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ABSTRACT: 

This deliverable 9.2 – A Model and Visualization Toolkit – consists of three parts.   

The first is a visualization tool called CCGVis.  CCGVis is a desktop tool for visualizing and comparing 
tumours and simulations.  CCGVis can import, register and visualize medical data, segmentation 
data and simulations.  It can import various medical formats and CHIC simulations.  Images can be 
imported singly, in image/segmentation pairs, or as time series.  Metadata containing information 
about the segmentation labelling and the image projection can be added in the form of json files.  
Visualizations include slice and orthoslice views in 2D and 3D, isosurfaces in 3D, volume rendering, 
comparisons between real and simulated tumours, and plots of tumour growth.  An evaluation is 
presented, showing that CCGVis works well, can be used easily by both medical experts and 
novices, and is considered a useful tool for viewing data and simulations. 

The second part is an image segmentation algorithm for nephroblastoma.  The method is a semi-
automated technique that includes the interaction of a human expert to perform the extraction of 
the tumour tissues from MRI images.  Results from 24 patients confirmed effective agreement with 
expert annotations of the tumour tissues. 

The third part is a timeline visualization of a medical database.  This presents the database as items 
along a multiscale timeline, which can be zoomed from scales of hours to years.  The items are 
coloured by type and feature metadata in the form of text and thumbnail images.  Clustering of 
items avoids clutter. 
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1 Executive Summary 

The CHIC project aims to create new technology in the modelling of cancer.  As part of this process, 
the models and hypermodels which have been developed in CHIC must be compared with ground 
truth to answer the question: did a particular model correctly predict the evolution of a tumour 
during treatment?  This requires a tool which can visualize the simulated tumour along its timeline, 
and compare this with the corresponding real pre- and post-treatment tumour, to assess the validity 
of the simulation. 

Section 2 of this document describes a visualization tool called CCGVis which was developed to fill 
this need.  CCGVis is a desktop tool for visualizing and comparing tumours and simulations.  CCGVis 
can import, register and visualize medical data, segmentation data and simulations.  Images can be 
imported singly, in image/segmentation pairs, or as time series.  Visualizations include slice and 
orthoslice views in 2D and 3D, isosurfaces in 3D, volume rendering, comparisons between real and 
simulated tumours, and plots of tumour growth.  Section 2.3 describes the CCGVis visualizations in 
detail, Section 2.4 describes the image registration in CCGVis, Section 2.5 describes the software 
architecture, and Section 2.6 describes an evaluation of CCGVis. 

In order to assess a tumour in a medical image, it is necessary to segment the image – that is, to label 
the voxels in the image which belong to the tumour.  Manual segmentation is a skilled task and very 
labour-intensive, so automatic and semi-automatic methods are much-needed.  Segmentation is 
particularly difficult in the case of nephroblastoma because the tumours can be heterogeneous, can 
have low contrast with the surrounding tissue, and be highly variable in appearance from patient to 
patient.  Section 3 presents a semi-automatic segmentation algorithm for nephroblastoma tumours. 

The clinical database in CHIC is complex, featuring medical images, segmentations and simulations.  

In Section 4 we present work on a multiscale timeline visualization for medical data, in which the 

items are presented on a timeline, classified by colour and clustered to reduce clutter.  
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2 CCGVis Visualization Tool 

2.1 State of the art in visualization 

The current state-of-the-art in terms of visualization library software is VTK (www.vtk.org).  This 
library provides importers for most image and graphics formats, and a comprehensive variety of 
visualization components, including some information visualization in the latest versions.  It is easy 
for developers to add extension classes for their own needs to the VTK framework.  Most 
visualization platforms are based on VTK. 

A significant shortcoming of VTK is that its Dicom importer has very limited functionality.  The 
closely-related library ITK (www.itk.org), which specializes in medical image segmentation, is often 
used with VTK when both segmentation and visualization are required; ITK has full Dicom 
functionality, and integrates with VTK, so for this reason alone is a useful component of a 
visualization system.  ITK also includes a framework and variety of algorithms for image registration. 

VTK has no serious rival for constructing visualizations with images and 3D graphics, but is a relative 
newcomer to the field of information visualization.  Therefore other libraries such as Qwt may 
provide higher quality visualizations of graphs and charts. 

Although there is good visualization software available in terms of library components, the 
availability of freely-available and extensible API’s, such as MAF (http://www.openmaf.org) and 
DrEye (http://biomodeling.ics.forth.gr/?page_id=8), is very limited.  Maf is an extremely adaptable 
and programmable platform which has supported a wide variety of VPH projects, but has not been in 
active development for a number of years.  DrEye is a flexible platform which is already central to the 
CHIC project – it is extensible mainly by the addition of external programs which can be integrated as 
“plugins”.  Currently, no API platform exists which supports the visualization and comparison of both 
medical and simulation data. 

2.2 Overview of CCGVis 

CCGVis is a desktop tool for visualizing and comparing tumours and simulations.  CCGVis can import, 
register and visualize medical data, segmentation data and simulations.  It can import various 
formats, including dicom, mha, nifti and CHIC simulations.  Images can be imported singly, in 
image/segmentation pairs, or as time series.  Metadata containing information about the 
segmentation labelling and the image projection can be added in the form of json files.  
Visualizations include slice and orthoslice views in 2D and 3D, isosurfaces in 3D, volume rendering, 
comparisons between real and simulated tumours, and plots of tumour growth.  Images and video 
can be saved to file with captions for later reporting.  CCGVis can be executed as a standalone 
desktop application, or it can be launched from another application with command-line arguments.  
Input and output data is exchanged via the local file system, in directories specified by the command 
line arguments.   

The API consists of a display window, a widget panel for interactive control, and menus for loading 
data and launching visualization tasks. 

2.3 Visualizations in CCGVis 

2.3.1 2D Slice 

The CCGVis slice view is shown in Figure 2-1.  The medical image is presented as a 2D slice, and the 
segmentation labelling is shown as a transparent coloured overlay.  The tumour volume in ml is 
calculated from the segmentation image and displayed in the control panel. 

The input for this visualization is an image/segmentation “pair”, that is, a medical image and its 
corresponding segmentation image containing a labelling of the voxels.  Segmentation images are 
typically binary, but can also contain multiple labels to represent different tissues and tumour 
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components.  In CCGVis, the labels present are automatically calculated from the segmentation 
image, or they can be listed and named in a json metadata file.  The metadata file can also contain 
the projection information, mapping the images axes to the patient axes.  In the absence of 
metadata, the image-patient mapping can be adjusted by the user from the control panel.     

The overlay is generated by a combination of two VTK filters: vtkImageMapToColors, which converts 
the segmentation image into an image with colours and transparency as set by the control panel; and 
vtkImageBlend, which mixes the overlay and medical images according to their relative 
transparencies. 

Figure 2-2 and Figure 2-3 show the same image in the sagittal and coronal projections. 

 

Figure 2-1 2D slice visualization of nephroblastoma patient, showing labelled tumour (red) as transparent 
coloured  overlay.  Transverse projection. 
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Figure 2-2 2D slice visualization of 
nephroblastoma patient: sagittal 
projection 

 

Figure 2-3 2D slice visualization of nephroblastoma patient: coronal 
projection 
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2.3.2 3D Orthoslice 

The 3D orthoslice visualization presents the medical image as a slice or a set of orthogonal slices in 
3D space.  The tumour is visualized in 3D space as an isosurface: that is, a mesh representation of the 
contour boundary in the segmentation image.  The isosurface is generated by the marching cubes 
algorithm (Lorensen & Cline, 1987).  The advantage of the orthoslice view is that it presents the 3D 
interior of the patient very well, but is at the same time open and uncluttered.  Figure 2-4 shows an 
orthoslice view of the nephroblastoma shown previously in Figure 2-1. 

CCGVis can load image series datasets.  Figure 2-4 and Figure 2-5 show the pre-treatment and post-
treatment images of the nephroblastoma.  The qualitative shrinkage in the tumour is evident in the 
images, and can be read quantitatively in ml from the control panel on the right. 

 

Figure 2-4 3D orthoslice visualization, showing nephroblastoma image in 3 orthogonal planes and labelled 
tumour as transparent coloured isosurface: pre-treatment 
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Figure 2-5 3D orthoslice visualization, showing nephroblastoma image in 3 orthogonal planes and labelled 
tumour as transparent coloured isosurface: post-treatment 

The orthoslice view also allows the user to display a slice in an arbitrary orientation, as shown in 
Figure 2-6.  The orientation can be rotated about the image x and y axes using sliders in the control 
panel.  The position of the slice is defined by a parameter λ = [0,1] where 0 and 1 correspond to the 
extrema of the image box as projected onto the normal direction of the slice. 
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Figure 2-6 3D orthoslice visualization, showing nephroblastoma image and tumour as single plane in 
arbitrary orientation.  The slice direction is controlled by sliders which rotate the plane about the image x 
and y axes. 

Figure 2-7 shows the 3D orthoslice view (one slice only) applied to lung cancer.  Two tumours are 
visible. 

 

Figure 2-7 3D orthoslice visualization, showing lung image in single plane and labelled tumours as 
transparent coloured isosurfaces 

Figure 2-8 shows a brain tumour as a 3D slice.  In this case, the segmentation contains multiple labels 
corresponding to different components of the tumour: the large green volume corresponds to 
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oedema, the red to necrosis, and the yellow and blue to enhancing and non-enhancing tumour 
tissue.   

 

Figure 2-8 orthoslice visualization, showing glioblastoma image in single plane and labelled tumour as 
transparent coloured isosurface.  The segmentation contains multiple labelled components. 

With multiple surfaces occluding and nesting each other, it is important that the transparency works 
well.  Transparency in computer graphics is computationally expensive to calculate because the 
rendered colour of transparent layers depends on the depth order of the layers.  This is illustrated in 
Figure 2-9.  White light is incident on two triangles T1 and T2, with respective colours C1 and C2, and 
opacities A1 and A2.  To calculate the cumulative colour at the eye, it is necessary to know the depth 
order of the triangles. 

 

Figure 2-9 Cumulative effect of transparent layers on ray colour.  The colour of white light reflected from two 
transparent triangles depends on the depth order of the triangles. 

The simplest method of resolving this problem is simply to sort the triangles into depth order before 
rendering.  VTK provides a filter to perform this task.  However, sorting large numbers of triangles is 
computationally expensive.  Also, in order to sort triangles which belong to different meshes in the 
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scene, the meshes must be merged into one, adding to the computation time and losing the ability to 
process the meshes independently. 

A better method supported by VTK is depth peeling (Everitt, 2001).  This works on the whole scene 
and does not require the meshes to be merged and sorted.  The standard graphics pipeline features a 
depth buffer, which for each pixel contains the depth of the nearest surface to the camera.  Where 
there is no transparency, this efficiently removes occluded surfaces from further processing.  
However, when transparency is present, all the surfaces must be composited: the nearest, second-
nearest, third nearest and so on.  Depth peeling works by rendering the nearest surfaces as normal, 
but then uses the depth buffer to remove the nearest surface, leaving the second nearest.  The 
second nearest surface is then rendered and blended with the first.  The second nearest is now 
removed, and the third nearest rendered and blended, and so on until no more depth layers remain.  
The iterative algorithm can be computationally expensive, but this has not been a problem in CCGVis. 

A problem with depth peeling in the VTK implementation arises when there are coincident surfaces 
in the scene.  When two mesh fragments are at the same depth, one is used and the other discarded, 
rather than the two being blended.  This is a major problem for CCGVis, since it is often the case that 
near-identical surfaces are being compared.  The solution in CCGVis is to dither the positions of the 
mesh points by a tiny random amount, not visible to the eye but enough to separate the meshes and 
allow the algorithm to work properly. 

 

2.3.3 Volume Rendering 

The volume rendering visualization in CCGVis shows the whole image as a 3D semi-transparent block.  
The location of the tumour is shown by the same isosurface mesh as seen in the 3D orthoslice view in 
Section 2.3.2.  The rendering is generated by the VTK filter vtkGPUVolumeRayCastMapper, and the 
transfer function – the mapping between image intensity and rendered colour – is a linear ramp of 
hue, with the darkest image intensity mapped to violet and the brightest to red.  All voxels have the 
same global opacity.  A volume rendering of the nephroblastoma patient is shown in Figure 2-10. 

 

Figure 2-10 Volume rendering visualization showing torso as semi-transparent block with mesh tumour 
embedded. 
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CCGVis provides two controls for manually adjusting the transfer function: an opacity slider for 
setting the global opacity, and a pair of range sliders for setting the minimum and maximum values 
for the range of grey levels to view – effectively a windowed threshold on the image.  The hue range 
from violet to red is compressed into the range selected.  By setting the sliders, it is possible to focus 
on particular tissues.  Figure 2-11 shows the volume rendering with the range thresholds set to show 
the kidneys and the tumour. 

 

Figure 2-11 Volume rendering visualization showing torso as semi-transparent block.  The range thresholds 
have been set to show the kidneys and the tumour (purple). 
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2.3.4 2D Parallel Comparison 

CCGVis provides several visualizations for the purpose of directly comparing real tumours and their 
simulations.  A video showing these visualizations can be found at https://youtu.be/pR0USCxPwbM.  
The first such view is the 2D parallel comparison, as shown in Figure 2-12.  The visualization shows 
two 2D slice views (see in Section 2.3.1) side by side.  The left image shows the time series of medical 
images with the real tumour, while the right image shows the simulated tumour.  The left time-series 
image is selected, as in Section 2.3.1, by radio buttons in the control panel.  The left image in Figure 
2-12 has been set to show the post-treatment tumour.  For comparison, the right image shows the 
simulated tumour; this is always shown embedded in the first time-series image, since this defines 
the coordinate system.  The day number of the simulation is controlled by a time slider in the control 
panel.  Note that the post-treatment image on the left has been registered so that it is in the same 
coordinate system as the pre-treatment image and simulated tumour on the right.  Registration will 
be described in Section 2.4. 

 

Figure 2-12 2D parallel comparison of real and simulated nephroblastoma tumours, showing (left) real post-
treatment tumour and (right) simulated tumour. 

https://youtu.be/pR0USCxPwbM
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2.3.5 3D Parallel Comparison 

The 3D parallel comparison is similar to the 2 comparison described in Section 2.3.4, with the real 
tumour on the left and the simulated tumour on the right, but uses the orthoslice view described in 
Section 2.3.2.  The cameras on the left and right are synchronised so that any rotation or zoom 
interaction in one is mirrored in the other.  The simulation on the right is shown only as an isosurface 
without the image slice, though the original reason for this – that the control panel would require 
two sets of slice controls – no longer applies to successfully registered images, and it is likely that 
future versions of CCGVis will restore the image slice context to the right hand tumour.   

 

Figure 2-13 3D parallel comparison of real and simulated nephroblastoma tumours, showing (left) real post-
treatment tumour and (right) simulated tumour. 
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2.3.6 3D Superimposed Comparison 

The superimposed comparison is a comparison of two or more tumours in the same image space.  
The visualization is a combination of 3D orthoslice images and isosurface tumours, as in the parallel 
3D described in Section 2.3.5, but the tumours to be compared are placed in the same image instead 
of parallel images.  This is a powerful and direct method of comparison.  The user is able to select 
which tumour isosurfaces to enable in the view: the baseline real(0), the baseline simulated(0), the 
current time-series real(t) and the current time-slider-selected simulated(t).  Figure 2-14 shows a 
comparison between the simulation at day 0 (yellow) and day 29 (green) as transparent isosurfaces.  
Figure 2-15 shows a comparison between the real post-treatment tumour (red) and the simulation at 
day 29 (green).  Note that the real tumour and the background image has been registered so that it is 
in the same coordinate system as the simulation.  It can be seen that in this case the simulation has 
not correctly predicted the post-treatment position of the tumour. 

 

Figure 2-14 3D superimposed comparison visualization of nephroblastoma, showing baseline simulated 
tumour at day 0 (yellow) with simulated tumour at day 29 (green). 
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Figure 2-15 3D superimposed comparison visualization of nephroblastoma, showing real post-treatment 
tumour (red) with simulated tumour at day 29 (green). 

2.3.7 Graphical visualization 

CCGVis also presents the simulated history of the tumour as a plot of volume against time, as shown 
in Figure 2-16.  This plot shows the shrinkage (and beginnings of regrowth) of a simulated 
nephroblastoma which has been subject to four chemotherapy treatments.  For comparison, the 
volume of the real tumour (red crosses) is marked on the same plot. 

 

Figure 2-16 Plot of simulated tumour volume vs time; the red crosses are real tumour volumes. 
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2.4 Registration in CCGVis 

When a time-series of medical images is loaded, the images in the set must be registered so that 
corresponding features have the same coordinates in all the images.  This is very important for 
comparing tumours at different times in the patient’s treatment, because registration makes it easier 
to compare two images by displaying the same anatomy in the same place and on the same slice, and 
makes it possible to display both pre- and post-treatment tumours in the same image space for 
direct comparison.  The image sequences are registered such that the first image in the series is 
fixed, and the others are registered against it.  The constraint that the first image is always fixed can 
be sub-optimal if the first image happens to be low-resolution, forcing the rest of the images to be 
reduced in resolution to match, but it is necessary because the CHIC simulations are based on the 
coordinate system of the first image. 

Registration is performed by ITK.  The ITK registration framework divides the registration process into 
four pluggable and interchangeable components, each of which has wide range of options available:  

 The transform determines the type of transform which is applied to the target image, such as 
2D, 3D translation or 3D rigid.  In CCGVis a 3D rigid transform is used, that is, a translation 
and rotation.  There can be significant rotation of the patient from one image to the next, so 
simple translation is not sufficient.  The centre of rotation is the centre of the image. 

 The interpolator determines how the values of voxels at non-grid positions are calculated.  
Linear interpolation is applied to the target image.  However, when the registration is 
complete, the transform must also be applied to the corresponding segmentation image, and 
in this case linear interpolation would generate spurious non-binary grey levels at the edges 
of the labelled object.  Hence a nearest-neighbour interpolation must be applied when the 
segmentation is transformed. 

 The optimizer is the optimization algorithm which solves the registration.  CCGVis uses the 
optimizer which is designed for the transform space of the 3D rigid transform. 

 The metric is the measure of difference between the images under a given transform.  There 
are a large number of possible metrics.  CCGVis uses the simplest and least computationally-
expensive metric – the mean-squared difference between the grey levels. 

Example registration results are shown in Figure 2-17 and Figure 2-18. 
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Figure 2-17 Images of nephroblastoma patient before registration.  Left: post-treatment (unregistered); right: 
pre-treatment. 

 

Figure 2-18 Images of nephroblastoma patient after registration.  Left: post-treatment (registered); right: 
pre-treatment.  

 

 

 

2.5 CCGVis architecture 

2.5.1 Software description 

CCGVis is a Windows desktop application which runs on Windows 7-10 or on a Windows emulator 
such as WineSkin on Mac OS. 

CCGVis is written in C++, built using CMake 3.6.2 and compiles as a 32-bit application with Microsoft 
Visual Studio 2013 or 2015. 

CCGVis depends on the following third-party libraries: 
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 VTK 6.3.  The Visualization Toolkit provides much of the graphics software for the 
visualizations themselves.  CCGVis also contains various bespoke VTK filters and bug-fixes. 

 Qt 5.5 – 5.6.  The Qt library provides basic widgets from which the CCGVis controls are built, 
and also the framework for event handling. 

 ITK 4.7 – 4.9.  The Insight Segmentation and Registration Toolkit provides DICOM import 
functionality and registration software.  ITK also provides a framework for image processing. 

 Qwt 6.1.2.  The Qwt library provides high-quality graph plots and histograms. 

 

2.5.2 CCGVis Program Structure 

CCGVis is constructed from modular components as shown in Figure 2-19. 

 

Figure 2-19 CCGVis program structure 

 

 The main window is the display and user interface. 

 Loaders get the input datasets. 

 The data manager loads, stores and provides datasets on request.  Each dataset is a file 

loader which supplies the vtk readers for the data. 

 The GUI manager contains the layouts into which tasks can add their widgets. 

 The render window manager contains the list of render windows in the GUI.  It supplies the 

renderers which correspond to the windows. 

 The output manager contains utilities for saving output images, plots and video to file. 

 The task manager executes a task when requested.  Currently the tasks are modal: only one 

task can run at a time. 

 A task is a visualization (or other executable operation) performed on the data.  The task 

requests its data from the data manager and its renderer from the render window manager.  
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It connects the data to the visual pipes.  It places the GUI components in the main window 

and connects them to the visual pipes.  Typically most of the visual pipes and GUI 

components will be wrapped in a view class. 

 A view represents a static (i.e. non time-varying) visualization, and contains the visual pipes 

and the widgets to control it.  Views are reusable code which might be used in more than 

one task. 

  



Grant Agreement no. 600841  

D9.2 – A Model and Visualization Toolkit  

Page 27 of 61 

2.6 CCGVis evaluation 

The evaluation exercise consisted of a CCGVis distribution, including example data, and a 
questionnaire as shown below.  A windows batch file with command line arguments was provided 
which would launch CCGVis with the example data preloaded. 

The evaluation was sent to 25 people with varying levels of experience at viewing medical images.  Of 
the 10 respondents, 6 were members of the CHIC project and the remaining 4 were research 
colleagues from BED.  None were directly involved in the development of CCGVis. 

The evaluation was based mainly on example data from a nephroblastoma patient, but images of 
non small cell lung cancer and glioblastoma were also included. 

The following is a summary of the responses.  For binary questions, the numbers in the boxes show 
the total number of users who gave the corresponding answer.  For questions rated across 5 boxes, 
bar charts show the distribution of responses. 

 

User details and system requirements 

The system requirements are: desktop or laptop running MS Windows or a Windows emulator such 
as Wineskin on MacOs. 

Number of respondents: 10 

Please rate your experience in viewing medical 
images 

none ☐☐☐☐☐expert 

Have you used CCGVis before? 
Yes   No  

What is your operating system, including any 
emulator software such as Wineskin? Windows 7  Windows 8  

Windows 10  

Virtual Box running Win 10 on MacOs  

VMWare running Win 8.1 on MacOs  

Are you using a desktop or a laptop? 
Desktop   Laptop  

What is your screen resolution? The lowest screen resolutions were on laptops 
at 1366 x 768 and 1280 x 800.  No problems 
arising from lack of screen space were 
reported. 

 

 

Launching CCGVis from the command line with pre-loaded data 

Run CCGVisRelease.bat. 

This should launch CCGVis in full screen with datasets loaded from the command line.   

Did CCGVis launch successfully? 
Yes   No  

4 6 

1 1 

6 

1 

1 

6 4 

10
0 

0 
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Load Data: View Loaded Datasets 

Select “View loaded datasets” from the “Load Data” menu.  The filenames appear in the column on 
the left, and the dataset types in the column on the left. 

Are you able to view the list of pre-loaded 
datasets? Yes   No  

Are there 6 datasets in the list? 
Yes   No  

 

Tasks: View Image 2D 

Select “View image 2D” from the “Tasks” menu.  This will display a medical image as a 2D slice. 

Are you able to view the medical image in 2D? 
Yes   No  

Can you view the image slice-by-slice using the 
“slice control” slider? Yes   No  

Can you see the grey tumour within the 
patient’s left kidney? (The kidneys are the 
bright organs on either side of the spine) 

Yes   No  

Is the image displayed in the correct 
orientation? Yes   No  

Can you view the image in different projections 
(sagittal, transverse and coronal) using the axis 
selection panel? 

Yes   No  

Is the image displayed correctly in all three 
projections? 

Coronal = patient upright, facing camera 

Transverse = cross section, spine at bottom 

Sagittal = side view, patient facing to left 

Yes   No  
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Tasks: View Image 3D 

Select “View image 3D” from the “Tasks” menu.  This will display a medical image as a 2D slice 
floating in 3D space.  The mouse is used to interact with the 3D image as follows: 

 click and drag  = rotate 

 right-click and drag = zoom 

Are you able to view the medical image slice? 
Yes   No  

Can you rotate and zoom the image using the 
mouse? Yes   No  

Can you move the slice through the image using 
the “z” axis slider? Yes   No  

Can you enable the slices in the “x” and “y” 
planes so that the image is cut by 3 orthogonal 
planes (orthoslice view)? 

Yes   No  

The image might not initially appear in the 
correct orientation.  Using the orthoslice 
planes, how easy is it to rotate the image into 
the correct orientation? 

easy ☐☐☐☐☐difficult 
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The “arbitrary slice” is a fourth slice which can be posed in any orientation 

Disable the “x”, “y” and “z” slices and enable the arbitrary slice using the check boxes.  Move the slice 
up and down using the “value” slider and rotate the slice using the two “normal” sliders. 

Does the arbitrary slice appear correctly? 
Yes   No  

Do the interactive sliders move the slice as 
described above? Yes   No  

Does the slice remain within the bounds of the 
image box when it is moved? Yes   No  

How easy is it to move the diagonal slice to the 
position you want using the controls provided? 

easy ☐☐☐☐☐difficult 

 

 

Tasks: View Image Volume 

Select “View image volume” from the “Tasks” menu.  This will display a medical image as a 3D 
volume rendering. 

Does the image display as a semi-transparent 
coloured block? Yes   No  

Can you change the opacity using the “opacity” 
slider? Yes   No  

Using the range sliders, can you remove the 
background from the image, leaving just the 
torso and the arms? 

Yes   No  

How easy is it to set the sliders such that most 
of the image is removed but the kidneys are 
clearly visible? 

easy ☐☐☐☐☐difficult 
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Tasks: View Image Pair 2D 

An “image pair” is a medical image and its segmentation: that is, a labelling or annotation of the 
image indicating the voxels of interest. 

Select “View image pair 2D” from the “Tasks” menu.  Select the nephroblastoma dataset 5XIHQ from 
the selection dialog.  This will display a medical image and its segmentation as a 2D slice.  A kidney 
tumour is shown as a coloured overlay. 

Does the image display as described? 
Yes   No  

Is the image in the correct orientation? 
Yes   No  

Using the check box on the “labels” control, can 
you switch the coloured overlay on and off? Yes   No  

Can you change the colour and transparency of 
the overlay? Yes   No  

Is the overlay positioned correctly on the 
tumour? Yes   No  

Can you read the total tumour volume from the 
right hand panel? Yes   No  

 

Tasks: View Image Pair 3D (nephroblastoma) 

Select “View image pair 3D” from the “Tasks” menu.  Select the nephroblastoma dataset 5XIHQ from 
the selection dialog.  This will display a medical image and its segmentation as a 3D slice.  A kidney 
tumour is shown as an isosurface (3D mesh object). 

Does the image display as described? 
Yes   No  

Using the check box on the “labels” control, can 
you switch the isosurface on and off? Yes   No  

Can you change the colour and transparency of 
the tumour? Yes   No  

Is the isosurface mesh positioned correctly on 
the tumour? Yes   No  
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Tasks: View Image Pair 3D (glioblastoma) 

Select “View image pair 3D” from the “Tasks” menu.  Select the glioblastoma dataset 
(ChicSeriesJun2015) from the selection dialog.  This will display a brain image and its segmentation as 
a 3D slice.  A tumour is shown as a set of coloured isosurfaces. 

Does the image display as described? 
Yes   No  

Does the label control panel show four 
coloured labels? Yes   No  

Are the labels in the label control panel 
correctly named? (necrosis, oedema, non-
enhancing and enhancing) 

Yes   No  

When more than one surface is displayed, does 
the transparency look natural and free from 
artefacts?  (it might be necessary to first reduce 
the opacity of the surfaces using the sliders in 
the control panel) 

Yes   No  

With all surfaces selected, does the 
visualization respond quickly when the image is 
rotated? 

very slow ☐☐☐☐☐very fast 
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Tasks: View Image Pair Volume 

Select “View image pair volume” from the “Tasks” menu.  Select the nephroblastoma dataset 5XIHQ 
from the selection dialog.  This will display a medical image and its segmentation as a volume 
rendering.  The tumour segmentation is shown as an isosurface mesh within the volume rendering.  
The interaction is the same as in (6).  Use the sliders to reveal the tumour isosurface. 

Does the image display as described? 
Yes   No  

Does the visualization give a useful qualitative 
sense of the size and position of the tumour in 
the body? 

not useful ☐☐☐☐☐very useful 

 

 

Using the check box on the “labels” control, switch the isosurface off. 

How easy is it to set the sliders such that most 
of the image is removed, leaving the tumour 
and kidneys visible? 

easy ☐☐☐☐☐difficult 
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Tasks: View Image Pair Series (nephroblastoma) 

Select “View image pair series 3D” from the “Tasks” menu.  Select the nephroblastoma 5X1HQ 
dataset from the selection dialog.  This will display a 3D slice visualization for an image series.  This 
example shows a series containing two images: the pre-treatment image 0 and the post-treatment 
image 1. 

Do the radio buttons in the “clinical image 
selection” panel successfully switch the image 
and tumour between image 0 and image 1? 

Yes   No  

Is the tumour clearly visible? 
Yes   No  

Is the tumour correctly placed in both images? 
Yes   No  

Does the “total tumour volume” update when 
the image changes? Yes   No  

Is this visualization useful in showing 
qualitatively how the tumour has changed as a 
result of treatment? 

not useful ☐☐☐☐☐very useful 

 

 

Tasks: View Image Pair Series (lung cancer) 

Select “View image pair series 3D” from the “Tasks” menu.  Select the lung dataset (LungSeries354) 
from the selection dialog.  This will display a 3D slice visualization for an image series.  This example 
shows a series containing two images: the pre-treatment image 0 and the post-treatment image 1. 

Are the tumours clearly visible? 
Yes   No  

Are the tumours correctly placed in both 
images? Yes   No  

Is this visualization useful in showing 
qualitatively how the tumour has changed as a 
result of treatment? 

not useful ☐☐☐☐☐very useful 
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Tasks: View Simulation Series 

Select “View CHIC sim series” from the “Tasks” menu.  This will display a 3D isosurface visualization 
of a tumour simulation as a time series. 

Does the simulated tumour display correctly? 
Yes   No  

Does moving the time slider show how the 
simulated tumour changes with time? Yes   No  

Does the visualization respond quickly when 
the time slider is moved? 

very slow ☐☐☐☐☐very fast 

 

 

Open the “Plot View” tab to show a plot of the simulated tumour volume against time.  The plot 
shows the result of four chemotherapy treatments, each resulting in a decrease in volume, followed 
by an upturn in the graph showing the start of regrowth.  (The last shrinkage is quite small). 

Does the plot correctly display the information 
as described? Yes   No  
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Tasks: Compare parallel 2D 

Select “Compare Mha/Sim parallel 2D” from the “Tasks” menu.  Select the nephroblastoma series 
5XIHQ.  (The simulation will load automatically because it is the only dataset of this type).  This will 
display two medical images side-by-side.  The image on the left is the real clinical image and tumour.  
The image on the right is the clinical image with the simulated tumour.  The real and simulated 
tumours are the same at the start, so the initial pair of images is identical. 

Move the time slider to show how the simulated tumour changes with time.  The slice control slider 
may need adjusting to keep the image slice positioned in the centre of the simulated tumour. 

Does the time slider correctly show the tumour 
shrinking? Yes   No  

 

Select the radio button for image 1.  The image on the left will change.  (The image on the right does 
not because the simulation always takes place in the frame of image 0).  Switch between image 0 and 
image 1 and back again.  Image 1 should be registered – that is, it has been rotated and translated so 
that its coordinate system is as closely matched as possible to that of image 0. 

When switching back and forth between image 
0 and image 1, how closely matched are the 
positions of anatomical features in the two 
images? 

poor ☐☐☐☐☐very good 
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Move the time slider to the end of the simulation and select the radio button for image 1.  This is 
now a comparison between the post-treatment (real) tumour on the left and the final simulation on 
the right.  Adjust the z slice position if necessary to see the tumours.   

Is the comparison useful in showing how well 
the simulation matches the real tumour in final 
position?  (Please rate the usefulness of the 
comparison – not the accuracy of the 
simulation) 

not useful ☐☐☐☐☐very useful 

 

Is the comparison useful in showing how well 
the simulation matches the real tumour in final 
size?   

not useful ☐☐☐☐☐very useful 

 

 

Select the “Plot View” tab.  This shows a plot of the simulated tumour volume against time, with 
additional data points (red crosses) showing the volume of the real tumour before and after 
treatment. 

Is the plot useful in showing how well the 
simulation matches the real tumour in final 
size?   

not useful ☐☐☐☐☐very useful 
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Tasks: Compare parallel 3D 

Select “Compare Mha/Sim parallel 3D” from the “Tasks” menu.  Select the 5XIHQ dataset.  This 
shows a parallel 3D slice view, with the real image and tumour on the left and the simulated tumour 
on the right.  Use the controls in the same way as the previous task to compare the final real and 
simulated tumours. 

Is the comparison useful in showing how well 
the simulation matches the real tumour in final 
position?  (Please rate the usefulness of the 
comparison – not the accuracy of the 
simulation) 

not useful ☐☐☐☐☐very useful 

 

Is the comparison useful in showing how well 
the simulation matches the real tumour in final 
size?   

not useful ☐☐☐☐☐very useful 
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Tasks: Compare superimposed 3D 

Select “Compare Mha/Sim superimposed 3D” from the “Tasks” menu.  Select the 5XIHQ dataset.  
This shows a comparison between superimposed isosurfaces in the same 3D space.  The 
“Comparison components” checkboxes at the top of the right hand panel select which isosurfaces 
are displayed in the view.  The options are: real0 (the baseline real tumour at t=0), sim0 (the baseline 
simulated tumour at t=0), real(t) (the real tumour corresponding to the image selected by the radio 
buttons) and sim(t) (the simulation at the current position of the time slider).   

Select sim(0) and sim(t) only, and move the time slider. 

Is the comparison useful in showing how the 
simulated tumour changed in size and position 
relative to its starting state? 

not useful ☐☐☐☐☐very useful 

 

 

Select real(0) and real(t) only, and select the “Image 1” radio button. 

Is the comparison useful in showing how the 
real tumour changed in size and position 
relative to its starting state? 

not useful ☐☐☐☐☐very useful 
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Select real(t) and sim(t) only, and select the “Image 1” radio button.  Slide the time slider from t=0 to 
its final position. 

Is the comparison useful in showing how well 
the simulation matches the real tumour in final 
position?  (Please rate the usefulness of the 
comparison – not the accuracy of the 
simulation) 

not useful ☐☐☐☐☐very useful 

 

Is the comparison useful in showing how well 
the simulation matches the real tumour in final 
size?   

not useful ☐☐☐☐☐very useful 
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General 

Is CCGVis easy to use? difficult ☐☐☐☐☐very easy 

 

Are the interactions in CCGVis responsive? very slow ☐☐☐☐☐very fast 

 

Is there always enough space on the screen for 
the control widgets? Yes   No  

Are the visualizations useful for comparing real 
and simulated tumours? 

not useful ☐☐☐☐☐very useful 

 

 

Conclusions and additional comments 

 CCGVis launched successfully for all users. 

 All CCGVis features worked for all users except for problems running the volume 
rendering on virtual machines (see below) 

 CCGVis was rated as easy to use by all users. 

 CCGVis was rated as having a fast response speed by all but one user. 

 All users reported sufficient screen space for the control widgets, with the smallest screen 
size tested being 1280 x 800 on a small laptop. 

 All user rated CCGVis as useful or very useful for comparing real and simulated tumours. 

 Most users were able to use the volume rendering controls to perform a task without 
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0 
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significant difficulty. 

 The 3D time series visualization was rated as useful for showing the change in the tumour.  
It appeared to be more useful in the nephroblastoma case than the lung cancer case, 
perhaps because of the small size of the lung tumours. 

 The registration of images in a time series was qualitatively rated by users as good, and 
probably as good as can be achieved within the limits of rigid registration.  Future 
improvement will require additional non-rigid registration. 

 The comparison visualizations were rated good or very good by most users for comparing 
the tumour positions, and slightly less - adequate to very good - for comparing sizes.  This 
is not surprising since the visualization does convey the quantitative information which is 
available from a number or a graph plot.  The 3D superimposed comparison was rated the 
highest and the 3D parallel the least.  Future development of CCGVis should ensure that 
the quantitative size of all compared tumours is displayed on the control panel. 

 The two users running CCGVis with Windows emulators on MacOs were unable to view 
the volume rendering, because the virtual machines did not support the required OpenGL 
version.  Future development of CCGVis should include a version cross-compiled for 
MacOs and Linux. 

 One user became confused by accidentally using an experts-only feature in the control 
panel.  Future versions of CCGVis should ensure that such features are disabled by 
default. 

 Some users are confused when presented with the list of data, because they are not sure 
if they are expected to select a dataset or just view the list. 

 One user with a small screen wished to be able to adjust the fraction of screen space 
given to the render window.  However, this would difficult because it would conflict with 
the minimum size of the control widgets. 

 Two users commented that the 2D image views should have a zoom function. 

 One user suggested that the orthoslice view should be accompanied by 2D thumbnails of 
the image projections, each showing the transect of the slice.  This would be particularly 
useful with the arbitrary slice. 

 A nephroblastoma expert requested that tumour shape information should be displayed. 

 One user suggested that each visualization should let the user have more instant access to 
similar visualizations with the same data. 

 The 3D views, especially the simulation-only view, should contain coordinate axes. 

 Some text information was requested: 

o Instructions for using the controls should be available. 

o Visualizations should be accompanied by some text information about what is 
being displayed. 

o Titles of images could be displayed underneath. 

 A reset button for opacity in the volume rendering would be helpful. 

 The 3D comparison currently has no image to give context to the simulation.  There 
should be an orthoslice on both sides.  Future development should reinstate the right-
hand orthoslice, which was removed in early versions because of the need for two sets of 
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slice controls; this is no longer the case. 

 In the superimposed comparison, the connection between selecting real(t) and the radio 
button “Image 1” is not obvious.  Instructions would help. 

 

 

2.7 Conclusions and Outlook 

CCGVis is a useful tool for the visualization and comparison of tumours.  It can accept medical images 
and their segmentations in a variety of formats, and compare them with simulations of tumour 
growth.  Data can be viewed as 2D, 3D and volume rendering visualizations, as well as statistical 
plots. 

CCGVis is well-documented with a flexible modular architecture, making it easy to add new 
visualizations and features. 

CCGVis has been evaluated and found to be easy to use, fast and useful by its users. 

CCGVis functions well on desktop PC’s and small laptops. 

CCGVis includes the 3rd party library ITK, which has been used in a minor thresholding task to 
demonstrate that image processing can be performed in the CCGVis framework.  Future versions 
may include image segmentation algorithms such as that described in Section 3 of this report. 

Future versions of CCGVis will improve the interface according to suggestions in the evaluation 
exercise.  The most important of these are: to cross-compile a version for MacOs; to improve the 
registration with a non-rigid algorithm; to add zoom functionality to the 2D views; to add more text 
annotations and instructions; and to add more quantitative data to the display. 

CCGVis  
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3 Nephroblastoma image segmentation 

Nephroblastoma or Wilms' tumour is a form of kidney cancer that affects around 80-85 children in 
the UK each year (Macmillan Cancer Support, 2016).  Nephroblastoma generally affects children 
below the age of five and it may begin to develop in the womb when the baby is still unborn.  The 
most common symptom is a painless swelling in the abdomen.  Nephroblastoma rarely affects adults.  
In most cases it affects only one kidney (unilateral), but it can also affect both (bilateral).  
Nephroblastoma is a fast growing tumour with a median tumour size of around 400 ml at the time of 
diagnosis.  Fortunately due to prospective clinical trials and effective treatments more than 90% of 
patients can be cured today.  Imaging analysis tools play an important role in diagnosis and 
treatment planning.  The assessment of the tumour during preoperative chemotherapy is of 
prognostic relevance and is crucial for postoperative treatment stratification (David et al., 2012). 

Over the past years, many segmentation methods of different types of tumours such as glioblastoma, 
prostate and Wilms’) have been proposed (Gordillo et al., 2013; Pham et al., 2000).  These methods 
include full automated and semi-automated methods and they are applied to interpret scans such as 
MRI, CT or ultrasound.  Each technique has its own advantages and disadvantages.  Many of these 
methods fail due to different acquisition conditions of resolution, illumination and field of view, and 
the variability of body shapes and positions.  Overlapping tissue and organs and the irregular size of 
the tumours can also cause a significant degradation to the performance of the segmentation 
methods, particularly the fully-automated methods. 

For the above reasons, there is a need for reliable and robust semi-automated segmentation 
methods for Wilms' tumour studies.  Semi-automated tumour segmentation techniques are 
computational methods that perform an extraction of the tumour tissue from multi-sequence 
Magnetic Resonance Imaging (MRI) with the interaction of human experts.  These methods can 
provide important time-saving for neuro-radiologists in tumour assessment, and their accuracy can 
enhance tumour characterisation for radiotherapy, surgical planning and drug development 
assessment.   

The aim of this document is to report findings during the CHIC project for semi-automated 
Nephroblastoma tumour segmentation in multi-sequence MRI imaging.  In the following section, we 
briefly review some previously-proposed tumour segmentation methods. 

3.1 State of the art in tumour image segmentation  

Image segmentation aims to partition an image into sub-regions.  These regions can be classified 
according to the functional areas, tissue types, structures of interest etc. (Bauer et al., 2013).  The 
segmentation of Wilms’ tumour is not a trivial task due the complexity, inhomogeneity and variability 
of its structures (Farmaki et al., 2010) and may require inputs such as seed-points, location and 
shapes from human experts.  For this reason, a fully automated segmentation method may not be a 
good option for clinical use (David et al., 2012; Farmaki et al., 2010).  Thus, a semi-automatic tumour 
segmentation method can be a good alternative option for Wilms' tumour analysis in multi-sequence 
MRI scans.   

The semi-automated tumour segmentation methods can be divided into three major groups (Farmaki 
et al., 2010): region-based approaches, deformable model-based approaches and graph-based 
approaches.   

The region-based approaches perform the tumour segmentation using a single seed point and 
expand the pixel extraction from that seed point to fill a defined coherent region according to a 
similarity measure of neighbouring pixels within the image region (Adams & Bischof, 1994).  The 
region-based approaches include region-growing and watershed methods.  A typical region-growing 
approach was proposed in Kim & Park (2004).  This combined the region-growing algorithm with a 
texture-based analysis operation, which was performed on sample images of the tumour to define a 
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seed region as a starting point of the region-growing algorithm.  Mancas & Gosselin (2003) proposed 
a semi-automatic segmentation on head and neck tumours in CT, MRI and PET scans.  The approach 
used a marker-based watershed technique, by incorporating a fuzzy region with a tumour probability 
from 0 to 1.  The watershed algorithm was used iteratively.  This combination improved the 
watershed algorithm and avoided the over-segmentation problem. 

 The region-based methods have specific advantages over other segmentation approaches: they are 
easy to implement and produce coherent regions.  However they often perform poorly because they 
cannot find objects that span several disconnected areas, and decisions regarding region 
membership can be difficult.   

The deformable model-based approaches such as active contours (snakes), level sets (LS), or 
geodesic active contours have been extensively used in medical image segmentation applications.  
They make use of regional properties or edge detection in the image to extract the tumour regions 
(Bauer et al., 2013; McInerney & Terzopoulos, 1996).  Methods such as level-set evolve toward the 
tumour region by searching in the image the largest gradient or by using region characteristics in the 
image.  Wang et al. (2009) proposed a fluid vector flow algorithm to evolve a contour toward the 
boundary of the tumour in T1-weighted images.  Linguraru et al. (2009) presented a semi-automated 
renal tumour quantification and classification method in a 3D size volume.  The model combined a 
fast-marching operation and geodesic level-sets to define the shape of the lesions.  Sachdeva et al. 
(2012) used a content-based active contour (CBAC) texture and intensity information to evolve an 
active contour toward the tumour boundary edge in MRI scans.  Gu et al. (2006) proposed a 
multistage method for a 3D segmentation of CT and MRI images and a new radial distance-based 
segmentation validation approach.  Gu’s algorithm is based on level sets and it incorporates an 
improved fast marching method and a morphological reconstruction model. 

Although deformable model-based approaches give very promising results, their implementations 
are more complicated than that of both region-based and graph bases approaches.  They can also 
suffer from a high computational cost, intensity variation and image artefacts.  Their segmentations 
often fail on heterogeneous objects when they are used in their traditional form, due to local 
minima.   

The majority of deformable model-based methods use prior knowledge of the tumour tissues (i.e. 
intensities, shapes, colour, texture, positions etc.) to apply constraints on the segmentation 
algorithms.  These constraints can lead to segmentation errors when the algorithms are used on 
different image modalities (Kaba et al., 2015).   

The graph-based approach is one of the most attractive segmentation methods in Computer-aided 
diagnosis (CAD).  Like the deformable model-based approaches, the graph-based image 
segmentations are also based on energy optimisation.  They combine boundary regularisation with 
regularisation of regional proprieties in the same approach as Mumford-Shah (Boykov & Funka-Lea, 
2006).  The segmentation is performed by dividing the image into sub-classes known as Foreground 
(targeted tumour) and Background.   

The segmentation process is performed using a graph, which consists of a set of nodes (i.e. pixels) 
and a set of edges (i.e. weights on the nodes) that connect the nodes using their degrees of similarity 
(intensity).  A 3D semi-automated graph cut-based segmentation algorithm of liver cancer is 
proposed in Esneault et al. (2007).  The liver cancer in a contrast-enhanced 3D CT volume was 
segmented with a user interaction in the selection of initial seeds for the foreground or background.  
These seeds are then used as a training base for the final segmentation of cancer tissue.  Kaba et al., 
(2015) proposed the segmentation of retinal layer boundaries using graph cuts and continuous max-
flow in optic coherence tomography scan (OCT). 

The segmentation algorithm incorporated a kernel-induced space and a continuous multiplier-based 
max-flow algorithm to perform the segmentation of different retinal layers.   
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The graph-based segmentation methods are very powerful techniques because they allow the 
incorporation of prior knowledge (shapes, positions, sizes, seeds, textures) into the graph energy 
formulation to guide the algorithm defining the optimal segmentation results (Salazar-Gonzalez et 
al., 2014).  Although the graph-based approaches produce good segmentation results, their 
performances often depend on the selection of initial seed points as well as the parameters search 
(Farmaki et al., 2010).  The graph algorithm may also have problems in finding the appropriate cost 
functions of the graph functional to distinguish individual tumour tissue. 

An automated segmentation of the nephroblastoma tumour is not trivial.  To produce an acceptable 
segmentation results, the segmentation algorithm will rely heavily on the prior knowledge such as 
shape, colour, texture, positon.  Therefore, a semi-automated segmentation method appears to be 
the best choice for the analysis of nephroblastoma scans in the clinical domain.  This allows the 
interaction of expert physicians in order to guide the segmentation algorithm.   

Our method serves this purpose, it allows the radiologists to interact with a 2D image slice.  This slice 
includes all the multi-sequence MRI from which they can select tumour seed-points in one of the 
many slices and perform a full segmentation of the nephroblastoma tissue.  The proposed method 
could eliminate the need of manual annotation of nephroblastoma and it can be used for high-
throughput studies, such as clinical trials.   

The rest of the paper is organized as follows.  Our segmentation method is discussed in Section 3.2.  
Section 3.3 shows the evaluation results of the proposed method and conclusions are presented in 
Section 3.4.   

3.2 Tumour Extraction  

In this study, a semi-automatic segmentation of nephroblastoma in multi-sequence MRI scans is 
performed.  The first step of the segmentation algorithm consists of removing some common 
artefacts of MRI medical imaging from the scans (i.e. noise, intensity inhomogeneity).  This pre-
processing operation is performed using a bias correction algorithm (Tustison et al., 2010).  The 
tumour extraction in multi-sequence MRI scans is performed by adapting a continuous max-flow 
min-cut approach (Yuan et al., 2010).  This includes a free 2D hand drawing tool, which allows human 
experts to select a region of interest (i.e. tumour seeds) and a kernel-induced segmentation 
functional (Salah et al., 2011).  Figure 3-1 shows the illustration of the proposed method. 



Grant Agreement no. 600841  

D9.2 – A Model and Visualization Toolkit  

Page 49 of 61 

 

Figure 3-1 Illustration of different processes of the method.  Top left: 3D MRI image.  Top right: 2D 
slice for expert user selection of tumour seeds.  Bottom left right: segmentation results of 2D slice.  
Bottom right: segmentation result 3D MRI. 

Generally, the fuzziness of tumour boundary (lack of clear edges) in multi-sequence MRI scans is 
caused by the presence of imaging artefacts such as noise, inhomogeneity and similarity to 
surrounding tissues.  The bias correction operation (Tustison et al., 2010) is used to correct these 
issues in the images to allow a correct segmentation of the tumour.  The operation is performed by 
estimating the residual bias field.  This residual is then subtracted from the corrupted scans to 
enhance the tumour.  The bias correction operation can also reduce false positives during the 
segmentation process. 

To perform the segmentation of nephroblastoma tumour from multi-sequence MRI scans, we 
represent each pixel point in a scan as a graph 𝐺(𝜗, 𝜖) consisting of a set nodes 𝜗 (i.e. pixels) and a 
set of edges 𝜖 connecting neighbouring nodes or pixels {𝑝, 𝑞}.  The nodes also include two special 
nodes known as terminals 𝑆 (foreground: 𝑡𝑢𝑚𝑜𝑢𝑟 𝑠𝑒𝑒𝑑𝑠) and 𝑇 (background 𝑠𝑒𝑒𝑑𝑠).  Each pair of 
neighbouring pixels {𝑝, 𝑞} in the image grid is connected by n-links (i.e. edge between pixels).  Each 
pixel 𝑝 is also connected foreground terminal and background terminal through t-links.  All edges in 
the graph including both n-links and t-links are assigned some positive weights based on the 
similarity measured between pixels (i.e. intensities).  After creating the graph, the segmentation is 
performed by producing a cut through the graph.  The preferred cut or path will have the minimum 
total weights of edges for travelling from a start node to an end node.  The selected cut separates the 
MRI scan into two disjoint regions, one representing the tumour tissue (foreground) and the other 
one the rest of the image (background) as shown in Figure 3-2. 
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Figure 3-2 Graph construction.  The red and blue dots represent the pixels in the image grid.  The 
red and blue planes represent the labels of foreground and background to which the pixels are to 
be assigned.  The thickness of the red and blue lines represents the strength of the link between 
the pixels and the labelled seed points. 

The interactive segmentation is performed as follows: The slices in a scan are displayed as a single 
image object as shown in Figure 3-3.  This operation allows the user to visualize all the slices that 
contain the tumour.  The expert user can select a tumour seed region in one of the tumour slices (the 
red outlined area in Figure 3-3(a)), and the rest of the slices are automatically segmented by the 
proposed method, as shown in Figure 3-3(b).  A set of images manually labelled by experts is shown 
in Figure 3-3(c).  One of the advantages of this interactive segmentation is that it allows radiologists 
to interactively select tumour tissue in one of the scan slices to allow a complete extraction of the 
tumour and to avoid the segmentation of health tissues or other tissues similar to the tumour.  It is 
also allows a global optimal solution for a graph segmentation, which is not possible in a fully 

automated segmentation methods.   
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Figure 3-3 User section of tumour seeds.  (a) The user select an ROI (tumour seeds) in red circle in 
one of the image slices.  (b) The segmentation results of the methods in all the slices.  (c) Images 
manually-labelled by experts. 

 

3.3 Evaluation of the Segmentation Method 

The multi-sequence MRI scan data used in this study was obtained from ongoing pioneering research 
conducted on Wilms' tumour in the department of Paediatric Oncology and Haematology at Saarland 
University Medical Centre in Homburg, Germany.  The data set contains T2 weighted multi-sequence 
MRI scans with transversal cut of 24 cancer patients.  Each patient has two scans, one before radio-
chemotherapy and the other one after the radio-chemotherapy to determine the effectiveness of 
the treatment.  In total we have 48 scans from the 24 patients.  In addition to the data set, each scan 
was manually annotated by expert clinicians.  Our method uses these expert hand-labelled tumours 
as a performance reference (Ground truth).  The acquisition parameters of multi-sequence MRI are 
set differently by the operators to allow a better visualisation of different scans.  The proposed 
method is implemented on MATLAB R2011b and the computation time of our algorithm is less than 
80 seconds for each multi-sequence MRI scan on a MAC OX X running at 2.66 GHz, with 4G of RAM 
memory. 

To evaluate the accuracy of our method, we compared our results against the expert’s manual 
annotations.  The evaluation is performed using statistical metrics such as the sensitivity (true 
positive rate), the specificity (true negative rate), the false negative rate and the average accuracy 
rate are shown in Table 3-1.  Others metrics including the Dice coefficient, the root-mean-error and 
the Jaccard index are also used for the validation of spatial tumour shape representation in Table 3-2.   
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Table 3-1 Performance evaluation of our segmentation algorithm on 48 multi-sequence MRI scans.  Using 
sensitivity (TPR), specificity (TNR), false positive rate (FPR), false negative rate (FNR) and the accuracy (ACC) 
with their respective standard deviations and 95% confidence interval. 

Metrics Average Standard Deviation Confidence Interval 

Sensitivity (TPR) 0.9452 0.0429 0.0077 

Specificity  (TNR) 0.9966 0.0039 0.0007 

FPR 0.0034 0.0039 0.0007 

FNR 0.0548 0.0429 0.0077 

ACC 0.9959 0.0039 0.0007 

 

Table 3-2 Performance evaluation of our segmentation algorithm on 48 multi-sequence MRI scans.  Using 
dice coefficient, root-mean-square (RMSE), and Jaccard index with their respective standard deviations and 
95% confidence interval. 

Metrics Average Standard Deviation Confidence Interval 

Dice 0.9060 0.0549 0.0098 

Jaccard 0.8326 0.0898 0.0161 

RMSE 0.0481 0.0309 0.0055 

 

For illustration, we performed the box plots of the Dice coefficient, RMSE, TNR and TPR for the 
evaluation of our method as shown in Figure 3-4. 
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Figure 3-4 Box plots of Dice coefficient, RMSE, TNR and TPR of results evolution on the 48 MRI 
scans. 

Figure 3-5 shows the segmentation results of a proposed method compared against experts hand 
labelled tumour.  The segmentation of the tumour was also performed before and after the radio-
chemotherapy as shown in Figure 3-6. 
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Figure 3-5 Segmentation results.  Row (a): left 2D MRI image, right: 3D scan.  Row (b): left 
segmentation result in 2D (in green), right: segmentation result in 3D (in green).  Row (c): left 
experts hand labelled in 2D (in red), right: experts hand labelled in 3D (in red).  Row (c): left 
overlap of the segmentation result and the experts hand labelled in 2D, right: overlap of the 
segmentation result and the experts hand labelled in 3D. 
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Figure 3-6 Segmentation results before and after radio-chemotherapy.  Column (a): 2D MRI images, 
the segmentation results in green and in red experts hand labelled before therapy.  Column (b): 
corresponding 3D images, the segmentation results green and in red experts hand labelled before 
therapy.  Column (c): 2D MRI images, the segmentation results in green and in red experts hand 
labelled after therapy.  Column (c): corresponding 3D images, the segmentation result green and in 
red experts hand labelled after therapy. 

 

3.4 Conclusions and Outlook 

In summary, we have developed a semi-automated method to extract Wilms' tumour from multi-
sequence MRI scans.  The method has been designed, tested and validated in conjunction with 
medical experts, enabling its deployment and exploitation in the clinical setting.   

The overall procedure includes a pre-processing step that enhances the contrast of the tumour in a 
multi-sequence scan using a bias correction operation, and a tumour extraction step that includes 
kernel mapping and continuous max-flow algorithm.  The method was validated on 48 multi-
sequence MRI scans and it is proved to be accurate, robust, flexible, and fast, leading to a successful 
extraction of the tumour tissue.  Our method has the advantage over fully automated segmentation 
methods because it allows an easy interaction of the user with different slices and facilitates the 
segmentation of irregular tumour boundaries as well as enabling the radiologist to make decisions 
regarding tumour size and shape. 
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During the research, we have identified challenges and opportunities that constitute the basis for 
future improvement and utilisation of the technique.  Accuracy, robustness and flexibility of the 
algorithm is crucial for the assessment of the tumour for surgical planning and post-surgical 
assessment.  The proposed method has the advantage over fully automated segmentation methods 
because it allows an easy interaction of the user with different slices and facilitates the segmentation 
of irregular tumour boundaries as well as enabling the radiologist to make decisions regarding 
tumour size and shape.   

Radiomics is an emerging field where both imaging and non-imaging information are combined for 
non-invasive imaging biomarkers that can be used for assessing tumour phenotyping, association to 
genetic biomarkers (radiogenomics) using machine learning methods.  These advances in imaging 
allow to further improve the current response to tumour analysis criteria that currently rely on over-
simplistic metrics of tumour size and disease progression.  Combining these methods with advanced 
Radiomics, and using machine learning methodologies would refine and personalise the evaluation of 
patient imaging data.   

4 Timeline Visualization 

This section describes work done by BED on a timeline visualization for the CHIC medical database.  
The software is based on the JavaScript library D3.js.  Figure 4-1 shows the typical appearance of this 
visualization.  The database items are colour-coded by type, and arranged along a zoomable timeline 
for interactive inspection. 

 

Figure 4-1 Timeline visualization of medical database 

The timeline visualization includes the following features: 

 Zoom-in & Zoom-out 

 Drag left and right 

 Clustering 
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 Colour codes for different type of clinical data 

 Brief description of content 

 Download selected data 

 

The interactive zoom is operated by the mouse scroll wheel.  It allows the user zoom out for an 
overview, or zoom in for more detail in a narrower time range, as shown in Figure 4-2.  The timeline 
automatically adjusts the timescale to hours, days, months or years.  It is also possible to manually 
set a start and end time for the range. 

 

Figure 4-2 Effect of zoom on timeline, showing more detail in a narrower time range. 

The user can also drag the timeline left and right to move along it, as shown in Figure 4-3. 

 

Figure 4-3 Effect of drag left-right, interactively moving along the timeline. 

Clustering, shown in Figure 4-4, is used to group close-by items together to avoid clutter.  In this 
example, the blue item represents a cluster of 3 items. 
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Figure 4-4 Clustering of close-by items to avoid clutter. 

The items can be colour-coded by type, as shown in Figure 4-5. 

 

Figure 4-5 Colour coding of items. 

The items can be annotated with brief content, including thumbnail images, as shown in Figure 4-6. 
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Figure 4-6 Content description, including thumbnail images. 

The content description also features a hyperlink which can be used to directly download the item, 
as shown in Figure 4-7. 

 

Figure 4-7 Content description showing download link. 
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