

Deliverable No. 7.3

Hypermodels annotation services

Grant Agreement No.: 600841

Deliverable No.: D7.3

Deliverable Name: Hypermodels annotation services

Contractual Submission Date: 31/03/2016

Actual Submission Date: 15/04/2016

Dissemination Level

PU Public

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services) RE

CO Confidential, only for members of the consortium (including the Commission Services)

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 2 of 55

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: CHIC

Project Full Name: Computational Horizons In Cancer (CHIC): Developing Meta- and
Hyper-Multiscale Models and Repositories for In Silico Oncology

Deliverable No.: D7.3

Document name: Hypermodels annotation services

Nature (R, P, D, O)1 R, P

Dissemination Level (PU, PP,
RE, CO)2

RE

Version: 0.5

Actual Submission Date: 15/04/2016

Editor:
Institution:
E-Mail:

Pierre Grenon
UCL
p.grenon@ucl.ac.uk

ABSTRACT:

This deliverable documents the initial version of the CHIC semantic services dedicated to serve CHIC
components centred around the management of hypermodels.

KEYWORD LIST:

CHIC semantic services, hypermodels

The research leading to these results has received funding from the European Community's Seventh
Framework Programme (FP7/2007-2013) under grant agreement no 600841.

The author is solely responsible for its content, it does not represent the opinion of the European
Community and the Community is not responsible for any use that might be made of data appearing
therein.

1
 R=Report, P=Prototype, D=Demonstrator, O=Other

2
 PU=Public, PP=Restricted to other programme participants (including the Commission Services), RE=Restricted to a group

specified by the consortium (including the Commission Services), CO=Confidential, only for members of the consortium
(including the Commission Services)

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 3 of 55

MODIFICATION CONTROL

Version Date Status Author

0.1 31/03/16 Draft GP

0.2 05/04/16 Draft GP

0.3 06/04/16 Draft GP

0.4 13/04/16 Draft GP, NR, SS, TN

0.5 13/04/16 Draft BdB, DD, SS, SG

0.6 14/04/16 Draft GP, NR, SS, TN

0.7 15/04/16 Draft BP, GP, NR, SS, TN

1.0 15/04/16 Revision GP, NR, SS, TN

List of contributors

 GP: Pierre Grenon, UCL

 SS: Stelios Sfakianakis, FORTH

 TN: Nikolaos Tousert, ICCS-NTUA

 NR: Roman Niklaus, UBERN

 BdB: Bernard de Bono, UCL

 SG: Georgios Stamatakos, ICCS-NTUA

 DD: Dimitra Dionysiou, ICCS-NTUA

 BP: Philippe Buechler, UBERN

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 4 of 55

Contents

1 EXECUTIVE SUMMARY ... 6

2 INTRODUCTION .. 7

2.1 PURPOSE OF THIS DOCUMENT... 7
2.2 SEMANTIC INFRASTRUCTURE FOR SERVICES.. 7

3 SEMANTIC SERVICES AND INFRASTRUCTURE REQUIREMENTS .. 10

3.1 TAKING ADVANTAGE OF THE SEMANTIC INFORMATION IN THE HYPERMODELLING EDITOR .. 10
3.2 MODEL AND TOOL REPOSITORY MAKES USE OF THE CHIC ANNOTATION SERVICES .. 14
3.3 CLINICAL DATA REPOSITORY ... 20

4 SEMANTIC METADATA ... 25

4.1 RESOURCE DESCRIPTIONS SCHEMA .. 25
4.2 ONTOLOGIES USED ... 29

5 SEMANTIC INFRASTRUCTURE SUPPORTING SERVICES ... 31

5.1 TRIPLE STORE AND RDFSTORE INTERFACE .. 31
5.2 ONTOLOGY KNOWLEDGE BASE AND SERVICES ... 40
5.3 LOLS TERMINOLOGY SERVICES ... 45

6 EXAMPLES OF HYPERMODEL ANNOTATION SERVICE CALLS .. 49

7 CONCLUSION .. 53

8 REFERENCES ... 54

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 5 of 55

FIGURES

Figure 1 Simplified Architectural Overview: the semantic services serve CHIC clients with various
abilities to connect to the semantic infrastructure ... 7

Figure 2 Prototypical Architectural Set up: links between the metadata infrastructure and the
hypermodel editor and position of semantic services .. 8

Figure 3 CHIC Semantic Metadata Infrastructure ... 9

Figure 4 An example of a hypemodel designed in the CHIC Hypemodelling Editor 10

Figure 5 Information retrieved from the CHIC Model Repository for each hypomodel 11

Figure 6 Information entered by the user during the registration of a new hypemodel 11

Figure 7 A generic schema for the information managed (produced and consumed) by the
Hypermodelling Editor. The entities shown with circles represent “Resources”, identified with URIs, in
the sense of Resource Description Framework (RDF), while the rectangles represent “literals”. 12

Figure 8 Model selection, alignment, and combination using Semantics (Schulz et al, 2011) 13

Figure 9 Entity relationship diagram of model and tool repository .. 16

Figure 10 The page where the user inserts basic descriptive information for their models 17

Figure 11 The web page where the user categorizes their models .. 18

Figure 12 The page where the user can create new parameters for their models 18

Figure 13 Topology of the CHIC infrastructure that handles the semantic annotation of the models 20

Figure 14 A schematic representation of interactions between Clinical Data Repository and RICORDO
components. .. 21

Figure 15 User dialog to annotate an object with anatomical regions using the autocomplete function
offered by the Local Ontology Lookup Service (LOLS). ... 22

Figure 16 Extension of the clinical data repository database schema to persist triples, export and
retry logic information. ... 24

Figure 17 Simple Rdfstore 2.0 GUI .. 33

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 6 of 55

1 Executive Summary

 In the present document, we provide a brief description of the semantic infrastructure followed

by:

 a description of deployable services and technical documentation

 a documentation of the low level services currently supported

 a documentation of the mechanism used for extending these services

 a documentation of illustrative higher level services geared towards the Hypermodelling

editor and Model repository

 The contribution presented here makes provision for the evolution, modification and update of

the knowledge representation used in support of semantic services and of the definition of

targeted, specific service use and calls.

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 7 of 55

2 Introduction

2.1 Purpose of this document

The present document reports on the CHIC semantic services designed and deployed in support of
semantic model and data management. The services described here will evolve consistently with any
requirement arising from the client components in the CHIC architecture. The present account is
based on requirements and scenarios of uses gathered from three main components, namely, the
hypermodelling editor, the model repository and the clinical data repository. Throughout their
prospective evolution, the documentation will be updated accordingly and additions and changes will
be formally tracked through the use of a publicly available repository.

The intended scope of the present report is initially to support the use of semantic metadata and
annotation of hypermodels. The scope is however broadly construed so as to register additional
requirements for the use of semantic metadata within CHIC. In particular, higher-level services
adapted to the Clinical Data Repository are added to the present considerations.

The rest of this introductory section provides a bird-s eye view on semantic annotation services
within CHIC. Then requirements and scenarios of use are presented. Further sections address these
requirements with a description of the conceptual representation of the resources to which semantic
metadata is applied, the technical documentation for each infrastructure component supporting the
semantic services is provided, and finally a technical description of high-level services as they are
defined in their initial state.

2.2 Semantic infrastructure for services

The overall architecture can be abstracted to a very simple picture, Figure 1. In CHIC, a number of
software components require the handling of semantic metadata through operations such as: the
creation of metadata records and their storage, the querying of such records and the deletion of
obsolete records. Services are designed to simplify these operations and mediate between clients
and storage.

Figure 1 Simplified Architectural Overview: the semantic services serve CHIC clients with various abilities to
connect to the semantic infrastructure

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 8 of 55

Services, of course, can be more or less generic and therefore more or less relevant or dedicated to
different components. There are three main components in CHIC that are envisioned to be primary
consumers of the semantic services:

1. Hypermodelling editor

2. Model repository

3. Clinical data repository

As each component caters for the management of different resources (models or clinical data
objects, for example), the components may perform or require distinct specific operations. For
example, operations dedicated to the annotation of a model parameter may be used by the
Hypermodelling Editor but not by the Clinical Data Repository. Also, there may be selective
differences between components regarding the range of generic operations they are brought to
perform among the following main modes:

- Create – whereby a record is made in the relevant store

- Read – whereby a record is accessed through a query to the relevant store

- Delete – whereby a record is removed from the relevant store

Figure 2 sketches the envisioned operations for the Hypermodelling Editor as a way of illustration.

Figure 2 Prototypical Architectural Set up: links between the metadata infrastructure and the hypermodel
editor and position of semantic services

 There are, in CHIC, three main kinds of services and they type to two more specific parts of the

semantic metadata infrastructure, Figure 3:

 Semantic Metadata services dedicated to interactions with the RDF store in which metadata

statements about CHIC objects are recorded (in particular, hypomodels and hypermodels

and their parameters and clinical data objects)

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 9 of 55

 Semantic reasoning services dedicated to interactions with the OWL Knowledge Base in

which the ontologies that provide the formal domain vocabularies for making metadata

statements are maintained (in particular, medical and anatomical ontologies)

 Terminology service, which, as an addition to the semantic reasoning services, provide a

simpler and straightforward interaction with the human readable labelling of ontology

concepts in the form of a basic terminology server

Figure 3 CHIC Semantic Metadata Infrastructure

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 10 of 55

3 Semantic services and infrastructure requirements

3.1 Taking advantage of the Semantic Information in the Hypermodelling
Editor

3.1.1 Introduction

The editor is the end user facing application for the design of new hyper models in a visual and
graphical way. The editor presents a “box and arrows” representation of the hypermodel, where
each hypomodel is shown as a rectangle and each data exchange link between two hypomodels is
depicted as line connecting them. The following picture shows the editor and an exemplary hyper
model:

Figure 4 An example of a hypemodel designed in the CHIC Hypemodelling Editor

The editor allows the user to view basic metadata information for each model. As illustrated in Figure
5, this information includes:

- the title of the model

- the description of the model

and, for each in put or output parameter of a model:

- the name of the parameter,

- the data type for the parameter,

- and the default value of the parameter.

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 11 of 55

Figure 5 Information retrieved from the CHIC Model Repository for each hypomodel

Therefore, the editor is a consumer of model specific annotations and metadata information. On the
other hand, it is also a producer of hyper model annotations for the newly constructed hyper models.
Up until now, the metadata for new hyper models created in the Editor are just the title and
description:

Figure 6 Information entered by the user during the registration of a new hypemodel

In addition to the name (title) and the description information, the final version of the editor will
provide the following annotation properties for the new hypermodels:

▪ Inputs (multiple)
▪ Outputs (multiple)
▪ Author (“creator”) information
▪ Publications related information
▪ Domain specific metadata, like temporal and spatial scale information
▪ Versioning information, with links to previous versions (the "parent" version that the current

one was based on)

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 12 of 55

▪ Usage and runtime information, e.g. number of times executed, trial context information for
each run, etc.

A simplified (and incomplete view) of the underlying resource oriented model of the editor is shown
below:

Figure 7 A generic schema for the information managed (produced and consumed) by the Hypermodelling
Editor. The entities shown with circles represent “Resources”, identified with URIs, in the sense of Resource

Description Framework (RDF), while the rectangles represent “literals”.

Here we concern ourselves with the possible ways that semantics can be exploited in the
hypermodelling editor to facilitate the creation of new hypermodels. The following paragraph
presents the usage scenarios that utilize semantic annotations of models towards this aim.

3.1.2 Use of semantics in the Editor

The semantic annotation of hypo models can be instrumental in the development of new
hypermodels since these annotations can guide the users to the best way they can combine them, or
to have a coarse categorization of them based on domain specific similarity criteria. Schulz et al [4]
present a range of possibilities for taking advantage of the semantic information attached to
computational models and data, as shown in the Figure below:

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 13 of 55

Figure 8 Model selection, alignment, and combination using Semantics (Schulz et al, 2011)

For the CHIC Hypermodelling Editor we envision two main areas that the semantics can play a
significant role, in the so called Reactive and Proactive usage scenarios:

 On being Reactive: The Editor reacts to the actions of the users in order to check and validate
them. It uses the semantic payload of the models and tries to check, for example, whether
two hypomodels can be used together in a hypermodel or if they can even be linked by a
connection so that the output of one can be given as input to the other.

 On being Proactive: The editor gathers information about the user and the goal s/he wants
to achieve during the design of a hypermodel. It may be the case that it can provide
recommendations in a proactive way by intelligent “guessing” of the next hypo models to put
in the drawing canvas based either on the models already selected by the user him/herself or
according to the similarities to the hypermodels designed by other users.

The Editor leverages the semantics that escort the models in order to support these Reactive and
Proactive behaviours. In the following we present concrete examples for these intelligent behaviours.

3.1.2.1 Examples for Reactive behaviour: Consistency checking of the connections

The connections between hypomodels represent exchange of data, either as a stream of values in
the case of “dynamic” inputs and outputs, or as a single value produced by a hypomodel before its
termination and used by another one when commencing its execution. The consistency check of
these links can use information about the Units used (e.g. for time, or volume), the Data type (e.g.
integer, Boolean flags), the “semantic type” that provides a domain specific meaning for the
exchanged information (e.g. “cell cycle duration”), etc.

Semantics can play a role both as facilitators for using a common terminology, as in the case of units,
and as a translation and semantic linking facility for providing inference and high level matching of
the used terms, as in the case of the “semantic type”.

3.1.2.2 Examples for Proactive behaviour: Model recommendations

The “interface” (i.e. inputs and outputs) of (hypo) models can be also used to provide suggestions on
what models to be used next. For example, the data types and semantic type of a model’s outputs
can be used as filters for the models that can be linked to. Therefore, the Editor can filter the list of
possible models that can be selected and put in the hypermodel. Similar functionality can be
supported when the semantic annotations of the models with respect to the “13 perspectives” (See
Deliverable D6.1, [1]) are taken into account. For example, the “spatial scale” (Perspective II)
provides a characterization for the level (atomic, molecular, cellular, etc.) that a hypo model
operates on. Based on this information, and possibly the structure of existing hypermodels of the
same or different users, the Editor can again propose a limited list of hypomodels for the user to

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 14 of 55

include in the current hypermodel. Of course, in any case, these will be suggestions and not strictly
enforced decisions on how the hypermodel should be built.

3.2 Model and Tool Repository makes use of the CHIC annotation services

The model and tool repository is one of the CHIC components that makes use of the higher level
services, which are provided by the CHIC semantic infrastructure. Currently, information related to
models and tools (descriptive information, information about parameters, etc.) is stored in a
relational MySQL database. The use of a relational database for the storage of meta-information
related to the models and tools provides the following benefits:

 SQL (Structured Query Language) databases use long-established standard, which is being

adopted by ANSI & ISO.

 SQL queries can be used to retrieve large amounts of records from a database quickly and

efficiently.

 Using standard SQL it is easier to manage database systems without having to write

substantial amount of code.

 SQL is a complete language for a database and it is used to create databases, manage

security of a database, update, retrieve and share data with users.

 SQL is used for linking front end computers and back end databases. Thus, it provides a client

server architecture.

 SQL supports the latest object based programming.

 SQL is the database language which is used by businesses and enterprises throughout the

globe.

Even though there are many reasons for using a relational database, the meta-information related to
models and tools will be converted to RDF triples so as to be stored in the CHIC triplestore. RDF
triples can be applied equally to all structured, semi-structured and unstructured content. By
defining new types and predicates, it is possible to create more expressive vocabularies within RDF in
order to describe information related to models. This expressiveness enables RDF to define
controlled vocabularies with exact semantics. These features make RDF a powerful data model and
language for data federation and interoperability across disparate datasets within CHIC.

The main advantages of RDF are the following [3]:

 It is standard, open and expressive. RDF is a standard model for data interchange on the

web. RDF extends the linking structure of the web to use URIs to name the relationship

between things as well as the two ends of the link (this is usually referred to as a “triple”).

 RDF provides data interoperability. Via various processors or extractors, RDF can capture

and convey the metadata of information in unstructured (text), semi-structured (html,

documents) or structured sources (standard databases). This makes RDF almost a “universal

solvent” for representing data structure.

 Schema unbound. The single failure of data integration since the inception of information

technologies - for more than 30 years, now – has been schema rigidity or schema fragility.

That is, once data relationships are set, they remain so and cannot easily be changed in

conventional data management systems or in the applications that use them. RDF has no

such limitations. RDF is well suited and can provide a common framework to represent both

instance data and the structures or schema that describe them, from basic data records to

entire domains or world views.

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 15 of 55

 Potentiality to increment, evolve, extend and adapt. Indeed the very fluidity of RDF and

structures based on it is another key strength. Since a basic RDF model can be processed

even in the absence of more detailed information, input data and basic inferences can

proceed early and logically as a simple fact basis. This strength means that either data or

schema may be ingested and then extended in an incremental or partial manner. Partial

representations can be incorporated and schema can extend and evolve as new structure is

discovered or encountered.

Based on the current implementation, the user is able, among other things, to store a new
model, categorize the model based on the thirteen perspectives [1] that have been defined
within CHIC, and store information about the parameters of the model. All this information that
the user submits through the graphical user interface, is converted and then stored in the model
and tool repository’s relational MySQL database. The design of the aforementioned database has
been described in the deliverable “D8.1: Design of the CHIC repositories” [2]. For completeness
reasons, the updated entity-relationship (ER) diagram of the model and tool repository is
presented in Figure 9.

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 16 of 55

Figure 9 Entity relationship diagram of model and tool repository

As shown in Figure 9, the basic principles of the model and tool repository are the following [2] :

 Each model/tool has basic descriptive information, stored in the entity “mr_tool”. This

information uniquely defines the model/tool and differentiates it from other

models/tools. The page where the user inserts basic descriptive information for their

models is presented in Figure 10.

 Each model/tool can have one or more properties that further describes or/and classifies

it. It must be noted that properties can only be used in correlation with mr_tool entity as

they may only supplement the basic descriptive information of a model/tool. In CHIC

project there is a set of predefined properties that reflect the 13 perspectives defined in

“D6.1: Cancer hypomodelling and hypermodelling strategies and initial component

models” [1].

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 17 of 55

 The descriptive information of properties is stored in the entity “mr_property”. This

entity does not contain the value of the property (related to a specific model/tool), but

only the description of the property. The value that a property takes in case of a specific

model/tool is stored in the entity “mr_tool_property”.

 Entities “mr_property” and “mr_tool_property” assist the user in understanding the

nature of the model/tool and facilitate the categorization of the models depending on

the perspective from which they are viewed in the basic science context. The page where

the user can categorize their models is presented in Figure 11.

 The models are treated as generic stubs, as described in “D7.1: Hypermodelling

specifications”, which have entry and exit points. Consequently each model/tool has

various parameters, serving as input parameters or output parameters, which are stored

in entity mr_parameter. This entity facilitates the transition from an abstract

representation to a concrete one. The page where the user can create new parameters

for their models is presented in Figure 12.

Figure 10 The page where the user inserts basic descriptive information for their models

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 18 of 55

Figure 11 The web page where the user categorizes their models

Figure 12 The page where the user can create new parameters for their models

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 19 of 55

As shown in Figures 10, 11 and 12, the user is prompted to submit meta-information for their models
(model description, information about parameters, etc.) in order for the system to store persistently
this information to the corresponding MySQL tables. Nevertheless, apart from the storage of the
meta-information in the local relational database, the corresponding information is also going to be
stored in the CHIC RDF store.

The model and tool repository and the CHIC semantics infrastructure will make use of a common RDF
mapping configuration file so as to produce a model (a set of RDF triples) based on the already locally
stored relational data. The aforementioned configuration file will map some of the model
repository’s database tables and columns to CHIC RDF vocabularies and OWL ontologies.
Consequently, this mapping will define the virtual RDF graph that will contain some of the
information from the model and tool repository’s MySQL database.

It should be noted that not all the information stored in the model repository’s MySQL database will
be exposed to the CHIC RDF triplestore, but only part of it. The part of the model repository that
needs to be transformed to RDF triples depends on the requirements from the perspective of the
CHIC semantic web clients. Based on the relational database schema that has been presented in
Figure 9, the following attributes are going to be used for the semantic annotation of the models. :

 Regarding the “mr_tool” entity, the “semtype” attribute will be mapped to the URI of the

model and the content of “title” and “strongly_coupled” attributes will be mapped to the

corresponding RDF property values.

 Regarding the “mr_parameter” entity, the “semtype” attribute will be mapped to the URI of

the parameter and the content of “name”, “data_type”, “unit”, “default_value”,

“is_mandatory”, “is_output”, and “is_static” attributes will be mapped to the corresponding

RDF property values.

 Regarding the “mr_property” entity, the “semtype” attribute will be mapped to the URI of

the perspective and the content of the “name” attribute will be mapped to the

corresponding RDF property value.

 Regarding the “mr_tool_property” entity, the “value” attribute will be stored as an RDF

property value.

The topology of the CHIC infrastructure that handles the semantic annotation of the models is
presented in Figure 13. The following modules are used for the use case of the model semantic
annotation:

 Controller: The controller is the central module of the model repository that consists of

many other submodules. It opens the local relational database connection and it handles

web requests and presentation details that the user will see. It also calls the Loader module.

 Loader: The Loader is in charge of converting MySQL data into RDF property values that will

be provided to the CHIC semantics infrastructure web services. It also loads the RDF mapping

configuration file and calls the application programming interfaces of the CHIC metadata

store.

 RDF mapping configuration file: This file includes the necessary information for mapping

MySQL table and columns of the CHIC model repository to RDF properties, vocabularies and

OWL ontologies of the CHIC metadata store.

 API: This module consists of all the web annotation services that are exposed from the CHIC

metadata store.

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 20 of 55

Figure 13 Topology of the CHIC infrastructure that handles the semantic annotation of the models

3.3 Clinical Data Repository

The clinical data repository will permanently host all the related medical data produced or collected
by the CHIC project. The data will not be directly provided by the clinical environment. The data will
pass through de-identification and (pseudo)-anonymization processes, as described in WP4.
Additionally, interfaces that will allow to import and export the contents of the clinical data
repository will be developed. In this way the data can be sustained after the expiration of the
project’s lifetime and reused and exploited continuously within the limits allowed by the legal
framework of the project. The export services that will be created will also assist in this direction, as
many of the data sets to be gathered by the CHIC project will be reusable by future projects. The
clinical data repository contains all the relevant medical data including imaging data, clinical data and
genetic / molecular data.

The concept underlying the design of the clinical data repository is to rely on generic objects. The
chosen approach ensures the ability of the system to handle new type of objects with minimal
additional efforts. However, even though the design is very generic, the structure of the data to be
stored is used to provide appropriate verification of the consistence of the data and to extract all the
relevant metadata associated with each uploaded object.

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 21 of 55

Figure 14 A schematic representation of interactions between Clinical Data Repository and RICORDO
components.

The clinical data repository can be accessed either by website or by web service. The former is
geared towards end users and the latter for third-party applications but both use the same core. The
common core relies on a relational database which makes use of the Structured Query Language
(SQL). Standard file formats as described in D8.1 [2] supported by the clinical data repository include
DICOM, MetaImage, Analyze and Nifti for medical imaging data, CDISC ODM XML for clinical data and
MINiML XML for genetic / molecular data. One objective is to extract selected metadata from the
files during the upload process to the clinical data repository automatically. Another objective is to
let users such as clinicians, researchers and others annotate the objects of the clinical data repository
manually. Both objectives have in common that the annotations will be exported to the semantics
infrastructure provided by RICORDO within CHIC.

RICORDO offers three components called LOLS, Rdfstore and OWLKB which are relevant within CHIC.
The intended purpose of Local Ontology Lookup Service (LOLS) is to translate standardized (but not
human readable) identifier strings used for triplestores to human-readable labels describing them for
a given set of ontologies. Rdfstore is a metadata wrapper based on templates serving as a messenger
between SPARQL endpoint and end-user, obviating the need to learn complicated SPARQL syntax.
OWLKB is a semantic reasoner which enables to query semantic data loaded from an ontology. Both
components LOLS and OWLKB have the same set of ontologies in common.

3.3.1 Interactions with the Local Ontology Lookup Service

In order to enable clinicians, researchers and others to annotate objects of the clinical data
repository manually a connection with LOLS is needed. An exemplary use case is the annotation of an
object with anatomical regions. As shown in Figure 15, the user starts to type the name of the
anatomical region and the autocomplete function offered by LOLS returns a list of matching entries.
The user selects the correct entry from the list which completes this step of the annotation process.
In this case, it would not make sense to present matching entries other than those from the
Foundational Model of Anatomy (FMA) ontology to the user. Therefore, the crucial functionality to
filter the range of ontologies to be searched by the autocomplete function is required.

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 22 of 55

Figure 15 User dialog to annotate an object with anatomical regions using the autocomplete function offered
by the Local Ontology Lookup Service (LOLS).

3.3.2 Interactions with the Rdfstore

Metadata can be extracted during the upload process by the clinical data repository automatically, if
standard file formats are used. However, in the majority of cases the extracted metadata is not in the
form to be stored directly in the Rdfstore. Therefore, the metadata must be processed to triples
before being exported to the Rdfstore. This is one of the reasons the clinical data repository stores
the extracted metadata in the relational database. Another reason is the export process itself which
requires a reliable retry logic. Last but not least, the clinical data repository needs to be able to
display the information associated with each object without fetching it from the Rdfstore every time.
The Rdfstore itself already offers the functionality to add and delete triples in order to enable
interactions with the clinical data repository.

Adding and deleting triples to/from the Rdfstore is merely a means to an end. The main objective is
to leverage the powerful search capabilities offered by the nature of the semantic technology. For
this purpose, the Rdfstore offers an extensible template system which can be used for querying. A
simple query such as “get all objects having more than one file” can be achieved by the Rdfstore
directly. Once the query involves information stored in an ontology such as “get all objects which are
part of FMA Head" the Rdfstore relies on the semantic reasoner offered by OWLKB. A direct
interaction between the clinical data repository and the OWLKB is not intended.

Figure 16 illustrates the planned relational database schema which extends the existing covered in
deliverable D8.3. The selected architecture allows different scenarios. A possible scenario could be to
support multiple triplestores concurrently. This means all triples could either be exported to all
triplestores, a subset of triples could be exported to a subset of triplestores or a combination
thereof. Another scenario could be to replace the existing triplestore just by re-initiating the export
process.

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 23 of 55

Table name Table description

TripleObject Stores the value provided by the user or extracted during upload (e.g.
ontology terms, literals, numbers, RDFS class IRIs, etc.).

Ontology Stores the different supported ontology types (e.g. FMA, CHEBI, etc.).

TriplePredicate Stores the different predicates (e.g. has_age, has_gender, etc.).

AnnotationTriple Stores the information about the triple.

TripleSubject Stores the IRI of the subject.

TripleSubjectType Stores the type of the subject (e.g. object, file, user, etc.).

Object The object is the basis element of the clinical data repository. It can be a
medical image, clinical trial, genomic sample, etc.

File This entity contains the information where exactly one binary file is
stored on the clinical data repository file system. A file can be used by
multiple objects and an object can have multiple files.

User A user entity contains personal information of the user such as the first
name and last name.

Triplestore Stores the information about the different supported triplestores (e.g.
Rdfstore provided by RICORDO)

AnnotationTripleLog Stores information about background processes responsible for
exporting triples to the triplestore.

Table 1: A description of all tables involved in the clinical data repository database schema extension
illustrated in Figure 16.

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 24 of 55

Figure 16 Extension of the clinical data repository database schema to persist triples, export and retry logic
information.

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 25 of 55

4 Semantic Metadata

Semantic metadata is a form of knowledge representation whereby objects are represented through
a (unique) identifier and a number of statements in a given representation language are used to
record information or formal descriptions.

Outside of the scope of this section is the manner whereby objects so described are provided with a
unique identifier. CHIC components producing metadata statement may have to provided for
globally unique identifiers in the form of URI. Standardly, URIs are two parts IDs that contain a
namespace element and an identifier element, so that at least the identifier is unique within the
encompassing namespace.

4.1 Resource Descriptions Schema

We use a simple and pragmatic approach to the knowledge representation backbone supporting the
semantic infrastructure. The range of objects that may be annotated and carry semantic content is
represented schematically in the language of RDF, the Resource Description Framework. This
schematic representation can also be called an ontology of the CHIC resources.

According to this view, each object of interest belongs to a class to which we can attach a number of
annotational links to a semantic object (for example, an object representing the biological meaning
of a parameter), another annotatable object (for example, linking a parameter to a model) or, in
some cases, a value from a given data type (for example, a number, a string of text or a date). The
links are relations between an annotated object on the one hand and a concept on the other. The
nature of the linkage is elucidated by the intended semantic content of the link, i.e., its meaning. We
do not overwork the formalisation of the meaning of links and treat them in general as (formally)
undefined and (informally and conventionally) elucidated terms.

When applicable, the linked semantic objects belong to instrumental domain ontologies themselves.
A domain ontology is a formalised theory of a domain, for example, anatomy or the domain of
laboratory measurements. These ontologies are instrumental in relation to the theory of CHIC
resources because they are used to provide values in the annotation of the latter. The ontologies
used in the current stage of development are indicated in the next section.

4.1.1 CHIC Resource Ontology

CHIC resources handled by the hypermodelling editor and the model repository are few in kinds; they
are either models (hyper or hypo) or parameters of models (input or output). The kind of resources
handled by the Clinical Data Repository can be conceived according to two different dimensions.
According to a first dimension, there are the internal clinical data resources which include users, files,
and data objects. Each of these have various properties which are relevant to their articulations.
According to a second dimension, the data objects themselves can be of several distinct types
depending on the type of clinical data stored and the format of their storage (images, trial results,
laboratory and experimental results).

We initialise a CHIC Resource Ontology with a small set of classes and relationships holding between
instances of these classes. The goal of this ontology is to provide the formal tools for the
representation of CHIC resources and provide the backbone for the definition of a number of
attributive relationships allowing for the annotation of CHIC resources.

4.1.1.1 Categories of Objects

 Modelling objects – a class of objects. An instance of the class Modelling Object is a model or
a part (logical or conceptual) of a model, in particular a parameter.

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 26 of 55

 Mathematical models – a subclass of the class of modelling objects. An instance of the class
MathematicalModel is a model.

 Hypermodels – a subclass of the class of mathematical models. An instance of the class
Hypermodel is a hypermodel in the sense of CHIC technical specifications.

 Hypomodels – a subclass of the class of mathematical models. An instance of the class
Hypomodel is a hypomodel in the sense of CHIC technical specifications.

 Parameter of a mathematical model – a subclass of the class of modelling objects such that
an instance of this class is a parameter of a mathematical model.

 Input parameter of a mathematical model – a subclass of the class of parameter of a
mathematical model such that an instance of this class is an input parameter of some
mathematical model.

 Output parameter of a mathematical model – a subclass of the class of parameter of a
mathematical model such that an instance of this class is an output parameter of a
mathematical model.

4.1.1.2 Relations between objects

We use three relations between models and their parameters:

 parameter-of to link generically a model to one of its parameters, or its converse

 input-parameter-of to link a parameter to a model when the parameter is an input
parameter of the model

 output-parameter-of to link a parameter to a model when the parameter is an output
parameter of the model

4.1.1.2.1 Illustration

A model, for example, the Wilms Tumour model developed in CHIC, is be represented by a specific
URI, and so is everyone of its parameters. The above may be used to record minimal information
about these and their link.

1 chicdb:model1

2 rdfs:label "Wilms" ;

3 rdfs:comment "Wilms model" ;

4 rdf:type mo: Hypomodel .

5

6 chicdb:parameter1

7 chicro:input-parameter-of <#model1> ;

8 rdfs:label "Cell cycle duration of stem cells" .

Illustration of the use of the CHIC Resource Ontology to define resources, using RDF TTL syntax.
“chicdb”, “rdfs”, “rdf” and “chicro” are namespace abbreviations for a database of annotations, the
RDFSchema, RDF and the CHIC resource ontology namespaces, respectively.

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 27 of 55

Note that we make full use of the RDF standard for at least two things here, on the one hand, lexical
information (using rdfs:label) and human readable descriptions (using rdfs:comment), and on the
other hand, we use the inbuilt rdf:type to indicate the belonging of an instance, here, the model or
the parameter, to a class.

4.1.1.3 Annotation relations

The CHIC Resource ontology is modifiable and extensible, we introduce here a few basic annotation
relationship from which to prime the coverage of the requirements sketched above. This is where we
list the relationships that are specifically used to enter semantic metadata information regarding
CHIC resources.

4.1.1.3.1 Annotation of objects – irrespective of their subtype

Name Symbol in CHICRO Domain Range

Title or Name hasName chicro:Object rdfs:Literal

Description hasDescription chicro:Object rdfs:Literal

4.1.1.3.2 Annotation of models

We define 13 annotation relationships corresponding to each of the intended perspectives (D6.1, [1])

Name Symbol in CHICRO Domain Range

Perspective 1 hasPositionIn-01 chicro:Model Set of relevant URIs for
Tumour-Affected
Normal Tissue
Modelling

Perspective 2 hasPositionIn-02 chicro:Model Set of relevant URIs for
Spatial Scale(s) of the
Manifestation of Life

Perspective 3 hasPositionIn-03 chicro:Model Set of relevant URIs for
Temporal Scale(s) of
the Manifestation of
Life

Perspective 4 hasPositionIn-04 chicro:Model Set of relevant URIs for
Biomechanism(S)
Addressed

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 28 of 55

Perspective 5 hasPositionIn-05 chicro:Model Set of relevant URIs for
Tumour Type(S)
Addressed

Perspective 6 hasPositionIn-06 chicro:Model Set of relevant URIs for
Treatment Modality(-
ies) Addressed

Perspective 7 hasPositionIn-07 chicro:Model Set of relevant URIs for
Generic Cancer Biology
– Clinically Driven
Character of the
Modelling Approach

Perspective 8 hasPositionIn-08 chicro:Model Set of relevant URIs for
Order of Addressing
Different Spatial Scales

Perspective 9 hasPositionIn-09 chicro:Model Set of relevant URIs for
Order of Addressing
Different Temporal
Scales

Perspective 10 hasPositionIn-10 chicro:Model Set of relevant URIs for
Mechanistic-Statistical
Character of the
Modelling Approach

Perspective 11 hasPositionIn-11 chicro:Model Set of relevant URIs for
Deterministic-
Stochastic Character of
the Modelling
Approach

Perspective 12 hasPositionIn-12 chicro:Model Set of relevant URIs for
Continuous-Finite-
Discrete Character of
the Mathematics
Involved

Perspective 13 hasPositionIn-13 chicro:Model Set of relevant URIs for
Closed Form Solution –
Algorithmic Simulation
Modelling Approach

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 29 of 55

4.1.1.3.3 Annotation of parameters

Name Symbol in CHICRO Domain Range

datatype parameterhasDatatype chicro:Parameter xsd datatypes (and
possible additions)

unit parameterHasUnit chicro:Object Set of relevant URIs

4.1.1.3.4 Semantic typing

In order to record the interpretation of a given object according to a domain specific definition, for
example, that a given parameter is a rate of cell killing, we use a specific relationship rather than the
rdf:type property.

Name Symbol in CHICRO Domain Range

Semantic type hasInterpretedType chicro:Object Set of relevant URIs

4.2 Ontologies used

Whenever the annotation relationships introduced as part of the CHIC Resource Ontology refer to a
set of URIs for filling in the information, the URIs in question are taken from domain specific
ontologies.

In CHIC, we reuse third parties, externally maintained and standardised ontologies for certain
domains and we also make provision for developing smaller, more adequate ontologies that fit the
CHIC purpose more straightforwardly and adequately. As with the CHIC Resource Ontology, any
ontological resource used here is also subject to modification and revision.

These ontologies are accessible programmatically within the semantic infrastructure through the
OWL knowledge base which is a database server containing versions of the ontologies in the OWL
language. If we so choose to change the ontologies used, we would be in a position to update the
RDF annotation records using them, provided we maintain a suitable mapping.

From the above, we need ontological references for

i) Units of Measurements

ii) Perspectives 1 to 13

iii) Semantic types.

The ontological resources needed are unequal in complexity depending upon the sort of record we
intend to maintain within the RDF annotation store. Here we keep a minimal list of the ontologies
used for entering specific annotation-relations values and we sketch the complexity of the ontology
ecosystem involved in filling in the semantic typing information.

Our strategy is to enable the use of semantic annotation and then to go through cycles of
refinements. For this reason we will adopt the following:

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 30 of 55

Domain

Units of measurement Unit Ontology http://obofoundry.org/ontology/uo.html

Perspectives Existing Ontologies or Ad
Hoc Ontology

Existing ontologies or parts of existing
ontologies can be used for different
perspectives (for example, the Disease
Ontology for perspective 5 or the Unit
Ontology for perspective 3) or ad hoc
ontologies can be developed for others.

Semantic types Combinations of ontologies,
among which:

FMA

CHEBI

GO

PATO

Ad Hoc Extensions

The external ontologies are developed
and maintained within the framework of
the Open Biomedical Ontologies (OBO
Foundry, http://obofoundry.org/).

Ad hoc extensions are the subject of
further development and involve
extensions and combinations of the
above.

http://obofoundry.org/

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 31 of 55

5 Semantic Infrastructure Supporting Services

The CHIC semantic infrastructure has been deployed on CHIC servers. The demonstration GUI for the
Rdfstore 2.0 services is accessible from the following URL:

http://139.91.210.22:20081/gui

Within this deployed infrastructure the base host for the CHIC services is therefore:
http://139.91.210.22:20081.

Similarly, the demonstration GUI for the OWLKB can be accessed here:

http://139.91.210.22:20080/gui

The demonstration GUI for the LOLS can be accessed here:

http://139.91.210.22:20084/gui

5.1 Triple store and Rdfstore interface

Rdfstore 2.0 is the so-called Ricordo metadata wrapper. It serves as a messenger between SPARQL
endpoint and end-user. The motivation behind Rdfstore 2.0 is to alleviate the need to handle SPARQL
syntax and make it simpler and more straightforward to deal with metadata. This is done with a
system of templates, which are customized at the organizational level.

The end-user tells the appropriate systems team: ``I want a form that'll let me query the database for
X.'' The team creates a template for that query. Now the end-user can select that template and query
the database for X by filling out a simple form, no SPARQL required.

5.1.1 Installation Requirements

- Java and Java runtime: Rdfstore 2.0 requires Java Runtime and a Java compiler for its
installation.

- RDF Triple Store: Rdfstore 2.0 assumes that a triple store is running and has exposed a
SPAQRL endpoint. Rdfstore 2.0 has been used in combination with the following:

o Virtuoso Open-source Edition (GNU GPL license)

http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/

o Fuseki and Fuseki2 (Apache 2.0 license)

https://jena.apache.org/documentation/fuseki2/

o Specific configuration information is provided below for these.

5.1.2 Installation Steps

1. Rdfstore 2.0 is available for download from:

 http://github.org/semitrivial/rdfstore

 Use "git clone", or any other means, to copy this repository locally.

about:blank
about:blank
about:blank
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
https://jena.apache.org/documentation/fuseki2/
http://github.org/semitrivial/rdfstore

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 32 of 55

2. Within the directory containing the copy of the repository, compile Rdfstore using "make"

(or manually: "javac -g Rdfstore.java")

3. Within that directory, run "java Rdfstore -help" to get help on the command line arguments,

or see further below.

 In order for Rdfstore 2.0 to be useful, templates need to be present in the relevant subdirectory,

as discussed below.

5.1.3 Running Rdfstore 2.0

 Rdfstore 2.0 can be run with the following command-line arguments:

Argument Description Example or default

-templates
<directory>

Specifies the
location of the
directory
containing
Rdfstore
templates.

Default: ./templates

-endpoint <URL> Specifies the
SPARQL query
endpoint location
for the
coordinated triple
store.

http://localhost:3030:/chic/query?force-
accept=text%2Fplain&output=tsv&query=SELECT...

http://localhost:3030/chic/query?force-
accept=text%2Fplain&output=tsv&query=

-method <GET or
POST>

Specifies which
HTTP method
your SPARQL
endpoint uses.

Default: GET

-update <URL> Specifies a
separate address
for updates,
when applicable.

Default: copies "endpoint"

-updatemethod
<GET or POST>

Specifies the
HTTP method for
a separate
address for
updates, when
applicable.

Default: copies "method"

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 33 of 55

-format <format> A string,
containing "%s".
The %s will be
replaced by the
query itself,
useful for things
like triplestore-
specific
preambles, etc.

Default: %s

-port <number> Specifies which
port Rdfstore will
listen for
connections on.

Default: 20060

-help Displays a help
screen.

5.1.4 Simple GUI

While the goal of Rdfstore 2.0 is to deliver an API, it comes with a built-in simple GUI mainly for the
purpose of illustration and education. When Rdfstore is running, the GUI can be accessed at
http://HOST:PORT/gui/. For example, if HOST is "localhost" and PORT is "20060", the GUI would be
accessible within a Web browser at:

http://localhost:20060/gui/

Figure 17 Simple Rdfstore 2.0 GUI

http://localhost:20060/gui/

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 34 of 55

5.1.5 Template system

SPAQRL is the query language for RDF data. In our context, a template is a SPARQL query which can
comport up to ten parameters. Rdfstore reduces SPARQL to a matter of filling-in-the-blanks, namely,
one blank for each parameter. Templates can be written specifically to answer specific metadata
management needs. Furthermore, a given template may therefore be used while varying the values
of its parameters.

Example: The SPARQL query to find all things which are "part-of" the class "acids" might look like so:

 SELECT DISTINCT ?part

 WHERE

 {

 ?part <http://example.com/ontology#part-of> <http://example.com/ontology#acids>

 }

Now suppose you want a generic form for "find all things 'part-of' the class 'X'", where the end-user
fills in X. Create a template file with a name like "get_parts_of.txt" with contents:

SELECT DISTINCT ?part

 WHERE

 {

 ?part <http://example.com/ontology#part-of> <[0]>

 }

Here, [0] is a variable. Other available variables are [1] through [9].

Templates should be stored in a template directory in the form of a text file. When you run Rdfstore,
use the command line to tell Rdfstore which directory the templates are stored in (unless you use the
default directory). The template's name (minus ".txt") will become part of Rdfstore's GUI. Assuming
the template in the above example has been loaded by Rdfstore, the template can be accessed at an
address like

 http://yoururl.org:20060/get_parts_of/?0=acids

Adding template to a running Rdfstore instance is not supported and the addition of templates
requires restarting Rdfstore.

5.1.5.1 Advanced Template Commands

At the beginning of a template file, certain special commands can be issued. You can give a name to a
variable, as in the following example:

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 35 of 55

 # 0 = whole

 SELECT DISTINCT ?part

 WHERE

 {

 ?part <http://example.com/ontology#part-of> <[0]>

 }

In this example, the command is that first line, # 0 = whole. It says that the name of the variable 0 is
'whole' (so the template is searching for 'parts' of the 'whole'). This is how the Rdfstore demo GUI
knows which placeholder text to put in the different form fields.

The other type of command you can use here is a preprocessor command, as in the following
example:

 # 0 = whole

 # Preprocessor0 = http://open-physiology.org:20080/terms/%s?longURI=yes&json=yes

 SELECT DISTINCT ?part

 WHERE

 {

 ?part <http://example.com/ontology#part-of> <[0]>

 }

The command,

Preprocessor0 = http://open-physiology.org:20080/terms/%s?longURI=yes&json=yes

indicates that the contents of variable 0 will be passed through the indicated preprocessor. For
example, if the user enters 'FMA_50801' for variable 0, Rdfstore will replace the '%s' in the
Proprocessor0 string with 'FMA_50801' to get the URL:

http://open-physiology.org:20080/terms/FMA_50801?longURI=yes&json=yes

which points to OWLKB and gets a list of subclasses of FMA_50801. Rdfstore will use that list of
subclasses, and query the triplestore for all things which are part-of any subclass of FMA_50801.

5.1.5.2 Rdfstore API

Rdfstore has a dynamic API. The API is defined by the templates loaded when Rdfstore is started. For
each template, there is a corresponding API command. If the template is named X.txt, and depends
on parameters [0], [1], and [2], then the API command looks like:

http://example.com:20060/X/?0=fill_this_in&1=also_fill_this&2=this_too

http://open-physiology.org:20080/terms/%25s?longURI=yes&json=yes
http://open-physiology.org:20080/terms/FMA_50801?longURI=yes&json=yes

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 36 of 55

5.1.6 Low Level services

We refer to services as low level services when they are mere syntactic variations on basic SPAQRL
commands. There are three kinds: commands to add a record and commands to delete a record as
well as commands to query records.

5.1.6.1 Query

A low level command allows wrapping (URL encoded) SPARQL queries.

For example: select ?x ?y ?z where {?x ?y ?z} limit 10

Can be invoked as:

http://localhost.org:20060/Raw_SPARQL/?0=select%20%3Fx%20%3Fy%20%3Fz%20where%20{%3Fx
%20%3Fy%20%3Fz}%20limit%2010

5.1.6.2 Insertion

A low level command allows inserting a triple (SPAQRL INSERT DATA):

http://localhost:20060/Insert_Triple_%28Fuseki%29/?0=a&1=b&2=c

5.1.6.3 Deletion

A low level command allows inserting a triple (SPAQRL INSERT DATA):

http://open-physiology.org:20060/Delete_Triple_%28Fuseki%29/?0=a&1=b&2=c

5.1.7 Specific Triplestores Documentation

Specific documentation for using Rdfstore with individual triplestores: Virtuoso and Fuseki.

5.1.7.1 Virtuoso

When your server is running Virtuoso, by default the SPARQL endpoint is on port 8890. In the
following documentation, we'll assume you keep that default; if you change it to another port, then
change everything accordingly.

5.1.7.1.1 Queries

Depending on what format you'd like the results in, you can use one of the following strings as the
"endpoint" when running Rdfstore.

5.1.7.1.1.1 JSON format

Endpoint string:

http://localhost:8890/sparql?default-graph-uri=&format=application%2Fsparql-
results%2Bjson&timeout=0&debug=on&query=

Minimum working example commandline:

java Rdfstore -endpoint "http://localhost:8890/sparql?default-graph-
uri=&format=application%2Fsparql-results%2Bjson&timeout=0&debug=on&query="

http://localhost.org:20060/Raw_SPARQL/?0=select%20%3Fx%20%3Fy%20%3Fz%20where%20%7b%3Fx%20%3Fy%20%3Fz%7d%20limit%2010
http://localhost.org:20060/Raw_SPARQL/?0=select%20%3Fx%20%3Fy%20%3Fz%20where%20%7b%3Fx%20%3Fy%20%3Fz%7d%20limit%2010
http://localhost:20060/Insert_Triple_(Fuseki)/?0=a&1=b&2=c
http://open-physiology.org:20060/Delete_Triple_%28Fuseki%29/?0=a&1=b&2=c

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 37 of 55

5.1.7.1.1.2 HTML format

Endpoint string:

http://localhost:8890/sparql?default-graph-
uri=&format=text%2Fhtml&timeout=0&debug=on&query=

Minimum working example commandline:

java Rdfstore -endpoint "http://localhost:8890/sparql?default-graph-
uri=&format=text%2Fhtml&timeout=0&debug=on&query="

5.1.7.1.1.3 Other formats

Virtuoso makes a lot of other formats available. To see the list, go to this Virtuoso SPARQL
documentation page and scroll down to "16.2.3.3.3. Response Format".

For each listed content type, the general formula for the endpoint string is:

http://localhost:8890/sparql?default-graph-uri=&format=(content
type)&timeout=0&debug=on&query=

where (content type) is replaced by the url-encoded mimetype from the above link.

Example:

Suppose you want the format as "application/x-turtle".

Urlescape to get: "application%2Fx-turtle".

The endpoint string is:

http://localhost:8890/sparql?default-graph-uri=&format=application%2Fx-
turtle&timeout=0&debug=on&query=

5.1.7.1.2 Adding triples

There are two things to know to set up triple-authoring via Rdfstore via Virtuoso.

5.1.7.1.2.1 Must specify graph

When adding a triple in Virtuoso, it is necessary to specify which graph it goes in. Here's an example
"Insert_Triple.txt" template:

 # 0 = Graph IRI
 # 1 = Subject IRI
 # 2 = Predicate IRI
 # 3 = Object IRI
 INSERT INTO <[0]>
 {
 <[1]>
 <[2]>
 <[3]>
 }

Note that the four comments at the beginning are just to tell the GUI what placeholder text to put in
the blank fields; they aren't strictly necessary.

5.1.7.1.2.2 Must grant permission

By default, Virtuoso forbids triple-insertion via SPARQL endpoint. If triple-insertion is forbidden, then
your triple-insert Rdfstore templates will fail.

Here's how to enable triple-insertion via SPARQL endpoint:

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 38 of 55

 Connect to Virtuoso's ISQL console. From the command line on the machine where Virtuoso
is running, this is usually done with the "isql" command (or "isql-vt" on Ubuntu).

 Issue the command:

GRANT execute ON SPARQL_INSERT_DICT_CONTENT TO "SPARQL";

 You might be prompted for your Virtuoso credentials; if so, enter them.

 Issue the command:

GRANT execute ON SPARQL_INSERT_DICT_CONTENT TO SPARQL_UPDATE;

 If you also want to enable templates to delete triples, issues the following commands as well:

GRANT execute ON SPARQL_DELETE_DICT_CONTENT TO "SPARQL"

GRANT execute ON SPARQL_DELETE_DICT_CONTENT TO SPARQL_UPDATE;

Note: If you are worried about the security implications of allowing triple-insertion via SPARQL
endpoint, our recommendation is as follows. You should conFigure your machine so that only
localhost is permitted to connect to port 8890 (or whichever port Virtuoso is running on). Then, you
can perform proper validation of user input in whatever program it is you're designing, before
invoking the Rdfstore API.

5.1.7.2 Fuseki

By default, the Fuseki triple-store runs a SPARQL endpoint on port 3030. If you're running Fuseki on
some other port, change everything accordingly.

When using Fuseki, one gives one's dataset a name, and that name has to be inserted into the
SPARQL endpoint URL. For the documentation below, we will assume your dataset is named
"dataset". If you use a different name, change everything accordingly.

5.1.7.2.1 Queries

Depending on what format you like, you can run Rdfstore with the following endpoint strings.

5.1.7.2.1.1 JSON

Endpoint string:

http://localhost:3030/dataset/query?force-accept=text%2Fplain&output=json&query=

Minimum working example command line (query only, no update support):

java Rdfstore -endpoint "http://localhost:3030/dataset/query?force-
accept=text%2Fplain&output=json&query="

Remember to change "dataset" to the actual name of your Fuseki dataset!

5.1.7.2.1.2 Text

Endpoint string:

http://localhost:3030/dataset/query?force-accept=text%2Fplain&output=text&query=

Minimum working example command line (query only, no update support):

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 39 of 55

java Rdfstore -endpoint "http://localhost:3030/dataset/query?force-
accept=text%2Fplain&output=text&query="

Remember to change "dataset" to the actual name of your Fuseki dataset!

5.1.7.2.1.3 XML

Endpoint string:

http://localhost:3030/dataset/query?force-accept=text%2Fplain&output=xml&query=

Minimum working example command line (query only, no update support):

java Rdfstore -endpoint "http://localhost:3030/dataset/query?force-
accept=text%2Fplain&output=xml&query="

Remember to change "dataset" to the actual name of your Fuseki dataset!

5.1.7.2.1.4 Tab Separated Values (TSV)

Endpoint string:

http://localhost:3030/dataset/query?force-accept=text%2Fplain&output=tsv&query=

Minimum working example command line (query only, no update support):

java Rdfstore -endpoint "http://localhost:3030/dataset/query?force-
accept=text%2Fplain&output=tsv&query="

Remember to change "dataset" to the actual name of your Fuseki dataset!

5.1.7.2.2 Adding triples

The Fuseki SPARQL endpoint uses different URLs for SPARQL queries and SPARQL updates.
Furthermore, it only accepts SPARQL updates sent with an HTTP POST, it rejects updates sent with
HTTP GET.

Fortunately, Rdfstore allows you to specify a separate address/method for updates. Run Rdfstore
with command line options

-updatemethod POST

and

-update "http://localhost:3030/dataset/update"

(replace "dataset" with the actual name of your dataset).

Minimal working example

If you want to run Rdfstore using Fuseki as the triplestore, returning query results in JSON format,
and with a dataset named "models", you can run it as follows:

java Rdfstore -endpoint "http://localhost:3030/models/query?force-
accept=text%2Fplain&output=json&query=" -update "http://localhost:3030/models/update" -
updatemethod POST

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 40 of 55

5.2 Ontology Knowledge Base and Services

OWLKB 2.0 is the Ricordo semantic reasoning server. It provides an API for querying semantic data
which is loaded from an ontology. OWLKB is smart enough to know the semantic meanings of the
terms in the ontology and to act accordingly.

As a simple example, suppose that the ontology says widget X was created at factory Y, and that
factory Y only creates blue widgets. A query for "show all blue widgets" will show X even if the
ontology does not explicitly say that X is blue: the reasoner is smart enough to deduce the blueness
of X from the other two facts.

5.2.1 Installation

- Ensure a java runtime and java compiler are installed.

- Use "git clone", or any other means, to copy the repository from
http://github.org/semitrivial/owlkb

- Within the directory containing the copy of the repository, expand OWLKB's dependencies
using "jar -xf dep.jar"

- Within the directory containing the copy of the repository, compile OWLKB using "make" (or
on Windows: "javac -g Owlkb.java")

- Within that directory, run "java Owlkb.java -help" to get help on the command line
arguments, or see further below.

5.2.2 Loading an ontology

OWLKB loads ontologies in .owl form; we assume the user has an owlfile on their system. When
running OWLKB, one should specify the location of the desired .owl file. This is done using the -file
command line argument.

For example:

java Owlkb -file /home/ontologies/ricordo.owl

5.2.2.1 Command line arguments

OWLKB can be run with the following command line arguments.

Argument Description Example or default

-file <location of file> Specifies which ontology file
OWLKB will load.

Default: ./templates

-port <port number> Specifies which ontology file
OWLKB will load.

Default: 20080

-reasoner <elk or hermit> Specifies which reasoner
OWLKB will use.

Supported: Elk, HermiT

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 41 of 55

-namespace <base of iri> Specifies the namespace to
be used for classes created
with OWLKB.

-save <true or false> Specifies whether or not
OWLKB saves new classes to
harddrive

Default: true

-help Displays a help screen.

5.2.3 Simple GUI

OWLKB comes with a simple GUI. When OWLKB is running, the GUI can be accessed at

http://localhost:20080/gui/

(replace "localhost" with whatever host you're running OWLKB on, and replace "20080" with
whatever port your OWLKB is running on, if necessary).

For example, the demonstration instance of OWLKB is running on host open-physiology.org on port
20080, so the GUI is at http://open-physiology.org:20080/gui.

The built-in GUI is mainly just for demonstration purposes. We anticipate OWLKB will mainly be used
directly via the API.

5.2.4 KBCaller Java Library

OWLKB is not designed as a library and is not. The reason for this is that OWLKB is rather resource-
intensive when loaded with a non-trivial ontology. Thus it makes more sense as a separate process
than as a library. Nevertheless, KBCaller is a Java mini-library which abstracts the act of sending API
requests to OWLKB over HTTP and can be used in Java-based projects.

5.2.4.1 Constructor

public KBCaller(String url)

Creates a KBCaller object. Specify the url of an OWLKB instance, including port.

For example, the OWLKB demo instance has the url http://open-physiology.org:20080. If OWLKB is
running on the same machine as the Java application you're working on, and if OWLKB is running on
its default port (20080), you can use the url http://localhost:20080

5.2.4.2 API Methods

In all cases except for "addlabel", the methods return a list of results as a JSON list, e.g. something
like:

['FMA_50801','CHEBI_999','RICORDO_56345634']

If you would prefer the results as an ArrayList<String> and you don't want to add a full JSON parser
dependency to your project, we've included a bare-bones JSON-list-parser function in KBCaller:

public ArrayList<String> parse_json(String json) throws IOException

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 42 of 55

You can compose this with any of the String-returning API methods (except "subhierarchy"), for
example:

KBCaller kbcaller = new KBCaller("http://open-physiology.org:20080");

String subclasses_raw;

List<String> subclasses;

try

{

 String subclasses_raw = kbcaller.subterms("part-of some FMA_50801");

 subclasses = kbcaller.parse_json(kbcaller.subterms("part-of some FMA_50801"));

}

catch(Exception e)

{

 e.printStackTrace();

}

If you want to parse the "subhierarchy" JSON, you'll probably want to use a full JSON parser for that,
as it's not a flat list.

5.2.5 OWLKB API

OWLKB launches a server which listens for connections and responds to the following types of
requests.

Note: The "eqterms" type of request is special. Unlike the other commands, "eqterms" will actually
create a new class and add it to the selected ontology, if no equivalent class already exists. This is
one of the main features of OWLKB, creation of so-called composite terms.

5.2.5.1 subterms

Finds all subterms of the indicated term. For example, "amino acid" is a subterm of "acid".

Example:

http://localhost:20080/subterms/CHEBI_33709

5.2.5.2 parents

Finds all the direct parents (i.e., the direct superclasses) of the indicated term.

Example:

http://localhost:20080/parents/CHEBI_33709

5.2.5.3 children

Finds all the direct children (i.e., the direct subclasses) of the indicated term.

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 43 of 55

Example:

http://localhost:20080/children/CHEBI_33709

5.2.5.4 siblings

Finds all siblings of the indicated term. A 'sibling' is defined to be an immediate subterm of an
immediate superterm of the indicated term.

Example:

http://localhost:20080/siblings/CHEBI_33709

5.2.5.5 subhierarchy

Finds all subterms of the indicated term, and displays them in a hierarchical format (using JSON).

Example:

http://localhost:20080/subhierarchy/CHEBI_33709

5.2.5.6 eqterms

Finds all terms equivalent to the indicated term. For example, the class of all "animal cells"
(CL_0000548) capable of some "reproductive process" (GO_0022414) is equivalent to the class of all
"germ line stem cells" (CL_0000039).

If there are no equivalent terms, a new class is created, defined to be equivalent to the indicated
term. The new class is saved to the ontology (unless saving to hard-drive was disabled by command-
line argument).

Example:

http://localhost:20080/eqterms/CL_0000548+and+(capable_of+some+GO_0022414)

5.2.5.7 terms

Finds all terms and all subterms of the indicated term. Note that unlike "eqterms", this API command
will not create a new class if no equivalent classes are found.

Example:

http://localhost:20080/terms/CL_0000548+and+(capable_of+some+GO_0022414)

5.2.5.8 instances

Finds all instances of the indicated class. For example, "IN-VITRO-CCTYPE" might be an instance of
"TYPE-OF-CLINICAL-CONTEXT". (This is, of course, only for ontologies that include named individuals;
otherwise "instances" will always return the empty result set.)

Example:

http://localhost:20080/instances/TYPE-OF-CLINICAL-CONTEXT

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 44 of 55

5.2.5.9 labels

Finds all labels annotated to the indicated term (specifically, all rdfs:label's). For example, the label
"Brain" is annotated to FMA_50801.

Example:

http://localhost:20080/labels/FMA_50801

5.2.5.10 search

Finds all classes in the ontology with the given label (specifically, the given rdfs:label). Note that this
is an exact, case-sensitive search--a search for "Brai" or "brain" will not return "Brain" for instance.

Example:

http://localhost:20080/search/Brain

5.2.5.11 addlabel

Adds a label to a class that was created with "eqterms". For syntax, see the example above. To be
more precise, the label which is added is an <rdfs:label>. Multiple labels can be added for a single
class. This command triggers OWLKB to save changes to the ontology to the hard drive (unless saving
has been disabled via command line).

Example:

http://localhost:20080/addlabel/RICORDO12345=volume+of+blood+in+aorta

5.2.6 JSON

There are three ways to coerce data into JSON format:

1. Include an URL paramater 'json'.

Example:

http://localhost:20080/subterms/FMA_50801?json

2. Include an URL parameter 'verbose'. In addition to changing the command output to json, this also
causes the command to send additional information (most importantly, it will send labels along with
terms).

Example:

http://localhost:20080/siblings/FMA_50801?verbose

3. Send a request header "Accept: application/json". This has the same effect as method number 1
from above.

Example:

curl --header "Accept: application/json" "http://localhost:20080/subterms/CHEBI_33709"

5.2.7 Verbose Results

Because of backward-compatibility considerations, the default form of OWLKB results is sparse
(including nothing but raw terms in most cases, whereas the user is probably interested in the labels

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 45 of 55

of those terms as well). In order to get labels along with terms, use the 'verbose' URL parameter.
Note that this will also coerce the results into JSON format.

Example:

http://localhost:20080/subterms/CHEBI_33709?verbose

5.2.8 Manchester Syntax

The strength of OWLKB is that in all the API commands where a term is expected, a compound term
can be indicated using Manchester Syntax. Of course, when passing Manchester Syntax in an URL, it
should be urlencoded.

Here are some examples of Manchester Syntax (we've replaced spaces with +'s so these examples
can be used in URLs):

- All subclasses of (GO_0000111 intersect GO_0000112):

o "GO_0000111+and+GO_0000112"

- All things that are GO_0000111 and part-of some GO_0000112:

o "GO_0000111+and+part-of+some+GO_0000112"

- All things that are (GO_0000111 intersect GO_0000112) and part-of some GO_0000113:

o "(GO_0000111+and+GO_0000112)+and+part-of+some+GO_0000113"

- All things that are GO_0000111 and part-of some (GO_0000112 intersect GO_0000113):

o "GO_0000111+and+part-of+some+(GO_0000112+and+GO_0000113)"

5.3 LOLS Terminology services

LOLS stands for Local Ontology Lookup Service. Its intended purpose: for a given set of ontologies, let
people look up rdfs:labels from IRIs and IRIs from rdfs:labels. LOLS is lean and minimalist, allowing
easy deployment on any machine, removing the need to refer to a centralized label lookup service
which might be located on the other side of the world.

Technically, LOLS has two components:

i) A converter which turns an OWL file into a LOLS file. Written in Java to use the OWLAPI.

ii) The main engine, which loads a LOLS file and serves API requests in HTTP. Written in C.

5.3.1 Prerequiste for installation:

- java runtime and java compiler

- C compiler (gcc)

5.3.2 Installation instructions (tested on linux and Mac)

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 46 of 55

- Use "git clone", or any other means, to copy the repository from
http://github.org/semitrivial/LOLS

Two subdirectories will be created: "converter" and "server"

- In the converter directory: expand dependencies with "jar -xf dep.jar"

- In the converter directory: "make" (or "javac -g Convert.java"). This creates a
"Convert.class" java executable for converting OWL files to LOLS files.

- In the server directory: "make" (or "gcc lols.c srv.c trie.c util.c -o lols"). This
creates an executable "lols" for running LOLS.

5.3.3 LOLS file preparation

LOLS loads IRIs and rdfs:labels from an N-Triples file, which can be generated from an OWL ontology
file by means of a converter written in java.

Navigate to the LOLS converter directory (created in "Installation" above).

Run the following command:

java Convert (OWLfile) >(outputfilename)

For example, if your OWL file is located at "/home/ontologies/fma.OWL", and if you want the LOLS
file to be called "fma.LOLS", then you would run:

Example command to extract an N-Triples file, fma.nt, from an OWL file,
/home/ontologies/fma.OWL:

java Convert /home/ontologies/fma.OWL >fma.nt

It might be necessary to manually edit the LOLS file to remove unrelated output from the top of it,
which was placed there by the OWL reasoner. (In a future version of LOLS this step will not be
necessary.)

5.3.3.1 Multiple OWL files

If you have multiple OWL files and you want a single LOLS file to cover all of them, what you should
do is create a shell ontology (see example below) file which imports all the desired ontologies. Then
run the converter on the shell ontology.

Example

For example, suppose you want your LOLS file to cover /home/fma.owl, /home/chebi.owl, and
/home/go.owl. Then you can create the following shell ontology and run the converter on it:

 <?xml version="1.0"?>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:owl="http://www.w3.org/2002/07/owl#">
 <owl:Ontology rdf:about="http://open-physiology.org/shell-ontology">
 <owl:imports rdf:resource="file:/home/ricordo/ontology/fma.owl"/>
 <owl:imports rdf:resource="file:/home/ricordo/ontology/chebi.owl"/>
 <owl:imports rdf:resource="file:/home/ricordo/ontology/go.owl"/>
 </owl:Ontology>
 </rdf:RDF>

By modifying the above example in the obvious way, you can write a shell ontology to cover
whatever set of ontologies you like. Then run the converter on it to get the desired LOLS file. (Note:

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 47 of 55

the url "http://open-physiology.org/shell-ontology" in the example is just a placeholder url, anything
will work there and it won't effect the resulting LOLS file.)

5.3.4 Running the LOLS server

Once you've created a LOLS file, you can launch the LOLS server by going to the "server" directory
(created in "Installation" above) and running:

./lols (path to LOLSfile)

For example, if you created the LOLSfile "/home/ontologies/mylols.LOLS", then you can run:

./lols /home/ontologies/mylols.LOLS

By default, LOLS will open an HTTP server on port 5052. (You can change that in srv.c and re-compile,
if you prefer another port.) See "API" (below) and "Built-in GUI" (below) for how to actually use that
server.

5.3.5 Simple GUI

LOLS comes with a simple built-in GUI. Assuming the LOLS server is running, you can access the GUI
at http://(yourdomain):5052/gui

Example

If your domain is "example.com" then you can access the LOLS GUI at

http://example.com:5052/gui

Of course, if you don't have a domain, an IP address or "localhost" can be used instead.

5.3.6 LOLS API

LOLS launches a server which listens for connections and responds to the following types of requests.

In each case, the results are output in JSON format.

5.3.6.1 iri

Finds all rdfs:labels associated to the class with the specified IRI. The IRI can either be specified in full,
as in the second example, or else abbreviated as in the first example.

Example (shortform):

http://localhost:5052/iri/FMA_50801

Example (longform):

http://localhost:5052/iri/http%3A%2F%2Fpurl.org%2Fobo%2Fowlapi%2Ffma%23FMA_50801

Note that "http%3A%2F%2Fpurl.org%2Fobo%2Fowlapi%2Ffma%23FMA_50801" is the urlencoded
result of "http://purl.org/obo/owlapi/fma#FMA_50801".

5.3.6.2 label

Finds all IRIs of classes with the indicated rdfs:label (case sensitive). The IRIs are given in full.

Example:

http://localhost:5052/label/Brain

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 48 of 55

5.3.6.3 label-case-insensitive

Finds all IRIs of classes with the indicated rdfs:label (case insensitive). The IRIs are given in full.

Example:

http://localhost:5052/label/brain

5.3.6.4 label-shortiri

Finds all IRIs of classes with the indicated rdfs:label (case sensitive). The IRIs are given in abbreviated
form, if possible.

Example:

http://localhost:5052/label-shortiri/Brain

5.3.6.5 label-shortiri-case-insensitive

Finds all IRIs of classes with the indicated rdfs:label (case insensitive). The IRIs are given in
abbreviated form, if possible.

Example:

http://localhost:5052/label-shortiri-case-insensitive/brain

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 49 of 55

6 Examples of hypermodel annotation service calls

Based on the infrastructure and the approach taken here, a number of specialised service calls can be
defined to suit specific use cases and requirements. In a manner of illustration we specify a few basic
examples. The tools put in place allow for specifying any further needed specific requests.

6.1.1 Get_Hypomodels

Arguments: none

Description: Returns a once column table of URIs for hypomodels.

Method: GET

URL: http://<HOST>:<PORT>/Get_Hypomodels/

Body: [nil]

Example request: Returns all the hypomodels URIs

http://localhost:20060/Get_Hypomodels

Example response:

<pre>

<http://example/update-base/#model1>

<http://example/update-base/#model2>

</pre>

Template .txt

select distinct ?model where {

?model <http://www.w3.org/2000/01/rdf-schema#type>

<http://www.chic.eu/ontologies/resource#Model-ChicHypomodel>

}

6.1.2 Get_HypomodelInputParameter_ByInterpretation_exactMatch

Argument_0: URL encoded URI

Description: Returns a one column table of URIs of input parameters of any model such that the
parameter is annotated with the URI provided as argument.

Method: GET

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 50 of 55

URL: http://<HOST>:<PORT>/Get_HypomodelInputParameter_ByInterpretation_exactMatch/?
0=<URL-ENCODED-URI>

Body: [nil]

Example request: Returns all the input parameters whose interpretation is
http://www.chic.eu/ontologies/some-domain-ontology#CHIC_0001023 (a fictional concept for the
sake of illustration)

http://localhost:20060/Get_HypomodelInputParameter_ByInterpretation_exactMatch/?0=http%3A
%2F%2Fwww.chic.eu%2Fontologies%2Fsome-domain-ontology%23CHIC_0001023

Example response:

<pre>

<http://example/update-base/#parameter2a>

<http://example/update-base/#parameter1>

</pre>

Template .txt

0 interpretation

select distinct ?parameter where {

?parameter <http://www.chic.eu/ontologies/some-model-ontology#interpreted-type> <[0]>
.

?parameter <http://www.chic.eu/ontologies/some-model-ontology#input-parameter-of>
?model }

6.1.3 Get_HypomodelOutputParameter_ByInterpretation_exactMatch

Argument_0: URL encoded URI

Returns a one column table of URIs of output parameters of any model such that the parameter is
annotated with the URI provided as argument.

Metho
d:

GET

URL: http://<HOST>:<PORT>/Get_HypomodelOutputParameter_ByInterpretation_exactMatch/?
0=<URL-ENCODED-URI>

Body: [nil]

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 51 of 55

Example request: Returns all the output parameters whose interpretation is
http://www.chic.eu/ontologies/some-domain-ontology#CHIC_0001023 (a fictional concept for the
sake of illustration)

http://localhost:20060/Get_HypomodelOutputParameter_ByInterpretation_exactMatch/?0=http%3
A%2F%2Fwww.chic.eu%2Fontologies%2Fsome-domain-ontology%23CHIC_0001023

Example response:

<pre>

<http://example/update-base/#parameter3a>

</pre>

Template .txt

0 interpretation

select distinct ?parameter where {

?parameter <http://www.chic.eu/ontologies/resource#hasInterpretedType> <[0]> .

?parameter < http://www.chic.eu/ontologies/resource#output-parameter-of> ?model

}

6.1.4 Get_Consistent_HypomodelOutputParameter_ByInterpretation_exact
Match

Argument_0: URL encoded URI

Returns a one column table of URIs of output parameters of any model such that the parameter is
annotated with the URI provided as argument.

Method: GET

URL: http://<HOST>:<PORT>/Get_Consistent_HypomodelOutputParameter_ByInterpretati
on_exactMatch/?0=<URL-ENCODED-URI>

Body: [nil]

Example request: Returns all the output parameters of any hypomodel whose interpretation is
exactly the same as that of http://example/update-base/#parameter2a (a fictional parameter URI for
the sake of illustration)

http://localhost:20060/Get_Consistent_HypomodelOutputParameter_ByInterpretation_exactMatch

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 52 of 55

/?0=http%3A%2F%2Fexample%2Fupdate-base%2F%23parameter2a

Example response:

<pre>

<http://example/update-base/#parameter3a>

</pre>

Template .txt

0 parameter

select distinct ?parameter2 where {

<[0]> < http://www.chic.eu/ontologies/resource#interpreted-type> ?i .

?parameter2 < http://www.chic.eu/ontologies/resource#interpreted-type> ?i .

?parameter2 < http://www.chic.eu/ontologies/resource#output-parameter-of> ?model2

}

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 53 of 55

7 Conclusion

In the present report, we described

- the overall semantic infrastructure supporting semantic services,

- the CHIC component requirements for semantic services,

- The core Knowledge Representation underlying the representation of the data records
managed through semantic services,

- the Software housing the backend onto which semantic services are applied,

- the invocation of selected basic examples of semantic services.

We did not delve further into the details of the knowledge representation in the present deliverable.

The work evolves through processes of refinement and iteration and we envision evolutions which
more specifically will concern:

- Model Repository services

- Clinical Data Repository Services

- GUI configuration services

We will maintain an online and publicly available repository with the following content:

- Software for the semantic infrastructure

- Ontologies and their documentation

- Template use of the ontologies within the software environment in support of required
services.

https://github.com/open-physiology/chic

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 54 of 55

8 References

[1] D6.1 – Cancer hypomodelling and hypermodelling strategies and initial component models

[2] D8.1 – Design of the CHIC repositories

[3] http://www.mkbergman.com/483/advantages-and-myths-of-rdf/

[4] Schulz, M., Krause, F., Le Novere, N., Klipp, E., & Liebermeister, W. (2011). Retrieval, alignment,
and clustering of computational models based on semantic annotations. Molecular systems
biology, 7(1), 512.

[5] D8.3 – Implementation of the interfaces of the CHIC repositories

Grant Agreement no. 600841

D7.3 – Hypermodels annotation services

Page 55 of 55

Appendix 1 – Abbreviations and acronyms

RDF Resource Description Framework

URI Uniform Resource Identifier

ER Entity Relationship

OWL Web Ontology Language

API Application Programming Interface

LOLS Local Ontology Lookup Service

OWLKB OWL Knowledge Base

SPARQL SPARQL Protocol and RDF Query Language

JSON JavaScript Object Notation

TSV Tab Separated Value

CHICRO CHIC Resource Ontology

FMA Foundational Model of Anatomy

CHEBI Chemical Entities of Biological Interest

PATO Phenotypic Quality Ontology

GO Gene Ontology

UO Unit Ontology

