the results through the user interface of the Repository. More

specifically, the user is able through this wizard to store all the related information of the new in

silico experiment, including:

 Description of the in silico trial

 Input and output files of the new in silico experiment

 Description of the in silico experiment

 References related to the new experiment and the corresponding in silico trial

 Description related to the initial state of the patient and the final simulated state of the
patient

Figure 38 presents the first step of the wizard where the user is able to provide information related

to the in silico trial to which the new in silico experiment belongs, while Figure 39 presents the fifth

step of the wizard. As shown in Figure 39, the user is able through the fifth step to upload one or

more output files related to the simulation.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 114 of 180

Figure 38 The first step of the wizard. The user provides information related to the in silico trial to which the

new in silico experiment belongs

Figure 39 The fifth step of the wizard. The user uploads one or more output files related to the simulation

Apart from the wizard for storing a new in silico experiment, the user is able through the user

interface of the In Silico Trial Repository to browse all the available simulations. Based on the design

of the Repository, the basic principles of the in silico trial database are the subject, the in silico trial,

and the in silico experiment. All the in silico experiments are organized in in silico trials and all the in

silico experiments that are part of the same in silico trial use the same (hyper)model. Consequently,

the (hyper)model that is being used for a specific experiment is defined in the in silico trial entity.

This means that no more than one trial can be assigned to a single (hyper)model.

Based on this design, the first step for browsing the content of the In Silico Trial Repository is for the

user to examine the available trials, and therefore, to inspect the different (hyper)models for which

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 115 of 180

there are available finished simulations. Figure 40 presents a screenshot of a part of the page which

is related with the presentation of the available in silico trials. As shown in the aforementioned

figure, the description, the ID and the date of the creation of the in silico trial, as well as the name of

the corresponding model, are all available in the same page.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 116 of 180

Figure 40 Part of the page of the In Silico Trial Repository which indicates the available in silico trials

After choosing the in silico trial of their interest, the user may view the content of all the simulations

that belong to the aforementioned trial, such as the description, the status and the unique identifier

of the experiment. For instance, as shown in Figure 41, the user is able to view information related to

the last four executions of Nephroblastoma multimodeller hypermodel. Moreover, the

pseudonymized identification of the patient used in the experiment and the input and output files of

the simulation can all be provided by the user interface of the In Silico Trial Repository.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 117 of 180

Figure 41 Information related to the last four simulations (in silico experiments) of Nephroblastoma

multimodeller hypermodel

As shown in Figure 41, the user is also able to apply many actions with respect to a specific

experiment. For instance they can download the input or the output files of the experiment, update

the experiment’s information view the pseudonymized patient identification, etc.

For a complete guide regarding the user interface of the In Silico Trial Repository, the reader may

refer to the deliverable “D8.4 Report on the final system”.

5.4.3.3 API Interface

The In Silico Trial Repository makes use of RESTful web services. The aforementioned web services

are based on the interfaces described in deliverable “D10.2 – Design of the orchestration platform,

related components and interfaces”. This chapter aims at presenting all the necessary information

which is essential in order for the client to access the Repository’s content. The description of the

web service, the HTTP method used, the parameters of the service, the URL and the returned object

of the service are all described in the following tables. Each table is related to a specific RESTful web

service.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 118 of 180

5.4.3.3.1 Trial

The following web services (Table 40 - Table 45) should be used whenever the client needs to store,

retrieve or delete information related to trials (description of trial, model used in the trial, comments

on the trial, etc.).

Table 40 Information for calling storeTrial web service

storeTrial

Description This method stores the basic descriptive information of the trial,
the model, the placebo model, etc. It returns the id of the trial

URL https://istr.chic-vph.eu/trial_app/storeTrial

Encoding application/x-www-form-urlencoded

HTTP Method POST

PARAMETERS (parameters
passed through request body)

description= Required – the description of
the trial

model_id= Required – the id of the in silico
model that is used in the trial

model_url= Required – the url where the in
silico model is located

placebo_model_id= Not required – the id of the in
silico model that is used as a
placebo

placebo_model_url= Not required – the url where
the placebo in silico model is
located

comment= Not required – comments on
the trial

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeTrial has one key, named id, and one value which is
associated with this key.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 119 of 180

Table 41 Information for calling getAllTrials web service

getAllTrials

Description This method returns the corresponding descriptive information of
all the trials stored in in silico trial repository (trial ids, description
of the trial, comments, etc.).

URL https://istr.chic-vph.eu/trial_app/getAllTrials

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETERS No parameters required

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getAllTrials are as many as the different trials stored
in the in silico trial repository. Each value associated with a specific key is represented by a nested
JSON object. Each key of the aforementioned nested JSON object represents the column name of the
tr_trial entity (see figure 39) and each value of the nested JSON object represents the information of
the corresponding column.

Table 42 Information for calling getUserTrials web service

getUserTrials

Description This method returns information for all the trials that have been
created by the user with which the saml token is associated.

URL https://istr.chic-vph.eu/trial_app/getUserTrials

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER Only the SAML token is required.

Returns 200 OK & JSON object

400 http status code if bad request

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 120 of 180

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getUserTrials are as many as the different trials that
have been created by/for that user. Each value associated with a specific key is represented by a
nested JSON object. The keys of the aforementioned nested JSON object are named id, description,
model_id , model_url, placebo_model_id, comment, created_on, created_by, modified_on,
modified_by.

Table 43 Information for calling getTrialById web service

getTrialById

Description This method returns the descriptive information (description of the
trial, comments, etc.), of the given trial.

URL https://istr.chic-vph.eu/trial_app/getTrialById

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – the id of the trial

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getTrialById has eleven keys named id, description, model_id,
model_url, placebo_model_id, placebo_model_url, comment, created_on, created_by, modified_on
and modified_by, and eleven values associated with those keys.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 121 of 180

Table 44 Information for calling getTrialByModelId web service

getTrialByModelId

Description This method returns the information related to the trial in which
the given model is used (trial id, description of the trial, comments,
etc.). The argument is the id of the tool used in the model
repository

URL https://istr.chic-vph.eu/trial_app/getTrialByModelId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – the id of the model
which is used in the trial

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getTrialByModelId has eleven keys named id, description,
model_id, model_url, placebo_model_id, placebo_model_url, comment, created_on, created_by,
modified_on and modified_by, and eleven values associated with those keys.

Table 45 Information for calling deleteTrialById web service

deleteTrialById

Description This method deletes the trial, the experiments included in the trial,
the reference links and everything else that is associated with this
trial

URL https://istr.chic-vph.eu/trial_app/deleteTrialById

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETER (parameter should
be passed through the URL –

id= Required – the id of the trial

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 122 of 180

query string parameter)

Returns 200 OK if trial has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

5.4.3.3.2 Experiment

The following web services (Table 46 - Table 55) should be used whenever the client needs to store,

retrieve or delete information related to experiments (description of experiment, link to the trial to

which this experiment belongs, comments on the experiment, etc.).

Table 46 Information for calling storeExperiment web service

storeExperiment

Description This method stores the necessary and descriptive information of an
experiment. It returns the id of the stored experiment

URL https://istr.chic-vph.eu/trial_app/storeExperiment

Encoding application/x-www-form-urlencoded

HTTP Method POST

PARAMETERS (parameters
passed through request body)

trial_id= Required – the id of the trial
with which the new experiment
is associated

description= Required – the description of
the new experiment

subject_id_in= Required – the id of the subject
that is used as an input to the
new in silico experiment

subject_id_out= Required – the id of the subject
that is produced after the
execution of the new in silico
experiment

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 123 of 180

placebo= Required – true if in the in silico
experiment the placebo model
must be used, otherwise false

status= Not required – the status of the
in silico experiment (NOT
STARTED, ON PROGRESS,
FINISHED SUCCESSFULLY,
FINISHED ERRONEOUSLY)

 comment= Not required – Comments
related to the experiment

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeExperiment has one key, named id, and one value which is
associated with this key.

Table 47 Information for calling getUserExperiments web service

getUserExperiments

Description This method returns information for all the experiments that have
been created by the user with which the saml token is associated

URL https://istr.chic-vph.eu/trial_app/getUserExperiments

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER Only the SAML token is required.

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 124 of 180

token>

Json Response

The keys of the JSON object returned by method getUserExperiments are as many as the different
experiments that have been created by/for that user. Each value associated with a specific key is
represented by a nested JSON object. The keys of the aforementioned nested JSON object are named
id, trial, description, subject_id_in , subject_id_out, placebo, status, comment, uuid, created_on,
created_by, modified_on, modified_by. The value which corresponds to the key trial is another json
object with keys id and model_id. The value which corresponds to the key subject_id_out is another
json object with keys id, subject_external_id and description. The value which corresponds to the key
subject_id_in is another json object with keys id, subject_external_id and description.

Table 48 Information for calling getUserPendingExperiments web service

getUserPendingExperiments

Description This method returns information for all the experiments with status
"either "NOT STARTED" or "ON PROGRESS" that belong to the user
associated with the SAML token.

URL https://istr.chic-vph.eu/trial_app/getUserPendingExperiments

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER Only the SAML token is required.

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getUserPendingExperiments are as many as the
different "NOT STARTED" or "ON PROGRESS" experiments that have been created by/for that user .
Each value associated with a specific key is represented by a nested JSON object. The keys of the
aforementioned nested JSON object are named id, trial, description, subject_id_in , subject_id_out,
placebo, status, comment, uuid, created_on, created_by, modified_on, modified_by. The value
which corresponds to the key trial is another json object with keys id and model_id. The value which
corresponds to the key subject_id_out is another json object with keys id, subject_external_id and
description. The value which corresponds to the key subject_id_in is another json object with keys id,
subject_external_id and description.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 125 of 180

Table 49 Information for calling getAllExperimentsByTrialId web service

getAllExperimentsByTrialId

Description This method returns information of all the experiments which
belong to a given trial

URL https://istr.chic-vph.eu/trial_app/getAllExperimentsByTrialId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through the
URL – query string parameter)

trial_id= Required – the id of the trial

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getAllExperimentsByTrialId are as many as the
different experiments which belong to the given trial. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents
the column name of the tr_experiment entity (see figure 39) and each value of the nested JSON
object represents the information of the corresponding column.

Table 50 Information for calling getExperimentById web service

getExperimentById

Description This method returns the experiment and the related information
stored under the id (description, subject_id_in, subject_id_out,
placebo, status, comment, etc.)

URL https://istr.chic-vph.eu/trial_app/getExperimentById

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter should
be passed through the URL –

id= Required – the id of the
experiment

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 126 of 180

query string parameter)

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getExperimentById has thirteen keys named id, uuid, trial_id,
description, subject_id_in, subject_id_out, placebo, status, comment, created_on, created_by,
modified_on and modified_by, and twelve values associated with those keys.

Table 51 Information for calling getExperimentByUuid web service

getExperimentByUuid

Description This method returns the experiment and the related information
stored under the uuid (description, subject_id_in, subject_id_out,
placebo, status, comment, etc.)

URL https://istr.chic-vph.eu/trial_app/getExperimentByUuid

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter should
be passed through the URL –
query string parameter)

uuid= Required – the uuid of the
experiment

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getExperimentByUuid has thirteen keys named id, uuid,
trial_id, description, subject_id_in, subject_id_out, placebo, status, comment, created_on,
created_by, modified_on and modified_by, and thirteen values associated with those keys.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 127 of 180

Table 52 Information for calling getExperimentStatusById web service

getExperimentStatusById

Description This method returns the status of the experiment

URL https://istr.chic-vph.eu/trial_app/getExperimentStatusById

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through the
URL – query string parameter)

id= Required – the id of the
experiment

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getExperimentStatusById has one key named status, and one
value associated with this key.

Table 53 Information for calling getExperimentsByStatus web service

getExperimentsByStatus

Description This method returns all the experiments that are on a given status

URL https://istr.chic-vph.eu/trial_app/getExperimentsByStatus

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through the
URL – query string parameter)

status= Required – the status of the in
silico experiment (NOT
STARTED, ON PROGRESS,
FINISHED SUCCESSFULLY,
FINISHED ERRONEOUSLY)

Returns 200 OK & JSON object

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 128 of 180

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getExperimentsByStatus are as many as the
different experiments that are on a given status. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents
the column name of the tr_experiment entity (see figure 39) and each value of the nested JSON
object represents the information of the column.

Table 54 Information for calling updateExperimentStatus web service

updateExperimentStatus

Description This method updates the status of a given experiment

URL https://istr.chic-vph.eu/trial_app/updateExperimentStatus

Encoding application/x-www-form-urlencoded

HTTP Method PUT

PARAMETERS (parameters
passed through request body)

id= Required – the id of the
experiment

status= Required - the status of the in
silico experiment (NOT
STARTED, ON PROGRESS,
FINISHED SUCCESSFULLY,
FINISHED ERRONEOUSLY)

Returns 200 OK if the status of the experiment has been updated

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 129 of 180

Table 55 Information for calling deleteExperimentById web service

deleteExperimentById

Description This method deletes the experiment and the corresponding
experiment references (links)

URL https://istr.chic-vph.eu/trial_app/deleteExperimentById

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETER (parameter
should be passed through the
URL – query string parameter)

id= Required – the id of the
experiment

Returns 200 OK if experiment has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

5.4.3.3.3 Miscellaneous parameter

The following web services (Table 56 - Table 61) should be used whenever the client needs to store,

retrieve or delete information related to miscellaneous parameters (value assigned to miscellaneous

parameter, link to the experiment with which the miscellaneous parameter is associated, etc.).

Table 56 Information for calling storeMiscellaneousParameter web service

storeMiscellaneousParameter

Description This method stores information related to a miscellaneous
parameter. It returns the id of the created record.

URL https://istr.chic-vph.eu/trial_app/storeMiscellaneousParameter

Encoding application/x-www-form-urlencoded

HTTP Method POST

PARAMETERS (parameters
passed through request body)

experiment_id= Required – the id of the
experiment with which the

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 130 of 180

miscellaneous parameter is
associated

hypomodel_parameter_id= Required – the id of
hypomodel’s parameter stored
in model/tool repository
(mr_parameter entity) with
which the miscellaneous
parameter is associated

hypermodel_parameter_id= Not required – the id of
hypermodel’s parameter stored
in model/tool repository
(mr_parameter entity) with
which the miscellaneous
parameter is associated

value= Required – the value that has
been assigned to miscellaneous
parameter for a given
experiment

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeMiscellaneousParameter has one key, named id, and one
value which is associated with this key.

Table 57 Information for calling getAllMiscellaneousParameters web service

getAllMiscellaneousParameters

Description This method returns information of all miscellaneous parameters

URL https://istr.chic-vph.eu/trial_app/getAllMiscellaneousParameters

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETERS No parameters required

Returns 200 OK & JSON object

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 131 of 180

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getAllMiscellaneousParameters are as many as the
different miscellaneous parameters that are stored in the in silico trial repository. Each value
associated with a specific key is represented by a nested JSON object. Each key of the
aforementioned nested JSON object represents the column name of the
tr_miscellaneous_parameter entity (see figure 39) and each value of the nested JSON object
represents the information of the corresponding column.

Table 58 Information for calling getUserMiscellaneousParameters web service

getUserMiscellaneousParameters

Description This method returns information for all the miscellaneous
parameters that have been created by the user with which the saml
token is associated.

URL https://istr.chic-vph.eu/trial_app/getUserMiscellaneousParameters

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER Only the SAML token is required.

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getUserMiscellaneousParameters are as many as
the different miscellaneous parameters that have been created by/for that user. Each value
associated with a specific key is represented by a nested JSON object. The keys of the
aforementioned nested JSON object are named id, experiment_id, hypomodel_parameter_id

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 132 of 180

,hypermodel_parameter_id , value, created_on, created_by, modified_on, modified_by.

Table 59 Information for calling getAllMiscellaneousParametersByExperimentId web service

getAllMiscellaneousParametersByExperimentId

Description This method returns information of all miscellaneous parameters which are
associated with a given experiment

URL https://istr.chic-
vph.eu/trial_app/getAllMiscellaneousParametersByExperimentId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER
(parameter should
be passed through
the URL – query
string parameter)

experiment_id= Required – the id of the experiment

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64 encoded
compressed SAML token>

Json Response

The keys of the JSON object returned by method getAllMiscellaneousParametersByExperimentId are
as many as the different miscellaneous parameters which are associated with the given experiment.
Each value associated with a specific key is represented by a nested JSON object. Each key of the
aforementioned nested JSON object represents the column name of the
tr_miscellaneous_parameter entity (see figure 39) and each value of the nested JSON object
represents the information of the corresponding column.

Table 60 Information for calling getMiscellaneousParameterById web service

getMiscellaneousParameterById

Description This method returns information of the miscellaneous parameter
stored under the id (experiment_id, hypomodel_parameter_id,
hypermodel_parameter_id, value, etc)

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 133 of 180

URL https://istr.chic-vph.eu/trial_app/getMiscellaneousParameterById

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through the
URL – query string parameter)

id= Required – the id of the
miscellaneous parameter

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getMiscellaneousParameterById has eight keys named
experiment_id, hypomodel_parameter_id, hypermodel_parameter_id, value, created_on,
created_by, modified_on and modified_by, and eight values associated with those keys.

Table 61 Information for calling deleteMiscellaneousParameterById web service

deleteMiscellaneousParameterById

Description This method deletes the miscellaneous parameter

URL https://istr.chic-
vph.eu/trial_app/deleteMiscellaneousParameterById

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETER (parameter
should be passed through the
URL – query string
parameter)

id= Required – the id of the
miscellaneous parameter

Returns 200 OK if miscellaneous parameter has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 134 of 180

encoded compressed SAML
token>

5.4.3.3.4 Subject

The following web services (Table 62 - Table 66) should be used whenever the client needs to store,

retrieve or delete information related to the subject (description of the subject, comments on the

subject, etc.).

Table 62 Information for calling storeSubject web service

storeSubject

Description This method stores information related to a subject. The method
returns the id of the created subject

URL https://istr.chic-vph.eu/trial_app/storeSubject

Encoding application/x-www-form-urlencoded

HTTP Method POST

PARAMETERS (parameters
passed through request body)

description= Required – the description of
the state of the subject

subject_external_id= Not required – the external id
of the subject

external_url= Not required – the url of the
external repository

comment= Not required – comments on
the subject

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeSubject has one key named id and one value associated
with this key.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 135 of 180

Table 63 Information for calling deleteSubjectById web service

deleteSubjectById

Description This method deletes a subject (and the linked files) stored under
the provided subject_id

URL https://istr.chic-vph.eu/trial_app/deleteSubjectById

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – the id of the subject

Returns 200 OK if subject has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 64 Information for calling getAllSubjects web service

getAllSubjects

Description This method returns all the subjects that are stored in the
Repository

URL https://istr.chic-vph.eu/trial_app/getAllSubjects

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETERS No parameters required

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 136 of 180

encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getAllSubjects are as many as the different subjects
that are stored in the in silico trial repository. Each value associated with a specific key is represented
by a nested JSON object. Each key of the aforementioned nested JSON object represents the column
name of the tr_subject entity (see figure 39) and each value of the nested JSON object represents the
information of the corresponding column.

Table 65 Information for calling getUserSubjects web service

getUserSubjects

Description This method returns information for all the subjects that have been
created by the user with which the saml token is associated.

URL https://istr.chic-vph.eu/trial_app/getUserSubjects

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER Only the SAML token is required.

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getUserSubjects are as many as the different
subjects that have been created by/for that user. Each value associated with a specific key is
represented by a nested JSON object. The keys of the aforementioned nested JSON object are named
id, description, subject_external_id , external_url, comment, created_on, created_by, modified_on,
modified_by.

Table 66 Information for calling getSubjectById web service

getSubjectById

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 137 of 180

Description This method returns the subject and the related information stored
under the id (description, subject_external_id, external_url,
comments, etc.)

URL https://istr.chic-vph.eu/trial_app/getSubjectById

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – the id of the subject

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method getSubjectById has nine keys named id, description,
subject_external_id, external_url, comment, created_on, created_by, modified_on and modified_by,
and nine values associated with those keys.

5.4.3.3.5 Reference

The following web services (Table 67 - Table 73) should be used whenever the client needs to store,

retrieve or delete information related to experiment’s/trial’s references (title of reference, reference

authors, link to the experiment/trial with which this reference is associated, etc.).

Table 67 Information for calling storeTrReference web service

storeTrReference

Description This method stores the information of a reference and returns the
id

URL https://istr.chic-vph.eu/trial_app/storeTrReference

Encoding application/x-www-form-urlencoded

HTTP Method POST

PARAMETERS (parameters
passed through request body)

title= Required – the title of the
reference

type= Not required – the type of the

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 138 of 180

reference (book, journal article,
etc.)

creator= Not required – the creator(s) of
the resource

issued= Not required – the date of
formal issuance

 bibliographic_citation= Not required – bibliographic
citation of the resource

 is_part_of= Not required – the related
resource that this resource is
part of

 source= Not required – the related
resource from which the
described resource is derived
from

 doi= Not required – digital object
identifier of the resource

 pmid= Not required – pubmed
identifier

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeTrReference has one key named id, and one value
associated with this key.

Table 68 Information for calling getAllTrReferences web service

getAllTrReferences

Description This method returns all the references and the related information

URL https://istr.chic-vph.eu/trial_app/getAllTrReferences

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETERS No parameters required

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 139 of 180

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getAllTrReferences are as many as the different
references that are stored in the in silico trial repository. Each value associated with a specific key is
represented by a nested JSON object. Each key of the aforementioned nested JSON object represents
the column name of the tr_reference entity (see figure 39) and each value of the nested JSON object
represents the corresponding information of the column.

Table 69 Information for calling getTrReferencesByTrialId web service

getTrReferencesByTrialId

Description This method returns the related information of all references which
are associated with the given trial.

URL https://istr.chic-vph.eu/trial_app/getTrReferencesByTrialId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through the
URL – query string parameter)

trial_id= Required – the id of the trial

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getTrReferencesByTrialId are as many as the
different references that are associated with the given trial. Each value associated with a specific key
is represented by a nested JSON object. Each key of the aforementioned nested JSON object
represents the column name of the tr_reference entity (see figure 39) and each value of the nested
JSON object represents the information of the corresponding column.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 140 of 180

Table 70 Information for calling getTrReferencesByExperimentId web service

getTrReferencesByExperimentId

Description This method returns the related information of all the references
which are associated with the given experiment.

URL https://istr.chic-vph.eu/trial_app/getTrReferencesByExperimentId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter
should be passed through the
URL – query string parameter)

experiment_id= Required – the id of the
experiment

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getTrReferencesByExperimentId are as many as the
different references that are associated with the given experiment. Each value associated with a
specific key is represented by a nested JSON object. Each key of the aforementioned nested JSON
object represents the column name of the tr_reference entity (see figure 39) and each value of the
nested JSON object represents the information of the corresponding column.

Table 71 Information for calling deleteTrReferenceById web service

deleteTrReferenceById

Description This method deletes a reference and the corresponding links to
trials or experiments

URL https://istr.chic-vph.eu/trial_app/deleteTrReferenceById

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETER (parameter
should be passed through the
URL – query string parameter)

id= Required – the id of the
reference

Returns 200 OK if reference (along with the links) has been deleted

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 141 of 180

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 72 Information for calling storeLinkToReference web service

storeLinkToReference

Description This method creates a link from a trial or an experiment to a
reference. Returns the id of the link

URL https://istr.chic-vph.eu/trial_app/storeLinkToReference

Encoding application/x-www-form-urlencoded

HTTP Method POST

PARAMETERS (parameters
passed through request body)

reference_id= Required – the id of the
reference

option= Required – the type link
(trial/experiment)

id= Required – the id of the
experiment/trial

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeLinkToReference has one key named id (the id of the
created link), and one value associated with this key.

Table 73 Information for calling deleteReferenceLinkById web service

deleteReferenceLinkById

Description This method deletes the reference link (trial or experiment link)

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 142 of 180

depending of the provided argument

URL https://istr.chic-vph.eu/trial_app/deleteReferenceLinkById

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETERS (parameters
should be passed through the
URL – query string parameter)

id= Required – the id of the link

option= Required – type of the link
(trial/experiment)

Returns 200 OK if reference link has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

5.4.3.3.6 File

The following web services (Table 74 - Table 79) should be used whenever the client needs to store,

retrieve or delete information related to files containing experiment data (title of file, description of

file, file version, etc.).

Table 74 Information for calling storeTrFile web service

storeTrFile

Description This method stores the file information and returns the id

URL https://istr.chic-vph.eu/trial_app/storeTrFile

Encoding Multipart/form-data

HTTP Method POST

PARAMETERS (parameters
passed through request body)

subject_id= Required – the id of the subject
with which the file is associated

title= Required – the title of the file

description= Not required – description of
the file

kind= Not required – defines what this
file is (document, spreadsheet,
csv, etc.)

version= Required – the version of the

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 143 of 180

file (should be in the format X.X
for example 1.2)

sha1sum= Not required – the sha1
checksum of the file

comment= Not required – comments on
the file

file= Required – the actual file (blob)

 engine= Not required – The engine that
is suitable for executing this file

 license= Not required – The license
associated with this file

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The JSON object returned by method storeTrFile has one key, named id, and one value which is
associated with this key.

Table 75 Information for calling deleteTrFile web service

deleteTrFile

Description This method deletes a certain file

URL https://istr.chic-vph.eu/trial_app/deleteTrFile

Encoding application/x-www-form-urlencoded

HTTP Method DELETE

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – the id of the file

Returns 200 OK if file has been deleted

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 144 of 180

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 76 Information for calling getTrFileById web service

getTrFileById

Description This method returns the file (which is associated with a subject)

URL https://istr.chic-vph.eu/trial_app/getTrFileById

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER (parameter should
be passed through the URL –
query string parameter)

id= Required – the id of the file

Returns
(Content-Type:
application/force-download
Content-Disposition:
attachment)

200 OK & attachment

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Table 77 Information for calling getTrFilesOfKind web service

getTrFilesOfKind

Description This method returns the information of all the files of a specific
kind of a given subject

URL https://istr.chic-vph.eu/trial_app/getTrFilesOfKind

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETERS (parameters
should be passed through the
URL – query string parameter)

subject_id= Required – the id of the subject

kind= Required - kind of file
(document, spreadsheet, csv,
etc.)

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 145 of 180

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getTrFilesOfKind are as many as the different latest
version files of a specific kind which are associated with the given subject. Each value associated with
a specific key is represented by a nested JSON object. Each key of the aforementioned nested JSON
object represents the column name of the tr_file entity (see figure 39) and each value of the nested
JSON object represents the information of the column.

Table 78 Information for calling getTrFilesBySubjectId web service

getTrFilesBySubjectId

Description This method returns information (only metadata, not attachment)
for all the files that are associated with the given subject

URL https://istr.chic-vph.eu/trial_app/getTrFilesBySubjectId

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETERS (parameters
should be passed through the
URL – query string parameter)

id= Required – the id of the subject

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getTrFilesBySubjectId are as many as the different
files that are associated with the given subject. Each value associated with a specific key is
represented by a nested JSON object. The keys of the aforementioned nested JSON object are named
id, title, description, kind, version, sha1sum, comment, engine, license, created_on, created_by,
modified_on, modified_by.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 146 of 180

Table 79 Information for calling getUserTrFiles web service

getUserTrFiles

Description This method returns information (only metadata, not attachment)
for all the files (stored in in silico trial repository) that have been
created by the user with which the saml token is associated

URL https://istr.chic-vph.eu/trial_app/getUserTrFiles

Encoding application/x-www-form-urlencoded

HTTP Method GET

PARAMETER Only the SAML token is required.

Returns 200 OK & JSON object

400 http status code if bad request

401 http status code if no SAML token inside HTTP header

403 http status code if SAML token not verified

500 http status code if internal server error

HTTP Header Name: Authorization Value: SAML auth=<Base 64
encoded compressed SAML
token>

Json Response

The keys of the JSON object returned by method getUserTrFiles are as many as the different files that
have been created by/for that user. Each value associated with a specific key is represented by a
nested JSON object. The keys of the aforementioned nested JSON object are named id, subject, title,
description, kind, version, sha1sum, comment, engine, license, created_on, created_by,
modified_on, modified_by.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 147 of 180

5.4.4 Metadata repository

5.4.4.1 Description

The metadata repository is the repository for metadata about CHIC resources, namely elementary

process models (EPMs) and associated data. This metadata provides descriptions of the foregoing

resources according to a number of facets, including multiscale anatomy, units of measurement,

biophysical qualities and physiological and pathological aspects. The aim of the repository is to make

available annotations of CHIC resources to facilitate, for example, the semantic search of resources

but also to warrant the semantic coherence and integration of CHIC resources.

5.4.4.2 Functionality

ID Functionality

1 Storage of metadata statements

2 Search: both simple look up and inference (to extents yet to be determined)

5.4.4.1 Programmatic/User Interface

The baseline metadata storage is adapted from the output of the VPH project RICORDO. Metadata

recorded in RDF format is stored in an RDF database.

An RDF database deployed on a server provides a SPARQL endpoint where the metadata repository

may be accessed.

A REST web service interface provides programmatic search access to the metadata for predefined

queries (RICORDO RDF Webservice).

A reference user interface using the above Web service could be made available to search the

metadata repository.

Search of the metadata repository may be used to power the semantic search of the CHIC resource

repositories (clinical data and models).

5.5 Infrastructure layer

5.5.1 Private Cloud

5.5.1.1 Description

The CHIC private cloud is an infrastructural component that provides computational, storage and

network resources to other functional components. It provides an abstraction and virtualization of

the underlying computational resources and it helps to scale-up, manage, clone, migrate or replace

the needed resources without affecting the rest of the architecture since it provides a de-coupling

and virtualization layer.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 148 of 180

5.5.1.2 Functionality

ID Functionality

1 Provides computational resources to other components, such as the hypermodelling
execution framework.

2 Provides storage space to other components, such as the storage repositories.

3 Provides network connectivity to other components, such as the security services.

5.5.1.1 User Interface

The CHIC private cloud is based on the Openstack cloud infrastructure platform. Openstack has a

web interface, called Dashboard, for management and administration of the most common tasks of

the cloud infrastructure. Below we present some screenshots of the most common administrative

tasks that can be performed through Dashboard.

Figure 42 Openstack Dashboard: Instance management

In Figure 42 we see the web interface for the management of VM instance management. With this

menu and its submenus an administrator can see an overview of the running details of a VM, can

perform power management options (power on, shutdown, reboot, suspend), view logs, view the

VMs console, take snapshots or launch new instances.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 149 of 180

Figure 43 Openstack Dashboard: Volume management

In Figure 43 we see the web interface used for the management of volumes (virtual hard disks) and

snapshots. Through this menu and submenus an administrator can create volumes, attach or detach

them to VM instances, resize, delete, take snapshots or create new volumes from snapshots of other

volumes (cloning).

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 150 of 180

Figure 44 Openstack Dashboard: Access & Security management

In Figure 44 we see the web interface for managing access and security rules of an instance. Firewall

rules management, ssh key pairs, floating IP management.

Figure 45 Openstack Dashboard: Flavor management

In Figure 45 we see the web interface for managing instance flavors; pre-configured groups of

instance attributes such as RAM, vCPU, hard disk size that are used for launching new instances.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 151 of 180

Figure 46 Openstack Dashboard: Network management

In Figure 46 we see the web interface for the management of network attributes. Through this menu

and submenus an administrator can create subnets, routers, connect networks, DHCP servers.

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 152 of 180

Figure 47 Openstack Dashboard: Floating IP management

In Figure 47 we see the web interface for the management of floating IPs. A floating IP can be

allocated from a floating IP pool for a specific project, it can be dynamically allocated during a VM

instantiation and it can be attached/detached to a VM instance and forward its network traffic from

a network to another.

Figure 48 Openstack Dashboard: Image management

In Figure 48 we see the web interface for the management of VM images. These are pre-built images

of various flavors of operating systems, libraries, pre-installed programs. During instantiation of a

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 153 of 180

new VM an administrator can select a VM image, a VM flavor, an existing or a new volume (hard

disk) and various other attributes regarding network and security.

The screenshots presented above summarize the most common administrative tasks performed

through the Openstack Dashboard. There are also other menus for more specific tasks and there are

also command line tools for the fine-grained management tasks that need deeper knowledge of the

cloud architecture.

5.5.1.2 API interface

The CHIC private cloud is based on the OpenStack cloud infrastructure software platform. Besides

Dashboard, the web interface for managing the most common administrative tasks, the OpenStack

platform offers a variety of tools for accessing the underlying services, such as

 Command line interface (CLI) and tools for cloud management.

 Software development kits (SDKs) for many programming languages such as Java, Python,

.NET, Ruby, Node.js and PHP.

 Application programming interface (API) based on RESTful web services for direct

programmatic access of its services such as Block Storage, Object Storage, Compute, Identity,

Orchestration etc.

The complete OpenStack API can be found online at http://api.openstack.org/ .

http://api.openstack.org/

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 154 of 180

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 155 of 180

6 Deployment view

6.1 Introduction – high level view

In this section we describe the Deployment view, which describes the environment into which the

system will be deployed, including the dependencies that the system has on its runtime

environment. This view captures the hardware and software environment needs of the system, the

technical environment requirements for each element, the mapping of the software elements to the

runtime environment that will execute them and any other dependency to technical resources, such

as hardware or software that is required.

The technical details around the implementation of a system are not usually the main concern of its

architecture specification; these details, however, often govern and restrict many of the design

decisions of the architecture while trying to provide a feasible and functional system. Thus, for a

complex software system such as the CHIC platform we believe that it is necessary to describe in

detail also its Deployment view and the running environment of the system, in terms of software or

hardware resources.

Below we outline the technical details for each functional component of the architecture. However,

the architecture is still under design into many aspects and many components are not yet

implemented, so technical details are still under consideration and may change till the architecture is

finalized.

6.2 Presentation layer

6.2.1 Clinical Research Application Framework (CRAF)

Resource Mapping

Developer FORTH

Software type (Web application,
standalone application, service, library,
framework etc.)

Web application (two-tier, i.e. client side in
Browser talking to the server side over HTTP
APIs) but also a standalone application in
Java exists

Operating system Cross platform, but Linux is the preferred
host Operating System for the server side.

Programming environment Java 8 on the server side and the standalone
application, Javascript on the client side of
the web application

Communication technologies or protocols
with other CHIC components

HTTP/REST based API with JSON payload,
and message oriented communication over
the RabbitMQ message broker

Data types that it operates on Hypermodels as computational artifacts,
patient data for invoking the hypermodels,
results and visualization files for the outputs
of the executions

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 156 of 180

Technical dependencies or requirements
(libraries, tools)

Server side: Undertow application server,
PostgreSQL DBMS for persistence, Redis as a
caching layer, Nginx web server as a web
reverse proxy

Client side: Javascript, Angular 2

Standalone Application: Java, Apache
PDFBox

Computational needs (estimation of
hardware needs)

Server side: 8 GB of RAM
Client side/ application: 4 GB RAM

Storage needs (estimation of hardware
needs)

Server side: 15 GB of storage but depending
on usage

URL (if applicable) N/A

6.2.2 DrEye - Image processing toolkit

Resource Mapping

Developer FORTH

Software type (Web application,
standalone application, service, library,
framework etc.)

Standalone application

Operating system Windows (version 8.1 or higher)

Programming environment C# / C++ / Visual Basic .NET

Communication technologies or
protocols with other CHIC components

It interacts indirectly via user interaction with the data
repository. Currently, there is no direct communication
with the hypermodeling framework planned.

Data types that it operates on Medical images (.dcm or .mha format)

Technical dependencies or
requirements (libraries, tools)

Dr. Eye and its plugin-environment serve as a basis for the
toolkit. Moreover, it requires the Insight Registration and
Segmentation ToolKit (ITK) library and .NET framework (4.0
or higher).

Computational needs (estimation of
hardware needs)

No special requirements. A standard personal computer is
sufficient to run the application.

Storage needs (estimation of hardware
needs)

N/A

URL (if applicable) http://biomodeling.ics.forth.gr/dreye
http://biomodeling.ics.forth.gr/?page_id=8

http://biomodeling.ics.forth.gr/dreye
http://biomodeling.ics.forth.gr/?page_id=8

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 157 of 180

6.2.3 Hypermodelling editor

Resource Mapping

Developer FORTH

Software type (Web application,
standalone application, service, library,
framework etc.)

Web based , two-tier architecture

Operating system Cross platform, but Linux is the preferred
host Operating System for the server side.

Programming environment Java in the server, Elm23/Javascript on the
client (browser)

Communication technologies or protocols
with other CHIC components

HTTP/REST based API with JSON payload,
and message oriented communication over
the RabbitMQ message broker

Data types that it operates on Hypermodel descriptions coming from the
Model Repository, and their RDF
annotations from the CHIC Semantic
infrastructure

Technical dependencies or requirements
(libraries, tools)

Undertow application server24, PostgreSQL
DBMS for persistence, Redis as a caching
layer, Nginx web server as a web reverse
proxy

Computational needs (estimation of
hardware needs)

Moderate requirements, a server machine
with plenty of RAM is always preferred.

Storage needs (estimation of hardware
needs)

15 GB of storage but depending on usage

URL (if applicable) N/A

6.2.4 User Portal

Resource Mapping

Developer FORTH

Software type (Web application, standalone
application, service, library, framework etc.)

Web application/framework

Operating system Windows/Linux
(currently installed on Linux, but there’s no strict
dependency or requirement)

23 http://elm-lang.org/
24 http://undertow.io/

http://elm-lang.org/
http://undertow.io/

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 158 of 180

Programming environment Java programming language,
Tomcat application server

Communication technologies or protocols with
other CHIC components

HTTP/XML/JSON/REST services

Data types that it operates on N/A

Technical dependencies or requirements
(libraries, tools)

Liferay/Tomcat/MySQL

Computational needs (estimation of hardware
needs)

Server machine running a web server. Depends
on the expected load of the portal.

Storage needs (estimation of hardware needs) 1 GB of storage space

URL (if applicable) https://portal.chic-vph.eu/

6.3 Service layer

6.3.1 Hypermodelling execution framework

Resource Mapping

Developers USFD - CINECA

Software type (Web application,
standalone application, service, library,
framework etc.)

Web application - Software framework

Operating system The VPH-HF software components are designed to be
cross-platform but they have been tested on Unix/Linux
platforms.

Programming environment Python
Taverna workflow server and Muscle coupling library
are based on Java: they are used but not developed in
CHIC.

Communication technologies or protocols
with other CHIC components

REST/HTTP-S APIs to access the hypermodelling
framework components functionalities.
AMQP protocol is used to communicate asynchronously
with a list of components following the publish-subscribe
pattern.
SSH protocol is used for data transfer and launch some
remote execution between the execution machines in
the private cloud.

Data types that it operates on Taverna workflow description format (aka T2flow) and
xMML model description format for the workflow
description and Baclava XML format for the input set
description.
The hypermodelling framework will have also to access
models, data, and any other information necessary to
the workflow execution.

https://portal.chic-vph.eu/

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 159 of 180

Technical dependencies or requirements
(libraries, tools)

The execution framework is mainly constituted by VPH-
HF which is manly developed in the Django web service
framework with a MySql database and few Python
components belonging to the Django ecosystem.
RabbitMQ/Celery are used for event and queue based
interactions.
Taverna server orchestrates the execution of the models
and a series of scripts wrap every model to make it
possible to launch via a standardised interface.
Muscle library is necessary to execute strongly coupled
models developed via message passing paradigm.

Computational needs (estimation of
hardware needs)

The VPH-HF orchestration layer needs a couple of cores,
and 1-2 GB of RAM; to this it has to be added all the
cores and memory that the hypomodels require in order
to be executed. Taverna server (based on Tomcat server)
requires few more GiB of memory (1GiB min) and
processors to monitor the workflow execution.
The amount of memory and CPUs required by the VPH-
HF computational layer increases linearly w.r.t the
number of requests per second of workflow execution.

Storage needs (estimation of hardware
needs)

The VPH-HF orchestrates multiple hypo/hypermodels
execution that is performed in a sandbox in the local file
system. The needs in term of storage will be the same
as the hypomodels to be executed and is model
dependent.

URL (if applicable) https://github.com/INSIGNEO/VPH-HF
https://github.com/INSIGNEO/VPH-HF-automation-tools

6.3.2 Visualization toolkit

Resource Mapping

Developer BED

Software type (Web application, standalone
application, service, library, framework etc.)

Standalone

Operating system Windows

Programming environment C++

Communication technologies or protocols with
other CHIC components

Command line arguments allow tasks to be
executed and data exchanged via files on local disk.

Data types that it operates on Clinical data (dicom, mha, mhd nifti, json) and data
from model simulation

Technical dependencies or requirements
(libraries, tools)

Open source libraries: VTK, ITK, Qt and Qwt

https://github.com/INSIGNEO/VPH-HF
https://github.com/INSIGNEO/VPH-HF

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 160 of 180

Computational needs (estimation of hardware
needs)

Min screen size: small laptop (about 28x18cm)
Graphics and CPU: Low to high depending on
demands.

Storage needs (estimation of hardware needs) Low

URL (if applicable) ---

6.3.3 Security services

The security framework is comprised of many different components, each one with its one technical

details and configuration. In this section we present in brief the technical deployment, but the full

design and implementation details can be found in deliverable D5.2.2 “Final version of security tools

and guidelines”.

6.3.3.1.1 IAM (Identity and Access Management site)

Resource Mapping

Developer CUSTODIX

Software type (Web application,
standalone application, service, library,
framework etc.)

Web application

Operating system OS with Java available

Programming environment Java

Communication technologies or protocols
with other CHIC components

REST and SOAP Web Services

Data types that it operates on CHIC User Model

Technical dependencies or requirements
(libraries, tools)

Computational needs (estimation of
hardware needs)

1 core

Storage needs (estimation of hardware
needs)

25 GB (for application code and log files)

URL (if applicable) Development:
https://ciam-dev-chic.custodix.com/idm
Live:
https://ciam.chic-vph.eu/idm

6.3.3.1.2 Idp (Identity Provider)

Resource Mapping

https://ciam-dev-chic.custodix.com/idm
https://ciam.chic-vph.eu/idm

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 161 of 180

Developer CUSTODIX

Software type (Web application, standalone
application, service, library, framework
etc.)

Web application

Operating system OS with Java available

Programming environment Java

Communication technologies or protocols
with other CHIC components

SAML v2 protocol

Data types that it operates on

Technical dependencies or requirements
(libraries, tools)

Computational needs (estimation of
hardware needs)

1 core

Storage needs (estimation of hardware
needs)

25 GB (for application code and log files)

URL (if applicable) Development:
https://ciam-dev-chic.custodix.com/idp
Live:
https://ciam.chic-vph.eu/idp

6.3.3.1.3 STS (Secure Token Service)

Resource Mapping

Developer CUSTODIX

Software type (Web application, standalone
application, service, library, framework
etc.)

Web service

Operating system OS with Java available

Programming environment Java

Communication technologies or protocols
with other CHIC components

REST and SOAP Web Services

Data types that it operates on

Technical dependencies or requirements
(libraries, tools)

Computational needs (estimation of
hardware needs)

1 core

Storage needs (estimation of hardware
needs)

25 GB (for application code and log files)

URL (if applicable) Development:
https://ciam-dev-chic.custodix.com/sts
Live:

https://ciam-dev-chic.custodix.com/idp
https://ciam.chic-vph.eu/idp
https://ciam-dev-chic.custodix.com/sts

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 162 of 180

https://ciam.chic-vph.eu/sts

6.3.3.1.4 PDP (Policy Decision Point)

Resource Mapping

Developer CUSTODIX

Software type (Web application, standalone
application, service, library, framework etc.)

Web service

Operating system OS with Java available

Programming environment Java

Communication technologies or protocols
with other CHIC components

Web Service

Data types that it operates on

Technical dependencies or requirements
(libraries, tools)

Computational needs (estimation of
hardware needs)

1 core

Storage needs (estimation of hardware
needs)

25 GB (for application code and log files)

URL (if applicable)

6.3.3.1.5 PAP (Policy Administration Point)

Resource Mapping

Developer CUSTODIX

Software type (Web application, standalone
application, service, library, framework etc.)

Web application

Operating system OS with Java available

Programming environment Java

Communication technologies or protocols
with other CHIC components

SOAP and REST Web Service

Data types that it operates on

Technical dependencies or requirements
(libraries, tools)

Computational needs (estimation of
hardware needs)

1 core

Storage needs (estimation of hardware
needs)

25 GB (for application code and log files)

URL (if applicable)

https://ciam.chic-vph.eu/sts

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 163 of 180

6.3.3.1.6 PIP (Policy Information Point)

Resource Mapping

Developer CUSTODIX

Software type (Web application, standalone
application, service, library, framework etc.)

Web service

Operating system OS with Java available

Programming environment Java

Communication technologies or protocols
with other CHIC components

SOAP and REST Web Service

Data types that it operates on

Technical dependencies or requirements
(libraries, tools)

Computational needs (estimation of
hardware needs)

1 core

Storage needs (estimation of hardware
needs)

25 GB (for application code and log files)

URL (if applicable)

6.3.3.1.7 PEP (Policy Enforcement Point)

Resource Mapping

Developer CUSTODIX

Software type (Web application, standalone
application, service, library, framework etc.)

Library

Operating system

Programming environment Java

Communication technologies or protocols
with other CHIC components

Web Service

Data types that it operates on

Technical dependencies or requirements
(libraries, tools)

Computational needs (estimation of
hardware needs)

Storage needs (estimation of hardware
needs)

URL (if applicable)

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 164 of 180

6.3.3.1.8 Audit Services

Resource Mapping

Developer CUSTODIX

Software type (Web application,
standalone application, service, library,
framework etc.)

Web application

Operating system OS with Java available

Programming environment Java

Communication technologies or protocols
with other CHIC components

Web Service

Data types that it operates on

Technical dependencies or requirements
(libraries, tools)

Computational needs (estimation of
hardware needs)

1 core

Storage needs (estimation of hardware
needs)

50 GB (for application code and log files)

URL (if applicable) Development:
https://audit-dev-chic.custodix.com/audit-viewer
https://audit-dev-chic.custodix.com/audit-parser
Live:
https://audit.chic-vph.eu/audit-viewer
https://audit.chic-vph.eu/audit-parser

6.3.3.1.9 Security Gateway

Resource Mapping

Developer CUSTODIX

Software type (Web application, standalone
application, service, library, framework etc.)

Web service

Operating system OS with Java available

Programming environment Java

Communication technologies or protocols
with other CHIC components

Web Service

Data types that it operates on N/A

Technical dependencies or requirements
(libraries, tools)

N/A

Computational needs (estimation of
hardware needs)

1 core

Storage needs (estimation of hardware 25 GB (for application code and log files)

https://audit-dev-chic.custodix.com/audit-viewer
https://audit-dev-chic.custodix.com/audit-parser
https://audit.chic-vph.eu/audit-viewer
https://audit.chic-vph.eu/audit-parser

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 165 of 180

needs)

URL (if applicable)

6.3.3.1.10 De-identification

Resource Mapping

Developer CUSTODIX

Software type (Web application, standalone
application, service, library, framework etc.)

Web application

Operating system OS with Java available

Programming environment Java

Communication technologies or protocols
with other CHIC components

SOAP and REST Web Service

Data types that it operates on N/A

Technical dependencies or requirements
(libraries, tools)

N/A

Computational needs (estimation of
hardware needs)

2 core

Storage needs (estimation of hardware
needs)

50 GB (for application code and log files)

URL (if applicable) Development:
https://ttp-dev-chic.custodix.com
Live:
https://ttp-chic.custodix.com

6.3.4 Semantic services

6.3.4.1 Ontology-based semantic services

Resource Mapping

Developer UCL

Software type (Web application, standalone
application, service, library, framework etc.)

Web services

Operating system Cross-platform

Programming environment JAVA

Communication technologies or protocols with
other CHIC components

REST

Data types that it operates on N/A

https://ttp-dev-chic.custodix.com/
https://ttp-chic.custodix.com/

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 166 of 180

Technical dependencies or requirements
(libraries, tools)

Metadata repository and Knowledge Base

Computational needs (estimation of hardware
needs)

N/A

Storage needs (estimation of hardware needs) Web server application

URL (if applicable) https://github.com/open-physiology/chic
https://github.com/open-physiology/owlkb
https://github.com/open-physiology/rdfstore

6.3.4.2 Folksonomy semantic services

Resource Mapping

Developer BED

Software type (Web application,
standalone application, service, library,
framework etc.)

Web application, RESTful APIs

Operating system Cross platform

Programming environment Java, MongoDB, JavaScript, JQuery, Tomcat

Communication technologies or
protocols with other CHIC components

RESTful APIs JSON

Data types that it operates on Resource URI

Technical dependencies or
requirements (libraries, tools)

Spring framework

Computational needs (estimation of
hardware needs)

2 x CPU @ 2.6GHz, RAM 8 GB

Storage needs (estimation of hardware
needs)

50GB for application, data, and logs

URL (if applicable) Web app: http://api.ccgv.org.uk/taggingapp/
RESTful API: http://api.ccgv.org.uk/taggingservice/tags

6.3.4.3 Knowledge base

Resource Mapping

Developer UCL

Software type (Web application, standalone
application, service, library, framework etc.)

Web accessible database

Operating system Cross-platform

Programming environment Java

Communication technologies or protocols with
other CHIC components

Ontology-based services (REST) and Java API

https://github.com/open-physiology/chic
https://github.com/open-physiology/owlkb
https://github.com/open-physiology/rdfstore
http://api.ccgv.org.uk/taggingapp/
http://api.ccgv.org.uk/taggingservice/tags

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 167 of 180

Data types that it operates on Baseline option: OWL (Ontology Web Language)

Technical dependencies or requirements
(libraries, tools)

Baseline option: OWLAPI, Reasoners

Computational needs (estimation of hardware
needs)

Intensive (Prototype needs dedicated server and
64Gb RAM)

Storage needs (estimation of hardware needs) Web server application

URL (if applicable) https://github.com/open-physiology/owlkb

6.4 Data layer

6.4.1 Model repository

Resource Mapping

Developer ICCS

Software type (Web
application, standalone
application, service, library,
framework etc.)

Web based (the User Interface part)

Operating system Cross-platform

Programming environment Programming language: Python, XML, Javascript, HTML, CSS
Database management system: MySQL community edition
Web application framework: Django
Web server: Apache HTTP server

Communication technologies or
protocols with other CHIC
components

 REST services through HTTP protocol and JSON

 Passing of messages through AMQP protocol

Data types that it operates on Models and tools (structured information and files)

Technical dependencies or
requirements (libraries, tools)

1) MySQL community edition (GPL license link:
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html)

2) Django Rest Framework (Copyright (c) 2011-2016, Tom
Christie All rights reserved. Link: http://www.django-rest-
framework.org/#license)

3) djangosaml2 (Apache 2 license, link:
https://pypi.python.org/pypi/djangosaml2/)

4) dm.xmlsec.binding (BSD license, link:
https://pypi.python.org/pypi/dm.xmlsec.binding/1.3.2)

5) Python 2.7 (Open Source, link:
https://www.python.org/download/releases/2.7/license/
)

6) XML security library (MIT license, link:

https://github.com/open-physiology/owlkb
http://www.django-rest-framework.org/#license
http://www.django-rest-framework.org/#license
https://pypi.python.org/pypi/djangosaml2/
https://pypi.python.org/pypi/dm.xmlsec.binding/1.3.2
https://www.python.org/download/releases/2.7/license/

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 168 of 180

https://www.aleksey.com/xmlsec/)

7) Django (BSD license, link:
https://www.djangoproject.com/foundation/faq/)

8) jQuery library (MIT license, link:
https://jquery.org/license/)

9) Bootstrap Framework (MIT license, link:
http://getbootstrap.com/getting-started/)

Computational needs
(estimation of hardware needs)

 Intel Xeon E312xx (1 vCPU)

Storage needs (estimation of
hardware needs)

 60 GB

URL (if applicable) https://mr.chic-vph.eu

6.4.2 Clinical data repository

Resource Mapping

Developer UBERN

Software type (Web
application, standalone
application, service, library,
framework etc.)

Web based

Operating system The Web application is running on a Microsoft Windows
Server 2012 R2 64bit.

Programming environment Programming languages: C#, Javascript, HTML, CSS
Database management system: Microsoft SQL Server
2012 R2.
Web application framework: Microsoft ASP.NET
Framework, ASP.NET MVC and ASP.NET Web API
Web server: Microsoft Internet Information Services
(IIS)

Communication technologies
or protocols with other CHIC
components

REST API, JSON

Data types that it operates on Clinical data (CDISC ODM)
Imaging data (DICOM, MetaImage, Analyze, Nifti)
Genetic / molecular data (MINiML)
Histopathology data (JPEG, CSV, XML)

Technical dependencies or
requirements (libraries, tools)

- ASP.NET (http://www.asp.net/)
- Entity Framework
(https://github.com/aspnet/EntityFramework)
- SimpleITK (http://www.simpleitk.org/)
- ReCaptcha (https://www.google.com/recaptcha)
- Fuseki (http://jena.apache.org/)

https://www.aleksey.com/xmlsec/
https://www.djangoproject.com/foundation/faq/
https://jquery.org/license/
http://getbootstrap.com/getting-started/
https://mr.chic-vph.eu/
http://www.asp.net/
https://github.com/aspnet/EntityFramework
http://www.simpleitk.org/
https://www.google.com/recaptcha
http://jena.apache.org/

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 169 of 180

- Fellow Oak DICOM for .NET
(https://github.com/fo-dicom/fo-dicom)
- dotNetRDF (http://dotnetrdf.org/)
- Newtonsoft Json
(http://www.newtonsoft.com/json)
- VDS.Common
(https://www.nuget.org/packages/VDS.Common/)
- jQuery (https://jquery.org/)
- Bootstrap (http://www.getbootstrap.com)
- HDF5DotNet (http://hdf5.net/)
- Statismo (https://github.com/statismo/statismo)
- FontAwesome
(http://fortawesome.github.io/Font-Awesome)
- Google Web Fonts
(https://www.google.com/fonts)
- ANTLR (http://www.antlr.org/)
- Helix Toolkit (https://github.com/helix-toolkit)
- Apache log4net
(https://logging.apache.org/log4net/)
- Modernizr (https://modernizr.com/)
- OWIN (http://owin.org/)
- RestSharp (http://restsharp.org/)
- Web Grease
(https://www.nuget.org/packages/WebGrease/)
- AngularJS (https://angularjs.org/)
- Elasticsearch, Logstash, Filebeat, Kibana
(https://www.elastic.co/de/products)
- Rdfstore, LOLS (http://open-physiology.org)

Computational needs
(estimation of hardware
needs)

Production VM: 40 GB RAM, 2.9 GHz (4 sockets and 4
virtual processors)
Development VM: 8 GB RAM, 2.9 GHz (1 socket and 1
virtual processor)

Storage needs (estimation of
hardware needs)

500 GB (depending on the number of patients)

URL (if applicable) Production
 Website: https://cdr.chic-vph.eu
 API: https://cdr.chic-vph.eu/api
Development
 Website: https://cdr-dev-chic.ics.forth.gr
 API: https://cdr-dev-chic.ics.forth.gr/api

6.4.3 In silico trial repository

Resource Mapping

Developer ICCS

Software type (Web
application, standalone

Web based (the User Interface part)

https://github.com/fo-dicom/fo-dicom
http://dotnetrdf.org/
http://www.newtonsoft.com/json
https://www.nuget.org/packages/VDS.Common/
https://jquery.org/
http://www.getbootstrap.com/
http://hdf5.net/
https://github.com/statismo/statismo
http://fortawesome.github.io/Font-Awesome
https://www.google.com/fonts
http://www.antlr.org/
https://github.com/helix-toolkit
https://logging.apache.org/log4net/
https://modernizr.com/
http://owin.org/
http://restsharp.org/
https://www.nuget.org/packages/WebGrease/
https://angularjs.org/
https://www.elastic.co/de/products
http://open-physiology.org/
https://cdr.chic-vph.eu/
https://cdr.chic-vph.eu/api
https://cdr-dev-chic.ics.forth.gr/
https://cdr-dev-chic.ics.forth.gr/api

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 170 of 180

application, service, library,
framework etc.)

Operating system Cross-platform

Programming environment Programming language: Python, XML, Javascript, HTML, CSS
Database management system: MySQL community edition
Web application framework: Django
Web server: Apache HTTP server

Communication technologies or
protocols with other CHIC
components

 REST services through HTTP protocol and JSON

Data types that it operates on Input data, links to hypermodels and results of model execution
(structured information and files)

Technical dependencies or
requirements (libraries, tools)

1) MySQL community edition (GPL license link:
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html)

2) Django Rest Framework (Copyright (c) 2011-2016, Tom
Christie All rights reserved. Link: http://www.django-rest-
framework.org/#license)

3) djangosaml2 (Apache 2 license, link:
https://pypi.python.org/pypi/djangosaml2/)

4) dm.xmlsec.binding (BSD license, link:
https://pypi.python.org/pypi/dm.xmlsec.binding/1.3.2)

5) Python 2.7 (Open Source, link:
https://www.python.org/download/releases/2.7/license/
)

6) XML security library(MIT license, link:
https://www.aleksey.com/xmlsec/)

7) Django (BSD license, link:
https://www.djangoproject.com/foundation/faq/)

8) jQuery library (MIT license, link:
https://jquery.org/license/)

9) Bootstrap Framework (MIT license, link:
http://getbootstrap.com/getting-started/)

Computational needs
(estimation of hardware needs)

 Intel Xeon E312xx (4 vCPU)

Storage needs (estimation of
hardware needs)

 100 GB

URL (if applicable) https://istr.chic-vph.eu

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.django-rest-framework.org/#license
http://www.django-rest-framework.org/#license
https://pypi.python.org/pypi/djangosaml2/
https://pypi.python.org/pypi/dm.xmlsec.binding/1.3.2
https://www.python.org/download/releases/2.7/license/
https://www.aleksey.com/xmlsec/
https://www.djangoproject.com/foundation/faq/
https://jquery.org/license/
http://getbootstrap.com/getting-started/
https://istr.chic-vph.eu/

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 171 of 180

6.4.4 Metadata repository

Resource Mapping

Developer UCL

Software type (Web application, standalone
application, service, library, framework etc.)

Web accessible database

Operating system Cross-platform

Programming environment N/A

Communication technologies or protocols with
other CHIC components

SPARQL endpoint or Ontology-based services
(REST)

Data types that it operates on Metadata serialized in RDF

Technical dependencies or requirements
(libraries, tools)

TBD

Computational needs (estimation of hardware
needs)

TBD

Storage needs (estimation of hardware needs) Web server application

URL (if applicable) Third parties backend and
https://github.com/open-physiology/rdfstore

6.5 Infrastructure layer

6.5.1 Private Cloud

Resource Mapping

Developer FORTH

Software type (Web application, standalone
application, service, library, framework etc.)

OpenStack cloud technology platform.

Operating system Linux

Programming environment N/A
(The software is not being developed in CHIC. It is
provided as free software under the Apache 2.0
license)

Communication technologies or protocols with
other CHIC components

It supports but not directly communicate with
other CHIC components. However, it does
provide many different technologies for
communication and management:

 REST services: JSON/XML format,

 Command Line Interface (CLI) tools,

 Software development kits (SDKs): Java,
Node.js, Python, Ruby, .NET, PHP

Data types that it operates on N/A

https://github.com/open-physiology/rdfstore

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 172 of 180

Technical dependencies or requirements
(libraries, tools)

Operating System, network configuration,
hardware resources.

Computational needs (estimation of hardware
needs)

Many computer nodes (>3)

Storage needs (estimation of hardware needs) Many TBs of storage (>5)

URL (if applicable) https://www.openstack.org/
https://developer.openstack.org/

https://www.openstack.org/
https://developer.openstack.org/

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 173 of 180

Appendix 1 – Abbreviations and acronyms

AD Architectural Description

API Application Programming Interface

CATS Custodix Anonymization Tool

CLI Command-Line Interface

CPU Central Processing Unit

CRAF Clinical Research Application Framework

CRF Case Report Form

CDISC Clinical Data Interchange Standards Consortium

CSV Comma Separated Values

DHCP Dynamic Host Configuration Protocol

DICOM Digital Imaging and Communications in Medicine

EC European Commission

FMA Foundational Model of Anatomy

GUI Graphical User Interface

GUID Globally Unique Identifier

HDOT Health Data Ontology Trunk

HIS Hospital Information System

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IAM Identity and Access Management

IdP Identity Provider

IP Internet Protocol

IPR Intellectual Property Rights

IT Information Technology

ITK Insight Segmentation and Registration Toolkit

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 174 of 180

JSON JavaScript Object Notation

LDAP Lightweight Directory Access Protocol

LOLS Local Ontology Lookup Service

MAF3 Multimod Application Framework 3

miRNA microRNA

MRI Magnetic Resonance Imaging

NHS National Health Service

ODM Operational Data Model

OWL Web Ontology Language

OWLKB RICORDO semantic reasoner server

PAP Policy Administration Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PIMS Personal Information Management Service

PIP Policy Information Point

PSE Problem Solving Environment

RAM Random Access Memory

RDF Resource Description Framework

REST Representational State Transfer

RM-ODP Reference Model of Open Distributed Processing

RPC Remote Procedure Call

RST Request Security Token

RSTR Request Security Token Response

SAML Security Assertion Markup Language

SDK Software Development Kit

SOAP Simple Object Access Protocol

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 175 of 180

SPARQL Protocol and RDF Query Language

SSL Secure Sockets Layer

SSO Single Sign-On

STS Secure Token Service

TLS Transport Layer Security

TTP Trusted Third Party

UI User Interface

URL Uniform Resource Locator

UUID Universally Unique Identifier

vCPU virtual CPU

VM Virtual Machine

VPH Virtual Physiological Human

VPH-HF VPH Hypermodelling Framework

VPH-OP Osteoporotic VPH

WSDL Web Service Description Language

XACML eXtensible Access Control Markup Language

XDAS Distributed Audit Service

XML Extensible Markup Language

XMML eXploration and Mining Markup Language

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 176 of 180

Appendix 2 – List of figures

Figure 1 Conceptual model of architectural description from IEEE1471 ... 10

Figure 2 : Functional view: A high level view of the CHIC functional components 21

Figure 3 The architecture of the CHIC clinical domain and CRAF as its core.. 23

Figure 4 The main CRAF window ... 24

Figure 5 Patient selection .. 24

Figure 6 Overview of the input/output parameters before the execution of the chosen hypermodel
for the selected patient and the chosen question ... 25

Figure 7 Screenshot of DrEye .. 27

Figure 8 Side by side comparison of DICOM slides on two different time points, overview of the
histograms and of the statistics magnitudes for the corresponding ROIs. .. 27

Figure 9 User interface of the hypermodelling editor. ... 30

Figure 10 VPH-HF admin panel-dashboard .. 33

Figure 11 CCGVis user interface .. 42

Figure 12 CCGVis loading data ... 43

Figure 13 CCGVis task execution ... 44

Figure 14 CCGVis interactive 2D visualization .. 45

Figure 15 CCGVis interactive 3D visualization .. 45

Figure 16 CCGVis comparison of simulation using superimposed isosurfaces 46

Figure 17 CCGVis plot view.. 47

Figure 18 CCGVis saving a report ... 47

Figure 19 Folksonomy service snapshot – add a tag to a resource ... 59

Figure 20 Folksonomy service snapshot – view/edit/delete tags ... 60

Figure 21 Folksonomy service snapshot – view community tags .. 60

Figure 22 Interactions of the Model Repository with the other CHIC components 67

Figure 23 The main page of the Model and Tool Repository .. 68

Figure 24 The third step of the wizard. The user uploads a variable number of files related to the new
model (source code, executables, documentation, etc.) .. 69

Figure 25 The fourth step of the wizard. The user categorizes their new model based on the 13
perspectives that have been defined within CHIC.. 69

Figure 26 A screenshot of part of the content of the Model Repository... 71

Figure 27 The user may apply many actions to a model (view the parameters, view the files, etc.) ... 71

Figure 28 Brokered Authentication Flow with the clinical data repository ... 95

Figure 29: The general workflow for data upload .. 96

Figure 30: The audit data model XDASv2 used by the clinical data repository for auditing. 98

Figure 31: The components of the audit systems and the interactions with the clinical data repository
 ... 99

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 177 of 180

Figure 32: A visual representation of interactions between clinical data repository and RICORDO
components. ... 100

Figure 33: User dialog to annotate an object with anatomical regions using the autocomplete
function offered by the Local Ontology Lookup Service (LOLS). ... 101

Figure 34: The web-based user interface main view of the clinical data repository 102

Figure 35: The dynamic search query builder integrated in the web-based user interface 103

Figure 36 Interactions of the In Silico Trial Repository with the other CHIC components 112

Figure 37 The main page of the In Silico Trial Repository ... 113

Figure 38 The first step of the wizard. The user provides information related to the in silico trial to
which the new in silico experiment belongs .. 114

Figure 39 The fifth step of the wizard. The user uploads one or more output files related to the
simulation ... 114

Figure 40 Part of the page of the In Silico Trial Repository which indicates the available in silico trials
 ... 116

Figure 41 Information related to the last four simulations (in silico experiments) of Nephroblastoma
multimodeller hypermodel ... 117

Figure 42 Openstack Dashboard: Instance management ... 148

Figure 43 Openstack Dashboard: Volume management .. 149

Figure 44 Openstack Dashboard: Access & Security management ... 150

Figure 45 Openstack Dashboard: Flavor management ... 150

Figure 46 Openstack Dashboard: Network management ... 151

Figure 47 Openstack Dashboard: Floating IP management .. 152

Figure 48 Openstack Dashboard: Image management ... 152

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 178 of 180

Appendix 3 – List of tables

Table 1 Stakeholders of CHIC .. 15

Table 2 Interactions of the Model Repository with the other CHIC components 66

Table 3 Information for calling storeTool web service ... 72

Table 4 Information for calling getAllTools web service ... 73

Table 5 Information for calling getToolById web service.. 73

Table 6 Information for calling getToolByParameterId web service ... 74

Table 7 Information for calling getToolByUuid web service ... 75

Table 8 Information for calling deleteToolById web service ... 75

Table 9 Information for calling storeParameter web service .. 76

Table 10 Information for calling deleteParameter web service .. 78

Table 11 Information for calling getParametersByToolId web service .. 78

Table 12 Information for calling getParameterById web service .. 79

Table 13 Information for calling getMandatoryParametersByToolId web service 80

Table 14 Information for calling getInputParametersByToolId web service 80

Table 15 Information for calling getOutputParametersByToolId web service 81

Table 16 Information for calling storeProperty web service ... 82

Table 17 Information for calling getAllProperties web service ... 83

Table 18 Information for calling getPropertyById web service ... 83

Table 19 Information for calling storePropertyValue web service .. 84

Table 20 Information for calling deletePropertyValue web service .. 85

Table 21 Information for calling getPropertyValuesByToolId web service .. 85

Table 22 Information for calling deletePropertyById web service .. 86

Table 23 Information for calling storeReference web service .. 87

Table 24 Information for calling deleteReferenceById web service .. 88

Table 25 Information for calling getReferencesByToolId web service .. 88

Table 26 Information for calling storeFile web service ... 89

Table 27 Information for calling deleteFile web service ... 90

Table 28 Information for calling getFileById web service ... 91

Table 29 Information for calling getPackageByToolId web service ... 91

Table 30 Information for calling getFilesOfKind web service .. 92

Table 31 Information for calling getFilesByToolId web service ... 93

Table 32 Parties involved in the general workflow for data upload .. 97

Table 33 HTTP methods supported by the clinical data repository REST API 104

Table 34 The pagination concept applied to large result sets returned by the clinical data repository.
 ... 104

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 179 of 180

Table 35 The includable attribute demonstrated on the basis of the groups resource implemented by
the clinical data repository .. 105

Table 36 The possible return states used by the clinical data repository to indicate a successful
completion of a request. ... 106

Table 37: The possible return states used by the clinical data repository to indicate an unsuccessful
completion of a request. ... 106

Table 38: The template used to describe the API endpoint resources of the clinical data repository 107

Table 39 Interactions of the In Silico Trial Repository with the other CHIC components................... 111

Table 40 Information for calling storeTrial web service ... 118

Table 41 Information for calling getAllTrials web service ... 119

Table 42 Information for calling getUserTrials web service .. 119

Table 43 Information for calling getTrialById web service .. 120

Table 44 Information for calling getTrialByModelId web service.. 121

Table 45 Information for calling deleteTrialById web service ... 121

Table 46 Information for calling storeExperiment web service .. 122

Table 47 Information for calling getUserExperiments web service ... 123

Table 48 Information for calling getUserPendingExperiments web service 124

Table 49 Information for calling getAllExperimentsByTrialId web service .. 125

Table 50 Information for calling getExperimentById web service... 125

Table 51 Information for calling getExperimentByUuid web service .. 126

Table 52 Information for calling getExperimentStatusById web service ... 127

Table 53 Information for calling getExperimentsByStatus web service .. 127

Table 54 Information for calling updateExperimentStatus web service .. 128

Table 55 Information for calling deleteExperimentById web service .. 129

Table 56 Information for calling storeMiscellaneousParameter web service.................................... 129

Table 57 Information for calling getAllMiscellaneousParameters web service 130

Table 58 Information for calling getUserMiscellaneousParameters web service 131

Table 59 Information for calling getAllMiscellaneousParametersByExperimentId web service 132

Table 60 Information for calling getMiscellaneousParameterById web service 132

Table 61 Information for calling deleteMiscellaneousParameterById web service 133

Table 62 Information for calling storeSubject web service ... 134

Table 63 Information for calling deleteSubjectById web service .. 135

Table 64 Information for calling getAllSubjects web service .. 135

Table 65 Information for calling getUserSubjects web service ... 136

Table 66 Information for calling getSubjectById web service ... 136

Table 67 Information for calling storeTrReference web service ... 137

Table 68 Information for calling getAllTrReferences web service ... 138

Grant Agreement no. 600841

D5.1.3 – The final CHIC technical architecture

Page 180 of 180

Table 69 Information for calling getTrReferencesByTrialId web service ... 139

Table 70 Information for calling getTrReferencesByExperimentId web service 140

Table 71 Information for calling deleteTrReferenceById web service ... 140

Table 72 Information for calling storeLinkToReference web service .. 141

Table 73 Information for calling deleteReferenceLinkById web service.. 141

Table 74 Information for calling storeTrFile web service.. 142

Table 75 Information for calling deleteTrFile web service .. 143

Table 76 Information for calling getTrFileById web service .. 144

Table 77 Information for calling getTrFilesOfKind web service... 144

Table 78 Information for calling getTrFilesBySubjectId web service ... 145

Table 79 Information for calling getUserTrFiles web service .. 146

	Contents
	1 Executive Summary
	2 Introduction
	3 Architectural approach
	3.1 Architectural description - The IEEE 1471 standard
	3.2 Views of the architecture
	3.3 Views of the CHIC architecture

	4 Architectural drivers in CHIC
	4.1 Stakeholders
	4.2 Goals, constraints, principles, concerns, requirements of the CHIC stakeholders
	4.2.1 Data providers
	4.2.2 Model providers
	4.2.3 Researchers
	4.2.4 Clinicians
	4.2.5 Legal partners
	4.2.6 Software developers
	4.2.7 Administrators
	4.2.8 Patients
	4.2.9 External users
	4.2.10 European Commission

	4.3 Evolution and refinement of the architecture

	5 Functional view
	5.1 Introduction - High level view
	5.2 Presentation layer
	5.2.1 Clinical Research Application Framework (CRAF)
	5.2.1.1 Description
	5.2.1.2 Functionality
	5.2.1.1 CHIC components interaction
	5.2.1.2 API interface/User Interface

	5.2.2 DrEye - Image processing toolkit
	5.2.2.1 Description
	5.2.2.2 Functionality
	5.2.2.1 CHIC components interaction
	5.2.2.2 User Interface

	5.2.3 Hypermodelling editor
	5.2.3.1 Description
	5.2.3.2 Functionality
	5.2.3.1 CHIC components interaction
	5.2.3.2 API interface/User Interface

	5.3 Service layer
	5.3.1 Hypermodelling execution framework
	5.3.1.1 Description
	5.3.1.2 Functionality
	5.3.1.1 CHIC components interaction
	5.3.1.2 API interface/User Interface
	5.3.1.2.1 User Interface
	5.3.1.2.2 API Interface

	5.3.2 Visualization toolkit
	5.3.2.1 Description
	5.3.2.2 Functionality
	5.3.2.1 CHIC components interaction
	5.3.2.2 User Interface
	5.3.2.3 API interface

	5.3.3 Security services framework
	5.3.3.1 Description
	5.3.3.2 IAM (Identity and Access Management site)
	5.3.3.2.1 Description
	5.3.3.2.2 Functionality
	5.3.3.2.3 Programmatic/User Interface

	5.3.3.3 IdP (Identity Provider)
	5.3.3.3.1 Description
	5.3.3.3.2 Functionality
	5.3.3.3.3 Programmatic/User Interface

	5.3.3.4 STS (Secure Token Service)
	5.3.3.4.1 Description
	5.3.3.4.2 Functionality
	5.3.3.4.3 Programmatic/User Interface

	5.3.3.5 PDP (Policy Decision Points)
	5.3.3.5.1 Description
	5.3.3.5.2 Functionality
	5.3.3.5.3 Programmatic/User Interface

	5.3.3.6 PAP (Policy Administration Point)
	5.3.3.6.1 Description
	5.3.3.6.2 Functionality
	5.3.3.6.3 Programmatic/User Interface

	5.3.3.7 PIP (Policy Information Point)
	5.3.3.7.1 Description
	5.3.3.7.2 Functionality
	5.3.3.7.3 Programmatic/User Interface

	5.3.3.8 PEP (Policy Enforcement Point)
	5.3.3.8.1 Description
	5.3.3.8.2 Functionality
	5.3.3.8.3 Programmatic/User Interface

	5.3.3.9 Audit Services
	5.3.3.9.1 Description
	5.3.3.9.2 Functionality
	5.3.3.9.3 Programmatic/User Interface

	5.3.3.10 Security Gateway
	5.3.3.10.1 Description
	5.3.3.10.2 Functionality
	5.3.3.10.3 Programmatic/User Interface

	5.3.3.11 Security Integration Modules and extensions
	5.3.3.11.1 Description

	5.3.3.12 De-Identification
	5.3.3.12.1 Description
	5.3.3.12.2 Functionality
	5.3.3.12.3 Programmatic/User Interface

	5.3.4 Semantic services
	5.3.4.1 Ontology-based semantic services
	5.3.4.1.1 Description
	5.3.4.1.2 Functionality
	5.3.4.1.1 API Interface

	5.3.4.2 Folksonomy semantic services
	5.3.4.2.1 Description
	5.3.4.2.2 Functionality
	5.3.4.2.1 API interface/User Interface

	5.3.4.3 Knowledge base
	5.3.4.3.1 Description
	5.3.4.3.2 Functionality
	5.3.4.3.1 API Interface

	5.4 Data layer
	5.4.1 Model repository
	5.4.1.1 Description
	5.4.1.2 Functionality
	5.4.1.1 CHIC components interaction
	5.4.1.2 User interface
	5.4.1.3 API Interface
	5.4.1.3.1 Model/Tool
	5.4.1.3.2 Parameter
	5.4.1.3.3 Property
	5.4.1.3.4 Reference
	5.4.1.3.5 File

	5.4.2 Clinical data repository
	5.4.2.1 Description
	5.4.2.2 Functionality
	5.4.2.1 CHIC components interaction
	5.4.2.1.1 Authentication
	5.4.2.1.2 Data flow
	5.4.2.1.3 Auditing
	5.4.2.1.4 Semantic integration with RICORDO
	5.4.2.1.4.1 Interactions with the Local Ontology Lookup Service
	5.4.2.1.4.2 Interactions with the Rdfstore

	5.4.2.2 User interface
	5.4.2.3 API interface
	5.4.2.3.1 HTTP method definitions
	5.4.2.3.2 Pagination
	5.4.2.3.3 Include
	5.4.2.3.4 Requests, Responses, and Errors
	5.4.2.3.5 Resource description template
	5.4.2.3.6 Dynamic search

	5.4.3 In Silico trial repository
	5.4.3.1 Description
	5.4.3.2 Functionality
	5.4.3.1 CHIC components interaction
	5.4.3.2 User Interface
	5.4.3.3 API Interface
	5.4.3.3.1 Trial
	5.4.3.3.2 Experiment
	5.4.3.3.3 Miscellaneous parameter
	5.4.3.3.4 Subject
	5.4.3.3.5 Reference
	5.4.3.3.6 File

	5.4.4 Metadata repository
	5.4.4.1 Description
	5.4.4.2 Functionality
	5.4.4.1 Programmatic/User Interface

	5.5 Infrastructure layer
	5.5.1 Private Cloud
	5.5.1.1 Description
	5.5.1.2 Functionality
	5.5.1.1 User Interface
	5.5.1.2 API interface

	6 Deployment view
	6.1 Introduction – high level view
	6.2 Presentation layer
	6.2.1 Clinical Research Application Framework (CRAF)
	6.2.2 DrEye - Image processing toolkit
	6.2.3 Hypermodelling editor
	6.2.4 User Portal

	6.3 Service layer
	6.3.1 Hypermodelling execution framework
	6.3.2 Visualization toolkit
	6.3.3 Security services
	6.3.3.1.1 IAM (Identity and Access Management site)
	6.3.3.1.2 Idp (Identity Provider)
	6.3.3.1.3 STS (Secure Token Service)
	6.3.3.1.4 PDP (Policy Decision Point)
	6.3.3.1.5 PAP (Policy Administration Point)
	6.3.3.1.6 PIP (Policy Information Point)
	6.3.3.1.7 PEP (Policy Enforcement Point)
	6.3.3.1.8 Audit Services
	6.3.3.1.9 Security Gateway
	6.3.3.1.10 De-identification

	6.3.4 Semantic services
	6.3.4.1 Ontology-based semantic services
	6.3.4.2 Folksonomy semantic services
	6.3.4.3 Knowledge base

	6.4 Data layer
	6.4.1 Model repository
	6.4.2 Clinical data repository
	6.4.3 In silico trial repository
	6.4.4 Metadata repository

	6.5 Infrastructure layer
	6.5.1 Private Cloud
	Appendix 1 – Abbreviations and acronyms
	Appendix 2 – List of figures
	Appendix 3 – List of tables

