

Deliverable No. 7.1

Hypermodelling specifications

Grant Agreement No.: 600841

Deliverable No.: D7.1

Deliverable Name: Hypermodelling specifications

Contractual Submission Date: 30/03/2014

Actual Submission Date: 30/06/2014

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 2 of 41

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 3 of 41

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: CHIC

Project Full Name: Computational Horizons In Cancer (CHIC): Developing Meta- and

Hyper-Multiscale Models and Repositories for In Silico Oncology

Deliverable No.: D7.1

Document name: Hypermodelling specifications

Nature (R, P, D, O)1 R

Dissemination Level (PU, PP,

RE, CO)2

PU

Version: 9.0 (Final)

Actual Submission Date: 30/06/2014

Editor:

Institution:

E-Mail:

Georgios Stamatakos

ICCS-NTUA

gestam@central.ntua.gr

ABSTRACT:

The aim of this deliverable is to present the initial technological hypermodelling specifications. By

hypermodelling, we define the process of developing hypermodels. The fundamental concepts of

the domain that CHIC project belongs to, and the terms that have been adopted or proposed in

order to describe effectively the CHIC “microenvironment” are explained.

The various components of the CHIC Hypermodelling Framework are presented from a functional

point of view. A significant part of the deliverable has been dedicated to the description of a

specific component, the so called Generic Stub. The Generic Stub is particularly important since it

acts as a “bridge” between two CHIC workpackages, “WP6: Cancer Models and Hypermodel Design”

and “WP7: Hypermodelling infrastructure”.

KEYWORD LIST:

hypermodelling specifications, hypermodelling framework, model, hypermodel, hypomodel,

generic stub, model wrapper, workflow manager, workflow orchestrator, log manager, fault

manager, registry service, annotation services, in silico medicine

1 R=Report, P=Prototype, D=Demonstrator, O=Other
2
 PU=Public, PP=Restricted to other programme participants (including the Commission Services), RE=Restricted to a group

specified by the consortium (including the Commission Services), CO=Confidential, only for members of the consortium
(including the Commission Services)

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 4 of 41

The research leading to these results has received funding from the European Community's Seventh

Framework Programme (FP7/2007-2013) under grant agreement no 600841.

The author is solely responsible for its content, it does not represent the opinion of the European

Community and the Community is not responsible for any use that might be made of data appearing

therein.

MODIFICATION CONTROL

Version Date Status Author

1.0 17/01/2014 Index Draft Daniele Tartarini, USFD
Marco Viceconti, USFD
Dawn Walker, USFD

2.0 07/03/2014 Draft Marco Viceconti, USFD
Dawn Walker, USFD
Debora Testi, CINECA

3.0 08/03/2014 Draft Fay Misichroni, ICCS-NTUA

4.0 09/03/2014 Draft Debora Testi, CINECA

5.0 15/03/2014 Draft Fay Misichroni, ICCS-NTUA

6.0 22/03/2014 Draft Stelios Sfakianakis, FORTH

7.0 20/06/2014 Draft Fay Misichroni, ICCS-NTUA

8.0 27/06/2014 Revision Dimitra Dionysiou, ICCS-NTUA

9.0 30/06/2014 Final Georgios Stamatakos, ICCS-NTUA

Additional Contributors

- Feng Dong, BED

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 5 of 41

Contents

1 EXECUTIVE SUMMARY .. 7

2 INTRODUCTION .. 8

2.1 PURPOSE OF THIS DOCUMENT .. 8
2.2 STRUCTURE OF THE DELIVERABLE .. 8

3 DEFINITIONS ... 9

3.1 INTRODUCTION .. 9
3.2 GENERIC DEFINITIONS .. 9

3.2.1 In silico... 9
3.2.2 In silico medicine .. 9
3.2.3 Virtual Physiological Human (VPH) ... 9

3.3 SCIENTIFIC AND TECHNOLOGICAL DEFINITIONS .. 10
3.3.1 Data .. 10
3.3.2 Scientific model .. 10
3.3.3 Computer model .. 10
3.3.4 Metadata... 10
3.3.5 Ontology (computer science) .. 10
3.3.6 Folksonomy (computer science) .. 11
3.3.7 Orchestration or choreography (technology) .. 11

3.4 CHIC PROJECT DEFINITIONS ... 12
3.4.1 Model .. 12
3.4.2 Hypomodel (or component model) ... 12
3.4.3 Hypermodel (or composite model or integrative model) .. 12
3.4.4 Elementary model .. 12
3.4.5 Meta-model, meta-hypomodel, meta-hypermodel .. 12
3.4.6 Adaptor or relational model ... 13
3.4.7 Merger... 13
3.4.8 Linker ... 13
3.4.9 Hypermodelling .. 14
3.4.10 Hypermodelling infrastructure ... 14
3.4.11 Hypermodelling framework .. 14

4 GENERIC STUB AND MODEL WRAPPER ... 15

4.1 INTRODUCTION .. 15
4.2 COMPOSITION ASPECTS .. 15
4.3 THE GENERIC STUB ... 16
4.4 TYPE OF MODELS .. 17
4.5 THE MODEL WRAPPER ... 17
4.6 ALTERNATIVE APPROACHES ON MODEL WRAPPING .. 19
4.7 THE GENERIC STUB FROM THE MODELLER’S POINT OF VIEW ... 20
4.8 FUNCTIONAL REQUIREMENTS ... 21

5 CHIC HYPERMODELLING FRAMEWORK (CHIC-HF) .. 22

5.1 INTRODUCTION .. 22
5.2 BASIC CHARACTERISTICS OF THE CHIC HYPERMODELLING FRAMEWORK .. 22
5.3 WORKFLOW ORCHESTRATOR ... 24
5.4 WORKFLOW MANAGER .. 25
5.5 REGISTRY SERVICE ... 26
5.6 LOG MANAGER .. 27
5.7 FAULT MANAGER ... 28
5.8 AUTHENTICATION SERVICE .. 29
5.9 STORAGE SERVICE ... 30
5.10 ANNOTATION SERVICE .. 32
5.11 HYPERMODELLING EDITOR .. 33

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 6 of 41

5.12 HYPERMONITOR ... 35

6 CHIC HYPERMODELLING FRAMEWORK AND CHIC ARCHITECTURE ... 37

7 HOSTING INFRASTRUCTURE .. 38

8 CHIC-HF RELEASE PLAN ... 39

9 CONCLUSION .. 40

APPENDIX – ABBREVIATIONS AND ACRONYMS .. 41

Table of figures

Figure 1 : Graphical representation of the linker, the adaptor and the merger. The whole figure can
be viewed as representing a single hypermodel. ... 13

Figure 2 : The different model description and composition aspects ... 15

Figure 3 : Generic representation of a model including control flow and data flow............................ 16

Figure 4 : Graphical representation of interaction of the Model Wrapper with other components. ... 18

Figure 5 : The role of the Model Wrapper in handling data and control flow between an individual
hypomodel and the execution framework... 19

Figure 6: A mockup interface of the Hypermodelling Editor. ... 33

Figure 7 : The Hypermonitor GUI... 35

Figure 8 : A logical diagram of the CHIC Hypermodelling functional components and their
interactions. ... 36

Figure 9 : The abstract layered view of the CHIC architecture ... 37

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 7 of 41

1 Executive Summary

Developing robust, reproducible, interoperable and collaborative hypermodels of diseases and

normal physiology is a sine qua non necessity if rational, coherent and comprehensive exploitation of

the invaluable information hidden within human multiscale biological data is envisaged. Responding

to this imperative in the context of both the broad Virtual Physiological Human (VPH) initiative and

the paradigmatic cancer domain, CHIC proposes the development of a suite of tools, services and

secure infrastructure that will support accessibility and reusability of VPH mathematical and

computational hypermodels. The CHIC tools, services, infrastructure and repositories will provide the

community with a collaborative interface for exchanging knowledge and sharing work in an effective

and standardized way. A number of open source features and tools will enhance usability and

accessibility.

In order to ensure clinical relevance and foster clinical acceptance of hypermodelling in the future,

the whole endeavour will be driven by the clinical partners of the consortium. Cancer hypermodels

to be collaboratively developed by the consortium cancer modellers will provide the framework and

the test bed for the development of the CHIC technologies. Clinical adaptation and partial clinical

validation of hypermodels and hypermodel oncosimulators will be undertaken.

Work package 7 (WP7) aims at:

 Wrapping and deploying each component model according to a Component Model Generic

Stub, which standardises the model’s control and data flow and makes possible the

orchestration of several models into hypermodels.

 Developing basic annotation and tags management services, to be used for the provision of i)

folksonomy annotation and search services, and ii) ontology-base search services.

 Developing an ICT hypermodelling infrastructure that makes possible the construction and

execution of hypermodels, formed by component models and relational models.

 Developing hypermodels annotation services and exploring the use of innovative

technologies such as the use of linked data or semantic reasoning.

 Deploying all hypermodelling technologies on a production private cloud in order to be used

by the CHIC consortium to analyse patients’ data.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 8 of 41

2 Introduction

2.1 Purpose of this document

This deliverable aims at presenting the initial hypermodelling specifications. By hypermodelling, we

define the process of developing hypermodels.

The deliverable begins with an introduction to the fundamental concepts of the domain that CHIC

project belongs to, but also with an introduction to the terms that have been adopted or invented in

order to describe effectively the CHIC “microenvironment”.

The document proceeds with its main objective: to present the various components participating in

the CHIC Hypermodelling Framework from a functional point of view. The deliverable dedicates a

significant part to describing a specific component, the so called Generic Stub. The Generic Stub is so

important because it acts as a “bridge” between “WP6: Cancer Models and Hypermodel Design”, and

“WP7: Hypermodelling infrastructure”.

2.2 Structure of the Deliverable

Chapter 3 presents a set of definitions that intent to introduce the reader into the domain that the

CHIC project belongs to and provides descriptions of fundamental concepts and terms that will be

used in the CHIC project. The collaborating efforts of all members of the CHIC consortium have

resulted into the collection of a wide set of concepts and terms. Chapter 3 presents a subset of those

concepts and terms, the ones that are relative to the content of the current deliverable.

Chapter 4 describes the Generic Stub and the Model Wrapper. These components are fundamental

for the overall CHIC modelling architecture, as they provide a generic abstraction of a model. This

approach can provide to the partners of the CHIC project a common base for their respective

activities.

Chapter 5 presents the various components participating in the CHIC Hypermodelling Framework

from a functional point of view. Chapter 6 describes where the CHIC Hypermodelling Framework is

located in the overall CHIC architecture and what interconnections exist.

Finally, Chapter 7 presents the initial release plan of the CHIC Hypermodelling Framework and

Chapter 8 describes the infrastructure that will host the CHIC Hypermodelling Framework.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 9 of 41

3 Definitions

3.1 Introduction

The objective of this chapter is to present a set of definitions that will introduce the reader into the

domain that the CHIC project belongs to and to provide the descriptions of the fundamental

concepts and terms that will be used in the CHIC project. The collaborating efforts of all members of

the CHIC consortium have resulted into the collection of a wide set of concepts and terms. This

chapter presents a subset of those concepts and terms: the ones that are relative to the content of

the current deliverable.

3.2 Generic definitions

3.2.1 In silico

In silico is an expression used to mean “performed on a computer or via computer simulation”. The

phrase was coined in 1989 as an analogy to the Latin phrases in vivo, in vitro, and in situ, which are

commonly used in biology and refer to experiments done in living organisms, outside of living

organisms, and where they are found in nature, respectively3.

3.2.2 In silico medicine

In silico medicine (also known as “computational medicine”) is the application of in silico research to

problems involving health and medicine. It is the direct use of computer simulation in the diagnosis,

treatment, or prevention of a disease. More specifically, in silico medicine is characterized by

modelling, simulation, and visualization of biological and medical processes by use of computers with

the goal of simulating real biological processes in a virtual environment4.

3.2.3 Virtual Physiological Human (VPH)

The Virtual Physiological Human (VPH) is a methodological and technological framework that enables

collaborative investigation of the human body as a single complex system. The collective framework

makes it possible to share resources and observations formed by institutions and organizations

creating disparate but integrated computer models of the mechanical, physical and biochemical

functions of a living human body5.

3
 http://en.wikipedia.org/wiki/In_silico

4 http://en.wikipedia.org/wiki/In_silico_medicine
5
 STEP Consortium. Seeding the EuroPhysiome: A Roadmap to the Virtual Physiological Human. 5 July 2007

http://en.wikipedia.org/wiki/In_silico
http://en.wikipedia.org/wiki/In_silico_medicine
http://www.europhysiome.org/roadmap

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 10 of 41

3.3 Scientific and technological definitions

3.3.1 Data

We define data as factual information, whether observed or predicted.

 Observed: generated through observation, measurement etc.

 Predicted: generated through speculative reasoning informed by existing knowledge.

3.3.2 Scientific model

We can define a scientific model as a finalized cognitive construct of finite complexity that idealizes

an infinitely complex portion of reality through idealizations that contribute to the achievement of

knowledge on that portion of reality that is objective, shareable, reliable and verifiable6.

3.3.3 Computer model

We define a computer model as a computer program that implements a scientific model, so that,

when executed according to a given set of control instructions (control inputs), it computes certain

quantities (data outputs) on the basis of a set of initial quantities (data inputs) and a set of execution

logs (control outputs).

3.3.4 Metadata

Metadata is “data about data”. The term is ambiguous, as it is used for two fundamentally different

concepts (types) 7.

 Structural metadata refers to the design and specification of data structures and is more

properly called "data about the containers of data".

 Descriptive metadata, on the other hand, refers to individual instances of application data,

i.e. the data content.

3.3.5 Ontology (computer science)

In computer science and information science, an ontology formally represents knowledge as a set of

concepts within a domain, using a shared vocabulary to denote the types, properties and

interrelationships of those concepts.

6 Viceconti M 2011 A tentative taxonomy for predictive models in relation to their falsifiability. Philos Transact
A Math Phys Eng Sci 369(1954):4149-61.
7
 http://en.wikipedia.org/wiki/Metadata

http://en.wikipedia.org/wiki/Metadata

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 11 of 41

3.3.6 Folksonomy (computer science)

In information science, a folksonomy is a system of classification derived from the practice and

method of collaboratively creating and translating tags to annotate and categorize content. This

practice is also known as collaborative tagging, social classification, social indexing, and social

tagging.

3.3.7 Orchestration or choreography (technology)

In the context of Service-Oriented Architectures (SOA) the two terms indicate the coordinated

execution of multiple services. Different authors use the two terms differently8. However, in cases

like ours where the execution of the services is coordinated centrally (autocratic) the term

orchestration is preferred.

8
 http://www.infoq.com/news/2008/09/Orchestration

http://www.infoq.com/news/2008/09/Orchestration

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 12 of 41

3.4 CHIC project definitions

3.4.1 Model

In CHIC project we use the general term “model” in order to define a mathematical or computational

construct incorporating speculative information that represents the existing knowledge.

Computational implementation of such a model is capable of virtually regenerating an entity or

phenomenon. The above definition is in alignment with the terms “scientific model” and

“computational model” described in sections 3.3.2 and 3.3.3, respectively.

3.4.2 Hypomodel (or component model)

We define as a hypomodel (or component model) a model that captures the existing knowledge

about a portion of the process, typically at a characteristic space-time scale, and simulates a simpler

entity or phenomenon compared to a model or a hypermodel.

3.4.3 Hypermodel (or composite model or integrative model)

We define as a hypermodel (or composite model or integrative model) a model that emerges from

the composition and orchestration of multiple hypomodels, each one of which is capable of

simulating a specific entity or phenomenon. The hypermodel can simulate an entity or phenomenon

that may be more complex than the ones simulated by each separate simpler model.

3.4.4 Elementary model

We define as an elementary model a model that, from a particular standpoint, appears (subjectively)

not amenable to decomposition into meaningful simpler models, mainly because the current

scientific knowledge and technological status cannot support such a decomposition. It is almost

certain that future scientific discoveries and technological advantages will allow models that

presently are considered as elementary models to be further decomposed into new elementary

models.

3.4.5 Meta-model, meta-hypomodel, meta-hypermodel

We define as a meta-model the semantic description of a model. The meta-model can be considered

as an abstract representation of a model, as it highlights certain properties of the model itself.

Consequently, a meta-hypomodel and a meta-hypermodel is the semantic description of a

hypomodel and a hypermodel respectively.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 13 of 41

Figure 1 : Graphical representation of the linker, the adaptor and the merger. The whole figure can

be viewed as representing a single hypermodel.

3.4.6 Adaptor or relational model

We define as an adaptor (or relational model) a piece of software that adapts/transforms the

predicted output of a hypomodel so as to enable its provision as input to another hypomodel.

3.4.7 Merger

We define as a merger a piece of software that merges the adequately adapted outputs of two

hypomodels.

3.4.8 Linker

We define as a linker a piece of software inserted between the outputs of two hypomodels and the

input of a third hypomodel so as to allow the merged and adapted output of the two hypomodels to

be fed into the third hypomodel. The linker consists generally of adaptors and a merger. The linkers

and the participating hypomodels are the constructive elements of a hypermodel.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 14 of 41

3.4.9 Hypermodelling

We define as hypermodelling the process of developing hypermodels.

3.4.10 Hypermodelling infrastructure

We define as hypermodelling infrastructure the set of technological components that facilitates the

development of hypermodels and allows their execution. This includes both software and hardware.

3.4.11 Hypermodelling framework

We define as hypermodelling framework the software layer that facilitates the development of

hypermodels and allows their execution. The various models and the supplementary components

(adaptors, mergers, linkers, etc.) are not considered to be part of the framework themselves, but

they are retrieved or invoked upon request.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 15 of 41

4 Generic Stub and Model Wrapper

4.1 Introduction

The objective of this chapter is to describe the Generic Stub and the Model Wrapper. These

components are fundamental for the overall CHIC modelling architecture, as they provide a generic

abstraction of a model. This approach can provide to the partners of the CHIC project a common

base for their respective activities.

4.2 Composition aspects

In the CHIC project the models are described:

 In the “concrete world”, as computational entities that can be invoked and executed.

 In the “abstract world”, as metamodels that incorporate information about their domain,

functionality, semantics, etc.

Figure 2 : The different model description and composition aspects

In the “concrete world” the models can be considered as Hypomodels which, when combined

together, can be used for building more complex Hypermodels. The composition strategy is based on

the notion of Orchestration where the Hypomodels are viewed as software components that interact

by exchanging data under the supervision and control of a central Orchestrator.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 16 of 41

4.3 The Generic Stub

In order to have the aforementioned interactions in the context of a hypermodel, the platform

should be able to accommodate a lot of different types of models both from the computational and

the abstract layer.

The “Component Model Generic Stub”, or Generic Stub for short, is a template that all models

participating in CHIC should comply with in order to be effectively integrated into the rest of the

platform.

The Generic Stub is a fundamental component of the CHIC Hypermodelling Framework. It aims at

exposing each model in a standardized way, by providing a unified interface for the model execution.

This approach allows considering each model as a black-box to be executed without needing details

on how it is implemented or on how it is working internally.

More specifically, the role of the Generic Stub is:

 to expose each model to the rest of the CHIC Hypermodelling Framework with the same API

 to handle control flow and data flow for the model.

The Generic Stub must comply with the following specifications:

 Be easy to be used by non-developers (i.e. researchers), possibly working with a GUI

environment.

 Allow the mapping from the general syntax of the hypermodel to the local one of the

hypomodel.

 Be open to extension, meaning that new models can be wrapped.

 Handle both data and control flow for individual models.

Figure 3 : Generic representation of a model including control flow and data flow.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 17 of 41

4.4 Type of models

An initial analysis of the models presented in deliverable “D6.1: Cancer hypomodelling and

hypermodelling strategies and initial component models” indicates that the majority of the models

under consideration are provided mostly as scripts for an interpreted language such as Python, Perl,

or Matlab, or as binary C/C++ compiled executables.

Nevertheless, in order to be as generic as possible, we define the following types of models

depending on their execution properties:

 “Configurable”, which means that the model has been provided with all the needed

information to be executed in a generic way. The models encoded in a standard model

description language such as SBML belong to this category, assuming that all the inputs and

outputs parameter information and simulation requirements are provided. The models that

are published as script or executable code in a specific execution environment (e.g.

Operating System, programming environment like Matlab, Octave, etc.) are also examples of

this type, and the same requirements apply.

 “Static”, which means that the models have been published as network accessible resources,

for example as Web Services and there are network endpoints for accessing such models. In

this case the models themselves are not available, but there are programmatic interfaces to

invoke them by supplying the required inputs.

 “Migrating”, which applies to models that are provided as virtual machine (VM) images ready

to be deployed and run in a cloud, “virtualized” environment. This permits for more flexible

(“elastic”) deployment options where models are deployed and run “on demand” as load

increases.

4.5 The Model Wrapper

The Model Wrapper is an implemented instance of the Generic Stub.

It contains information on how to execute the specific model that has been wrapped and supports

operations such as:

 Connection to the storage services to retrieve data and push result files.

 Communication with the registry and the log management to provide information on its

execution.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 18 of 41

Figure 4 : Graphical representation of interaction of the Model Wrapper with other components.

More specifically, the Model Wrapper

 Decrypts/encrypts data passed between the storage service and the model.

 Launches the script required in order to execute the model.

 Provides functionality to access the control flow (i.e. kill or stop the wrapper execution).

 Manages the creation of a log database which is sent to the log manager after execution.

In case of “configurable” models the implementation of the Model Wrapper can be a generic one, i.e.

one implementation to support the execution and monitoring of a “family” of models. In the other

cases the model implementers should provide the Model Wrapper because there is tight coupling

between the models themselves and the Model Wrapper.

Model Repository

Workflow

Environment

Model Wrapper

Model Wrapper

Model Wrapper

GUI Enactor

Model
Model

Model

Data Storage

Execution

Log

Execution

Log

Execution

Log

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 19 of 41

Figure 5 : The role of the Model Wrapper in handling data and control flow between an individual
hypomodel and the execution framework.

4.6 Alternative approaches on model wrapping

There are two possible approaches concerning model wrapping:

 The first, used in the VPH-OP project9, sees the execution framework as a tightly controlled,

highly optimized computational environment. New models are deployed on the target hosts,

and wrapped by the modellers in collaboration with the framework developers. Once a

model is wrapped, and exposed to the MAF3 Bus module, any workflow can invoke it at run

time, as far as its status is “running”.

 The alternative is to expose each model as an atomic Remote Procedure Call (RPC), to

manage the orchestration through direct calls, and to manage the data flow separately (i.e.

with replication mechanisms). In this case the hypomodel is exposed using a Remote

Procedure Call (RPC) interface. Examples for such interfaces in Thrift IDL and Web Services

Definition Language (WSDL).

While the first approach ensures excellent optimization and makes it possible to cope also with

computationally and data intensive models, the second might be affected by considerable latencies,

especially with large data objects. However, the second approach is much more flexible and requires

much less central effort, allowing a more dynamic growth of the model repository.

9
 http://www.vphop.eu/

http://www.vphop.eu/

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 20 of 41

Both approaches are considered and are being tested in order to find the one that best suits the

needs of the CHIC project.

Taking into consideration that the vast majority of the models to be wrapped are described using

some interpreted language (Ansys APDL, Matlab, Octave, CellML, SMBL, Python, etc.) we propose to

create:

 A wrapper that can be pre-configured by a developer for each modelling environment

(Matlab, Octave, Ansys,...) or generic mark-up format (SBML, CellML etc.) that support an

interpreted script.

 A simple configuration file that can be supplied by an individual modeller to supply

information related to model input and output data, including parameter and data set

location and types.

A number of options related to the format of this configuration file are currently under exploration.

These include:

 A mark up language format e.g. XML-based file, where the user is required to populate a

series of fields denoted by designated tags.

 A script file format (e.g. Python-based).

 A web-interface, through which an individual user can annotate model input/output

specifications on a dedicated web form.

Once the necessary hypomodels are wrapped, the CHIC Hypermodelling Framework can orchestrate
any execution that combines them in any fashion, managing both control and data flow.

4.7 The Generic Stub from the modeller’s point of view

The author/creator of a new hypomodel to be used in CHIC should provide all the information that

comprises the Metamodel (i.e. scale, inputs and outputs annotation, descriptive metadata such as

model’s title, etc.). At the computational level the modeller needs to provide the model itself in one

(or many) computable form, and this can be either “configurable”, “static”, or “migrating”, as

described in section 4.4.

 In the “static” case the model provider is responsible for hosting the model implementation

in his premises, or in leased infrastructure, and also for providing machine readable access to

this model. The interface of this network accessed model should be the same as the wrapper

interface presented above.

 In the “migrating” case the model provider should supply a ready-made virtual machine

instance for the CHIC-compliant cloud infrastructure. After its run time deployment of the

instance performed by the Workflow Environment in the context of a hypermodel execution,

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 21 of 41

the instance should provide a similar wrapper interface in the network address of its

deployment.

 The “configurable” case puts a lot more effort in the CHIC execution framework since it

makes use of the CHIC generic wrapper interface. This wrapper should follow the interface

presented above and there can be multiple realizations of it, depending on the nature of the

“configurability”: for example, one wrapper can be implemented for executing SBML models,

another one for executing command line tools etc. The execution information is specific to

the model implementation and the wrapper should retrieve it from the model repository.

The last case is by far the most important based on the list of models in deliverable “D6.1: Cancer

hypomodelling and hypermodelling strategies and initial component models” and also on earlier

experiences. Therefore, it is the case where most effort and optimization need to be put on. The

requirements and effort imposed to the model creators should be kept at minimum in order for CHIC

to gain visibility and attract users.

4.8 Functional requirements

The Model Wrapper must support the following operations (in pseudo code):

• run_model (parameters: key-value-pairs-list, exec-context-id: string,
model-id: string, security-info: …, other: …)

It returns a "run-id" that uniquely identifies the execution or an error (e.g. if a model was not

found in the repository). The supplied inputs include a list of parameter names and their

values, the “execution context id” that uniquely identifies the execution of the workflow that

triggers the run of this model, the model identifier, security information (e.g. the user id),

etc.

• get_status(run-id: string)

It returns the status of the specific model execution, e.g. whether it’s RUNNING, STOPPED,

etc.

• get_results (run-id: string)

It returns a "key-value-pairs-list" with the model output or error if execution hasn't finished.

In case of a file as output the key-value pair will indicate the URIs of the newly created

resources.

• get_log (run-id: string)

It returns the logged execution information (e.g. error messages).

• Some "control" operations: stop, start, abort, etc. all accepting the "run-id" parameter.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 22 of 41

5 CHIC Hypermodelling Framework (CHIC-HF)

5.1 Introduction

The CHIC Hypermodelling Framework (CHIC-HF) consists of a set of components that facilitate the

execution of hypermodels. The objective of this chapter is to present the various components

participating in the CHIC Hypermodelling Framework from a functional point of view.

5.2 Basic characteristics of the CHIC Hypermodelling Framework

The architecture of the CHIC Hypermodelling Framework is designed in such a way so as to comply

with the following characteristics:

 to be possible to replace or modify components without disrupting other services, ensuring

easy maintenance, extension, and update of the system

 to be possible to easily add in the future new components or new features to the

architecture, i.e. new hypomodels or specialised modules

 to provide interfaces by which end-users applications can access information concerning the

running workflow/modules in order to be presented to the end-user and modellers via

proper user interfaces

In order to achieve this, the CHIC Hypermodelling Framework has been decomposed into different

components. The partner in charge of each component has selected the most suitable technology for

either implementing new modules/services or extending/modifying ones that have been developed

in the context of previous projects, such as TUMOR10 and VPH-OP11.

The core components of the CHIC Hypermodelling Framework are:

 The Generic Stub (already presented in chapter 4)

 The Workflow Orchestrator

 The Workflow Manager

The following components are also part of the CHIC Hypermodelling Framework, as they are

responsible for necessary supplementary tasks. These components are:

 The Log Manager

10 http://tumor-project.eu/
11

 http://www.vphop.eu/

http://tumor-project.eu/
http://www.vphop.eu/

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 23 of 41

 The Fault Manager

 The Authentication Manager

Additionally, the CHIC Hypermodelling Framework includes several services that aim at assisting the

interaction with other components of the CHIC framework. These services are:

 The Storage Service

 The Annotation Service

Finally, we also describe two tools that are directly connected with the CHIC Hypermodelling

Framework:

 The Hypermodelling Editor

 The Hypermonitor

During the development of the various components of the CHIC Hypermodelling Framework, changes

in the architecture or/and the functional components might occur. These modifications will be

reported in the future CHIC Hypermodelling Framework documentation.

The following sections contain the description and the minimum requirements/specifications for the

interfaces of each component. The aforementioned specifications will help minimize the

interdependencies between the components and will facilitate a more effective implementation.

During the development phase, the specifications of the interfaces will be accordingly updated when

needed, from a functional or an integrative point of view.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 24 of 41

5.3 Workflow Orchestrator

Description

The Workflow Orchestrator is the component that is responsible for the execution of already saved

hypermodels. It acts as an orchestrating engine that triggers the execution of the participating

hypomodels and supplementary software components, such as linkers, and passes the data around,

from the source sub-model (producer) to the target sub-model (consumer). Thus, this service

contains all the information on the sequence diagrams. Consequently, it launches the sub-models in

the right order and, when a sub-model stops or ends its execution, it retrieves the relative

information.

Taverna

Taverna12 is an open source and domain-independent Workflow Management System13. Taverna

consists of:

 The Taverna Server that acts as the remote workflow execution service that enables a

dedicated server to be set up for executing workflows remotely.

 The Taverna Workbench that enables the graphical creation, editing and running of

workflows locally.

Taverna Server represents the orchestrator of the CHIC Hypermodelling Framework.

Functional requirements

The Workflow Orchestrator must support the following operation (in pseudo code):

 execute_workflow(exec-context-id: string, storage-id: string,

security-info: …, input-file-list: string, output-file-list:

string, parameters: key-value-pairs-list)

It triggers the execution of the participating sub-model and passes the data around, from the

source sub-model (producer) to the target sub-model (consumer). It takes as input

information: which is the uniquely identified associated workflow to be executed (exec-

context-id), where is the data repository (storage-id), the inputs and outputs files and any

other additional parameter necessary to the execution of the sub-models.

12 http:/www.taverna.org.uk/
13

 Workflow Management System: a suite of tools used to design and execute scientific workflows.

http://www.taverna.org.uk/

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 25 of 41

5.4 Workflow Manager

Description

The Workflow Manager is the dispatcher component which executes a given hypermodel on the data

of a given patient. While the Workflow Orchestrator communicates with single hypomodels for

execution, the Workflow Manager role is to check the user credentials, to create a workflow

execution session, to connect to the registry in order to warn about problems before starting the

actual execution, and to log about the progress of execution or about the appearance of errors. It is

also the interface between the end-user applications and the back-end technology.

In summary, the Workflow Manager is the workflow dispatcher that:

 handles association between users and workflows,

 handles communication between the end user applications and other hypermodel core

modules, and

 permanently serializes workflows related information and creates an execution context for

the workflow to run (e.g. stages needed data, creates temporary folders, etc).

Functional requirements

The Workflow Manager must support the following operations (in pseudo code):

 submitWorkflow(storage-id: string, security-info: …, input-

definition-file: string, wf-definition-file: string, parameters:

key-value-pairs-list)

It prepares the workflow for execution by assigning it the unique id (provided in output as

“execution context id”), gets the user permissions (security-info), and collects the file

describing the workflow (wf-definition-file) and its data input and output description (input-

definition-file).

 startWorkflow(exec-context-id: string)

 It starts the workflow execution and returns an error or a success code.

 stopWorkflow(exec-context-id: string)

It stops the selected workflow execution and returns an error or a success code.

 get_WorkflowInformation (exec-context-id: string)

It returns information concerning the workflow under consideration such as the status (i.e.

initialised, running, completed), the owner, the creation time, the start and finish time, etc.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 26 of 41

 get_WorkflowsList ()

It returns information on all workflows.

5.5 Registry Service

Description

Each one of the modules or services available for composing a workflow must be registered. The

information related to the registered modules/services is contained in a database, called the

Registry. The Registry contains information about the description and the status of the modules and

services, such as availability (down, free, busy), location, description, etc.

The Registry Service is the component that is responsible for accessing and managing the Registry.

Functional requirements

The Registry Service must support the following operations (in pseudo code):

 register_service(name: string, service-uri: string, description:

string, status: string, endpoint: string)

It allows adding a new service or module into the Registry and returns either an error code or

the service or module unique id. The “endpoint” type will be different according to the type

of generic stub to be added (i.e. wsdl for a web service, storage location for a script, etc.).

The “status” represents the information on the running of the service (i.e. running, down,

stopped, etc.) to be used later on by the Workflow Manager and by other services.

 unregister_service (service-id: string)

It removes the specific service or module from the Registry.

 get_ServiceInformation (service-id: string)

It returns the information stored for a specific service or module into the Registry.

 get_ServicesList ()

It returns the list of all available services or modules stored into the Registry along with their

information.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 27 of 41

5.6 Log Manager

Description

The Log Manager is the component that is responsible for collecting the logs produced during

execution of each sub-model. The logs are provided by each sub-model during its execution in the

workflow. The logs produced can be accessed by the various end-user applications, such as the

Workflow Manager and the Fault Manager.

The Log Manager requests a detailed log from other modules by polling each of them periodically. It

saves the result of the call in a database record. It also provides APIs for accessing the database. The

information gathered can be queried later by the Workflow Manager to make it also available to the

end-users applications.

Functional requirements

The Log Manager must support the following operations (in pseudo code):

 get_log (date-range: string, exec-context-id: string, run-id:

string, security-info: …)

It gets the log in a certain time range for the specific module (run-id) in the specific workflow

execution (exec-context-id) to be added to the database.

 update_log (exec-context-id: string, run-id: string, security-info:

…)

It updates the information on the specific execution into the database of the logs.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 28 of 41

5.7 Fault Manager

Description

The Fault Manager is the component that is responsible for the management of exceptions and

errors in the execution of sub-models. Additionally, it is responsible for dealing with errors and

failures of the architectural and workflow components.

If an exception occurs during the execution of a sub-model, the Fault Manager immediately provides

to the user the relevant information and possibly the intermediate results. The detection of an

exception in the execution of one model allows other models to free their resources or/and switch to

other tasks. This can be managed in conjunction with the Workflow Manager.

The Fault Manager is actually a service. This service monitors the logs to detect fault situations,

which may also be reported by the user, and, according to the type of problem, launches the

appropriate procedure. It is possible to create different behaviours, called policies, such as the

ABORT, RESUME, STOP, etc.

Functional requirements

The Fault Manager must support the following operations (in pseudo code):

 set_Policy (name: string, description: string, type: string)

It allows setting the policy to be executed in association to different types of fault events. It

returns an error code.

 get_Policy()

It returns the list of available policies for fault management in terms of name, description

and type.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 29 of 41

5.8 Authentication Service

Description

The Authentication Service is the component that is responsible for authenticating the user into the

CHIC Hypermodelling Framework. This service will allow the easy integration of the security layer

being developed in the context of “WP5: IT Architecture”, by providing to the CHIC Hypermodelling

Framework a unique API to get the user information. The Authentication Service allows obtaining

user credentials from different authorisation mechanisms, such as OpenID, SAML etc.

The Authentication Service provides the mechanisms to authenticate the user into the system, and it

is equipped with features for accounting and granting permissions only to certain parts of the CHIC

Hypermodelling Framework. The service obtains valid credentials and creates validation

ticket/security information, which is passed to all other requiring services.

Functional requirements

The Authentication Service must support the following operations (in pseudo code):

• validate_user(user-id: string):

It validates the user identity by connecting to the authentication mechanism available in

CHIC and returns the appropriate status code.

• get_permissions(user-id: string):

It returns for the specific user the associated “security info” like the permission level.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 30 of 41

5.9 Storage service

The Storage service is the component that is responsible for connecting to the repositories where

models and input/output data are stored. It might include also the services for data translation and

transformation.

The repositories themselves are not part of the CHIC Hypermodelling Framework, but they are

considered fundamental components of the CHIC platform (being developed in the context of “WP8:

Model and Data Repositories”). Below we present in brief these repositories and their corresponding

interfaces. More details can be found in deliverables “D8.2: Design of the CHIC repositories” and

“D10.2 Design of the orchestration platform, related components and interfaces”.

Model repository

The model repository is the physical entity where the modules used in construction and execution of

hypermodels are stored. The aforementioned modules can be hypomodels, hypermodels, linkers,

data transformation tools and other tools.

The model repository provides a REST read-write API for searching and retrieving modules

(hypomodels, hypermodels, linkers, data transformation tools and other tools) and for storing

constructed hypermodels. This API will be secured (authentication and authorization) according to

the adopted security framework in CHIC.

In Silico trial repository

The in silico trial repository is the physical entity where in silico trials are stored. Every “instance” of

the in silico trial consists of three parts:

 Its specification (the hypermodel to be used).

 The patient participating in the in silico trial and its corresponding data (the input data set to

be used in the execution of the hypermodel).

 The results produced when the in silico trial is completed (the output of the hypermodel

execution).

The in silico trial repository will incorporate a REST read-write API for searching, retrieving and

storing in silico trial instances. This API will be secured (authentication and authorization) according

to the adopted security framework in CHIC.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 31 of 41

Functional requirements

The Storage Service must support the following operations (in pseudo code):

 data_pull(data-id: string, security-info: …)

It retrieves from the data repository the data specified in the uri (data-id) and returns an

error code.

 data_push(exec-context-id: string, security-info: …, file-name:

string)

It uploads/stores the file into the repositories and returns its MD5 for checking the

correctness of the upload and the file URI.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 32 of 41

5.10 Annotation service

Description

The Annotation service is the component that is responsible for annotating the resources, which are

created or modified by the CHIC Hypermodelling Framework. For example, if new data are created

at the end of the hypermodel execution, these new data will need to be properly annotated.

This URL format to be used will have a base URL, followed by a resourceID that is unique to the

whole project, followed by a set of options through which various aspects of the resource can be

accessed. The REST approach will be most likely adopted, so the URL schema will be something like:

 http://baseurl/resourceid/

It returns all metadata

 http://baseurl/resourceid/function

It returns details on inputs, outputs, scale, functionality.

 http://baseurl/resourceid/description

It returns a human readable description of the resource.

 http://baseurl/resourceid/execution

It returns list of inputs and their metadata.

Functional requirements

 The Annotation Service must support the following operations for setting and retrieving metadata

(in pseudo code):

 set_metadata (resource-id: string, metadata: key-value-pairs-list,

metadata-schema: string)

It allows setting the metadata to be associated to the specific resource according to a pre-

defined metadata schema.

 get_metadata(resource-id: string)

It returns the list of the available metadata for a specific resource.

http://baseurl/resourceid/
http://baseurl/resourceid/function
http://baseurl/resourceid/description
http://baseurl/resourceid/execution

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 33 of 41

5.11 Hypermodelling Editor

Description

The Hypermodelling Editor is the component that is responsible for the modification or design of

new hypermodels as “workflows”. To make the composition process easier for users, it will be

provided as a web-based tool with a graphical user interface capable of assisting the user in the

construction of models and the visualization of the saved hypermodels. This editor will not expose

specific programmatic interfaces, but it will provide the Workflow Manager with workflow files for

execution in a standardized format.

Figure 6: A mockup interface of the Hypermodelling Editor.

The editor supports the design of the hypermodels using simple “point ‘n’ click” and “drag ‘n’ drop”

methods. The result is an abstract representation of the hypermodels without technical details being

displayed or affecting the way the user designs them. The model information is retrieved from the

model repository taking into account the semantic and syntactic annotations of the models. The

abstract hypermodel is represented as an acyclic graph that is transmitted in a well-defined format to

the Workflow Manager, where it’s made concrete by choosing the specific implementations of the

models and setting up the execution context.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 34 of 41

Functional requirements

The operations that must be supported by the Hypermodelling Editor have been presented in

deliverable “D5.1.1: The CHIC technical architecture”. For consistency, we also include them in this

deliverable (in textual format):

 List the available hypo and hyper models by contacting the relevant model repositories. This

functionality is further enhanced by the ability to filter the available models based on user

submitted search terms, annotation properties, etc. that are translated to proper semantic

queries.

 Provide a visual representation of the models in an intuitive graphical interface. In addition

to the basic descriptive metadata, such as the model descriptions, authors, citations, etc., it

also presents the model’s inputs, parameters, and outputs with their semantic and syntactic

type information.

 Provide information about compatible datasets that can be used for the invocation of the

selected models based on the semantic and syntactic information that models and data are

annotated with. Such annotation information and relevant metadata are retrieved by the

corresponding CHIC model and data repositories.

 Support the visual linking and fusion of the models for the construction of higher level, more

complex models (hyper-models). The semantic based descriptions of the models (meta

models) are taken into account in order to facilitate this hyper-model construction.

 Store and retrieve the built hyper-models with complete provenance and version control.

 Submit the hypermodels for instantiation as computational entities and their subsequent

execution to the Workflow Orchestrator.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 35 of 41

5.12 Hypermonitor

Once a hypermodel has been defined, a user can execute it with given input data, and monitor its

execution, using a very powerful but somehow complex tool called Hypermonitor.

The Hypermonitor is a fat client application that connects to the CHIC Hypermodelling Framework,

and lets the user login, see which hypomodels are available for execution, define complex workflows

that orchestrate them, execute such workflows, and observe the logging as the hypermodel

executes. This low level tool is essential for debugging the framework itself, for investigating issues

with specific hypermodels and for monitoring the status of the production CHIC Hypermodelling

Framework.

The Hypermonitor is a MAF3 C++ multi-platform implementation with QT-based user-interface. The

module must connect to the repositories and to the hypermodelling framework. The Hypermonitor is

an end-user module and thus does not expose an API.

The Hypermodelling Editor can invoke the Hypermonitor with the hypermodel to be run passed as a

parameter, and can connect to the CHIC Hypermodelling Framework in order to run immediately a

newly edited hypermodel. It connects to the hypermodelling infrastructure via a MAF3 proprietary

communication layer14, implemented, for efficiency, in XML-RPC.

Figure 7 : The Hypermonitor GUI.

14

 Communication layer: it is the message exchange service between the different services and sub-models.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 36 of 41

Functional requirements

The operations that must be supported by the Hypermonitor have been presented in deliverable

“D5.1.1: The CHIC technical architecture”. For consistency, we also include them in this deliverable

(in textual format):

 Provide real-time status of all hypomodel implementations available in the CHIC cloud that

the hypermodel to be executed requires. If multiple instances are available, the user can

choose the one to be used.

 Provide an execution interface, where the user selects the input data and submits the

hypermodel for execution.

 Provide a global log monitor, where the execution of the hypermodel and of all hypomodels

that compose it is reported in detail.

 Provide a command-line interface for the CHIC Hypermodelling Framework, where specific

commands can be issued, primarily for debugging purposes.

Figure 8 : A logical diagram of the CHIC Hypermodelling functional components and their

interactions.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 37 of 41

6 CHIC Hypermodelling Framework and CHIC Architecture

The CHIC architecture follows a generic, “archetypical” layered design that is depicted in the figure

below.

Figure 9 : The abstract layered view of the CHIC architecture

At the lower layer there are the cloud infrastructure and resource virtualization mechanisms that

support the deployment of the CHIC platform. The “Data integration” layer above offers the data

management functionality and provides the upload, storage, provenance, and linking of the data that

are handled throughout the CHIC system. The “Business Logic” layer is the core of the CHIC platform

providing the hypermodelling facilities, the linking of models and their execution. In the upper layer

the “User Interface” includes the CHIC Portal and other end user applications which, through their

graphical interfaces, support the end user scenarios. On the vertical axis, the semantic and security

layers offer the respective non-functional (quality) attributes of the system.

The CHIC Hypermodelling Framework therefore resides in the “Business Logic” layer of the

architecture. It has direct access to the data management facilities of the CHIC platform and takes

advantage of the infrastructure layer for the efficient execution of the hypermodels, the security

services for the authentication and authorization of the users, and the semantics and model

annotation facilities for the models publication, discovery, and composition.

Further elaborating on this “Business Logic” layer, the CHIC Hypermodelling Framework is not a

single software entity. It consists of a number of functional components that are described in more

detail in the previous sections.

From the stakeholders presented in the “D5.1.1: The CHIC technical architecture”, the ones that are

more related to the CHIC Hypermodelling Framework are the Model Providers, the Researchers, the

Clinicians, the Software developers and the Administrators.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 38 of 41

7 Hosting infrastructure

The system will be deployed in the premises of FORTH, in the form of a private computational and

storage cloud. In terms of hardware resources, the cloud infrastructure allows for maximum elasticity

and flexibility by effectively adapting to the load of any given time. The current minimal

specifications include:

- 300 GB of RAM

- 9TB of storage

- 16 cores Intel® Xeon® Processor E5-2690 and 4 cores Intel® Xeon® Processor E7520 (Dell

PowerEdge R720 and SC 1425 Servers series)

In terms of the software the OpenStack15 open source cloud computing software has been installed

on the machines using the Linux Ubuntu 12.04 operating system16.

15 https://www.openstack.org
16

 http://www.ubuntu.com

https://www.openstack.org/
http://www.ubuntu.com/

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 39 of 41

8 CHIC-HF Release plan

 31/12/2013 (PM9): Specification of Generic Stub initially defined.

 31/03/2014 (PM12): First version of the Tagging System released.

 31/03/2014 (PM12): First CHIC Hypermodel Framework deployed in cloud infrastructure.

 31/06/2014 (PM15): Hypermonitor released.

 31/06/2014 (PM15): Model Wrapper deployed according to Generic Stub.

 30/09/2014 (PM18): Specifications for Generic Stub updated.

 30/09/2014 (PM18): Initial integration with the Storage Services completed.

 31/03/2015 (PM24): Folksonomy and Ontology annotation and search services deployed.

 31/03/2015 (PM24): Strongly encrypted data service ready.

 30/06/2015 (PM27): Specification of Generic Stub finalized.

 31/3/2016 (PM36): Hypermodel annotation services deployed.

 31/3/2016 (PM36): Hypermodel editor, development and execution application ready.

 30/7/2016 (PM40): Final CHIC Hypermodelling Framework deployed on main node.

 30/9/2016 (PM42): Provision of distributed logging services.

 31/03/2017 (PM48): Metahypermodels annotation completed.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 40 of 41

9 Conclusion

Deliverable D7.1 has provided the initial hypermodelling specifications of the CHIC project. It is noted

that the term hypermodelling means the process of developing hypermodels.

In the present report the following important items have been included inter alia: i) a set of

definitions aiming at introducing the reader to the domain that the CHIC project belongs to and ii) a

set of fundamental concepts and terms that are utilized by the CHIC project. The collaborative efforts

of the CHIC consortium members have resulted to the collection and/or the proposition of a wide set

of concepts and terms. In this document only a subset of these concepts and terms pertaining to its

content has been included.

A significant part of the deliverable has been dedicated to the description of a specific component,

the so called Generic Stub. The Generic Stub is particularly important because it serves as a “bridge”

between two CHIC workpackages “WP6: Cancer Models and Hypermodel Design” and “WP7:

Hypermodelling infrastructure”. Deliverable “D6.1: Cancer hypomodelling and hypermodelling

strategies and initial component models” has served as the driver for the formulation of the Generic

Stub.

The Generic Stub along with the Model Wrapper are fundamental components for the overall CHIC

modelling architecture, as they provide a generic abstraction of a model. This approach can provide a

common base for the actions of all CHIC partners.

In addition to the two aforementioned components, detailed descriptions of all components of the

CHIC Hypermodelling Framework have been included. The focus has been put on the functional

perspective. We have presented where the CHIC Hypermodelling Framework is located in the overall

CHIC architecture and what interconnections exist.

Last but not least, a release plan of the CHIC Hypermodelling Framework has been outlined.

It should be noted that during the development of the various components of the CHIC

Hypermodelling Framework, changes in the architecture and/or the functional components may

need to be made. Such modifications will be reported in future related documents.

Grant Agreement no. 600841

D7.1– Hypermodelling specifications

Page 41 of 41

Appendix – Abbreviations and acronyms

API Application Programming Interface

BED University of Bedfordshire

CHIC Computational Horizons in Cancer

FORTH Foundation for Research and Technology – Hellas

HF Hypermodelling Framework

ICCS Institute of Communication and Computer Systems

IDL Interface Description Language

IT Information Technology

REST Representational state transfer

RPC Remote Procedure Call

SOA Service Oriented Architecture

SaaS Software as a Service

SBML Systems Biology Markup Language

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

TUMOR Transatlantic Tumour Model Repositories

UI User Interface

URI Uniform resource identifier

URL Uniform Resource Locator

USFD University of Sheffield

VM Virtual Machine

VPH Virtual Physiological Human

VPH-OP Osteoporotic Virtual Physiological Human

WP Work Package

XML Extensible Markup Language

