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ABSTRACT 
This document outlines the initial standardized versions of the novel cancer hypermodels developed 

by the CHIC project concerning nephroblastoma, non small cell lung cancer (NSCLC), glioblastoma 
multiforme, and prostate cancer. The constituting hypomodels as well as their orchestration and 

links are also described. Mechanistic spatiotemporal multiscale modelling and various statistics 
based machine learning methods constitute the major strategies exploited for the development of 

hypomodels and hypermodels. Concrete clinical questions dictate the precise mathematical and 
computational strategy to be adopted for each case.  Closely related  technological procedures and 
components such as the process of semantically annotating hypomodels and hypermodels, the 

model repository, the Clinical Research Application Framework (CRAF), the Hypermodelling Editor 
and the procedure for the execution of hypermodels are briefly outlined in the context of the 

hypermodel integration process. Initial prediction results, some of which demonstrated during a 
number of project reviews, are also included. Comments on various aspects of the initial  

standardized versions of the hypermodels provide further insight into the complex process of 
cancer hypemordelling. The contents of the deliverable suggest that the whole process of the 

development of the initial standardized versions of the CHIC hypemodels as well as their handling 
and execution has been a successful one. 
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EXECUTIVE SUMMARY 
 

Deliverable  D6.3 outlines the initial standardized versions of the novel cancer 

hypermodels developed by the CHIC project concerning nephroblastoma, non 

small cell lung cancer (NSCLC), glioblastoma multiforme, and prostate cancer. 

The constituting hypomodels as well as their orchestration and interaction links 

are also described. Mechanistic spatiotemporal multiscale modelling and various 

statistics based machine learning methods constitute the major strategies 

exploited for the development of hypomodels and hypermodels. Concrete 

clinical questions dictate the precise mathematical and computational strategy 

to be adopted for each case.  Closely related  technological procedures and 

components such as the process of semantically annotating hypomodels and 

hypermodels, the model repository, the clinical research application framework 

(CRAF), the hypermodelling editor and the procedure for the execution of 

hypermodels are briefly outlined in the context of the hypermodel integration 

process. Initial prediction results, some of which demonstrated during several 

project reviews, are also included. Comments on various aspects of the initial  

standardized versions of the hypermodels provide further insight into the 

complex process of cancer hypemordelling.  

 

In more detail, the major basic science related components of the document 

are the following: the nephroblastoma oncosimulator hypomodel and the 

nephroblastoma integrated hypermodel, the non small cell lung cancer 

oncosimulator hypomodel and the non small cell lung cancer integrated 

hypermodel, the biomechanical hypomodel for nephroblastoma and non small 

cell lung cancer, the angiogenesis hypomodel for nephroblastoma and non small 

cell lung cancer, the metabolic hypomodel for nephroblastoma and non small 

cell lung cancer, the molecular hypomodel for nephroblastoma and non small 

cell lung cancer, the gross phenomenological hypermodel for nephroblastoma 

and non small cell lung cancer, the glioblastoma hypermodel, and the prostate  

hypermodel.   

 

The content of the document suggests that the entire process of the 

development of the initial standardized versions of the CHIC hypemodels and 

their handling and execution has been a successful one. Extensions of the 

technological tools and services including inter alia the handling of missing or 

incomplete data and the support of the prospective hypermodeller to create a 

new hypermodel using the hypermodelling editor will be mainly presented in 

the appropriate technological deliverables.   
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IN. Intoduction 

 
This document outlines the initial standardized versions of the novel cancer hypermodels developed 
by the CHIC project concerning nephroblastoma, non small cell lung cancer (NSCLC), glioblastoma 

multiforme and prostate cancer. The constituting hypomodels as well as their orchestration and 
interaction links are also described. Mechanistic spatiotemporal multiscale modelling and various 

statistics based machine learning methods constitute the major strategies exploited for the 
development of both the hypomodels and the hypermodels. Concrete clinical questions dictate the 

precise mathematical and computational strategy to be adopted for each case. Closely related  
technological procedures and components such as the process of semantically annotating 
hypomodels and hypermodels, the model repository, the Clinical Research Application Framework 

(CRAF), the hypermodelling editor and the procedure for the execution of hypermodels are briefly 
outlined in the context of the hypermodel integration process. Initial prediction results, some of 

which demonstrated during several project reviews, are also included. Comments on various aspects 
of the initial standardized versions of the hypermodels provide further insight into the complex 

process of cancer hypemordelling.  
 

The document starts with the section entitled “NO. The nephroblastoma oncosimulator hypomodel and 

the nephroblastoma integrated hypermodel.” Its major components include the nephroblastoma 
oncosimulator component, the hypermodel integration process, the communication design and 
representative preliminary results. The section entitled “LO. The non small cell lung cancer 

oncosimulator hypomodel and the non small cell lung cancer integrated hypermodel” includes two 
approaches dictated by pertinent real clinical problems and questions: the mechanistic multiscale non 

small cell lung cancer oncosimulator and the machine learning based treatment response predictor. 
The section entitled “BM. The biomechanical hypomodel for nephroblastoma and non small cell lung cancer 

(and glioblastoma multiforme)” deals inter alia with the biomechanical simulator component, the 
mathematical model and scenario-specific adaption and patient personalisation. Section “AN. The 
angiogenesis hypomodel for nephroblastoma and non small cell lung cancer” addresses the corresponding 

model development, the vasculature hypomodel (nephroblastoma and lung) and high resolution 
angiogenesis and vascular transport models. Section “ME. The metabolic hypomodel for nephroblastoma 

and non small cell lung cancer (and glioblastoma multiforme)” addresses among other things genome-
scale metabolic modelling and the integration of the cancer metabolic hypomodel with vasculature 

and tumour evolution components. Section “MO. The molecular hypomodel for nephroblastoma and non 
small cell lung cancer” includes the model description, results and suggestions for further work. The 
section entitled “GP. the gross phenomenological hypermodel for nephroblastoma and non small cell lung 

cancer” deals inter alia with a universal phenomenological approach to describe tumour growth and 
therapy response, the modelling of the response of pre-surgical chemotherapy in nephroblastoma 

and lung cancer and the integration with other models. Section “GB. The glioblastoma hypermodel” 
includes an outline of the corresponding background and the machine learning based hypemodel 

structure. Section “PR. The prostate hypermodel” includes predictive (hypo-)models for prostate 
cancer recurrence after surgery, predictive (hypo-) models for prostate cancer recurrence after 

radiotherapy, and (hypo-) models for evaluating resistance induction by hormonal therapies. The 
following closely related technological sections are included as well. Section “SE. A Brief Outline of the 
Process of Semantically Annotating Hypomodels and Hypermodels”, Section “MR. A brief outline of the 

model repository in the context of hypomodel integration”, Section “CR. the clinical research application 
framework (CRAF) in the context of utilizing integrated hypermodels”, Section “HE. The hypermodelling 

editor (HME) as a supportive technological platform for the integration of hypermodels” and Section “EH. 
Execution of hypermodels”. The document is complemented with a brief Discussion and Conclusions.    
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NO. The Nephroblastoma Oncosimulator Hypomodel and 

the Nephroblastoma Integrated Hypermodel 
 
The development of both the Nephroblastoma (Wilms Tumour) Oncosimulator Hypomodel and the 
Nephroblastoma Integrated Hypermodel has been led by ICCS.  
 

From the clinical point of view, this hypermodel aims to answer the question whether a given Wilms 
Tumour patient will respond to pre-operative chemotherapy through tumour shrinkage or not. Such 

a predictive system, following its clinical adaptation and validation, is meant to serve as a quantitative 
clinical decision support system fostering treatment optimization in the patient individualized context. 

 

NO1.  The Nephroblastoma (Wilms Tumour)  Oncosimulator 

Component 
 
The Nephroblastoma (Wilms Tumour) Oncosimulator developed by ICCS is a hypomodel 

(component model) simulating critical multiscale biological mechanisms involved in tumour growth 
and response to (chemotherapy) treatment.   

 
The Nephroblastoma Oncosimulator also acts as the hypermodel integrator and is linked with a 

vasculature/angiogenesis hypomodel (of which the development has been led by UOXF), a 
biomechanics hypomodel (of which the development has been led by led by UBERN), a cell kill rate 
focusing molecular hypomodel (of which the development has been led by UPENN) and a metabolic 

network hypomodel (of which the development has been led by FORTH). Another parallel simplistic 
phenomenological model (of which the development has been led by UNITO) serves as a gross semi-

quantitative alternative to the nephroblastoma multimodeller hypermodel. 
 

However, by making use of certain plausible approximations, the ICCS nephroblastoma 
Oncosimulator can also function as a stand alone hypermodel constituting of just one hypomodel. 
This suggests that the Oncosimulator can bypass all other hypomodels in case of insufficient input 

data availability. Obviously the Oncosimulator predictions would generally be less accurate in such a 
scenario. 

 

NO1.1 The Oncosimulator Model 

 
NO1.1.1 Model Description – Basic Science 

 
The Wilms Oncosimulator has been developed by the In Silico Oncology and In Silico Medicine Group 

(ICCS-NTUA) [Georgiadi et al., 2012, Stamatakos et al., 2011] and is a predominantly discrete, 
clinically-oriented multiscale model of tumour response to preoperative combined chemotherapy 

treatment of actinomycin and vincristine. It is clinical oriented and utilizes the patient’s personal 
imaging, molecular, histological, clinical and treatment data. The following five categories (or 

‘‘equivalence classes’’) of cancer cells are considered in the model: stem cells (cells of unlimited 
mitotic potential), LIMP cells (LImited Mitotic Potential or committed progenitor cells which can 
perform a limited number of mitoses before terminal differentiation), terminally differentiated cells, 

apoptotic and necrotic cells. The various cell cycle phases (G1, S, G2, M) and the dormant (G0) 
phase constitute subclasses in which stem or LIMP cells may reside.  

 
The model incorporates several biological phenomena that take place in the cellular level (Fig. NO1) 

such as the cycling of proliferating cells through the successive cell cycle phases, the symmetric and 
asymmetric modes of stem cell division, the terminal differentiation of committed progenitor cells 
after a number of mitotic divisions, the transition of proliferating cells to the dormant phase due to 

inadequate supply of oxygen and nutrients, the re-entering of dormant cells into the active cell cycle 
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due to local restoration of oxygen and nutrient supplies, the cell death through spontaneous 
apoptosis, the cell death through necrosis (due to prolonged oxygen and nutrients’ shortage) and the 

cell death due to chemotherapy-induced apoptosis. In order to simulate chemotherapy-induced cell 
death, lethally hit cells are assumed to enter a rudimentary cell cycle leading to apoptotic death. Cell 

cycle-specific, cell cycle-non specific, cell cycle phase-specific and cell cycle phase-non specific drugs 
can be simulated, as is detailed in [Georgiadi et al, 2012, Stamatakos et al, 2011]. ‘‘Marking’’ of a cell 
as hit by the drug is assumed to take place at the instant of drug administration. However, its actual 

time of death is dictated by the specific drug pharmacokinetics and pharmacodynamics. The numbers 
of cells hit by the drug are computed through the utilization of the cell kill probability (CKP) 

parameter (CKP= 1-cell survival fraction), defined as the percentage of lethally hit cells after each 
drug administration. A diversification of chemotherapeutic resistance between tumour stem and non-

stem cells can be easily achieved through the use of different values of the corresponding CKP 
parameters.  
 

For a relatively short time interval compared to the tumour lifetime (such as the duration of a 
simulated chemotherapeutic schedule), the various space and time-independent transition rates  

considered throughout the tumour region are approximately constant and reflect the means of the 
actual cell category/phase transition rates over the interval. 

 
Fig. NO1. Generic cytokinetic model for tumour growth and response to chemotherapy. STEM: stem cells. 
LIMP: LImited Mitotic Potential cells.  DIFF: terminally differentiated cells.  G1: Gap 1 phase.  S: DNA synthesis 
phase. G2: Gap 2 phase.  M: Mitosis phase. G0: dormant phase.  Hit: cells lethally hit by chemotherapy. The 
arrow indicating chemotherapy-induced death is a sliding arrow, with position dependent on drug 

pharmacodynamics. For a definition of the depicted model parameters see Table NO1. 

 
NO1.1.2 Model Algorithmic Description 

 
An algorithmic flowchart of the model is given in Fig. NO2. The basic steps are the following: 

 
i.  Initialization of the Tumour Shape and Model Parameter Initialization. 
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The tumour area is segmented using available patient-specific imaging data. After appropriate pre-

processing this data is transformed into raw images and serves as input to the model for the spatial 
initialization of the virtual tumour. A three-dimensional cubic mesh discretizing the regions of 

interests is considered. The elementary volume of the mesh is called geometrical cell (GC). Each GC 
belonging to tumour mass is considered occupied. The model supports the division of the tumour 
area into different metabolic regions (e.g. necrotic and proliferative) based on pertinent imaging data 

and the handling of each region separately. In this case different values of specific model parameters 
can be assigned to each region. If macroscopically homogeneous tumours are considered, the same 

model parameters values apply to all occupied GCs.  
 

ii. Free Growth Condition: 
 

The mass of the tumour is sustained by stem cells. Input parameter values relative to stem cells 

cycling define the aggressiveness of the tumour. In order to check if the parameter values set defined 
lead to a biologically accepted tumour, a criterion of monotonic free growth has been applied 

[Kolokotroni et al., 2011]. 
 

iii. Spatial and Temporal Initialization of the Virtual Tumour  
 

The occupied GCs accommodate initially a number of biological cells (NBC) which is defined based 
on typical solid tumour cell densities (e.g. 109 cells/cm3) [Steel, 2002], unless more specific 
information for a particular tumour is available. The cells initially residing within each GC of the mesh 

are distributed into the five classes and subclasses mentioned above. The initial distribution of the 
biological cells into the five classes (stem-LIMP-differentiated and dead) is defined by the model 

parameter values. The initial distribution of the proliferating cells throughout the cell cycle phases 
(G1, S, G2, M) is assumed proportional to the corresponding cell cycle phases durations. 

 
In order to ensure a realistic tumour behaviour [Stamatakos et al.  2010; Georgiadi et al. 2008], an 
initialization technique has been implemented. Starting with a small number of stem cells occupying 

one GC, the evolution of this population is simulated for the set values of transition rates and 
fractions. Gradually, all cell categories and phases become populated and after sufficient time the 

relative cell categories populations reach an equilibrium state. The cell classes/phases populations are 
initialized using the corresponding relative populations at the state of equilibrium. The mean time 

spent by the biological cells of a given equivalence subclass in the same subclass is initialized using a 
random number generator (0-maximum time of the corresponding phase). The biological cells of the 
same category and at the same phase are considered synchronized if they belong to the same GC 

whereas if they belong to different GCs they are considered unsynchronized.  
 

iv. Virtual Tumour Spatiotemporal Evolution: 
 

At each time step the discretizing mesh is scanned and the basic cytokinetic, metabolic, 
pharmacokinetic/pharmacodynamics and mechanical rules that govern the spatiotemporal evolution 

of the tumour are applied. Practically, each complete scan can be viewed as consisting of two mesh 
scans, as described in [Stamatakos et al. 2010]. Briefly, the first scan aims at updating the state of each 
GC, by applying the rules of the cytokinetic model of Figure NO1. The second scan serves to 

simulate tumour expansion or shrinkage, based on the principle according to which throughout a 
simulation, the total population of a GC is allowed to fluctuate between a minimum and a maximum 

value, defined in relation to the initial typical GC cell content. At each time step, checks of each GC 
total population designate whether the total cell number is above/below the predefined max/min 

thresholds and, if necessary, specially-designed cell content shifting algorithms ‘‘create’’ or ‘‘delete’’ 
GCs and thereby lead to tumour expansion or shrinkage, respectively. 
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Fig. NO2: Simplified UML (Unified Modeling Language) activity diagram of the simulation procedure. GC: 
Geometrical Cell. [t]: True, [f]: false 

 
NO1.1.3 Model Parameters: Input – Output 

 
The model has been developed in C++ and is available as a standalone binary.  In order to facilitate 
automatic iterative execution of the model as a component part of a hypermodel, the Wilms 

oncosimulator is available as MUSCLE [Borgdorff et al. 2014]-enabled component model. The input 
parameters are set through a command line interface.  
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In table NO1 the “static” input parameters of the model used to simulate the before mentioned 
biological phenomena are described. The parameters of the model can be categorized into: 

 Cell phase durations  

 Cell phases transition rates and fractions 

 Miscellaneous  

 



Grant Agreement no. 600841  

D6.3 – Initial Standardized Cancer Hypermodels 

Page 12 of 151 

Table NO1: Static Input Parameters of the Wilms Tumour Oncosimulator Hypomodel 

 

NAME DESCRIPTION 

Cell phase durations 

Cell cycle duration of stem cells Cell cycle duration of stem cells through the 
phases of the active cell cycle  (G1, S, G2, M-

not including G0 phase)  

Cell cycle duration of LIMP cells  Cell cycle duration of limited proliferating 
potential cells (LIMP) through the phases of 

the active cell cycle  (G1, S, G2, M-not 
including G0 phase)  

G0 phase duration of stem cells Maximum G0 (dormant) phase duration before 

stem cells enters necrosis or re-enters G1 

G0 phase duration of LIMP cells Maximum G0 (dormant) phase duration before 
limp cells enters necrosis or re-enters G1 

Necrosis duration in necrotic regions Time needed for necrosis to be completed and 
its lysis products to be eliminated from the  
necrotic regions of the tumour 

Necrosis duration in proliferative 
regions 

Time needed for necrosis to be completed and 
its lysis products to be eliminated from the  

proliferating regions of the tumour 

Apoptosis duration in necrotic regions Time needed for apoptosis to be completed 
and its products to be eliminated from the 

necrotic regions of the tumour 

Apoptosis duration in proliferative 
regions 

Time needed for apoptosis to be completed 
and its products to be eliminated from the 

proliferative regions of the tumour  

Cell phases transition rates and fractions 

Apoptosis rate of stem and LIMP cells Apoptosis rate of living stem and LIMP tumour 

cells (fraction of non-differentiated cells dying 
through apoptosis per unit time). 

Apoptosis rate of differentiated cells Apoptosis rate of differentiated tumour cells 

per unit time   

Necrosis rate of differentiated cells  Fraction of differentiated cells dying through 
necrosis, per unit time. 

Fraction of dormant stem cells re-

entering cell cycle  

Fraction of the stem cells having just left 

dormant phase (G0) that re-enter active cell 
cycle at G1 phase, in the necrotic regions of 

the tumour. 

Fraction of dormant limp cells  
re-entering cell cycle 

Fraction of the limp cells having just left 
dormant phase (G0) that re-enter active cell 

cycle at G1 phase, in the proliferative regions 
of the tumour. 

Fraction of cells becoming dormant  in 
necrotic regions 

Fraction of cells that enter G0 phase following 
mitosis in the necrotic regions of the tumour 

Fraction of  cells becoming dormant in 

proliferative regions 

Fraction of cells that enter G0 phase following 

mitosis, in the proliferative regions of the 
tumour 

Symmetric division fraction  in necrotic 

regions 

Fraction of the stem cells that divide 

symmetrically, i.e. gives birth to two stem 
cells, in the necrotic regions of the tumour 

Symmetric division fraction  in 

proliferative regions 

Fraction of the stem cells that divide 

symmetrically, i.e. gives birth to two stem 
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cells, in the proliferative regions of the tumour 

Miscellaneous 

Image raw file Path (including name) to the input image raw 
file of the tumour 

Image mhd file Path (including name) to the input image 
header file of the tumour 

NLIMP Number of mitoses performed by LIMP cells before 

becoming differentiated 

Output directory Path (including name) to the directory where 
the output files are stored 

Execution time  Execution stop time after initialization 

Chemotherapy Parameters 

Cell kill rate of vincristine on stem cells Fraction of stem cells lethally hit by vincristine 
following bolus drug administration 

Cell kill rate of vincristine on limp cells Fraction of limp cells lethally hit by vincristine 

following bolus drug administration 

Cell kill rate of actinomycin on stem 
cells 

Fraction of stem cells lethally hit by 
actinomycin following bolus drug 

administration 

Cell kill rate of actinomycin on limp cells Fraction of limp cells lethally hit by 
actinomycin following bolus drug 

administration 

First –Sixth combination drug 

administration time point 

Time point after initialization when the 1st -6th  

administration of drug combination takes place 

First – Fourth single drug administration  
time point 

Time point after initialization when the 1st-6th  
administration of single therapy (e.g. vincristine 

alone) takes place 

 
The static output parameters of the Wilms OS component model are described in Table NO2.  The 

output files contain all the information needed for the visualization (2D-3D) of the time and space 
evolution of the tumour as well as values to guide the adaptation/validation of the model.  

 
TABLE NO2: Wilms Tumour Oncosimulator Static Outputs 

 

NAME DESCRIPTION 

tum_evol_file.dat A dat file containing the time evolution of the various total cell 
categories populations that comprise the tumour as well as its 
volume in mm3, their fractions out of the total population and 

the number of occupied GCs for each time step. The cell 
categories classes reported are: stem (live+hit remaining in the 

tumour bulk), limp (live+hit remaining in the tumour bulk), sum 
of stem and limp (live+hit remaining in the tumour bulk), 

differentiated, dead, necrotic, apoptotic, hit cells (remaining in 
the tumour mass), dormant, proliferating, profiferating stem, 

limp, diff, dead, dormant, hit, necrotic, apoptotic 

tum_doubling_time_file.dat A dat file contaning the doubling time of the initial tumour 

tum_adaptation_file.dat A dat file listing containing characteristics of simulated initial and 
final tumours: Fraction of proliferating, dormant, dead and dead 

population out of the total tumour cell population. It also 
contains chemo induved relative tumour volume reduction 

initial_tumour.dat A dat file containing Number of biological cells within each 

voxel of the initial tumour volume 

final_tumour.dat A dat file containing Number of biological cells within each 
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voxel of the final tumour volume 

oncosim-parameters.log A log file containing the values assigned to the model input 
parameters. 

Tumour_day_*.raw Output file of format “raw”, which is an array with the size of 

the discretization mesh and values (255-0) that indicate the 
state of each GC (Tumour-normal tissue) at a specific time 

point. These files are used for the 3D visualization of the 
tumour. 

 

 
NO1.1.4 Categorization of the Wilms Tumour Oncosimulator Hypomodel According to 

the CHIC Perspectives for Semantic Annotation 

 
TABLE NO3: The Values of the CHIC Perspectives for the Wilms Tumour Oncosimulator Hypomodel 

 

PERSPECTIVE 
CODE 

NUMBER 

PERSPECTIVE MODEL CATEGORY 

I TUMOUR-AFFECTED/ NORMAL TISSUE 
MODELLING: 

 tumour 

II SPATIAL SCALE(S) OF THE MANIFESTATION OF 

LIFE: 

 cellular 

 tissue   
 body system 

III TEMPORAL SCALE(S) OF THE MANIFESTATION 

OF LIFE: 

 hours 

 days 
 year 

IV BIOMECHANISM(S) ADDRESSED:  cell cycling,  

 apoptosis,  
 necrosis,  

 basic tumour biology 

V TUMOUR TYPE(S) ADDRESSED:  Wilms cancer 

VI TREATMENT MODALITY(-IES) ADDRESSED:  Chemotherapy  

VII GENERIC CANCER BIOLOGY/ CLINICALLY 
DRIVEN CHARACTER OF THE MODELLING 

APPROACH: 

 Clinically driven 

VIII ORDER OF ADDRESSING DIFFERENT SPATIAL 
SCALES: 

 Top-down approach 

IX ORDER OF ADDRESSING DIFFERENT 

TEMPORAL SCALES: 

 short periods → longer 

periods  

X MECHANISTIC/STATISTICAL CHARACTER OF 

THE MODELLING APPROACH: 

 explicit biological 

mechanism modeling 
(e.g. using cytokinetic 

diagrams) 

XI DETERMINISTIC/STOCHASTIC CHARACTER OF 
THE MODELLING APPROACH: 

 hybrid 

XII CONTINUOUS-FINITE-DISCRETE CHARACTER 

OF THE MATHEMATICS INVOLVED: 

 discrete  

XIII CLOSED FORM SOLUTION / ALGORITHMIC 
SIMULATION MODELLING APPROACH: 

 algorithmic simulation  
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NO2. Hypermodel Integration – Communication Design 

 
The Wilms Oncosimulator Hypomodel developed by ICCS acts as the hyper-model integrator with 

the following additional models (or tools): 

 [Image pre-processing tool (FORTH)] 

 Molecular (UPENN) hypomodel (component model) 

 Vasculature / angiogenesis hypomodel (component model)  (UOXF) 

 Metabolic network hypomodel (component model) (FORTH) 

 Biomechanics hypomodel (component model)  (UBERN)  

 
The integration design of the complete hypermodel is depicted in Fig. NO3. Each interaction among 

the different hypomodels can be either “static” or “dynamic”. Static interactions represent exchange 
of data that happens once, that is, during the initialization of the “target” (destination of data) 

hypomodel. Dynamic interactions on the other hand are connections that are used multiple times 
during the execution of both the source and the target hypomodel, i.e. they represent iterative 
transfer of information at runtime. The static -dynamic input and output parameters exchanged 

sequentially – iteratively between the hypomodels are presented in Table NO4 and explained in 
more detail below. 
 
 
 

 
Fig. NO3: Wilms Multimodeler Hypermodel: integration scheme of Wilms oncosimulator, preprocessing tool, 

metabolic, molecular, vasculature and biomechanic hypomodels. 
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TABLE NO4: Parameters (static-dynamic) exchanged between hypomodels (sequentially and/or iterativelly) in 
the integrated Wilms Multimodeler Hypermodel. 

 

From To Name Description Type 

Pre-processing 

tool 
Oncosimulator Image raw file 

Input image raw file 

of the tumour 
static 

Pre-processing 

tool 

Oncosimulator 

Image mhd file 
Input image mhd 

file of the tumour 
static 

Metabolic 

Vasculature 

Biomechanical 

Molecular Oncosimulator 
Total cell kill 

probability 

Fraction of cells 

lethally hit by 

vincristine and 

actinomycin 

following bolus 

drugs combined 

administration 

static 

Oncosimulator Vasculature 

Tumour cell 

population map 

The total cell 

population at each 

voxel (geometrical 

cell) of the 

discretized tumour 

domain  

dynamic 

Proliferating cell 

population map 

Proliferating cell 

population at each 

voxel (geometrical 

cell) of the 

discretized tumour 

domain 

Quiescent cell 

population map 

Quiescent cell 

population at each 

voxel (geometrical 

cell) of the 

discretized tumour 

domain  

Differentiated 

cell population 

map 

Differentiated cell 

population at each 

voxel (GC) of the 

discretized tumour 

domain 

Apoptotic cell 

population map 

Apoptotic cell 

population at each 

voxel (GC) of the 

discretized tumour 

domain 

Necrotic cell 

population map 

Necrotic cell 

population at each 

voxel (GC) of the 

discretized tumour 
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domain 

Vasculature Metabolic 

Glucose 

concentration 

map 

Glucose 

concentration at 

each voxel (GC) of 

the discretized 

tumour domain 

dynamic 

Metabolic Oncosimulator 
Proliferation 

rate map 

Proliferation rate at 

each voxel (GC) of 

the discretized 

tumour domain 

dynamic 

Oncosimulator Biomechanical 

Tumour cell 

concentration 

map 

Tumour cell 

concentration at 

each voxel (GC) of 

the discretized 

tumour domain 

dynamic 

Simulation day 
The simulated time 

in days 

Biomechanical Oncosimulator 

phi map 

Phi spherical 

coordinate of the 

least pressure 

direction in each 

voxel (GC) of the 

discretized tumour 

domain 
dynamic 

theta map 

Theta spherical 

coordinate of the 

least pressure 

direction in each 

voxel (GC) of the 

discretized tumour 

domain 

 

NO2.1 The Wilms Tumour Oncosimulator Hypomodel  and the  Pre-

processing Tool Integration 

 
The Wilms Tumour OS hypomodel simulates the evolution of real patient– personalized tumours 
starting from the macroscopic imaging data of the patients. In the context of CHIC project, MRI 

images (DICOM) of nephroblastoma patients are available. The clinicians provide the segmentation of 
the tumour area in the form of metaimages (raw, mhd images) through the DrEye segmentation tool 

[Karatzanis et al, 2012; Skounakis et al, 2010; Skounakis et al 2009] in which the tumour area is 
marked with white colour (RGB-255) and the normal tissue with black colour (RGB-0). The pre-

processing tool resamples the non-isotropic voxels of the metaimages in cubic voxels and crops the 
images around the area of interest (tumour) with a margin around it (calculated by a factor multiplied 
by the maximum dimension of the tumour mass) to allow tumour expansion.  The Wilms Tumour 

OS hypomodel and the preprocessing tool communicate sequentially (Fig. NO4). The output of the 
pre-processing tool (raw image, mhd) is passed as static input parameters to the Wilms Tumour 

oncosimulator hypomodel through the TAVERNA infrastructure [Wolstencroft et al, 2013]. The 
input image header also serves as a static input to the metabolic, the vasculature and the biomechanic 

hypomodels.  
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Fig. NO4: Communication scheme of pre-processing tool with the Wilms Tumour Oncosimulator, Metabolic, 
vasculature and biomechanic hypomodels. Parameter exchanged: metaimages of tumour area (raw, mhd). Type: 
Sequential coupling. 

 

NO2.2 The Wilms Tumour Oncosimulator and the Molecular Hypomodel 

Integration 

 
The molecular hypomodel using the mi-RNAs of the nephroblastoma patient estimates the total 
effect of chemotherapeutic drugs on the tumour cells. The total cell kill probability of combined 

administration of actinomycin and vincristine is calculated and forms a static output of the molecular 
model which is used as static input by the Wilms Tumour Oncosimulator hypomodel to simulate the 
effect of therapy to the tumour mass evolution (Fig. NO5). Based on literature [Groninger et al. 

2002; Dahl et al. 1976; Sawada et al. 2005; Veal et al. 2005] the following relative cell kill probabilities 
of actinomycin and vincristine are assumed:  

 
CKP

VCR
=(3/5)*CKP

TOTAL 

 
CKP

ACT
= (2/5)*CKP

TOTAL 

 

The communication is sequential through the TAVERNA infrastructure [Wolstencroft et al, 2013]. 

 
 

 
 
Fig. NO5: Communication scheme of the molecular hypomodel with the Wilms Tumour Oncosimulator. 
Parameter exchanged: Cell kill probability of chemotherapeutic drugs. Type: Sequential coupling. 
 

 

mhd mhd 

raw, mhd mhd 
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NO2.3 The Wilms Tumour Oncosimulator, the Vasculature and the 

Metabolic Hypomodels Integration 

 
These three hypomodels are connected iteratively (Fig. NO6) through MUSCLE [Borgdorff et al. 2014].  The 
communication step of Oncosimulator and vasculature model is defined as MUSCLE – environment static input 
parameter (Table NO5). 
 

The Wilms Tumour Oncosimulator calculates and sends per communication step to the vasculature model 
maps of the tumour domain containing per GC the total cell population, the number of proliferating, quiescent, 
differentiated, apoptotic and necrotic tumour cells.  
 

The vasculature hypomodel which is based on tumour cell concentration calculates the normalized glucose 
concentration per position of the vector and send this information to the metabolic hypomodel. 
 
The metabolic hypomodel which simulates the metabolism of cancer cells at the genome scale utilizes the 
current glucose concentration and calculates the local proliferation rate of the tumour cells that reside within 

each geometrical cell. The local conditions of nutrient supply, such as glucose concentration, primarily regulate 
the quiescence of the biological cells. Reduced availability of glucose will lead to increase in the percentage of 
dormant cells. In this framework, the Oncosimulator as a first approximation translates the proliferation rate 
map received by the metabolic hypomodel into the parameter Psleep which regulates the fraction of newborn 
cells entering dormant state based on the following equation:  

 

𝑃𝑠𝑙𝑒𝑒𝑝 =
1−𝑒𝑎𝑇𝑐 2⁄

1−(𝑃𝐺0𝑡𝑜𝐺1 𝑇𝐺0⁄ ) (𝑎+1 𝑇𝐺0)⁄⁄
,     derived from Eq. (7) in Kolokotroni et al. 2011   

 

 
 
Fig. NO6: Communication scheme of the Wilms Tumour Oncosimulator, the Vasculature and the Metabolic 
hypomodels. Parameters exchanged:  

 Oncosimulator - vasculature hypomodels: tumour cells population maps.  

 Vasculature – metabolic hypomodels: glucose concentration map 

 Metabolic – oncosimulator: proliferation rate map 

 Type: Iterative coupling  

 

NO2.4 The Wilms Tumour Oncosimulator and the Biomechanic 

Hypomodels Integration 

 
The models are connected with iterative coupling through MUSCLE (Fig NO7) [Borgdorff et al. 

2014] with a communication step defined as MUSCLE environment static parameter (Table NO5). 
 

The Wilms Tumour Oncosimulator calculates and sends a tumour cell concentration map to the 
biomechanical hypomodel per communication step (each simulated day). Based on this, the 
biomechanical hypomodel calculates the stress distribution and sends a least pressure map to the 

Oncosimulator. The latter utilizes these directions to define the local shrinkage or expansion 
direction of the tumour when necessary. 
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Fig. NO7: Communication scheme of the Wilms Tumour Oncosimulator and the Biomechanical hypomodels. 

Parameters exchanged: 

 Oncosimulator - Biomechanical hypomodels: tumour cell concentration map.  

 Biomechanical– Oncosimulator hypomodels: direction of least pressure map 
             Type: Iterative coupling 
 

TABLE NO5: Static Input of the Hypermodel - MUSCLE Environment Parameters 

 

Name Description 

Communication frequency[OS-BMS] The time interval between the subsequent 
interactions of the Oncosimulator with the 

Vasculature simulator 

Communication frequency[OS-VS] The time interval between the subsequent 
interactions the Oncosimulator and the 

Biomechanics simulator 

 

 

NO3. Preliminary Results 

 
All children with nephroblastoma receive pre-operative chemotherapy based only on imaging studies. 
Around 10% of patients do not respond to pre-operative chemotherapy. For these patients primary 

surgery would be beneficial. For this reason the clinical question formulated by clinicians and open to 
be addressed by the nephroblastoma hypermodel as described in detail in D2.5 is the following:  

 
“Will a given nephroblastoma in a patient respond to pre-operative chemotherapy by tumour 
shrinkage, yes or no?” 

 
The tumours of two nephroblastoma patients have been simulated with the fully integrated Wilms 

Tumour multimodeler hypermodel and demonstrated at project reviews. Both patients have received 
preoperative chemotherapy with a combination of actinomycin and vincristine according to the SIOP 

2001/GPOH clinical trial (Fig. NO8) for unilateral stage I-III nephroblastoma tumours. 

 

 
 
Fig. NO8: Chemotherapy treatment protocol. The simulated Wilms Tumour preoperative chemotherapy 
treatment protocol of the SIOP/ GPOH clinical trial. 
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For the two cases, two sets of MRI imaging data have been made available, one at an instant prior to 

chemotherapy and one at an instant after the completion of chemotherapy and before surgery. The 
relative dates (after pseudo-anonymization) of the two MRI acquisitions as well as the clinical tumour 

volumes as calculated based on the segmentation of the tumours on these imaging sets are depicted 
in Table NO6. 

 
 

TABLE NO6: Imaging data related information of two nephroblastoma patients whose tumours have been 
simulated. Relative tumour shrinkage for reality and virtuality as well the deviation of virtuality from reality  are 
also presented, It should be noted that The imaging dates are not real; they are the result of the 
pseudonymization process. Furthermore, the slight differences in the initial tumour volumes for reality and 
virtuality are mainly due to the isotropic resampling procedure which is used in virtuality for the simulation 

needs. 
 

 

Imaging 

Date 

V
CT

 (cc) 

Clinical 

Tumour 

Volume   

V
VT 

(cc) 

Virtual 

Tumour 

Volume  

DV
CT

 (%) 

Relative 

Shrinkage  

(Clinical 

Tumour  

Volume) 

DV
VT

 (%) 

Relative 

Shrinkage  

(Virtual 

Tumour  

Volume) 

Deviation(%): 

[(DVVT (%)-

DVCT 

(%))/DVCT 

(%)]X100% 

C
a
se

 1
 PRE: 

1950/11/17 
78.55 80.99 

81.16 81.41 0.31 
POST: 

1950/12/22 
14.8 15.06 

C
a
se

 2
 PRE: 

1953/08/26 
754.75 791.86 

80.43 79.99 -0.55 
POST: 

1953/10/06 
147.68 158.44 

 
 
The available clinical data of the patients define the exact treatment scheme administered to each 
one (Fig. NO9, Fig NO10). 

 
 

 
 

Fig. NO9: Pre-operative treatment scheme administered for the first patient (case 1). 
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Fig. NO10: Pre-operative treatment scheme administered for the second patient (case 2). 

 
The mi-RNA expression data of the patients is also available and serves as input for the molecular 

model. 
 

The MRI data sets acquired before the beginning of therapy are segmented and serve as input to the 
multimodeler hypermodel. mi-RNA data sets serve also as input data. The real treatment schemes 
administered (Fig. NO9, Fig. NO10) which have been retrieved from the clinical data are simulated 

for both patients. The simulation starts at the time point of the acquisition of the MRI set before 
treatment whereas it finishes at the time point of the acquisition of the second available MRI imaging 

set after the completion of therapy. The input parameters of the Wilms Tumour Oncosimulator 
related to tumour cell kinetics are retrieved following adaptation of the model to real clinical, 

histological and imaging data (Table NO7). Information from literature has also been exploited. The 
resulting macroscopic characteristics of the tumours are shown in Table NO8. The real clinical 
tumour volume reduction, the simulated tumour volume reduction and the small deviation of 

virtuality from reality for both cases are shown in Table NO6. 
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TABLE NO7: Adaptation of parameter values related to tumour cell kinetics of the two simulated 
nephroblastoma patients 

 

Parameter Description Value – Case 

1 

Value – Case 

2 

Tc Cell cycle duration 6h 5 

Psleep Fraction of cells that enter G0 

phase following mitosis  

0.31 0.348 

Psym Fraction of stem cells that 

perform symmetric division 

0.54 0.572 

TN Time needed for necrosis 

products to be removed  

20 20 

TA Time needed for apoptosis 

products to be removed  

6 6 

NLIMP Number of mitoses performed by 

LIMP cells before arrest 

7 7 

TG0 Duration of dormant phase 96 100 

RA Apoptosis rate of stem and LIMP 

cells 

0.008 0.0047 

RADiff Apoptosis rate of differentiated 

cells 

0.05 0.005 

RNDiff Necrosis rate of differentiated 

cells 

0.03 0.006 

PGotoG1 Fraction of G0 cells that re-enter 

cell cycle 

0.01 0.001 

 

 
TABLE NO8: Resulting Macroscopic Tumour Characteristics for the Two Simulated Cases 
 

Cancer Characteristic Value – Case 

1 

Value - Case 

2 

Doubling Time 10.52d 92.9 d 

Fraction of Proliferating 

Cells 

13.48% 5.48 % 

Fraction of  Dormant  

Cells 

49.28% 39.13% 

Fraction of DIFF Cells 12.28% 40.86% 

Fraction of Dead Cells  24.97% 14.53% 

Growth Fraction 17.96 6.41 
 
 

 

 
The simulated time evolution of the tumours is shown in Fig. NO11. The predictions are in good 
agreement with clinical experience. 
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A. 

 
 

B.  

 

 
 
Fig. NO11: Time evolution of virtual simulated tumours of the first (A) and the second (B) case of a 
nephroblastoma patient. 
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LO. The Non Small Cell Lung Cancer (NSCLC) 

Oncosimulator Hypomodel and the NSCLC Integrated 

Hypermodel 
 
The development of both the Non Small Cell Lung Cancer Oncosimulator Hypomodel and the 

NSCLC Integrated Hypermodel has been led by ICCS. 

 

LO1. Lung Oncosimulator Hypomodel 
 

The NSCLC Oncosimulator developed by ICCS is a hypomodel (component model) simulating 
critical multiscale biological mechanisms involved in tumour growth and response to (radiotherapy, 
hemotherapy and targeted therapy) treatment.   

 
The NSCLC Oncosimulator also acts as the hypermodel integrator and is linked with a 

vasculature/angiogenesis hypomodel (of which the development has been led by UOXF), a 
biomechanics hypomodel (of which the development has been led by led by UBERN), a cell kill rate 

focusing molecular hypomodel (of which the development has been led by UPENN) and a metabolic 
network hypomodel (of which the development has been led by FORTH). Another parallel simplistic 

phenomenological model (of which the development has been led by led by UNITO) serves as a 
gross semi-quantitative alternative to the nephroblastoma multimodeller hypermodel. 
 

However, by making use of certain plausible approximations, the ICCS NSCLC Oncosimulator can 
also function as a standalone hypermodel constituting of just one hypomodel. This suggests that the 

Oncosimulator can bypass all other hypomodels in case of insufficient input data availability. 
Obviously the Oncosimulator predictions would generally be less accurate in such a scenario. 

 
An additional statistics based machine learning hypermodel has been developed by ICCS in order to 
respond to particular clinical questions (see “LO2. Lung Cancer Statistical Approach”). 

 
The Lung Oncosimulator explicitly models cancer cell multiplication, cellular response to treatment 

and spatial expansion. It is  based on the notions of cellular automata and equivalence classes and lies 
in the heart of the Lung Cancer Multimodeller Hypermodel. The Lung Oncosimulator, stemming 

from the In Silico Oncology and In Silico Medicine Group (ICCS- National Technical University of 
Athens) [Stamatakos et al. 2010, Kolokotroni et al. 2011], considers both radiotherapy and cisplatin–
based doublet therapy. The Oncosimulator addresses clinical tumours, well beyond their initiation 

phase, and has been designed to incorporate patient specific data such as imaging-based, 
histopathological, molecular and treatment data. 

 
The Oncosimulator is available as a standalone application or as a MUSCLE-enabled hypomodel. The 

MUSCLE-enabled version of the Oncosimulator explicitly addresses radiotherapy and cisplatin–
vinorelbine doublet therapy. However, it can be easily adapted to other types of cisplatin-based 

doublet therapy.  
 

LO1.1 Model basic notions 

 
The model is based on the consideration of a discrete time and space stochastic cellular automaton, 
representing the tumour region. More specifically, the tumour region can be considered as a grid of 

“geometrical cells” (GCs, the elementary volume of the grid). Each GC corresponds to a cluster of 
heterogeneous cells found in various states. Specific rules regulate the transition between these 
states, as well as cell movement throughout the tumour volume; the aim is a realistic, conformal to 

the initial shape of the tumour, simulation of spatial evolution. A detailed description of the modelling 
approach can be found in D6.2. Here the basic modelling features are summarized.  
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Cell multiplication 
 

Cancer cell multiplication modelling is based on the well documented hypothesis of cancer stem cell 
theory and incorporates the biological mechanisms of cell cycling, quiescence, recruitment, 

differentiation and loss via apoptosis (spontaneous) and necrosis (starvation-induced). 
 
Stem, LIMP, DIFF, apoptotic and necrotic cells represent the distinct cell categories of the model. 

More specifically, tumour sustenance is attributed to the presence of a cell population that exhibits 
stem cell like properties. Specifically, cancer stem cells have the ability to preserve their own 

population, as well as give birth to cells of limited mitotic potential (LIMP cells) that follow the path 
towards terminal differentiation (DIFF cells). A proliferating tumour cell (stem or LIMP) passes 

through the successive cell cycle phases. Phases within or out of the cell cycle (G1, S, G2, M, G0) 
constitute different states in which cells may be found. After the completion of mitosis a fraction of 
newborn cells will enter the dormant phase, whereas the rest will continue to cycle. Transition to 

quiescence (dormant, G0, phase) and “awakening” of dormant cells are regulated by local metabolic 
conditions. All cell categories may die through spontaneous apoptosis. However, for dormant and 

differentiated cells necrosis is the main cell loss mechanism caused by inadequate nutrients’ and 
oxygen supply.  

 
Chemotherapy 

 
When a tumour is chemotherapeutically treated, a fraction of cancer cells are lethally hit by the drug 
or its metabolites. Lethally hit cycling tumour cells enter a rudimentary cell cycle that leads to 

apoptotic death via a specific phase dictated by the action mechanism of the chemotherapeutic agent 
used. Similarly, in the case of cell cycle non-specific drugs, lethally hit dormant (G0) cells enter the 

G0hit phase.  Marking of a cell as hit by the drug is assumed to take place at the instant of drug 
administration although its actual time of death is dictated by the specific pharmacokinetics and 

pharmacodynamics of the drug. It is pointed out however that cell cycle phase specific drugs can be 
readily modeled by the cytokinetic model shown in Fig. LO1 by appropriately selecting the “Chemo” 
induced exit from the normal cell cycle for both cases of stem and lLIMP cells. 

 
The cytotoxic effect of cisplatin on cancer cells has primarily been attributed to the formation of 

cisplatin-gDNA adducts [Jordan & Carmo-Fonseca 2000, Siddik 2003, Wang et al. 2004]. In an 
attempt to remove these adducts and restore DNA lesions, the cells undergo a transient S arrest 

and a more persistent G2/M arrest [Ormerod et al.1994]. Accumulating evidence, derived from 
various cancer cell lines including non-small cell lung cancer, has linked the initiation of apoptotic 
pathway with the activity of mismatch repair proteins and the G2/M checkpoint [Sorenson et al. 

1990, Jordan & Carmo-Fonseca 2000, Siddik 2003, Wang et al. 2004]. Lethally damaged cells seem to 
stay trapped, but viable, at G2/M phase for a few days and then proceed to death [Sorenson et al. 

1990]. Cisplatin is cell cycle-non specific drug [Katzung 2001]. In our modeling approach, tumour 
cells are assumed to absorb Cisplatin at all cycling phases, as well as at G0 phase, whereas apoptotic 

death of hit cells takes place at the end of G2 phase. 
 

Vinorelbine, a member of the Vinca alkaloid class, is a microtubule-targeting agent. Microtubules are 
polymers involved in the formation of the mitotic spindle that pulls apart the sister chromatids during 
cell division. At relatively low, but clinically relevant, concentrations, vinorelbine can suppress 

microtubule dynamics (dynamic instability and treadmilling,), whereas at higher concentrations it can 
prevent the polymerization of tubulin into microtubules, cause microtubules depolymerization or 

induce formation of tubulin paracrystals. In all cases, the subsequent disruption of mitotic splinde 
formation and function and, thus, the inhibition of chromosomal segregation leads to a prolonged 

arrest during mitosis, and, eventually, apoptosis through the intrinsic mitochondrial apoptotic 
pathway [Jordan and Wilson 2004; Esteve et al. 2007, Chiu et al, Bourgarel-Rey et al. 2009]. 
Vinorelbine is considered cell cycle specific [Katzung 2001]. In our modeling approach, tumour cells 
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are assumed to absorb Vinorelbine at all cycling phases, whereas apoptotic death of hit cells takes 
place at the end of M phase. 

 
Radiotherapy 

 
In the case of radiation therapy lethally damaged cells die through a radiation-induced necrotic 
mechanism. These cells enter a rudimentary cell cycle and die after undergoing a few mitotic 

divisions. The probability of cells to be hit by irradiation depends primarily on the phase they reside. 
Cell killing by irradiation is described by the Linear Quadratic or LQ Model, which is widely used in 

the pertinent literature [Steel, 2002]: 
 

S(D)=exp[-(αD+βD2) ] 
 

where S(D) is the surviving fraction after a (uniform) dose D (Gy) of radiation to a population of 
cells. The parameters α (alpha) (Gy-1) and β (beta) (Gy-2) are called the radiosensitivity parameters of 

the LQ model. Cell radiosensitivity varies considerably throughout the cell cycle [Steel 2002, Perez 
and Brady 1998]. The S phase is regarded as the most resistant. Cells in any proliferating phase are 

more radiosensitive than hypoxic cells residing in G0. Based on these observations the model 
currently uses different values for the radiosensitivity parameters of the LQ model for the S phase 

(αs,βs), the remaining proliferating phases G1, G2, M (αp,βp), and the G0 phase (αG0, βG0). 
 

The values of αs, βs and αG0, βG0 can be derived as perturbations of the (αp,βp) values, as for example 
in: αG0= αp /OER, βG0= βp /OER2, αs = 0.6 αp + 0.4αG0, βs = 0.6βp + 0.4βG0, where OER is the 

Oxygen Enhancement Ratio (Perez and Brady 1998) Typical values of OER found in literature vary 

between 2.5-3 [Murray et al., 2003; Laperriere et al., 2002; Perez and Brady 1998].  
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Fig. LO1. General cytokinetic model for tumour response to irradiation and chemotherapy. 
STEM: stem cells. LIMP: Limited proliferative potential cells. DIFF: terminally differentiated cells. G1: Gap 1 

phase. S: DNA synthesis phase. G2: Gap 2 phase. M: Mitosis phase. G0: Dormant, resting phase. Radio: 
Radioation treatment. Chemo: Chemotherapy Hit: Cells lethally hit by irradiation or chemotherapy. PG0toG1: 
fraction of dormant cells that reenter the cell cycle, RA: spontaneous apoptosis rate, Psleep: fraction of newborn 
cells that enter G0, Psym: fraction of stem cells that perform symmetric division, TG0: duration of dormant phase, 

TA: duration of apoptosis, TN : duration of necrosis, RNDiff : necrosis rate of differentiated cells, RADiff: apoptosis 
rate of differentiated cells. 
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LO1.2 Categorization According to CHIC Perspectives for Semantic Annotation 

 

PERSPECTIVE 
CODE 

NUMBER  

PERSPECTIVE  MODEL CATEGORY 

I TUMOUR-AFFECTED/ NORMAL TISSUE 
MODELLING: 

 tumour 

II SPATIAL SCALE(S) OF THE MANIFESTATION OF 

LIFE: 

 cellular 

 tissue   
 body system 

III TEMPORAL SCALE(S) OF THE MANIFESTATION 
OF LIFE: 

 hours 
 days 
 year 

IV BIOMECHANISM(S) ADDRESSED:  cell cycling,  
 apoptosis,  

 necrosis,  
 basic tumour biology 

V TUMOUR TYPE(S) ADDRESSED:  lung cancer 

VI TREATMENT MODALITY(-IES) ADDRESSED:  Chemotherapy  
 Radiotherapy 

VII GENERIC CANCER BIOLOGY/ CLINICALLY 
DRIVEN CHARACTER OF THE MODELLING 

APPROACH: 

 Clinically driven 

VIII ORDER OF ADDRESSING DIFFERENT SPATIAL 
SCALES: 

 Top-down approach 

IX ORDER OF ADDRESSING DIFFERENT TEMPORAL 
SCALES: 

 short periods → longer 
periods  

X MECHANISTIC/STATISTICAL CHARACTER OF 
THE MODELLING APPROACH: 

 explicit biological 
mechanism modeling (e.g. 

using cytokinetic 
diagrams) 

XI DETERMINISTIC/STOCHASTIC CHARACTER OF 

THE MODELLING APPROACH: 

 hybrid 

XII CONTINUOUS-FINITE-DISCRETE CHARACTER 
OF THE MATHEMATICS INVOLVED: 

 discrete  

XIII CLOSED FORM SOLUTION / ALGORITHMIC 

SIMULATION MODELLING APPROACH: 

 algorithmic simulation  

 

 

LO1.3 Integration - Hypermodel Communication Scheme 

 
Oncosimulator – Preprocessing Tool 
 

The tumour morphology needs to be defined at a preprocessing step and provided to the 
Oncosimulator in the form of a raw/mhd metaimage. In this file, different subregions of interest 

should be noted with distinct color numbers (e.g. white-255 for tumour area, black -0 for normal 
tissue) and the voxels should be cubic. Voxels of 1 or 2 mm acne (resolution) are commonly used. 

Furthermore, in order to reduce computational resources, the requested three-dimensional 
representation should not correspond to the entire image scan, but to a ‘region of interest’ centered 
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on the tumour, with available space around it to permit growth simulations. The amount of this extra 
space can be defined based on the maximum dimension of the tumour. 

 
The transformation of the segmented metaimages to a raw file format compatible to the 

Oncosimulator input specifications, is implemented by the preprocessing tool. Since, voxels in the 
initial imaging data sets are usually non-isotropic, i.e. their dimensions differ in the x-, y- and z-
direction, the segmented metaimages need resampling. The tool also performs cropping to reduce 

the size of the initial image at a smaller region of interest centered on the tumour. 
 

The communication between the oncosimulator and the preprocessing tool is sequential. The 
cropped and interpolated metaimages of the tumour domain (in the form of mhd and raw files) 

produced by the preprocessing tool are passed as a static input to the Oncosimulator via TAVERNA.  
 
Oncosimulator – Molecular Model 

 
Cellular intrinsic sensitivity or resistance to treatment is a determinant of treatment outcome. The 

cell kill probability of a tumour cell is explicitly computed by the molecular model based on the 
molecular profile (e.g. EGFR mutations, miRNA expression data etc.) of the patient.  

 
The communication between the Oncosimulator and the molecular model is sequential. The 

probability of a tumour cell to be lethally hit by a given therapy regimen is passed as a static input to 
the Oncosimulator via TAVERNA. In the case of chemotherapy the value is exploited directly by the 
Oncosimulator. In the case of radiotherapy the value is translated to the α (alpha) (Gy-1) and β (beta) 

(Gy-2) radiosensitivity parameters of the LQ model by applying the formula: 

 

𝑎 = −
ln(1 − 𝐶𝐾𝑅)

𝐷 +
𝐷2

𝛼/𝛽

 

 

𝛽 =
𝛼

𝛼/𝛽
 

 
where α/β the alpha to beta ratio, CKR the cell kill rate provided by the molecular model and D 

(Gy) the radiation dose. 
 

The cell radiosensitivity and the cell kill probability is then calculated throughout the cell cycle, as 
explain in the paragraph ‘Radiotherapy’. 

 
Oncosimulator – Vasculature – Metabolic models 

 
The hyper-modelling scenario dictates an iterative communication scheme between the three 
hypomodels (Fig. LO2). This dynamic coupling is implemented via MUSCLE [Borgdorff et al. 2014]. 

The Oncosimulator computes the updated tumour domain geometry and the number of 
proliferating, quiescent, differentiated, apoptotic and necrotic tumour cells at each geometrical 

cell/voxel of the grid and send them to the vasculature model. Based on tumour cell concentration, 
the vasculature model passes the normalized concentration of glucose in each geometrical cell to the 

metabolic model. The metabolic model, which describes the aberrant metabolism of cancer cells at 
the genome scale based on the current glucose concentration, returns to the Oncosimulator the 
local proliferation rate of the tumour cells that reside within each geometrical cell. The local 

conditions of nutrient supply, such as glucose concentration, primarily regulate the withdrawal of 
tumour cells in a quiescent state, in an attempt by the tumour to sustain viability under conditions of 

reduced nutrient supply. Hence, a reasonable first approximation, is to translate the proliferation 
rate, a, to the fraction of newborn cells entering quiescent state, Psleep, using the following formula: 
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𝑃𝑠𝑙𝑒𝑒𝑝 =
1−𝑒𝑎𝑇𝑐 2⁄

1−(𝑃𝐺0𝑡𝑜𝐺1 𝑇𝐺0⁄ ) (𝑎+1 𝑇𝐺0)⁄⁄
,     derived from Eq. (7) in Kolokotroni et al. 2011   

 

where TC the cell cycle duration, TG0 the residence time of tumour cells in quiescent state and PG0toG1 
the fraction of quiescent cells re-entering cell cycle.   


Oncosimulator – Biomechanics simulator 

 
The hyper-modelling scenario dictates an iterative communication scheme between the two 
simulators (Fig. LO2). This dynamic coupling is implemented via MUSCLE [Borgdorff et al. 2014]. The 

Oncosimulator computes cell proliferation in the case of free growth or cell loss in the case of 
treatment and sends the updated cell concentration information to the biomechanical solver. Based 

on this information the Biomechanics simulator calculates the stress distribution and passes the 
preferred direction of cell movement and, hence, of tumour growth/shrinkage, to the 

Oncosimulator. This direction corresponds to the direction against which the cells sense a minimum 
pressure. 
 

 
 

Fig. LO2. Lung multimodeler hypermodel communication scheme 

 

LO1.4 Cancer-Specific Adaptation 

 
With reference to lung cancer paradigm, the CHIC project primarily deals with surgically treated 
adenocarcinoma (ADC). The comprehensive literature survey presented in D6.2 can guide the 

selection of the most appropriate values of characteristic proliferation kinetics for this histological 
subtype, in the case of unavailability of patient-specific data. The less aggressive nature of ADC in 
respect to squamous cell carcinoma can be been reflected on a relatively slow Td, a low proliferation, 

i.e. GF and stem cell frequency, and a low necrosis. The following assumptions/constraints can be 
imposed based on literature considering a typical lung adenocarcinoma case: 
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• A Td ~ 300d, corresponding to the average of mean values reported in the reviewed 

literature for ADC (D6.2) 
 

• A fraction of stem cells (out of living cells) <10-4 in line with the frequencies reported for 

highly permissive xenotransplantation conditions (D6.2) 

 

• A GF ~ 0.35 approximately in the middle of the maximum range reported in the reviewed 
literature (D6.2) 

 

• A fraction of apoptotic cells (out of total cells) ~ 0.01 corresponding to the average of 

median values reported in the reviewed literature (D6.2) 
 

• A fraction of necrotic cells (out of total cells) ~ 0.1 near the lower boundary of the values 

reported in the reviewed literature (D6.2) 
 

Table LO1 lists the value range of the Oncosimulator parameter values adapted for the case of lung 
adenocarcinoma. The development of more sophisticated strategies for optimizing the model 

adaptation process, as requested by the reviewers during the 5 th project review, is under 
investigation and the outcome will be presented in deliverable D6.4: “Clinical adaptation and partial 
validation of hypermodels’’. 

 
TABLE  LO1. Typical model parameter values for lung adenocarcinoma. 

 

Parameter 
symbol 

Description Units Value 
range 

References 

CELL PHASE DURATIONS 

Tc[class*] Cell cycle duration hours 18-134 Lieber et al., 1976; Kimura 
et al. 1979; Loh et al. 1984; 
Olsson et al. 1984; Brower 
et al. 1986; Masuda et al. 
1991; Campling et al.  1992  

Liu & Tsao, 1993; Giaccone 
et al. 1992; Li et al. 2012 

TG0[class*] G0 (dormant phase) duration i.e. time 

interval before a dormant cell re-enters 
cell cycle or dies through necrosis 

hours 90-1200 extension of Durand & Sham 

1998 
 

TA[region‡] Time needed for both apoptosis to be 

completed and its products to be 
removed from the tumour 

hours 1-25 Kerr et al. 1972, Gavrieli et 

al., 1992; Bursch et al. 1990 

TN[region‡] Time needed for both necrosis to be 

completed and its lysis products to be 
removed from the tumour  

hours 1-200 Ginsberg T., 1996, estimation 

based on fraction of necrotic 
cells 

CELL CATEGORY/PHASE  TRANSITION RATES AND FRACTIONS¦ 

RA Apoptosis rate of living stem and limp 
tumour cells, i.e. fraction of cells dying 

through apoptosis per unit time 

hours-1 0-0.001 estimation 

RADiff  Apoptosis rate of differentiated tumour 
cells  

hours-1 0.0001-
0.02 

extension of Rawlins & 
Hogan, 2006, 2008; 

Lippmann 2000; Flindt 2006;  

RNDiff Necrosis rate of differentiated tumour 
cells 

hours-1 0-0.02 Assumption, estimated to 
achieve the given GF 

Psym[region‡] Fraction of stem cells that perform 
symmetric division  

- 0-0.4 estimation based on Pine et 
al. 2010; Morrison et al. 
2012 

Psleep[region‡] Fraction of cells entering the G0 phase - 0-1 Estimated to achieve the 
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following mitosis  given Td 

PG0toG1[class*] 
[region‡] 

Fraction of dormant (stem and LIMP) 
cells that re-enter cell cycle  

- 0-1 - 

MISCELLANEOUS PARAMETERS 

NLIMP Number of mitoses performed by LIMP 
cells before becoming differentiated 

- 8-24 Estimation based on fraction 
of stem cells 

CHEMOTHERAPY  PARAMETERS 

T 
chemo, adm 

[n][drug†] 

Time point of nth drug administration, 
n=1,… 

days - clinical data 

Cell kill 
rate[drug†] 

The numbers of biological cells lethally 
hit by the drug at each administration 

- 0-1 - 

CKF [class*] Cell kill factor i.e. factor adapting cell 
killing probability to stem or LIMP cells 

- 0-1 for 
stem, 1 
for LIMP 

- 

RADIOTHERAPY PARAMETERS 

α/β  alpha to beta ratio Gy 10 Jin et al. 2010; Lindblom 

et al. 2015 

OER Εnhancement of therapeutic or 
detrimental effect of ionizing radiation 
due to the presence of oxygen 

- 2.5 - 3 Perez and Brady 1998; 
Murray et al. 2003; 
Laperriere et al. 2002 

D Dose of radiation to a population of 
cells 

Gy 
 

- Depends on scheme 

T 
radio, adm 

[n] Time point of nth radio administration, 
n=1,… 

days - clinical data 

Cell kill rate 

[radio] 

The numbers of biological cells lethally 

hit by the radio at each administration 

- 0-1 - 

*Defined separately for stem and LIMP cells (class: {stem, limp})   
‡Defined separately for proliferating and necrotic region (region: {proliferating, necrotic}) 
†Defined separately for each drug administered 
¦The parameters included under this term express fractions and, therefore, can theoretically take any value 
between zero and unity. Whenever possible this range has been narrowed based on logical assumptions 
supported by literature or basic science. 

 
 

LO1.5 Preliminary Results 
 

The hypermodel execution has been successfully demonstrated on a recurrent lung adenocarcinoma 
treated with irradiation. The clinical question addressed is: 

 
How much will be the imageable volume reduction of the tumour one year following the completion of 

tumour irradiation? 
 

The patient received four fractions of 15 Gy. The radiation schedule is depicted in Fig LO3. The 

patient specific data that have been exploited by the Oncosimulator are the applied chemotherapeutic 
scheme (drugs, administration instants) and the 3D image of the tumour as reconstructed from CT 

imaging data. The sets of imaging data were provided for two time instants before and after the 
completion of the treatment (Fig LO3). There is no visible tumour approximately one year after 

treatment. Due to the non-availability of data related to any distinct internal metabolic regions, the 
virtual tumour implemented is homogeneous with a shape compliant to the reconstructed tumour 

image.  
 
Table LO2 lists the parameter values of Oncosimulator related to tumour cell kinetics, following 

adaptation of the hypermodel to the histological subtype. Fig LO4 shows the simulated time course of 
the tumour volume for the clinical case considered. The onset (time 0) and the finishing time point of 

simulation correspond to the time instances of the initial and the final tumour CT image acquisition. 
The onset of therapy is evident from the rapid decrease in tumour volume. The hypermodel predicts 
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a very small nodule of 5mm in diameter at the time point of the final CT acquisition. Additional 
adaptation work has been planned for the last year of the project to explain such discrepancies and 

improve the accuracy of the hypermodel. The clinical case was also simulated assuming lower 
radiation doses. The hypermodel successfully demonstrated a worse treatment response and a faster 

tumour cell repopulation with decreasing radiation dose. 
 
 

 

 
Fig. LO3. Treatment schedule and volumetric measurements 

 
 
TABLE LO2. Adaptation Of Parameter Values Related To Tumour Cell Kinetics And Resulting Cancer 

Characteristics 

 

Parameter Description  Value 

Tc Cell cycle duration 40 h 

TG0 Duration of dormant phase 168 h 

TN Time needed for necrosis products to be removed  23 h 

TA Time needed for apoptosis products to be removed  4 h 

NLIMP Number of mitoses performed by LIMP cells before arrest 22 

RA Apoptosis rate of stem and LIMP cells 0.0001 h-1 

RA,DIFF Apoptosis rate of differentiated cells 0.017 h-1 

RN,DIFF Necrosis rate of differentiated cells 0.025 h-1 

PG0toG1 Fraction of G0 cells that re-enter cell cycle 0.1 

Psleep Fraction of cells that enter G0 phase following mitosis  
0.263 

Psym Fraction of stem cells that perform symmetric division 0.322 

Cancer Characteristic Value 

Doubling Time 293 d 

Fraction of Stem Cells‡ 0.00009 

Fraction of  LIMP  Cells‡ 0.856 

Growth Fraction‡ 0.356 

Fraction of Dormant Cells ‡ 0.500 

Fraction of DIFF Cells‡ 0.144 

Fraction of Apoptotic Cells* 0.007 

Fraction of Necrotic Cells* 0.121 

‡out of living cells 
*out of total cells 
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Fig. LO4.  Simulated time course of the tumour volume for the clinical case considered. 

 

LO2. Lung Cancer Statistical Approach 

 
Regarding NSCLC adenocarcinoma, a machine learning approach is under development. The aim is to 

identify group of patients with high risk of recurrence based on their miRNA data and/or 
EGFR/BRAF/ALK mutation and clinical profile. A preliminary Naive Bayes classifier based on miRNA 

data only has been developed. A standalone application utilizing the above classifier, compliant to the 
CHIC specifications with respect to model deployment and packaging, has been released and 

successfully tested on the CHIC platform. 
 

LO2.1 Methodological  Aspects 

 
At the molecular level, statistical models exploiting gene or pathway expression data have 
traditionally been recruited to serve as prognostic tools for relapse-free survival. The selection of the 

most appropriate technique is a fundamental step in data analysis. An important principle of model 
selection is to balance bias, referring to the errors occurring when the model is not complex enough 
to describe the true generating process, and variance, referring to the errors when the model has 

more degrees of freedom than the true generating process (overfitting). The tradeoff of bias and 
variance is generally resolved with proper penalization in the models. 

  
The goal of feature selection is to identify a minimal subset of features that optimize prediction 

accuracy. The benefits are manifold, the most important ones being: (a) to avoid overfitting and 
improve model performance, i.e. prediction performance in the case of supervised classification and 

better cluster detection in the case of clustering, (b) to provide faster and more cost-effective 
models and (c) to gain a deeper insight into the underlying processes that generated the data [Saeys 
et al., 2007]. Three major categories of feature selection techniques can be recognized: filter 

methods, wrapper methods and embedded methods. Filters (e.g. Euclidean distance, t-test, 
Information gain, gain ratio, correlation-based feature selection etc.) estimate an index for each 

feature that expresses how relevant a feature is to the target. They are computationally simple and 
fast, and they are independent of the classification algorithm. On the other hand, wrappers rank 

feature subsets by the prediction performance of a classifier on the given subset. Greedy search 
strategies are generally preferred, such as sequential forward selection or backward elimination. 
Embedded methods select features based on criterions that are generated during the learning 

process of a specific classifier. When the training sample size is small, filters are preferred, whereas 
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the more advanced wrappers and embedded methods will perform better when the training sample 
size increases, due to their ability to detect mutual information between features. Guyon and Elisseeff 

(2003) suggested the following steps in solving a feature selection problem: 1. Feature constructions 
2. Feature ranking with filter methods 3. Excluding outliers 4. Comparisons between different feature 

selection methods 5. Assessing stable solution. 
 
A common problem in statistical analysis is the handling of missing values. The simplest way of dealing 

with it is to discard the observations that contain them. However, this method is applicable only 
when there are a few missing values. Rather than removing the observations with missing data, 

another approach is to fill in or “impute” the missing values. A variety of imputation approaches 
exists ranging from extremely simple (e.g replace each missing value with the mean) to rather 

complex (e.g. Maximum Likelihood, Multiple imputation) [Pigott 2001]. In the case of gene expression 
data the simplest imputation algorithms consist of replacing the missing values by zero or by the 
corresponding row/column average [de Souto et al. 2015]. More complex algorithms that employ 

gene correlations include, the weighted k-nearest neighbor (WKNN), local least squares, expectation 
maximization approach and Bayesian principal component analysis [de Souto et al. 2015]. 

 
In all cases, the choice of the most appropriate technique is problem specific and related to the type 

of data (binary, integer or continuous), their size and any prior information about the data 
distribution, according to their definitions and properties. 

 

LO2.2 Categorization According to the CHIC Perspectives for Semantic 

Annotation 

PERSPECTIVE 

CODE 
NUMBER  

PERSPECTIVE  MODEL CATEGORY 

I TUMOUR-AFFECTED/ NORMAL TISSUE 
MODELLING: 

 tumour 

II SPATIAL SCALE(S) OF THE MANIFESTATION OF 
LIFE: 

- 

III TEMPORAL SCALE(S) OF THE MANIFESTATION 

OF LIFE: 

- 

IV BIOMECHANISM(S) ADDRESSED: - 

V TUMOUR TYPE(S) ADDRESSED:  lung cancer 

VI TREATMENT MODALITY(-IES) ADDRESSED: - 

VII GENERIC CANCER BIOLOGY/ CLINICALLY 

DRIVEN CHARACTER OF THE MODELLING 
APPROACH: 

 clinically driven 

VIII ORDER OF ADDRESSING DIFFERENT SPATIAL 

SCALES: 

- 

IX ORDER OF ADDRESSING DIFFERENT TEMPORAL 

SCALES: 

- 

X MECHANISTIC/STATISTICAL CHARACTER OF 
THE MODELLING APPROACH: 

 based on "black box" 
statistical modeling 

XI DETERMINISTIC/STOCHASTIC CHARACTER OF 

THE MODELLING APPROACH: 

- 

XII CONTINUOUS-FINITE-DISCRETE CHARACTER 

OF THE MATHEMATICS INVOLVED: 

- 

XIII CLOSED FORM SOLUTION / ALGORITHMIC 

SIMULATION MODELLING APPROACH: 

- 
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LO2.3 Preliminary Results 

 
The classifier aims to predict the clinical evolution of a surgical treated patient with NSCLC adenocarcinoma. 
The classifier was trained based on the miRNA data from 10 patients with known clinical evolution. Two 
classes were considered: progression or complete remission. The fold change in miRNA expression was 
considered. There were no missing values.  
 

The workflow for the development and validation of the classifier consists of the following steps: 
 Feature selection: A t-test statistic was chosen due to the small size of the sample (10) compared to 

the considerable large size of the feature space (2550). The 10 most significant features based on t 
statistics (i.e. the ones with the lowest p-value) were selected.  

 
 Training a Naïve Bayes classifier with the selected features. 

 

 Cross-Validation: Due to the small size of the sample, the classifier was validated by applying the leave-
one-out method. 

 

The accuracy of the Naïve Bayes classifier estimated based on the leave-one-out cross-validation method is 
100% in the sample considered (Table 3). Even though the results are promising, no definite conclusions can be 

drawn yet, due to the small size of the sample. 

‘ 
 

 

TABLE  LO3. Confusion matrix of Naïve Bayes performance  
 

 

                                                                                 Predicted  class 

 
complete 
remission recurrence Recognition  

A
c
tu

a
l 
c
la

ss
 complete 

remission 
4 0 100% 

recurrence 0 6 100% 

 
Precision 100% 100%  
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BM. The Biomechanical Hypomodel for Nephroblastoma 

and Non Small Cell Lung Cancer (and Glioblastoma 

Multiforme) 

 
The development of the Biomechanical Hypomodel for Nephroblastoma and Non Small Cell Lung 
Cancer (and Glioblastoma Multiforme) has been led by UBERN. ICCS has ensured the compatibility 

of the hypomodel with the rest of the interacting hypomodels as well as with the overarching 
topology of the corresponding hypermodels. 

 

BM1. The Biomechanical Simulator Component 
 
The Biomechanical Simulator (BMS) is a hypomodel or component model for the simulation of bio-

mechanical aspects of macroscopic tumour growth. It relies on the Finite Element Method (FEM) to 
compute mechanical stresses and strains resulting from tumour growth or shrinkage in a patient-

specific anatomy. The resulting information (3D stress, strain, displacement and pressure maps) can 
be used as input to other hypo-models.  

 
We currently focus on the interaction with OncoSimulator (OS), where a ‘direction of most-likely 
tumour growth’ (for OS) is derived from pressure information computed by BMS. Further 

Interaction with other hypo-models can also be envisaged for the future. For example, the pressure 
map resulting from biomechanical simulations could be used to compute pressure-induced changes in 

blood perfusion and thus in the local availability of nutrients. 
 

BM2. The Mathematical Model 

 
The rationale and mathematical model underlying BMS has been introduced in Deliverable 6.2 and 
will therefore be summarized only briefly here. Two phenomena of tumour growth are considered: 

The mechanical effect of volumetric changes in a nodal tumour, the so-called mass effect, and healthy 
tissue invasion by a diffusively growing tumour.  
 

Tumour Mass Effect  
 

Simulation of tumour mass effect is based on a hyper-elastic material model as detailed in deliverable 

6.2, section B7. Changes in cell concentrations relative to an initial reference concentration value c init 
are linked to volumetric increase or decrease of the respective geometrical cell by a growth-induced 

strain εgrowth which, together with the mechanical strain εmech, contributes to the total strain in the 
tissue:  

εtotal =εmech −εgrowth 

 
Healthy Tissue Invasion 
 

A theoretical framework for the modelling of healthy tissue invasion for brain tumour simulations 
was introduced by [BM1, BM2, BM3] based on a reaction-diffusion equation. This approach describes 

active tumour cell migration as a random walk-process which is mathematically expressed as a 
passive diffusion process from regions of higher cell concentration to regions of lower cell 

concentration. The evolution of the tumour cell population in space and time thus depends on the 
motility of tumour cells and the generation of new cells: 
 

𝜕𝑐

𝜕𝑡
= 𝐷∆𝑐 + 𝜌𝑐(1 − 𝑐) 
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The isotropic and locally constant diffusion 𝐷 represents the migration rate of cells. Logistic growth 

with growth rate 𝜌 is assumed as reaction term, and  𝑐 = 𝑐(𝒓, 𝑡) is the normalised concentration of 
tumour. This formulation, known as Fisher’s equation [BM4], leads to the creation of a non-
proliferating zone in regions of high tumour cell concentration, in agreement with clinical observation 

of the formation of a necrotic core. 
 

BM3 Hypo-model Simulator & Interfaces 
 
The Biomechanical Simulator (BMS) focuses on the simulation of solid nodal tumours such as 

Nephroblastoma and NSCLS, and does not take into account aspects of healthy tissue invasion at this 
moment. Simulation of diffusive tumour growth and tissue invasion is of importance mainly for one of 

the CHIC scenarios, namely high-grade glioma growth.  Modelling for this scenario is explored in a 
separate simulation framework which is introduced in the section “Modelling healthy-tissue invasion 
in GBM”. 

 
BMS is available as standalone (file-based) or MUSCLE [5]-enabled component model. Three types of 

static modelling parameters can be distinguished, all of which are configurable via a single 
configuration file in xml format: 

 

 “Technical parameters”, related to file-management and the FEM backend 

 Scenario / body-site specific parameters, such as mechanical material properties of tumour 

and healthy tissues, as well as mechanical boundary conditions. 

 Patient-specific parameters, namely the precise morphology of patient anatomy in the region 

of interest. 
 

To facilitate automatic iterative execution of the model in a coupled workflow, a command-line 
interface is provided for a selected subset of parameters. This allows model configuration via a 
scenario-specific configuration file and patient-specific command-line parameters. 

 
Dynamic inputs and outputs consist of snapshots of 3D maps of tumour cell concentration and 

“direction of least pressure” at given time points. Internally, as well as for file-based data exchange, 
BMS uses the VTK data format for representing parameter maps in 3D space. For MUSCLE-based 

model communication, outgoing parameter maps are transformed into byte-streams and, likewise, 
incoming parameter maps are serialised into VTK representations based on shared information about 

the domain size. 
 
Figure BM1 illustrates the interfaces of BMS, as well as its dynamic in- and output ports. ‘Tumour 

Domain’ indicates the spatial map of cell concentrations provided by OS, ‘BMS Simulation Domain’ 
corresponds to the domain model on which biomechanical simulations are performed. Results of 

FEM simulation and post-processing are returned in both BMS and OS simulation domains. Details of 
these domains and the parameter exchange process are further explained in section “Modelling 

healthy-tissue invasion in GBM”. 
 
 

 
 

 
 

 
 
 

 
 

 



Grant Agreement no. 600841  

D6.3 – Initial Standardized Cancer Hypermodels 

Page 44 of 151 

 
 

 
 

 
 
 

 
 

 
 

 
 
 

 
 

 
 

 

 

 

 
Fig. BM1 Static, dynamic and computational interfaces of the Biomechanical Simulator (BMS) 

 

BM4. Scenario-Specific Adaptation and Patient Personalisation 

 
The BMS simulator component can be adapted to different body-sites and be personalised to patient 

specific anatomies by means of model parametrization. 
 

BM4.1 Scenario-Specific Parameters 

 
Depending on its location, the tumour is surrounded by different tissues. We only take into account 

those tissues explicitly that are expected to make a distinct contribution to the tumour’s mechanical 
landscape, either because of their immediate vicinity to the developing tumour or because of their 
distinctly different mechanical properties. Average bulk values are assumed for other tissues. Also, 

boundary conditions are specified per body-site/scenario, not for the individual patient. 
 

The following paragraphs briefly detail the tissue types considered for the different scenarios in 
CHIC, together with estimates for their mechanical material properties, and boundary conditions. 
 

Nephroblastoma 

 
Fully constrained surface nodes are assumed as mechanical boundary conditions. Table BM1 presents 
tissue types and their mechanical material properties. Fig. BM2 illustrates a patient-specific FEM 

model with those tissues. 
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TABLE BM1: Tissues and mechanical tissue parameters for Nephroblastoma scenario 
 

Tissue Type E [Pa] Poisson ratio 

Healthy kidney   5.3 ∙ 103 0.40 

Bone 1.0 ∙ 109 0.30 

Other tissues 5.0 ∙ 103 0.40 

Tumour 20.0 ∙ 103 0.40 

 
 

 

 

 

 

 
 

 

Fig.  BM2: Personalised FEM model for Nephroblastoma scenario, derived from patient anatomy. 

 

 
Non-Small Cell Lung Cancer ( NSCLC)  

 
Fully constrained surface nodes are assumed as mechanical boundary conditions. Table BM2 presents 
tissue types and their mechanical material properties. Fig. BM3 illustrates a patient-specific FEM 

model with those tissues. 
 
 

 
TABLE BM2: Tissues and mechanical tissue parameters for NSCLC scenario 
 

Tissue Type E [Pa] Poisson ratio 

Lung tissue   5.0 ∙ 103 0.40 

Bone 1.0 ∙ 109 0.30 

Other tissues 5.0 ∙ 103 0.40 

Inner organs 5.0 ∙ 103 0.40 

Bronchi 5.0 ∙ 103 0.40 

Tumour 10.0 ∙ 103 0.40 
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Fig. BM3: Personalised FEM model for NSCLC scenario, derived from patient anatomy. 

 
 

Glioblastoma 

 
Fully constrained surface nodes are assumed as mechanical boundary conditions. Table BM3 presents 
tissue types and their mechanical material properties. Figure 3 illustrates a patient-specific FEM model 
with those tissues and additional tumour subregions (edema as manifestation of microscopic 

presence of tumour cells).  

 
         TABLE BM3:  Tissues and mechanical tissue parameters for GBM scenario 
 

Tissue Type E [Pa] Poisson ratio 

White Matter   3.0 ∙ 103 0.45 

Grey Matter 3.0 ∙ 103 0.45 

Tumour 6.0 ∙ 103 0.45 

 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 

Fig. BM4.  Personalised FEM model for GBM scenario, derived from patient anatomy. 
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BM4.2 Patient-specific parameters 

 
While material parameters and boundary conditions are assumed to be applicable across patients 
within a scenario, anatomical models are patient-specific. For each patient, a segmented image of the 

region and tissues of interest is required to build the patient’s personalised BMS simulation domain, 
as illustrated in figures Fig. BM2-Fig. BM4. 
 

BM5.  Data Preparation 

 
The model configuration process comprises multiple steps that are both error-prone and time-
consuming when performed manually. Therefore, a pre-processing pipeline has been developed to 
automate model creation, site-specific adaptation and personalisation steps as sketched in Fig. BM5: 

 

 Creation of tissue label maps of region of interest from medical images 

 

In Nephroblastoma and NSCLC this remains a manual process that has to be completed 
before simulation. When automatic healthy tissue segmentation tools become available, this 
step can be automated. For example for Glioblastoma, automatic segmentation tools (e.g. 

BraTumIA [BM6]) are available and able to identify all tissues of interest. 
 

 Creation of patient-specific anatomical model: Meshing 
 

For large simulation domains, a fixed spatial resolution as provided by the image voxels 
results in conflicting requirements for short simulation time (coarse mesh) and high accuracy 

(fine mesh) in specific regions of interest within the domain. As solution to this problem, a 
meshing routine for tetrahedral meshes has been implemented, which allows for variable 

mesh granularity in different regions of the simulation domain. 
 

 Parametrisation of patient-specific anatomical model with scenario-specific 
tissue parameters 

 
All distinct tissues present in the anatomical segmentation are annotated with the material 

parameters and boundary conditions defined for the specific cancer scenario, see Tables 
BM1-BM3. 

 

The resulting model provides the initial simulation domain on which growth-related biomechanical 
effects are simulated. All information is stored as VTK ‘unstructured grid’ and converted into the 

appropriate input file format for the chosen FEM backend. FeBio [BM7] is currently supported as 
simulation backend and further converters for Abaqus (Simulia) are being integrated.  
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Fig. BM5: Data preparation pipeline for model generation. 
 

 

BM6.  Hyper-Model Execution 

 
Once the simulation domain is generated, BMS can be used in iterative coupled execution with other 
hypo-models. Fig. BM6 illustrates this process on the example of BMS-OS interaction. Starting from 

an initial spatial map of cancer cell concentrations, in each time step, BMS receives an (updated) 
tumour cell concentration map from OS (1). Since both simulators operate on distinct domain 

discretisation (OS: tumour only, regular grid; BMS: tumour & healthy tissue, unstructured mesh), OS 
cell concentrations are mapped into the BMS domain (2). From this information, spatial maps of 
growth, stress and pressure are computed (3-5) as described in section BM2. The Mathematical 

Model”.  The spatial pressure distribution is then mapped back from the BMS simulation domain into 
the regular grid of the OS (6) where the pressure gradient is computed. Based on this, a map of the 

“direction of least-pressure” for every grid cell is returned to OS (7) where it informs the movement 
and redistribution of tumour cells. This process is repeated until the hyper-model execution loop 

terminates. 
 

BM6.1 Additional BMS Functionalities 

 
As described in the foregoing section, personalised FEM simulations on a larger domain demand the 

creation of patient-specific meshes with adaptable element sizes. For this purpose, BMS integrates a 
meshing tool (using CGAL and VTK libraries) that generates custom meshes based on a 
segmentation of the domain of interest and a set of meshing parameters. 

 
One challenge for the biomechanical simulations consists in handling large deformations due to 

tumour growth. These deformations lead to distortion of finite elements in the given domain 
discretisation, which may result in non-convergence of the computational problem. A ‘re-meshing’ 

mechanism has been implemented that creates a new high-quality mesh (with the same mesh 
properties as original undeformed one) from the current simulation domain. It uses above mentioned 
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meshing tool, and is automatically invoked when the FEM backend fails to converge in the first 
solution attempt. This approach is promising for cases in which deformation and element distortion 

accumulates over multiple simulations, however, at this moment it does not address excessive 
deformations that occur within a single BMS execution. BMS as well as the integrated re-meshing 

mechanism do not yet support “pre-straining”/”pre-stressing” of the updated (deformed) simulation 
domain for the next time-step.  
 

Parameter exchange between BMS and OS, as well as the re-meshing and future pre-
straining/stressing procedure, require spatial parameter distributions to be mapped between domain 

discretisations: between structured grids (OS) and unstructured meshes (BMS), or between different 
unstructured meshes of (parts of) the same domain. A mechanism for this mapping is currently 

implemented as intrinsic part of the BMS simulator using standard VTK filters.  
 

BM6.2 Common Functionalities and Recommendations 
 
Both functionalities, mesh creation from image segmentations and mapping of 3D parameters 

distributions between domains, are a commonly used in Finite Element or Finite Difference based 
simulations. Although not part of the actual (mathematical) model, these ‘convenience functions’ are 

crucial for functioning simulator components and their implementation is time-consuming. 
Furthermore, their reliability and accuracy are of utmost importance to ensure correctness of the 

individual hypo-model as well as the composed hyper-model simulation.  
 
We believe that each of these functionalities could be well encapsulated in a standalone hypo-model 

in the future to be made available on the shared computational platform. This would not only greatly 
facilitate the creation of new personalised FEM models and the parameter exchange between other 

component simulators; it would also ensure consistent handling of these critical simulation and 
communication aspects across the platform. 

 
 
 

 
 

 
 

 
 
 
 
 
 

 
 

 
 

 
 
 
 

 
 
 

 

Fig. BM6: Data exchange and Computation in BMS-OS coupled execution. 
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BM7.  Modelling Healthy-Tissue Invasion in GBM 
 
Aggressive tumours are characterised by fast proliferation and their ability to invade healthy tissue. This 
characteristic is a prominent feature of Glioblastoma multiforme (GBM), the most frequent and most malignant 

subtype of glioma.  

 
A mechanically coupled reaction-diffusion model has been set up to investigate this effect. It follows the 
mathematical model outlined in section “BM2. The Mathematical Model”  “and has been implemented in 
Abaqus (Simulia) as (mathematically equivalent) heat-transport problem with thermo-elastic coupling. 
Integration of this model into BMS requires further study and discussions among the involved partners.  
The remainder of this section provides an overview of parameters choices and first simulation results. 

 
Grey and White Matter are assigned isotropic diffusion coefficients DWM / GM of different magnitudes (DWM = 
5 DGM [BM8]) representing the motility of GBM cells in the respective tissue. Parameter choices for diffusivity 
and proliferation are based on literature values estimated from clinical observations in glioblastoma patients. 
The model uses normalised cell concentration values. Mechanical coupling is achieved via a linear expansion 

coefficient λ=0.15 corresponding to a maximum tumour-related local strain of 15% [BM9].  
 
Fig. BM7 shows a rendering of the concentration 80% iso-contour, corresponding to the bulk tumour visible on 

T1Gd MRI images, at different time points during tumour development. The second panel shows the 
distribution of cell concentration and clearly indicates the presence of tumour cells beyond the boundaries of 
the visible tumour. 

 

 
 

Fig. BM7: Growing tumour from mechanically-coupled reaction diffusion model at different time steps. Upper 
panel: tissue types and tumour; lower panel: cancer cell concentration. The rendered tumour surface 
corresponds to relative cell concentrations > 0.8. 

 
Fig. BM8 illustrates the mass-effect caused by the growing tumour, leading to displacements up to 
4mm in the simulated configuration. 
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Fig. BM8: Displacement fields due to tumour mass-effect at different stages of tumour growth. 
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AN. The Angiogenesis Hypomodel for Nephroblastoma and 

Non Small Cell Lung Cancer 
 
The development of the Angiogenesis Hypomodel for Nephroblastoma and Non Small Cell Lung 
Cancer has been led by UOXF.  ICCS has ensured the compatibility of the hypomodel with the rest 

of the interacting hypomodels as well as with the overarching topology of the corresponding 
hypermodels. 

 

AN1. Overview 

 
The Angiogenesis Hypomodel describes the transport of nutrients in the tumour at the tissue-scale. 
In addition, ‘capillary–scale’ models of nutrient transport and blood flow in tumour micro-vessels 

have been developed, informed by experimental measurements of mouse tumour micro-vascular 
structure. These models can complement and inform the tissue-scale transport model and may be 

used as part of the CHIC modelling framework for the purpose of scientific research.  

 

AN2. Model Development 
 

 Tissue-scale spatial model of tumour nutrient transport developed. The model has run 

successfully as part of the nephroblastoma and lung demonstrator hypermodels and is 
available on the model repository. 

 

 Development of high-resolution, capillary-scale models of oxygen transport and blood flow in 

tumour micro-vessels. Micro-vessel structures and micro-fluidics measurements have been 
provided by experimental collaborators for model parameterization. Simulation code will be 

made available to the public later this year. 
 

 Development of a capillary-scale model that simulates vascular tumour response to 

radiotherapy. Code will be made available to the public later this year. 

 

 

AN3. Vasculature Hypomodel (Nephroblastoma and Lung) 
 

AN3.1 Background 

 
The vasculature plays a vital role in the transport of nutrients and therapeutics to tumours, with 

tumour size limited by its ability to co-opt and maintain a vessel network. Many approaches have 
been adopted for modelling the effect of vascularization on tumour growth. The simplest models 
account for the effects of the vasculature in a phenomenological manner, by describing its ability to 

support tumour growth through a ‘carrying capacity’ term. A well-known example is the model of 

Hahnfeldt [AN1], which describes the rate of change of tumour volume 𝑉 as a function of carrying 

capacity 𝐾: 
 

𝑉′ = −𝜆𝑉𝑙𝑜𝑔 (
𝑉

𝐾
) 

 

where 𝜆 is a growth rate parameter. In this model, the carrying capacity is a phenomenological, non-
spatial, variable that represents the ability of the vasculature to supply nutrient to the tumour. The 
adopted rate of change of the carrying capacity term: 



Grant Agreement no. 600841  

D6.3 – Initial Standardized Cancer Hypermodels 

Page 53 of 151 

𝐾 ′ = −𝜆2𝐾 +𝑏𝑉 −𝑑𝐾𝑉
2
3 − 𝑒𝐾𝑔(𝑡) 

 

where 𝜆2, 𝑏, 𝑑, 𝑒 are constants and 𝑔(𝑡) is the time dependent concentration of anti-angiogenic 
drug, assumes that the tumour is spherical. Advantages of models of this type are that they have few 
parameters and are simple to implement, verify and validate. Disadvantages are that they are non-
spatial, assuming a spherically-symmetric tumour, and contain system parameters such as carrying 

capacity do not have a clear physical meaning. The latter makes it challenging to include information 
from histology (micro-vessel density) or functional imaging (vessel volume fraction, permeability, 

perfusion) within the model. 
 

Detailed spatial models of nutrient transport, vessel growth and vessel occlusion have been 
developed at the tissue-scale [AN2]. These models allow tumour growth to be described in a more 

mechanistic fashion, relaxing the assumption of spherical geometry and allowing quantities such as 
vessel density and permeability to be explicitly described. In theory, such models can be 
parameterised with data related to vessel volume fractions and permeability from functional imaging; 

however this has not yet been performed. A disadvantage of such models, is that they contain many 
more parameters than their non-spatial counterparts. In addition, their practical implementation is 

more challenging and computationally expensive. This makes testing, verification and validation more 
difficult. Also, vessels are described as a scalar density or volume fraction field. In reality the tumour 

vessel network is branching structure exhibiting spatial heterogeneity and multi-fractal 
characteristics. It is not clear whether transport in, and temporal evolution of, such a structure can 
be described using such tissue-scale descriptions. 

 
A thrid approach for simulating vascularization and nutrient transport is to model at the ‘capillary-

scale’ [AN3]. At this size-scale transport of nutrients and blood, angiogenesis and vessel regression 
can be described in a mechanistic manner. However, the application of such models demands spatial 

resolution far greater than that available in clinical imaging to resolve small scale structures such as 
individual blood vessels. In addition, many more parameters and more complex software are 
required to describe and implement such models.  

 
Evidently, the alternative approaches for modelling tumour vascularization and nutrient transport 

have distinct advantages and disadvantages. An ideal approach for modelling these processes is to 
integrate all of the modelling approaches over the multiple biological size-scales involved in tumour 

growth. This is the goal of current modelling efforts by UOXF. Ultimately, a model used for clinical 
application needs to be computationally efficient and have a small number of parameters to ensure it 

can be readily tested, verified and validated. This precludes the direct use of the more detailed 
models. However, they can be used to inform the rules used in more simple implementations. 
 

AN3.2 Model Requirements 

 
This section describes the requirements for the vasculature hypomodel used in the multi-modeller 
hypermodels for nephroblastoma and lung cancer. These requirements were the basis for the final 
form of the model. 

 

 Coupling: Hypermodels are built by ‘connecting’ individual hypomodels and ‘piping’ the 

output of one model into the input of another. Care is needed in the design of the model 

itself, and associated software, to allow for such coupling. In particular, handling spatial data 
and time-stepping need care. 
 

 Exploitation of Clinical Data: The model should exploit available clinical data. In particular, for 

the vasculature component, three-dimensional tumour volumes from imaging and micro-
vessel destiny from histology are available. 
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 Verification: Due to the target application of models in clinical decision making, and the 

coupled nature of hypermodels, it is important that models and software can be suitably 
tested. This has implications for model run-times, which should be relatively short. In 

addition, models should be sufficiently simple so that the entire range of behaviours of the 
hypermodel can be explored in tests for mathematical/numerical and software stability. 

 

 Validation: It is important that the hypomodels do not have an excessive number of 

parameters, so that hypermodel predictions can be reliably validated with respect to clinical 
data. 

 

With these requirements in mind, a simple model of nutrient transport was chosen for inclusion in 
the nephroblastoma and lung-cancer hypermodels. In particular, a steady-state tissue-scale transport 

problem with static vasculature was used to avoid challenges with time stepping when coupling 
models and to minimize the number of model parameters. A spatial description of the tumour was 

used to exploit available clinical imaging data, relaxing the assumption of a spherical tumour in the 
model of Hahnfeldt [AN1]. A regular grid based finite difference method was used to solve the 

transport equations. Lattice size is identical to that of the input model in the hyper-modelling 
pipeline, avoiding spatial interpolation problems.  
 

The model is flexible regarding the use of parameters to facilitate the ‘plug-and-play’ nature of the 
hypermodelling framework. A generic nutrient (e.g. oxygen, glucose) can be modelled with suitable 

parameter choices, vessels can be described in terms of vessel volume fraction, surface area density 
or line density and cell populations can be described in absolute numbers or volume fractions. The 

model is described in detail in the next section. 
 

AN3.3 Model Overview: Theory 

 
The vasculature hypomodel assumes steady-state, diffusion-limited transport of nutrient with 

concentration 𝑐, which is supplied by the vasculature at a rate dependent on vessel amount (volume 

fraction or density) 𝑉, and is consumed by tumour tissue at a rate proportional to the number or 

volume fraction of viable cells 𝑃. The tissue is assumed to comprise a tumour region and a non-
tumour region, as shown in Fig. AN1. 
 

 
 
 

 
 
 
 
 

 
 

 
Fig. AN1. The simulation domain for the transport problem. Distinct tumour and non-tumour regions are 

assumed. 
 

In practice these regions are determined based on segmentations of clinical images, performed in a 
pre-processing step external to the vasculature component in the hypermodel execution. In the non-

tumour region it is assumed that the tissue is well vascularized and nutrient concentrations are set to 

a reference value 𝑐𝑛 . In the tumour region nutrient transport is described according to: 
 

𝐷∇2𝑐 − 𝜆𝑃𝑐 + 𝜌𝑉(𝑐𝑛 − 𝑐) = 0 
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where 𝐷 is the effective nutrient diffusion coefficient in the tumour tissue, 𝜆 (redefined) is the rate of 

nutrient consumption and 𝜌is rate of nutrient delivery by vessels. In this simple model the nutrient 
concentration in the tumour will approach the value in the surrounding healthy tissue as the vessel 

volume fraction increases, or as the rate of consumption by cells decreases.  
 

Although the model has a physical basis, determination and physical interpretation of parameter 

values (𝐷, 𝜆, 𝜌, 𝑉, 𝑐𝑛) is challenging. In practice, these parameters should be treated in a 
phenomenological manner and used in fitting model predictions to observed clinical tumour growth 

(or shrinkage) rates. Discrimination of the relative influence of delivery by the vasculature and 
consumption by cells may be aided by additional observations of tumour micro-vessel density, 

vascular function through functional imaging or cell numbers by functional imaging. However, this has 
not been performed to date. 
 

In order to obtain reasonable estimates for these parameters for model evaluation, literature values 
based on observations in tumour spheroids are adopted [AN4]. Within the hyerpmodelling 

framework dependent components use glucose concentrations to predict cell proliferation rates in 
the tumour. Although the mechanism of glucose consumption by cells also depends on oxygen 

availability [AN4], to preserve the simplicity of the model it is assumed that the diffusing nutrient is 
glucose and glucose consumption is independent of oxygen concentration. Parameter values are 
shown in Table AN1. 

 
TABLE AN1. Assumed parameter values for the vasculature hypomodel for nephroblastoma and lung. 

 

Description Symbol Unit Value Source 

Glucose Diffusivity 𝐷 mm2.hr-1 0.396 [4] 

Glucose 
Consumption Rate 

𝜆 (Num cells)-1.hr-1 7.6e-10 Modified from [4] 

Glucose 
Concentration in 
Non Tumour 

Regions 

𝑐𝑛 Kg.m3 0.9 Value used in 
metabolic 
hypomodel 

Vascular Delivery 
Efficiency 

𝜌𝑉 hr-1 0.25 User chosen/fit to 
data 

 
The described transport model is simple, with considerable scope for improved biological realism 
and detail. However, it is deemed prudent that a simple model such as this is used first in the 

development, verification and validation of nephroblastoma and lung multi-modeller hypermodels. 
More detailed models, described subsequently, can be readily incorporated in the framework if 

justified by available clinical data. 
 

AN3.4 Model Overview: Software and Integration 

 
The nutrient transport problem is solved on a regular finite difference grid in 3D. This method was 

chosen for computational efficiency and to avoid interpolation when used with the grid-based 
descriptions of cell growth used in other hypomodels. In the demonstrator models the cell 

population 𝑃 is received from the ICCS tumour growth hypomodel at each grid point. The vascular 

hypomodel output is the normalized glucose field (
𝑐

𝑐𝑛
) at each point on the grid. This is passed to the 

FORTH metabolic component, where it as averaged for the whole simulation domain. A sample 

model output for one of the nephroblastoma demonstrator cases is shown in Fig. AN2. 
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Fig. AN2. Input tumour cell populations and output normalized glucose fields pre-and post- treatment for the 
nephroblastoma case. 

 

The software can output 3D renderings of the tumour and nutrient regions using VTK, as shown in 

Fig. AN2, although results are only used for debugging and are not passed along the hypermodel 
execution workflow. Models can be executed using either the CHIC TAVERNA or MUSCLE 

environments, or can run in standalone mode for testing purposes. 
 
The model is implemented in the Chaste [AN5] open-source C++ framework for soft tissue 

modelling. As part of developments in this work package (WP6) a custom Chaste build was 
developed to allow the incorporation of MUSCLE libraries for run-time coupling of hypomodels and 

also packaging as a standalone executable. The latter was important for uploading software to the 
CHIC model repository and deploying to sandboxes on remote systems. A consequence is that many 

features of the Chaste library, including discrete cell based modelling, soft tissue mechanics and 
coupled PDE system solvers [AN5] can be used to rapidly build hypomodels for use with the CHIC 

based TAVERNA and MUSCLE execution workflows.  
 

AN3.5 Limitations and Potential Extensions 

 
The transport model used in in the vasculature hypomodel has several limitations, due to its generic 

treatment of a single ‘nutrient’ field. In reality, when used to model glucose transport, oxygen 
availability should also be accounted for, as per [AN4]. This coupling could readily be introduced to 
the model; however it results in the addition of extra parameters and makes validation, which is yet 

to be attempted for the simple case, more challenging. 
 

A limitation of the current adoption of the vasculature hypomodel in the demonstrator hypermodels 
is that the metabolic hypomodel (FORTH) uses an independent model of glucose consumption. In 

theory, the rate of glucose consumption from the metabolic model could be passed back to the 
vasculature component and used to update glucose concentrations. However, this presents practical 
difficulties, as it would lead to an iterative spatial/non-spatial coupling between models, which is not 

accounted for in the current workflow design. 
 

The vasculature is assumed to be ‘static’ in the current model, in that it does not evolve in time. 
Previous iterations of the model included temporal evolution of the vasculature (refer to previous 

WP6 deliverable reports, e.g. D6.2). These features were removed from the model as it was difficult 
to justify their inclusion from available clinical data, they increased computational expense and they 
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introduced difficulties managing time stepping with other hypomodels. If justified by available data 
they can be re-activated. 

 
In addition to the tissue-scale transport model used in the clinical demonstrators, a range of more 

spatially resolved models of transport in tumour micro-vessels have been developed using Chaste 
[AN5]. These models can be used to inform the hypomodel used in the demonstrators, or may be 
useful as scientific tools in their own right. 

 

AN4. High Resolution Angiogenesis and Vascular Transport Models 

 
This section briefly overviews other model developments, which are not directly used in 
demonstrator hypermodels, but may be of scientific interest run used as individual hypomodels. 

 

AN4.1 High Resolution Transport Models 

 
Models of nutrient and drug transport in realistic tumour micro-vessel geometries have been 
developed, and are being parameterized based on collaborations with experimentalists in the Dept. 

of Radiation Oncology, University of Oxford and Centre De Recerca Matematica, Universitat 
Autonoma de Barcelona. Models include: i) finite element and network models of fluid flow in vessels 

structures, ii) finite element, greens function and finite difference models of advection-diffusion-
reaction of solutes inside vessels and surrounding tissues and iii) discontinuous Galerkin finite 
element methods for transport through semi-permeable vessel walls. A typical work-flow from an 

intrivatal image of a tumour micro-vessel through to a simulation of nutrient convection and 
consumption is shown in Fig. AN3. 

 

 
 

 
 

 
 

 
 
 

 
 

 
Fig. AN3. Pipepline from segmentation of a tumour micro-vessel through to simulation of blood flow and 

oxygen transport and consumption. 

 

AN4.2 Effect of Vessel Network Structure on Predicted Radiotherapy Outcome 

 
A 3D model of radiation therapy based on discrete representations of vessels and tumour cells has 
been developed and used to investigate whether different spatial descriptions of the micro-vessel 

network affects predicted radiotherapy outcome. Of particular interest is that it is predicted that 
models based on point-wise descriptions of the vessel network, which may be obtain from histology, 
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can overestimate the effect of spatial heterogeneity on radiation response. An example of the 
predicted tumour cell death at different dosing times is shown in Fig. AN4. 

 
Fig. AN4. Left, the change in cell populations in 2D (above) and 3D (below) simulations of vascular tumour 
response to radiotherapy. Administration times for a 2 Gy dose are also shown. Right, predicted cell viable 
fractions for different methods of spatially representing vessels networks in 2D and 3D. 
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ME. The Metabolic Hypomodel for Nephroblastoma and 

Non Small Cell Lung Cancer (and Glioblastoma Multiforme) 
 
The development of the Metabolic Hypomodel for Nephroblastoma and Non Small Cell Lung Cancer 
(and Glioblastoma Multiforme) has been led by FORTH.  ICCS has ensured the compatibility of the 
hypomodel with the rest of the interacting hypomodels as well as with the overarching topology of 

the corresponding hypermodels. 
 

ME1.Genome-scale Metabolic Modeling 
 
Available high-throughput data allow the description of cellular metabolism at high resolution [ME1-

ME3]. The reconstructed network, which considers the set of all biochemical reactions that take 
place within the cell is converted into a mathematical model and commonly analyzed under the 

constraint-based framework, since genome-scale kinetic information regarding reaction rate 
constants, enzyme concentrations and metabolite concentration, is largely missing. These methods 
have been widely used in the past to describe the metabolic capabilities of microorganisms. 

Constraint-based metabolic approaches utilize the genome-scale metabolic network reconstructions 
and describe the metabolic activity of the chemical reactions at flux level [ME3-ME5]. The core 

assumption of constraint-based models is that the cellular system constrained by its stoichiometry, 
reaches a steady state (intracellular flux balancing) that satisfies the physiochemical constraints under 

a given environmental condition. Flux Balance Analysis (FBA) is a constrained-based method that 
further assumes that a cell follows an optimization strategy in order to accomplish cellular tasks. The 
most commonly applied objective is the maximization of growth rate reflected in biomass 

production. Thermodynamic constraints, enzymatic capacity constraints and substrate availability can 
also be included to place limits on the range of possible reactions. The optimization problem is 

mathematically formulated to a linear programming problem, which can be solved efficiently and 
exactly providing the optimal flux distribution of the system. 

 

ME1.1 Cancer Metabolic Modeling 
 
ME1.1.1 Cancer Metabolism 

 
Normal mammalian cells are exposed to a continuous supply of oxygen, glucose and other nutrients 
in circulating blood. Glucose is taken up by specific transporters and is converted to pyruvate in the 

cytoplasm through glycolysis generating 2 moles of ATP per glucose. In the presence of sufficient 
oxygen, pyruvate is then completely oxidized in mitochondria through oxidative phosphorylation 

generating additional 36 moles of ATP per glucose. However, when oxygen is insufficient, pyruvate is 
redirected away from mitochondrial oxidation and is converted to the waste product lactate. In 

contrast to normal cell metabolism, Warburg’s observations [ME6] showed that cancer cells produce 
a substantial amount of energy inefficiently metabolizing glucose to lactate, independent on oxygen 

availability, a phenomenon termed as Warburg effect or aerobic glycolysis. The exact regulatory 
mechanisms of tumour metabolism are far from complete. The tumour microenvironment 
significantly affects the metabolic activity and rewiring. It alters metabolite transporters and glycolytic 

enzymes, while signaling pathways involving a number of oncogenes and tumour suppressor genes 
have been found to be implicated in the altered metabolism [ME7-ME8].  

 
ME1.1.2. Growth Maximization Strategy 

 
In order to model the metabolic adaptations of highly proliferating cancer human cells, Shlomi et al. 
[ME9] utilized a genome-scale human metabolic network accounting for 1496 ORFs, 3742 reactions 

and 2766 metabolites [ME1] and assumed that cancer cells are under a selective pressure to increase 
their proliferation rate. As commonly approached, they introduced the metabolic demands for 

biomass synthesis required for high proliferation rates and used the flux through biomass as the 
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objective function. In addition to that, they accounted for solvent capacity constraints to further limit 
the fluxes of the metabolic reactions and showed that this incorporation was capable of reproducing 

several metabolic characteristics observed experimentally during cancer development. 
 

ME1.1.3 Lactate Maximization Strategy 
 
We extend the work of Shlomi et al. [ME9] and apply a metabolic strategy that allows near optimal 

growth solution, while maximizing lactate secretion in order to describe the high-flux mechanisms 
that lead to a substantial increase of lactate production that is observed in tumour cells. Sub-optimal 

solutions have been observed to describe the metabolic capabilities of microorganisms under 
environmental stress and in the absence of sufficient evolutionary pressure [ME10] indicating that it is 

not unexpected for biological systems including cancer to show variability around optimal growth 
solutions. Furthermore, the lactate maximization strategy is built based on the experimental 
observations that i) support high lactate production by tumour cells, and ii) lactate secretion levels 

and proliferation rates do not always scale up. In particular, a negative correlation has been observed 
between proliferation and lactate production across the entire NCI-60 collection [ME11].   

 
The lactate maximization strategy is mathematically described as a two-step optimization problem, 

similarly to the Flux Variability Analysis (FVA) method [ME12] which has been used to identify 
alternate optimal and sub-optimal metabolic states. The lactate strategy uses however an iterative 

procedure in an attempt to identify the minimal possible compromise in growth rate that achieves 
lactate production. More specifically, the first step solves the optimization problem as described in 
[ME9]. Cells are assumed to maximize their growth rate subject to flux balancing constraints, uptake 

bounds in the substrate reactions and the solvent capacity constraint. Under these specific 
constraints, the first problem identifies the maximum growth rate.  

 
The second optimization problem aims to maximize the lactate production subject to flux balancing, 

uptake bounds and the solvent capacity constraint but also the constraint that the growth rate is not 
less than a given percentage, k, of the optimal growth rate determined in the first problem. As long 
as lactate secretion rate is less than a value of tolerance (0.01umol/mgDW/h), the second step is 

repeated for smaller values of k until a solution is found. As lactate rate is conversely related with 
cellular growth rate, varying k from maximum to lower values, the model provides a solution that is 

closer to optimal growth. The model has shown to capture several metabolic phenotypes observed 
experimentally in cancer and that slight deviations around the optimal growth rate (90-99%) were 

sufficient for adequate lactate production with increasing deviations to be observed at lower glucose 
uptake bounds. 
 

ME1.2 Context-specific Metabolic Modeling 
 

The genome-scale human metabolic network [ME1] is a global reconstruction superimposing the 
metabolic functions found in a variety of human cells and tissue types. Considering that the inefficient 

glycolytic phenotype of cancer cells, which is mainly characterized by highly proliferating rates as well 
as the significantly increased glucose uptake and lactate production comprise a common 

characteristic of most tumours, the global genome-scale human metabolic network is plausibly a 
network to begin with and apply constraint-based metabolic strategies that can accommodate these 

observations while taking into account the interconnectivity of the metabolic reactions. 
Nevertheless, high-throughput analytical methods have shown increased variability in metabolism 
among different cancer types as well as extensive intra-tumour heterogeneity within the same 

tumour [ME13]. Thus, the glycolytic phenotype is an average behaviour where extensive 
heterogeneity and stochasticity in the metabolic reactions and capabilities can be also present. In 

order to demonstrate how tumours with different metabolic capabilities might evolve, reported 
differentially expressed metabolic proteins are used.  
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The development of context-specific models that integrate several types of data from transcriptomic 
to proteomic and metabolomics in order to construct the active tissue/cancer specific metabolic 

model that allows individualized medicine and therapy planning is anticipated. Although several 
approaches have been proposed [ME14-ME18], the problem remains challenging. 

 
In order to construct a tumour-specific metabolic model in a simplified manner, we included 
constraints in the metabolic reactions of the model, which are associated with bibliographically 

reported differentially expressed metabolic genes/proteins in these tumours. mRNA levels cannot 
accurately determine enzyme concentrations as inaccuracies in experiments, post-translational 

modifications and other effects might occur. However, they can determine an upper bound on the 
amount of available enzyme concentrations. In particular, enzyme levels, Ei, bound the fluxes of the 

corresponding metabolic reactions vi through vi =Kcati Ei, where Kcati corresponds to the enzyme’s 
turnover number. However, in the absence of quantitative information, metabolic reactions catalyzed 
by up-regulated metabolic proteins/enzymes, are constrained to carry non-zero fluxes via a lower 

bound, which is set equal to 0.1umol/mgDW/h unless stated otherwise, for all the involved reactions. 
Different bounds have also been tested. It is important to mention that the level of flux bound 

substantially alters the metabolic capabilities of the cells. Downregulated genes constrain the 
corresponding reactions via an upper bound, which is usually set equal to zero unless stated 

otherwise. 
 

ME1.2.1 Non-Small Cell Lung Cancer (NSCLC) 
 
NSCLC is a leading cause of cancer mortality worldwide (> 900000 deaths/year). NSCLC is a highly 

glycolytic lung cancer accounting for more than 85% of all lung cancers. Two major NSCLC subtypes 
have been reported: adenocarcinoma (LADC) and squamous cell carcinoma (LSCC). It has been 

shown that aerobic glycolysis in NSCLC is promoted through oncogenic mutations in two critical 
proteins, K-RAS and EGFR [ME13, ME19]. Ras-driven cancer cells display increased glucose uptake 

and aerobic glycolysis that support both nucleotide biosynthesis and protein glycosylation for growth 
signaling. However, it should be noted that high heterogeneity in metabolism proteome has been 
observed i)compared to normal lung tissue, ii)between lung subtypes and iii) between primary and 

metastatic lung cancer.  
 

Recently, an extensive omics analysis [ME13] integrating DNA, RNA and proteomics data from 
normal lung, patient primary tumours and primary tumour-derived xenograft tumours revealed sets 

of proteins that are consistently up- or downregulated across tumours, recapitulated in xenograft 
tumours and their associated genes map into regions of focal amplification or deletion respectively. 
This DNA->RNA->protein association indicates a response to selective pressure driving cancer 

phenotype. From the reported metabolism proteome clusters in [ME13] , we used specific clusters of 
proteins consistently upregulated in LADC (cluster index: C15) and LSCC (cluster index: C10) to 

constrain the corresponding metabolic fluxes of the genome-scale metabolic network. It is also 
important to mention that individual proteome clusters have been correlated with overall survival in 

cancers other than NSCLC. 
 

 Interestingly, for some clusters, the patient’s outcome –better or worse- did not coincide among the 
different cancer types. For example, cluster C10 was associated with better outcome in lung SCC, 
but with worse outcome in head and neck SCC, indicating that the whole proteome signature 

associated with a specific cancer type and not individual clusters is important for predicting a 
patient’s outcome. 

 
ME1.2.2 Glioblastoma Multiforme 

 
Gliomas are one of the most common tumours that originate in the Central Nervous System (CNS). 
Glioblastoma multiforme (GBM) is the most aggressive type of glioma, classified as grade IV by the 

World Health Organization. GBMs are highly therapeutically resistant with median survival of 12-16 
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months despite surgery, and advanced radiation and chemotherapeutic protocols. The main 
characteristics of GBM include cellular polymorphism, brisk mitotic activity, increased microvascular 

proliferation, extensive necrosis with regions of pseudopalisading perinecrotic cells, high degree of 
invasiveness and infiltrative edema. Furthermore, GBMs are highly glycolytic upregulating glycolysis 

more than three times that of normal brain tissue producing increased amounts of lactate. Numerous 
differentially up- and downregulated metabolic genes have been identified in relation to normal brain 
tissue [ME20]. These genes have been mainly related to 1) glucose metabolism, 2) fatty acid 

metabolism, 3) nucleotide metabolism and 4) glutamine metabolism. The set of these genes has been 
used to constrain the generic metabolic network and produce a GBM-specific metabolic model 

[ME21]. 
 

ME1.2.3 Nephroblastoma 
 
Wilms tumour (WT), also known as nephroblastoma, is the most common malignant pediatric kidney 

tumour. WTs are believed to arise from the malignant transformation of renal stem cells that 
abnormally persist after embryogenesis and maintain embryonic differentiation capacity. Although 

there are a few studies that have shown metabolic alteration related to glycolytic phenotype in WT, 
unfortunately, there are no thorough studies currently available, which have investigated the 

metabolism of WT in detail. There is only indirect evidence from the genes altered in WT that there 
are alterations of cell metabolism. Thus, in the absence of bibliographic or other data, we use the 

generic cancer metabolic model to describe WT metabolism, which can be supported by the fact 
that Wilms' tumour cells are believed to derive from pluripotent embyronic renal precursor cells.  
 

ME2. Integration of the Cancer Metabolic Hypomodel with the 

Vasculature and the Tumour Evolution Components 
 
As tumour grows well-vascularized regions providing sufficient nutrients to cancer cells can coexist 

with nutrient-limited regions within the tumour mass. In this work, glucose is assumed to be the only 
limiting resource, although oxygen can also be incorporated as well as glutamine. As described in 

many studies [ME22-ME23], the dependence of glucose uptake on glucose concentration, C, can be 
modeled using Michaelis-Menten kinetics. 

 
A relatively slow varying environment is assumed where cancer cells can operate at optimal or near 

optimal growth rates constrained by the current nutrient availability. As illustrated in Fig. ME1, at 
each time interval, the glucose concentration is estimated at every position in the computational grid. 
The spatiotemporal-dependent inflow of glucose flux is constrained by the Michaelis-Menten kinetics 

model and an instantaneous optimization problem is solved for each cell position and time point. 
During that time interval, the fluxes of the metabolic model are assumed constant. The metabolic 

model provides information regarding the uptake fluxes (e.g. glucose), intake fluxes (e.g. lactate) and 
proliferation rate given the available glucose that is then used from the tumour evolution hypomodel 

to update its state. For computational efficacy, the cellular metabolic capabilities have been pre-
calculated for the different glucose concentrations and a lookup table has been used instead of 
repeatedly solving the optimization problem at each position and time interval. 
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Fig. ME1. Schematic of the multi-modeller hypermodel framework with the metabolic hypomodel (FORTH) 
highlighted. The project patterns that are directly involved with the metabolic model of FORTH include the 

University of Oxford (UOXF) and the Institute of Communications and Computer Systems (ICCS) Greece. 
The University of Bern (UBERN) and the University of Pennsylvania (UPENN) are indirectly involved in the 
metabolic hypomodel through the tumour growth model and therapy response of ICCS. 
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MO. The Molecular Hypomodel for Nephroblastoma and 

Non Small Cell Lung Cancer 
 
The development of the Molecular Hypomodel for Nephroblastoma and Non Small Cell Lung Cancer 
has been led by UPENN.  ICCS has ensured the compatibility of the hypomodel with the rest of the 
interacting hypomodels as well as with the overarching topology of the corresponding hypermodels. 

 

MO1. Introduction 
 
The ErbB family of receptor tyrosine kinases and the signaling networks they influence have been 
implicated in a wide variety of cancers. The wild type and mutant forms of this receptor have critical 

role in determining tumour cell fates (death and proliferation) and resistance to various forms of 
targeted and systemic therapies. The ErbB family of receptors form multiple homo and hetero 
dimers and are activated by various ligands like epidermal growth factor (EGF), neuregulins (NRG). 

The activated dimers can turn on multiple signaling pathways downstream like mitogenic Ras-MAPK 
cascade and PI3K/AKT pathway. These pathways and their interaction with ErbB receptors have 

been extensively studied and modeled in literature using various computational paradigms like 
mechanistic compartmental/spatial models as well as statistical machine learning based models. These 

models can be of great clinical value in determining drug effectiveness, dosage and duration as well as 
investigating development of resistance to drugs and effect of intra and inter-tumoural heterogeneity. 

 
The ErbB receptor mediated signaling pathways, important as they are, are however one of many 
other important determinant of tumour cell fate and drug resistance. Of these, tumour suppressor 

TP53 mediated signaling pathways are particularly important and they interact in important ways with 
the ErbB receptor mediated signaling pathways to determine ultimate cell fates. The p53 mediated 

signaling pathways are particularly important in determining tumour cell response to DNA damage as 
induced by chemotherapeutic drugs like doxorubicin and vincristine as well as radiation therapy. Due 

to its importance this signaling pathway has also been studied in detail. However due to its 
complexity and incomplete knowledge of the network, detailed mechanistic models are very few and 
not as predictive. These pathways have mainly been modeled using discrete two or multi-state 

network models.  Although these models are simplistic, a variety of useful information regarding cell 
fate in response to DNA damage can be extracted from them and these predictions can be easily 

verified with experiments leading to further refinement of the models. 
 

Among the important signaling modules mentioned above – ErbB receptor mediated Ras-MAPK and 
PI3K-AKT pathways and the TP53 mediated DNA damage response pathways have been modeled 
individually with different modeling paradigms to varying degree of success. However, there have 

been very few attempts to integrate these models into a combined cellular model. Such an integrated 
model will be of great clinical value due to its scope and its ability to test a great variety of situations 

to give results that can be directly useful to a clinician or can be used as an input to 
phenomenological models of tumour growth in response to chemo and radiation therapies. 

However, due to large differences in the relevant time and spatial scales of the two modules and due 
to the different nature of modeling paradigms which have been successfully applied to them, such an 

integration is a challenging task. In this work, we have successfully integrated these modules by 
identifying various interfaces from the literature and by developing a simple framework for 
information exchange keeping in mind the disparate time scales involved. By modeling the TP53 

mediated signaling modules using a discrete network model we refine its predictions by running a 
continuum ordinary differential equations (ODE) based model of the ErbB receptor mediated 

signaling and passing information across the identified interfaces in both directions. In order to 
consider the effect of molecular profiling data from clinical subjects, in this work, we have also 

incorporated the miRNA expression data for various patients to re-normalize the initial expression 
levels of corresponding mRNAs to a given patient. This makes our model predictions patient-specific. 
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In doing so, however, we have also taken into account the heterogeneity of the microenvironment 
and have adopted an ensemble of models approach by averaging over multiple conditions of receptor 

expression, growth factor availability, and nature of the memory coupling signaling and transcriptional 
modules. This modeling framework has been successfully applied to lung cancer and nephroblastoma 

demonstrators where the model predictions in the form of a Cell Kill Rate (CKR) has been used as 
an input to phenomenological tumour growth models. 
 

MO2. Model Description  
 
As mentioned in the previous section, the model is composed of two main signaling modules – ErbB 
receptor mediated Ras-MAPK and PI3K/AKT signaling module and TP53 mediated DNA damage 

response module. The main features of model are summarized below: 
 
Input:  

 
1. Patient microRNA from tissue or serum; oncogene mutation 

2. Treatment conditions- Radiation: dose and regimen 
 

Model:  
 
1. Tumour microenvironment- growth factor level, temporal growth factor availability, receptor 

expression, heterogeneity of the tumour microenvironment 
2. Integration of cell cycle, DNA damage response, mitogenic and survival signals, drugs 

 
Output:  

 
Patient-specific cell kill probability, cell growth probability, and cell senescence probability in the 
presence and absence of specific drug/combinations, radiation treatment 

 
The individual model components and the interfaces are described below: 
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A) ErbB Receptor Mediated Ras/Raf/MAPK and PI3K/AKT Pathways 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
Fig MO1: A schematic diagram of the ErbB receptor mediated Ras-MAPK and PI3K/AKT pathway. The black 
arrows indicate normal and red arrows indicate feedback interactions. From Schoeberl et. al. [MO1] 
This part of the model has been adapted from Schoeberl et. al. [MO1] after suitable modifications. This is a 

multi-compartment model with 504 distinct species, 827 elementary mass action type reactions, 252 
parameters. It consists of all the ErbB family of receptors and a subset of the homo and heterodimers. Though 
the model includes both EGF and HRG as the growth factors for simplicity we only consider the effect of EGF 
here. This model incorporates the effect of receptor internalization and recycling and the cross talks involved 

between the Ras-MAPK cascade and PI3K/AKT cascade. This has also been extended to take into account 
various mutant forms of EGFR receptor like L858R and deletion mutants which can be constitutively active. 

 
This module gives the steady state concentrations of the various key downstream markers of the 
Ras-MAPK and PI3K/AKT cascade like activated ERK and AKT. The typical time to achieve steady 

state for this model is about 4-6 hours. 
 
B) TP53 Mediated DNA Damage Response Module 

 
This part of the model has been adapted and modified from Choi et. Al [MO2]. This consists of two 

main submodules corresponding to cell cycle progression and apoptosis. The first module consists of 
cyclin-CDK mediated cell cycle progression which affects the G1 to S phase entry of the cell cycle. 

The cell death module is the intrinsic apoptotic pathway which is mediated by key proteins like Bax 
and Bcl-2 which regulates the cell death protein Caspase 9. Damage to DNA activates ATM kinase 



Grant Agreement no. 600841  

D6.3 – Initial Standardized Cancer Hypermodels 

Page 68 of 151 

which in turn activates TP53 through kinases Chk1 and Chk2. Activated TP53 in turn activates DNA 
damage repair pathways or cell death pathways depending on the extent of damage. The ultimate cell 

fate will depend on the combined interactions of all the various components of the network and 
their initial activation state. This module consists of 16 nodes with 160 negative and 218 positive 

feedbacks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig MO2: A schematic diagram of the TP53 mediated DNA damage response pathway. From Choi et. al. 

[MO2]. The cell proliferation and apoptosis modules are shaded in green and red respectively. Arrows indicate 
activating interactions and dashes represent repression 

 

 
Unlike the continuous ODE based ErbB signaling pathway model the TP53 module is modeled using a 
discrete Boolean model. Depending on set thresholds, each node of the network can have two 

possible states – ON or OFF. The interaction between the nodes is also a discrete number which 
can be both positive and negative depending on whether it activates or represses the downstream 

node. These kind of discrete models can give two possible outcomes: 
  

i) Point Attractor: a single steady state where the activation state of all the nodes in the network 
do not change over successive time steps 
ii) Cyclic Attractor: a sequence of repeating states (cycle) 

 
For the current model there were three possible final outcomes which were identified with three 

different cell fates: 
 

i) Cell cycle progression: (Markers- point attractor with high cyclin-G and low p53 activity) 
ii) Apoptosis: (Markers – point attractor high p53 and high caspase activity) 
iii) Cell Senescence: (Markers – cyclic attractor with oscillations in p53 and Mdm2) 
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TABLE MO1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
C) Module Interfaces and Hybrid Simulator Algorithm 

 
As mentioned in the introduction, in order to integrate the two above modules, we need to identify 

the specific interfaces between the modules. In this case we searched the literature to identify the 
various interfaces between the modules. These are given below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. MO3: Various interfaces between the ErbB and p53 modules as identified from the literature. A – 

Interaction between p53 and MAPK pathway through Wip1 [MO3] B – The double negative interaction of p53 
and Akt through PTEN and Mdm2 [MO4]. C- Interface between DNA damage and the nodes of the pathway. 

 

 
The above interfaces form the conduit for information flow between the two modules. As seen 

above there are some species like Erk, Akt and PTEN which are common to both signaling modules. 
In this framework we run the modules sequentially where the final states of the interface nodes 

A 

 

 

C 

B 
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obtained from each module is fed to the other module. Since the characteristic time scale of the two 
modules are quite different we assume that the faster ODE model will be at steady state during the 

start of each new time step of the slower Boolean model. The overall algorithm of the hybrid 
simulator is given below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig MO4: Algorithm of the hybrid simulator. The Boolean and ODE modules are run sequentially with 

information regarding the states of interface species passed at the end of each run. The main assumption is that 
the time scale to steady state for the Boolean model is much larger than that of the ODE which allows us to 
pass only steady state information 

 
Integration of the Boolean framework with the ODE framework occurs is performed using a hybrid 
framework as depicted below (Fig. MO5). 

 
 



Grant Agreement no. 600841  

D6.3 – Initial Standardized Cancer Hypermodels 

Page 71 of 151 

 
 

 
 

 
 
 

 
 

 
 

 
 
 

 
 

 
 

 
 

 
 
 

 
 

 
 
Fig. MO5: (Top) key nodes connecting the Boolean model with the ODE model. (Bottom, left) flow chart of 
interaction of Boolean model with ODE model. (Bottom, right) Information exchange between the Boolean 
model and the ODE model. 

 
In Fig. MO5, the MAPK, Akt modules are described by continuous time ODEs and p53 mediated 
apoptosis module is described by a Boolean system. The two modules communicate through the 

states of nodes, which are common to both modules; in this case is Erk, Akt and Raf. The states are 
described by a continuous time concentration function and a discrete time Boolean function. We 

assume that the reactions in the ODE module are much faster than the p53 module. This enables us 
to partially uncouple them by assuming that within the short time step of the ODE module the state 
of p53 module is invariant. Hence the Boolean module contribution to the state of the interface 

species is also constant and the only varying contribution is coming from the ODE module. The 
Boolean module will evolve with its own time scale but its behaviour will be modified by the 

information about the interface species it receives from ODE module. In Figs. MO4, MO5, the 
algorithm itself can be described as: 

 
1. Run ODE for time steps tODE up to time tBool and get the time course data 

2. Get the discrete states of the interface nodes (Erk, Akt and Raf) by applying appropriate 
thresholds 
3. Run Boolean for time tBool while modifying the status of interface species at each tODE interval using 

the information received from ODE run 
4. Get the activation fraction for the interface nodes at the end of the time step and pass it to the 

ODE model in the next run (Fig. MO5) 
5. Go back to step 1 and repeat until steady state is achieved 

 
The cellular states provided by the model are provided in Table MO1. The fingerprint of 0s and 1s of 
the proteins listed in the columns define microstates. The cellular states P (proliferation), A (cell 
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cycle arrest), and D(death) are mapped onto the microstates as given in Table MO2. The mapping is 
based on cell cycle progression (Markers- point attractor with high cyclin-G and low p53 activity); 

Apoptosis: (Markers – point attractor high p53 and high caspase activity); Cell Senescence: (Markers 
– cyclic attractor with oscillations in p53 and Mdm2). 

 
D) Using miRNA Expression Data to Generate Patient Specific Predictions 

 
Micro-RNAs are short non-coding RNAs that regulate gene expression post-transcriptionally by 

either inhibiting translation or promoting mRNA degradation. Hence not surprisingly these miRNAs 
have been found to play critical role in various forms of cancer. For CHIC lung and nephroblastoma 

demo normalized tissue and serum miRNA expression data are available in minml format. We were 
able to utilize this expression data by identifying the specific targets of top 20 miRNAs using 
miRTarBase [MO5]. For those mRNAs which are present in our network we adjusted the initial 

expression level accordingly before each model run. Hence the final outcomes were tailored to the 
particular expression profile of the patients to generate clinically useful outcomes. An example table 

is shown below indicating some top expressed miRNA and their corresponding mRNA targets 
obtained from miRTarBase [MO6]. 

 
The molecular hypermodel takes as an input, the miRNA profiles of a given patient from the CHIC 

data repository and then uses a database mapping (miRTARbase) to map the enriched miRNA in 
either tissue or serum of a patient to the corresponding mRNA, see Fig. MO6. The mRNA 
information is then used to constrain the nodes of our network in order to capture the molecular 

effect; similarly, nodes are constrained based on the drug interactions. In total, we consider 
doxorubicin, vincristine, and actinomycin as the three drugs for nephroblastoma. The model is run 

based on the input miRNA and drug treatment and averages over several tissue conditions such as 
growth factor levels and receptor expression. An average as well as a distribution of cell kill, cell 

senescence, and cell growth probabilities are obtained for a given patient, which are then passed on 
to the multi-modeler framework. 
 

 
 

 
 

 
 
 

 
 

 
 

 
 

 
 
 

 
 

Fig. MO6: Algorithm for miRNA implementation in the molecular model. 
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MO3. Results 
 
A) Application of the Model to Lung Cancer Demonstration 

 
We have completed the implementation of the molecular model for lung cancer. In addition to the 
example above, the molecular modelling of the EGFR mutants has yielded the construction of 

networks specific to mutants, which encode dynamics and logic that are different from the wildtype. 
These, results have been combined with the Boolean model to yield a comprehensive molecular 
model for lung cancer. The model takes input from a patient-specific miRNA profile and renormalizes 

the nodes of the network. In addition, the model incorporates the sequencing information by 
considering the mutational status of EGFR, KRAS, BRAF, and AML/ALK in order to produce a 

customized network to match the patient’s molecular profiles. We have further implemented the 
effect of radiation dosage in the model through the linear-quadratic model (LQ) for radiation 

treatment. In brief, the linear-coefficient is used to constrain the node that regulates the p53 
activation is a radiation dose and regimen dependent fashion. The cell kill probability output by the 
model is then a function of the radiation exposure as well as the miRNA-mediated signalling. This 

property is then returned to the multi-modeler (described later in Fig. MO11) for further processing 
of the clinical outcome. 

 
The above general framework was adapted to the lung cancer demonstrator. For this case the 

selected patient underwent a treatment regimen as described in Fig. MO7. As indicated, only the 
radiation treatment was considered for the review. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. MO7: Summary of treatment regimen for a lung cancer patient selected from the CHIC data repository. 

 
Radiation dosage introduces DNA single and double strand breaks which activates the p53 mediated 

DNA repair and apoptotic pathways. The effect of radiation dosage on cell kill is modeled almost 
universally using the phenomenological Linear-Quadratic model [MO7] which gives the fraction of 
surviving cell as a function of radiation dosage (Gy) as below where D is the radiation dosage in Gy 

and α, β are empirical constants which correspond to dose dependent and independent parts of 
radiation response. G is the generalized Lea-Catcheside time factor. 

 

𝑆 = 𝑒𝑥𝑝(−𝛼𝐷 + 𝛽𝐺𝐷2) 
 
We chose to replace the empirical constants α and  β by using information obtained from our 

detailed mechanistic model. However due to the discrete nature of our p53 mediate DNA damage 
model, we are only able to account for the dose independent part (the linear term involving α). 
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Future version will aim to account for the dose dependent part as well which requires a more 
detailed model which takes into account the various double strand DNA repair mechanisms. We 

activate the ATM kinase levels according to a probability exp(-α *D) to obtain the cell survival. This 
survival is modified by the quadratic term involving b which is obtained from the literature. The 

overall scheme is shown below in Fig. MO8. 

 

 

 

 

 

Fig. MO8: Overall scheme for the lung cancer hypomodel. The input to the model consists of the usual miRNA 
and mutation data for the specific patient. Also we activate the DNA damage by calculating a probability based 

on the radiation dosage D (Gy-1). The cell survival fraction obtained from the model is modified using the 
empirically calculated quadratic term of the LQ model. 

 
The specific radiation dosage data and values of the empirical constants are as given below in Table 

MO2: 
Table MO2: LQ Model Parameters 

 

  

 

 

 

 

 

 

 

 

 

 

LQ Model Parameters

alpha (Gy-1) 0.35

beta (Gy-2) 0.035

Pat JGUP5Z Radiation Dosage

No. of fractions (n) 4

G (approx) 0.25

Total Dosage D (Gy) 20
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B) Predicted Cell Kill Rate for Demo Patient for the Lung Cancer Scenario 

 
The model as adapted above was run using the available miRNA data and radiation dosage 
information to obtain cell kill fraction for different radiation dosages. The predicted cell kill rate from 

the molecular model was compared with that obtained from the empirical LQ model. We observe 
that the predicted cell kill rates converge at higher radiation dosages but molecular model prediction 

are lower compared to the LQ model at lower dosage fractions. The results obtained from the 
molecular model are averages over various growth factor and time scale considerations. The 

individual results and their distribution are also shown in Fig. MO9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. MO9: Main results of the lung cancer hypomodel. A – Cell kill fraction averaged over various growth factor 
concentration and cell cycle times as obtained from molecular model compared with the results obtained from 

the LQ model; B – Boxplots showing the distribution of the individual cases for different radiation dosages. 

 

A 

B 
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C) Application to the Nephroblastoma Scenario 

 
In Fig. MO10, we describe the results of our model for a given patient in the nephroblastoma 
scenario selected from the CHIC data repository. The Table in Fig. MO10 shows the cell death 
probabilities predicted by the model under the action of different chemotherapeutic drugs (A: 

doxorubicin; V: vincristine; A: actinomycin). The panels below show the cell state transitions and the 
time evolution of key transcriptional activators. 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. MO10: Demonstration of the molecular model for a patient in the nephroblastoma scenario. 

 

 

MO4. Conclusions and Future Work 
 
The present work we describe an integrated cellular framework to model key cell signaling pathways 

operating at different time scales – a well-recognized challenge in the field. Here we model the ErbB 
receptor mediated Ras-MAPK and PI3K/AKT pathway and integrate it with p53 mediated DNA 

damage response pathway to obtain a cell kill rate under specific drug dosing and patient specific 
miRNA expression levels. The obtained cell kill rate was directly used as an input to 

phenomenological tumour growth models. The aim of such integrated molecular model is to provide 
a mechanistic foundation to the more empirical models used in the field to obtain cell kill and growth 

rates under particular dosage conditions. The integration of the models was accomplished by 
identifying model interfaces and passing information between runs of the two models. This 
framework has been tested for the lung cancer and the nephroblastoma scenarios and the future 

work will be focused on performing a detailed sensitivity analysis to simulate the inherent tumour 
heterogeneity and also the effect of various mutations and subject the framework to clinical 

validation. The integration of the UPENN molecular model with the multimodeler framework of 
CHIC is shown in Fig. MO11. 
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Fig. MO11: Flowchart showing the passing of information between the hypermodels including the molecular 

hypermodel. 
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GP. The Gross Phenomenological Hypermodel for 

Nephroblastoma and Non Small Cell Lung Cancer 

 
The development of the Gross Phenomenological Hypermodel for Nephroblastoma and Non Small 
Cell Lung Cancer has been led by UNITO.  ICCS has ensured the compatibility of the hypomodel 

with the rest of the interacting hypomodels as well as with the overarching topology of the 
corresponding hypermodels. 

 

GP1. The Phenomenological Universalities (PUN) Approach to 

Describe Tumour Growth and Therapy 
 
The PUN approach describes tumour macroscopic growth according to an unknown function which 

can be approximated by its series expansion. The first term of such expansion are the exponential 
function (N=0), the Gompertz function (N=1) and the West function (N=2). [GP1,GP2] 

 
Apart from the exponential function, which describe an unlimited proliferation, both the Gompertz 

and the West approaches combine growth with some tumour-control term, which can be modelled 
to account for both environmental and/or therapeutic effects. 

 
For Gompertz eqn: 
 

βt)(α=
dt

dN

N
0 exp

1

 
 
It is possible to assume that N=N1 + N2 being N1 the cells duplicating at constant rate and N2 those 

dying at the same time: 
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  being the growth rate, related to the duplication time T, and  
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a parameter related to the carrying capacity   𝑁∞  
 

In case of therapy one or more ‘kill rate’ parameters can be added to the equation. 

 
 
 



Grant Agreement no. 600841  

D6.3 – Initial Standardized Cancer Hypermodels 

Page 79 of 151 

Time (d) 
1 8 29 22 

For West [GP3] eqn.: 
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N

a
=bN=
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bNaN=
dt

dN

41

43

 
 
where the first term accounts for proliferation and the second one for death.  

When therapy targets the growth rate, then a becomes 𝑎′ < 𝑎, when it targets tumour bulk then 

𝑁∞    becomes   𝑁′∞ ≪ 𝑁∞ 

 

 

GP2. Modelling the response of pre-surgical chemotherapy in 

nephroblastoma and lung cancer 
 

In NSC lung / nephroblastoma cancer pre-surgery chemotherapy is commonly performed to reduce 
tumour volume [GP4]. 

 
It is therefore necessary both to reduce tumour proliferation AND impact on its bulk volume. 

Normally, at least two drugs should be combined in order to reduce the bulk volume:  
 

 ACTINOMYCIN-D which affects both quiescent and proliferating (BLACK DRUG)  

 

 VINCRISTINE which delays the cell proliferation (WHITE DRUG) 
 

 

 
This treatment can be modelled easily with the PUN approach, inserting two kill rates (one for each 
drug) acting in the days of the treatment. 
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Fig. GP1a: Output with standard kill rates 

 

 
 
 

 
 

 
 

 
 

 
 
 

 
 

 
 

 
 
 

 
 
 

 
 

Fig. GP1b: Output with kill rates from UPENN model 
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The response to treatment, however, is not the same for each patient. Using the provided patients, 

an interval confidence of the kill rates where found. The output of the model (see Fig GP1a) are 
different simulations with different kill rates chosen in the confidence interval. For example, the 

expected tumour reduction for the selected patient in Fig. GP1a is between 74%. and 91%. The real 
tumour reduction is 80%. 
 

Moreover, the accuracy of the model can be increased using the molecular UPENN model. In fact, 
the UPENN model provides the real kill rate of the patient with a certain confidence interval, based 

on molecular analysis. These kill rates and confidence interval are substituted to the standard ones in 
our model, predicting the final tumour reduction. Considering the same patient of Fig GP1a, for 

example, the predicted shrinkage using the UPENN kill rates is between 76%. and 88%. 
 
 

GP3. Integration with other modellers: the ‘two pillars’ scheme 
 
The phenomenological model can be seen as a 'validator' of the main 'pillar', constituted by the 

interconnection of different models. 
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Conversely, as mentioned before, the single models of the main pillar can improve the result of the 

UNITO model. In fact, the Molecular model by UPENN can provide the kill rate values for the 
specific patient, in order to personalize the prediction. 

 

GP4. Modelling Prostate Cancer: Similarities and Differences with 

the Other Tumours 
 

 PROSTATE NEPHRO/LUNG 

Tumour stage Recurrent after surgery/RT primary 

Measured parameter value PSA Tumour volume 

Expected response to therapy Absence of recurrence  Tumour shrinkage 

Main secondary therapy ADT Surgery 

Number of patients considered 

For model validation 

Some thousands Some units 

Number of patients 

considerable for CRAF 

implementation 

5 (Eureka1) + 5 (Eureka2) Some units 

 
The basic idea is the same both for lung, nephroblastoma and prostate cancer: the PUN approach 

can model correctly the tumour growth. 
 

However, in prostate cancer scenario we focused our attention on prostatectomized patients who 
had a relapse in the next ten years [GP5, GP6], in particular on how to estimate the free tumour 
growth after surgery. The other types of cancer considered in CHIC have a very fast growth and are 

treated after few days of their discovery. Conversely, in prostatectomized patients we have a very 
long period of observation, in which a free growth of the tumour can be monitored without 

therapies. This protocol allowed us to create a model which is able to predict the future 
development of the tumour considering the next 2 years after surgery. 

 
Although the most used treatment is the Androgen Deprivation Therapy (ADT), including different 

drugs for hormone therapy, chemotherapy and radiotherapy can be considered as secondary ‘salvage’ 
therapies.  The molecular UPENN model could provide the kill rate of the ADT by analyzing the 
miRNA sequences that are available for some patients. 
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GB. The Glioblastoma Hypermodel 
 
The development of the Glioblastoma Multiforme (GBM) Hypermodel has been led by ICCS.   

 

GB1. Background 

 
As depicted in Fig.  GB1, both the adaptive and the innate immune system interact with GBM, 

through a variety of cell types and molecular mechanisms. 
 

 
 

Fig. GB1.Cellular and molecular mechanisms involved in the interaction of GBM and the immune system 
(References are included in the diagram. They appear in the end of the GB section preceded by the code GB) 

 

Most commonly, the immune system of a patient suffering from GBM is found to be completely 
paralyzed. Concerted action of immunosuppressive cells like regulatory T cells, myeloid derived 

suppressor cells and microglia suppress a variety of immune reactions against the tumour; Regulatory 
T cells impair the antigen-presenting functions and maturation of dendritic cells  and thereby 

suppress the production of antigen-specific, activated cytotoxic T cells in the lymph nodes. 
Furthermore, the killing potential of cytotoxic T cells and natural killer (NK) cells is impaired by the 

immunosuppressive action of myeloid derived suppressor cells and microglia. These mechanisms 
contribute to the induction of tolerance against the tumour[Refs GB1-GB34, included in the diagram] 
 

Dendritic cell vaccination is a method which aims at circumventing these immunosuppressive 
mechanisms and reshape the patient’s immune system so that it reacts effectively against the tumour. 
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White blood cells drawn from the patient’s blood are differentiated to dendritic cells. These are 
furtherly cultivated with lysates from the resected tumour, aiming to produce antigen-loaded mature 

dendritic cells which are then injected into the patient’s body in specific vaccination schedules (Fig.  
GB2). The rational is that these in-vitro maturated antigen-bearing dendritic cells have the capacity to 

present their antigens to naïve T cells in the lymph nodes, and induce their activation and 
proliferation. These activated cytotoxic T cells are expected to react against the tumour, by killing 
cancer cells. This process is further expected to induce immunological memory against GBM. [GB35, 

GB36, GB37, GB38, GB39, GB40] 
 
 

 
Fig.  GB2. Dendritic cell vaccination and overall treatment schedule. There are two possible vaccination 

schedules; Just after radiochemotherapy or after 6 cycles of maintainance chemotherapy. Patients are randomly 
assigned to one of these schedules. 
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GB2.Hypermodel Structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. GB3: Master topology of the planned GBM hypermodel. 

 

The master topology of the GBM hypermodel is depicted in Fig GB3. It consists of the following 
modules/ hypomodels. 
 

Machine Learning Hypomodel: This hypomodel will classify patients to (probable) “responders” or 
“non-responders” to Dendritic Cell (DC) vaccination. It takes input from both pre-surgical and post-

surgical data and vaccination schedule.  
 

Immune System response to DC vaccination hypomodel: This hypomodel calculates the evolution of 
the population of various immune system cells during and after DC and tumour lysate vaccination. 

This hypomodel is a mechanistic  one, exploiting data concerning  the actual applied vaccines 
(prepared using the particular patient’s lymphocytes and tumour lysates) and immune monitoring 
measurements.  

 
Immune system-GBM interactions hypomodel: This hypomodel correlates the reshaped immune 

system (in terms of immune cells populations) with the immune response to GBM.  
 

Up to now, available medical knowledge and clinical data do not allow building the last two 
hypomodels in a sensible mechanistic way. The effect of DC vaccination to the tumour will be 
included in the hypermodel in a simple phenomenological way, i.e. a GBM cell kill rate due to immune 

system response will be introduced to the oncosimulator. If pertinent data enabling the design of 
these last two hypomodels become available, this GBM cell kill rate could be estimated from them. 
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GB3.Progress on the GBM Machine Learning Model 

 
The basic clinical questions posed by the clinicians are 
 

1)      Will a specific GBM patient become a long term survivor (overall survival > 24 months) or 
suffer from early relapse and death (overall survival < 12 months)?   based on patient-, pathology- 

and immune profile 

 

2)      Will dendritic cell vaccination help to reach long term survival? 
 

3)      If yes, should vaccination be given early or late? 
 
A summary of the available data is depicted in Fig. GB4. They regard patient characteristics for 82 

cases. 
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Fig. GB4. Summary of available data. Further explanations are included in main text. 
 

Known prognostic factors for GBM include RPA_EORTC classification and residual tumour volume 
after resection [GB36]. Including the vaccination schedule as an input feature, visualization of the data 

set based on known prognostic factors and patient stratification in early and late vaccine patients 
results in the trees depicted in Figures GB5 and GB6. 

 

 
 

Fig. GB5. Visualization of the data set based on known prognostic factors and patient stratification in early and late 
vaccine patients 
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Gig. GB6 Visualization of the data set based on known prognostic factors and patient stratification in early and late 

vaccine patients 
 

 
Despite providing visualization, the classification performance of these two trees is of limited value. 
The size of almost all ending nodes (leaves) is too small to be interpreted as actual probabilities. 

However, one can detect slightly better outcomes for patients for which total resection (residual 
tumour volume=0) was feasible. 

 
Posed as classification problems, answering questions 1 and 3 consists in finding a) which of the 

patient features available to medical doctors up to the P1/V1 point (first vaccine, active or placebo) 
of the trial can predict the class (OS>24 months, 24 months>OS>12 months ,OS<12 months) and b) 
to construct a classifier which predicts the class of a patient based on these features. Since the vast 

majority of available data had categorical values, to answer these questions we evaluated the 
performance of a variety of tools, able to handle categorical data. These included [GB41, GB42]  

 

 rule-based based classification methods 

 decision trees 

 random forests 

 frequent pattern based classification methods  

 TAN, K2, Hill Climbing, Genetic Search and Simulated annealing derived topologies of 

probabilistic graphical networks [GB43, GB44, GB45] 

 ensemble classification methodologies. 

 

 Feature selection included various heuristic selection methods, including forward/backward 
elimination and was further optimized by use of genetic algorithms and particle swarm attribute 
weighting. 

 
All of the preceding classifier structures were outperformed by the naive Bayes classifier. In fact, 

naïve Bayes was the only classifier structure that provided acceptable results. In all cases, ensemble 
classification methods like AdaBoost [GB41, GB42] did not improve performance. The use of two 

patient classes (OS>24 and OS<24) provided much better results, and since the main class of interest 
is the OS>24 one, it was decided to use these two classes, instead of three, as was proposed in 
research question 1.  
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Additional features where created for each blood count performed before and after 

radiochemotherapy. These are denoted by e.g. Lymphocytes_difference and take values “rise”, 
“drop” and “steady” depending on the change of level of Lymphocytes before and after 

radiochemotherapy. As shown below, feature selection methods indicated that some of these 
features if combined with others had predictive value. 
 

One detail is that, in order to make use of as many patients as possible, for the patients who had 
missing P1/V1 blood counts and relapsed before the end of radiochemotherapy or P1/V1, their P1/V1 

blood data was filled with the categorical value "early_relapse_before_P1/V1". This is an artificially 
introduced value, which however, makes a clear medical sense. Introducing this value means of 

course that for consistency, the same had to be done for every patient with relapse before P1/V1 and 
no missing P1/V1 blood values. There were a few patients (5-6) whose relapse (PFS date) was 
detected after at most 1 week (7 days) after P1/V1. In these cases, P1/V1 blood counts were also 

replaced with the "early_relapse_before_P1/V1" value. 
 

As was expected, heuristic methods for feature selection provided more than one feature subset 
able to classify the patients in the two classes of interest. However, this subsets do not in general 

differ that much, at least qualitatively. They all consist of various combinations of features regarding 
sex, presenting symptoms, preoperative radiology (main location of tumour), blood counts before 

and after radiochemotherapy and vaccination schedule.  
 
A total of 12 classifiers, each one utilizing a set of 70-75 patients, and each with different input 

features have been designed and tested in 5-7-10 fold and leave-one-out cross validation schemes. 
Many random initializations of the cross validation folds were performed to test robustness of the 

classifiers, and for the vast majority of them precision and recall for the OS>24 class varied from 70 
to 90%.   

 
Input features and leave-one-out cross validation results for each classifier are depicted in the 
following figures.  

 

 
 

Fig. GB7a. Input features, class and patient utilization (73/82) for classifier 1. 
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Fig. GB7b. Leave-one-out confusion matrix for classifier 1. 

 
 
 
 

 
 

Fig. GB8a. Input features, class and patient utilization (70/82) for classifier 2. 

 
 

 
 
 

 
 
 

 

Fig. GB8b. Leave-one-out confusion matrix for classifier 2. 
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Fig. GB9a. Input features, class and patient utilization (70/82) for classifier 3. 

 

 
 
 
 
 

 
 

 
Fig. GB9b. Leave-one-out confusion matrix for classifier 3. 

 
 

 
 

Fig. GB10a. Input features, class and patient utilization (73/82) for classifier 3. 
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Fig. GB10b. Leave-one-out confusion matrix for classifier 4. 

 
 

 
Fig. GB11a. Input features, class and patient utilization (73/82) for classifier 5. 

 
 
 

 
 

 
 
 
 

 
Fig. GB11b. Leave-one-out confusion matrix for classifier 5. 

 
 

 

 
Fig. GB12a. Input features, class and patient utilization (74/82) for classifier 6. 
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Fig. GB12b. Leave-one-out confusion matrix for classifier 6. 

 
 

 
 

Fig. GB13a. Input features, class and patient utilization (70/82) for classifier 7. 
 

 
 

 
 
 

 
 
 

 
Fig.  GB13b. Leave-one-out confusion matrix for classifier 7. 
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Fig. GB14a. Input features, class and patient utilization (74/82) for classifier 8. 

 
 

 
 

 
 
 

 
 

 
 

Fig. GB14b. Leave-one-out confusion matrix for classifier 8. 
 
 

 
 

Fig. GB15a. Input features, class and patient utilization (74/82) for classifier 9. 
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Fig. GB15b. Leave-one-out confusion matrix for classifier 9. 
 

 
 

Fig. GB16a. Input features, class and patient utilization (73/82) for classifier 10. 

 
 
 
 

 
 

 
 

 
 

Fig. GB16b. Leave-one-out confusion matrix for classifier 10. 
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Fig. GB17a. Input features, class and patient utilization (74/82) for classifier 11. 

 

 

 
 

 
 

 
 
 

Fig. GB17b. Leave-one-out confusion matrix for classifier 11. 
 
 

 

 
 

Fig. GB18a. Input features, class and patient utilization (73/82) for classifier 12. 
 
 

 

 
 
 

 
 
 

 

Fig. GB18b. Leave-one-out confusion matrix for classifier 12. 
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However, since the sample is small, these classifiers will be further tested in an independent set of 50 

patients, to be provided by KU Leuven. 
 

The results up to now agree with the observation that there seems to be a specific group of patients 
which will benefit from dendritic cell vaccination, namely, the ones that have a high probability of 
reaching OS>24 months [GB35, GB36, GB37, GB38, GB39]. The methods described above to 

provide a tool for deciding if a patient is likely to belong in that group, thus providing an answer to 
research question 2. 

 
In principle, since vaccination schedule is included in the input attributes of the classifiers, the 

methods described above provide an answer for research question 3. For each specific patient, the 
two resulting probabilities of reaching OS>24 for early and late vaccination as they are calculated for 
the classifiers, can be compared. If only one of these probabilities is above 0.5 (threshold of the 

Bayesian classifier), this will provide an answer. However, since the sample of patients is small and 
does not contain patients with the same characteristics and different vaccination schedules, it is not 

clear if the classifiers can provide a confident answer in every occasion (for example, if both 
vaccination schedules result in OS>24 probability above 0.5).    
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PR. The Prostate  Hypermodel 
 
The development of the Prostate Hypermodel has been led by UNITO.  ICCS has fostered the 
alignment of the hypermodel with the CHIC hypermodelling principles. 

 
In the mainframe of Prostate Cancer (PCa), which is a very diffused pathology addressed by many 

different therapeutic approaches, we tried to define a scenario in which the main features of the 
CHIC infrastructure may be foreseen. 

 
After a short presentation of the clinical network in Regione Piemonte that has been built and 

supported within the CHIC project, attention will be focused on the following points: 
 
1. the collection and storage of clinical data (EUREKA1 and EUREKA2 studies), 

 
2. the appropriate ethical and technological tools for effective clinical repositories 

 

3. the appropriate ICT and computational tools for an efficient model evaluation/validation oriented 
database  

 

4. the proposal of predictive hypomodels and their clinical evaluation/validation 
 

5. the feasibility of clinically oriented hypermodels for PCa 

 

6. exploitation and dissemination issues 
 

PR1. Introduction 

 
Prostate cancer (PCa) is a slow-proliferating adenocarcinoma with a steadily increasing incidence 

related to ageing. It is the most common cancer in men and the second most common cause of 

death from tumours in the male population. In 3 cases on 4 it can be successfully cured, 

otherwise relapse occurs both locally or inducing distant metastasis.  

 

Like breast cancer for women, hormonal drive is crucial for proliferation and for survival, making 

PCa highly integrated within the endocrine homeostasis of the whole body. 

 

Together with diffusion and slow proliferation, some other issues make PCa an ideal candidate 

for modelling and for testing CHIC infrastructures: 

 

1) an easily assessable and cost effective blood marker, the PSA (Prostate Specific Antigen), 

secreted in the human body exclusively by the prostatic tissue, is currently evaluated in men 

when PCa is suspected. It is useful for diagnostic purposes and highly reliable for relapse 

evaluations. Although also gene mutation, protein expression patterns and miRNA regulation are 

under study and will further disclose prostate cancer physiopathology, prognostic classification 

and treatment response evaluation, only for PCa, a biomarker is already available on large scales. 

For prostactomized patients the collection of PSA values may afford a reliable monitoring of 

tumour growth with no need of specific and repeated follow-up through imaging; 

 

2) the feasibility of needle biopsy and the well consolidated Gleason grading system proposed 

almost 50 years ago makes it possible a histological analysis of PCa cells i.e. bioptic Gleason Score 

(bGS) which, following radical prostatectomy on the whole prostate specimen, will be 
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corroborated by the pathologic Gleason Score (pGS).(2005 ISUP Modified Gleason System) [PR1]. 

Both the bGS and the availability of several PSA evaluation add information to the traditional 

TNM staging system assigned at diagnosis through clinical and radiological exams, i.e. clinical 

staging. For Prostate cancer staging is performed according to American Joint Committee on 

Cancer (AJCC) 2010, Seventh Edition.  
 

3) Prostate cancer is managed by many clinicians in an interdisciplinary way. Practically all the 

oncology specialists and hospital services have to deal with prostate cancer: Radiotherapists, 

Urologists and Medical Oncologists for treatment, Pathologists and Radiologists for diagnosis and 

staging, Epidemiologists and even General Practitioners for the widespread diffusion in the 

population and for the co-operation during follow-up. Different therapies are also performed, 

ranging from Surgery, Radiotherapy and drugs (mainly Androgen Deprivation Therapy, ADT). 

Guidelines for the clinical use of the various treatment modalities have been proposed by several 

clinical associations, such as European Association of Urology (EAU) [PR2, PR3] for urologists, 

NCCN (National Comprehensive Cancer Network) [PR4, PR5] for radiotherapists and 

Piedmont Guidelines [PR6] for the multidisciplinary approach including medical oncologists. In 

general, surgery (Radical Prostatectomy, RP) is indicated in low and intermediate-risk patients,  

EBRT (External Beam Radiation Therapy) in all risk patients, joined to ADT in intermediate ad 

high-risk patients; ADT (eventually with palliative RT) is fostered for metastatic disease, while in 

castration-resistant patients chemotherapy or new drugs are indicated. 
 

These different therapeutic approaches offers a wider range of possibilities to modelers in order 

to test several hypo- and hyper-models. 

 

PR2. Predicting (Hypo-)Models for PCa Recurrence After Surgery 

 
In recurrent PCa, after a variable time following the surgery, a so-called “biochemical recurrence” 
(BCR) is observed, with a progressive rise of the PSA values above or at 0.20 ng/ml after RP (see 

[PR7]). 
 
Predicting the probability of recurrence of PCa after RP is one of the main goals of studies and 

researches in this field. Roughly speaking, there are two main ways of thinking: one relates the 
recurrence probability and its timing to the pre-operative tumour characteristics (e.g. Gleason Score, 

tumour stage, surgical methods and so on – static models) while the second one investigates the 
postoperative tumour dynamics mainly based on the PSA growth timing (dynamic models). 

 
Static models are normally validated on huge clinical database, and aim at producing simple and 

reliable tools for addressing therapeutic decisions. Very popular nomograms have been proposed, 
starting from the first model of [PR8], the GPSM (Gleason, PSA, Seminal Vesicle and Margin Status) 
proposed by [PR9], the nomogram of Briganti [PR10] and all their updated versions. 

 
Dynamic models, already proposed by D'Amico [PR11] and independently by Yorke [PR12], and 

further developed by Dimonte [PR13] focus on the estimation of PSA velocity and doubling time, 
evaluating the timing of tumour proliferation from serial PSA measurements. 

 
As an alternative to direct evaluation of PSA data dynamics, the use of the Universal Growth Law 
(UGL) proposed by West et al.[PR14] and formerly applied to tumours by Guiot et al.[PR15], may 

offer a frame for describing PSA (and tumour) growth predicting its clinical outcome. In particular, 
two parameters of the equation should be analysed: the growth parameter alpha and the carrying 

capacity (P in the following equations). According to [PR14, PR15], the carrying capacity should be 
set depending on the physical problem, i.e. the maximum value achievable by the population taken 

into account.  
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Based on the PCa tumour volumes measured along the natural history of PCa [PR12, PR15], the 

growth parameter alpha estimated by the model is about 0.42 g^0.25 /day. If a few surviving PCa cells 
start proliferating and producing a detectable quantity of PSA after RP, we assume that the PSA 

detected in the patient serum should follow the same 'universal law' with a value of alpha which 
reflects its actual proliferation. Accordingly to West and colleagues, alpha is the ratio between the 
metabolic energy and the energy needed for duplication of a given cell type. In case of PSA 

production, it is expected to increase when cells actively produce PSA and reproduce themselves. 
Moreover, it should decrease when cells produce small amounts of PSA and duplicate slowly. 

 
The parameter alpha can then be added to the standard clinical parameters into a statistical multi-

parametric model to estimate timing of recurrence on retrospective data. Moreover, in order to 
devise a robust and easily manageable tool for clinicians, we investigated how many PSA values are 
needed to make a good prediction. Predictability of the growth parameter based on the first 3 

detectable PSA measurements are investigated to study the feasibility of a rapid estimation 
procedure. 

 

PR2.1 Mathematical  Procedure 

 

According to the model presented by Thompson et al. [PR7], we suppose that the PSA dosage p 

collected at time t reflect the actual tumour mass at that stage and tumour growth can be 

described as follow: 
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where p is the PSA value (in ng/ml), P is its maximum value reached by the population. In our 

case P = 100 ng/ml, t is the timing of the measurement expressed in months after surgery and 

alpha is the growth parameter for PSA. 
 

Physical data can be re-normalized following simple calculations (see [PR7] for the details), in 

terms of rescaled tumour fraction r = (p/P)^1/4 and rescaled time 
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Secondly, we can evaluate the alpha parameter value deterministically by averaging the single 

alpha values corresponding to the measured PSA: 
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where pi  (= p_i)  ,  ti  (=t_i)  are the non null ith PSA values and the times of the measurement 

respectively and n is the size of the sample. Note that in some cases this method failed and alpha 

results equal to zero, hence the time to relapse can not be estimated. 
 

In case of adjuvant ADT, which tends to depress the PSA value and the tumour volume during 

its action, we calculated alpha as the average of αi (=alpha_i) from the set of PSA values taken 

after the end of it. 

 

In clinical practice, however, time to relapse should be predicted on the basis of only pre-relapse 

data! We investigated therefore the reliability of the estimation of alpha using only the a limited 

number of PSA values collected before relapse, with a maximum of 4.  We call this estimation as 

α4  (= alpha_4).  

 

The alpha_4 value has the same behaviour of the alpha and the two parameters can be 

compared as shown in Fig. PR1. The coloured circles represent the values of alpha_4 versus the 

time to relapse. The intercept (the more marked one) has a p-value p<0.001.  

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. PR1 - Fit plot of the estimated versus real  time to relapse. Black dots are the  alpha values estimated with 
only 4 PSA 
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PR2.2  Results and Conclusions 

 
As far as patients without any adjuvant therapy are concerned, the statistical analysis shows that 

the time to relapse is independent from any clinical information apart from the first post-

operative PSA value and the alpha parameter. In particular, alpha is predictive of the range of the 

time of relapse, being the smaller alpha values predicting the longer free from disease time (see 

[PR27] for details). 
 

Contrary to retrospective studies, waiting for a long PSA series to make a prevision is 

impractical and ethically questionable in clinical practice: since PSA dosage is usually prescribed 

every 3 – 6 months, waiting for sixth-eighth PSA values makes predicting early recurrences 

senseless. 

 

We can conclude that a careful collection of PSA values would be valuable and overcome 

traditional clinical parameters (such as pGS, pathological staging, etc.) to predict the timing of the 

tumour recurrence development. 
 

PR3. Predictive (hypo-) Models for PCa Recurrence After 

Radiotherapy 

 
The study was based on a large database of 2493 patients affected by prostate cancer and 

treated with EBRT as primary treatment belonging to to the EUREKA-2 retrospective multi-

centric database, including 3776 cases of radio-treated prostate cancer cases in North-West Italy 

between 1997 and 2012, approved by FPO-IRCCS Cancer Center of Candiolo Ethical 

Committee in July 2013 and amended in November 2014. 

 

In particular, from the whole database were excluded 1283 patients without complete 

information regarding established pre-treatment factors (PSA, clinical-radiologic stage and bGS) 

and the number of total and positive biopsy cores.  

 

In all cases, staging evaluation included anamnesis, physical exam with Digital Rectal Examination 

(DRE), serum PSA and a trans-rectal ultrasound (TRUS) guided needle biopsy of the prostate 

with GS histologic grading. Radiological examinations (abdominal CT, endo-coil or pelvic MRI 

and bone scan) were performed according to the patient risk-class, to the physician’s opinion 

and to the available hospital facilities.  

 

All patients were treated with curative 3-Dimensional Conformal EBRT (3D-CRT) or Intensity 

Modulated Radiation Therapy (IMRT). The fractionation schedules to prostate-GTV (Gross 

Tumour Volume) varied between traditional fractionation of 1.8-2 Gy per fraction to moderate 

hypo-fractionation of 2.5-2.7 Gy per fraction; all doses were normalized to Equivalent Dose at 2 

Gy per fraction (ED2Gy) using a mean α/β of 2.5 Gy for prostate cancer (according to literature 

α/β ratio for prostate cancer ranges between 1.5 and 5.7 Gy [PR16-PR18]). Treatment consisted 

of radiotherapy alone or radiotherapy combined with ADT in 38% and 62% of the cases, 

respectively.  

 
Median follow-up of the 2493 patients was 50 months. Standard follow-up included PSA and DRE 

every 3-months for 2 years, every 6-months until the fifth year and annually thereafter.  
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During the follow-up 453 patients (18%) had a biochemical relapse, 249 (10%) relapsed clinically, 

138 (5.5%) had distant metastases, and 233 (9%) died, 72 of these (3% of the total) because of 

prostate cancer. Time 0 was defined as the last day of EBRT for all patients and PSA failure 

according to Phoenix consensus definition (i.e. a rise by 2 ng/mL or more above the nadir PSA 

[PR19]).  

 

Clinical relapse was defined as a recurrence in the prostate bed, regional lymph nodes or distant 

metastasis shown by radiologic examinations (bone scan, choline-PET-CT, MRI, CT, ultrasound) 

or by physical examination or by biopsy. Systemic relapse was defined as a distant metastasis, 

including bone or other visceral organs, shown by radiologic examinations or by physical 

examination. Prostate cancer specific mortality was defined as death because of prostate cancer, 

checked by a physician through patients’ case history reports, cancer regional registries and, if 

necessary, phone calls to the patient or to a close relative or General Practitioner of him (if the 

patient was dead).  
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Fig. PR2 – The Candiolo nomogram. 
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PR4. Nomogram after Surgery 

 
A nomogram on 976 prostatectomized patients is now under construction and validation.  

 

Here we report the draft. 

 

 

 
PR5. (Hypo-) Models for Evaluating Resistance Induction by 

Hormonal Therapies 

 
PR5.1 Introduction  

 
Normally, the prostate cancer cells are hormone-sensitive cells. They produce PSA and they need a hormone 
to stimulate growth. There is a very small group, however, which is not hormone-sensitive but hormone-
resistant [PR23]. This type of cells does not need hormones to duplicate but its growth potential is very low 

respect to the hormone-sensitive ones.  
 
Nowadays, hormone therapies are very common to contrast the growing of hormone-sensitive tumours, like 
breast and prostate cancer. In this last case the growth of hormone-resistant cells will finally induce an almost 
uncontrollable increase after an initial reduction of the tumour volume [PR23]. Any realistic model should 

therefore take into account the appearance of therapy-induced cell mutations (or phenotypic modifications 
[PR24]). 
 
The key question in this context is how strong can the interplay of the different cell populations be. Since they 
are part of the same organism, a ``minimal'' hypothesis states that they share the same overall energetic 

resources. It is therefore reasonable to assume that the total tumour carrying capacity is limited, and the 
growth of both cell populations is constrained [PR25, PR26]. 
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We investigated an asymmetrical two-cell-populations model, identifying its equilibria. Their stability or 
instability expresses the successful cure or the fatal evolution of the tumour. We identify the parameter 
conditions ensuring the stable configuration, i.e. the situation where the tumour stops growing.  
 

PR5.2 Two Populations Model 

 
We assume that the two populations respond to treatments differently. In particular is proved 
[PR23] that there is an androgen dependent (AD) cell population, very sensitive to the hormone 

therapy while an androgen independent (AI) population less sensitive or not sensitive at all to it.  
 

The system is: 
 

 
 
 

 
 

 
 

 
where d_1(t) and d_2(t) are the treatment kill rates on the populations N_1 and N_2 respectively 

and epsilon is a measure of the metabolic rate increment in response to particularly favourable 
growth conditions. It also expresses an additional growth rate for the second population. In principle, 
d_1 and d_2 could be functions of time to account for different times of treatments and one- or 

multi-shot therapies.  
 

The mathematical analysis of the system allows us to predict the behaviour of the two populations, 
knowing the parameters values. Moreover, we are able to know threshold values for the kill rates in 

order to eradicate one or both populations. For example, we can say that in the Gompertzian model 
the AD can be considered eradicated when d_1 > 10 r_1. The best scenario (death of both 
populations) is not attained so easily, since d_2 >> epsilon +r_2.  
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PR5.3 Results and Discussion 

 
The approach of the ``Phenomenological Universalities'' allows a satisfactory investigation of the 

growth of an asymmetrical two-population cancer. Different interactions were studied, 
corresponding to different clinical scenarios, i.e. the growth of both populations constrained by a 

fixed total carrying capacity, the response to treatments, the occurrence of spontaneous or induced 
mutations.  

 
We applied the Gompertzian and West functions to model the growth of the cells populations in a 

manageable and realistic way. They have been successfully validated on various tumour scenarios, 
finding analytical solutions whenever possible. Numerical simulations assessed the effectiveness and 
role of the model parameters in the remaining cases.  

 
Our two-clones model confirms that effective ADT can reduce the AD cell population although the 

eradication of the AI cells is much more critical. This happen in the presence of spontaneous 
mutations and, even worse, when mutations are induced or promoted by therapies.  

 
The West growth assumption represents an optimal model for the simulations of the tumour 
development and response to therapies. This happens because of the biological significance of the 

growth parameter, related to the cellular metabolic rate and duplication energy of each specific cell 
population. Moreover, a clinical application is provided. 

 
We want to note that a 'standard' kill rate can be found in literature, but also a 'personalized' kill rate 

can be used. In particular, UPENN model could provide this value in the cases in which the genetic 
profile is provided by the hospital. 
 

PR6. Present and Future Work 

 
PR6.1 Model Approach to ADT and Immuno Therapy (IT) Salvage Therapy 

Treatment Schedules 

 
The hypomodel will predict the tumour response to treatments, according to the collected data. We 
will take into account also the available knowledge about the adaptations/mutations occurring in the 

PCa cells undergoing ADT or other CT.  Vaccination strategies will be evaluated as well. 
 
A new model is under construction and validation, in order to find differences and similarities 

between the ADT (most used in Italy) and IT (mostly used in USA).  

 
In this work, the collaboration with UPENN should be very important in order to study the 

(possible) correspondence between genetic patways and better response to ADT/IT. 

 
PR6.2: Joint Work with BED  

 
Following Radical Prostatectomy a temporary impairment of the urogenital functions is normally 
suffered. Incontinence problems normally disappears within a few months, but it may continue to 

occur. This worsen the patient’s quality of life, unless specific therapeutic strategy is performed. 
Moreover, the PSA must be under control for the all life, to monitor every possible case of relapse. 
The basic idea of the joint work of UNITO and BED is to integrate two different approaches: a user-

friendly visual interface and a more rigorous control by the clinician using quantitative parameters.  
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As concerns the first approach, we created a set of 3D animations using Blender, then to provide 
them as 'serious games' to patients. This SW allows planning of personalized ‘ at home’ training 

sessions, with or without the active surveillance of the clinician.  
 

As concerns the second one, the model described in section PR2 and the nomogram (section PR4) 
are implemented in conjunction with a  MyHealthAvatar project application.  
 

The patient, after surgery, can download (for free) the App, then follow the rehabilitation exercises 
as videos and insert his own data. The data are checked and seen by the urologist that can run the 

models and use the results to adjust the therapy or the frequency of the PSA controls. 
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SE. A Brief Outline of the Process of Semantically 

Annotating Hypomodels and Hypermodels  
 
The development of the Semantic Annotation of Hypomodels and Hypermodels has been led by 
UCL. ICCS has provided the specific overarching principles for a coherent and useful annotation of 
the CHIC hypomodels and hypermodels. 

 

SE1. Metadata Annotation of the Models  
  

The formal machine-processable annotation of hypomodels have been designed and implemented. 
  
The formal, machine processable annotation of hypomodel parameters has been designed.  

  
A mechanism whereby the compositional structure of hypermodels and qualitative relations between 

hypermodels could be formalised so as to facilitate model selection and model comparison in tools 
such as CRAF is under development. 

  

SE2. Design and Implementation of Hypomodel Semantic 

Categorisation 
  

The document D7.3 “Hypermodel Annotation Services” has served as the basis of the related work.   
D7.3 reviews the requirements relating to the use of semantic technologies within the CHIC 
infrastructure and CHIC tools. The deliverable also outlines the scope, the content and structure of 

the formal solution used in order to describe models though semantic annotation. The 
implementation relies on the use of the W3C Standard Resource Description Framework.  

  
The starting baseline is a manual annotation of selected models in order to validate the 

implementation of the design and prototype the development of software support for the creation, 
storage and retrieval of model annotations. A paradigmatic development case has been that of the 

construction of a nephroblastoma hypermodel from a number of available nephroblastoma 
hypomodels. The hypomodels have been annotated according to three categorisation perspectives 
namely perspective I (tissue type), perspective IV (biomechanisms) and perspective V (tumour type). 

These perspectives are defined in deliverable D6.1 entitled “Cancer Hypomodelling and 
Hypermodelling Strategies and Initial Component Models.” Input from modellers has been used in 

order to determine the (hypo-)model characteristics.  
  

The formalisation has been carried out in the RDF language and has used the vocabulary (called an 
‘RDF schema’ or sometimes an ‘ontology’) designed for the CHIC resources called CHICRO: 
https://github.com/open-physiology/chic/tree/master/ontologies/internal. We relied on a convention 

defined by the Model Repository in order to refer to model through a globally unique identifier. For 
example, https://mr.chic-vph.eu/metadata#04e3c5aa-ad45-11e5-bd32-fa163e092aac is the identifier of 

the ICCS Wilms Oncosimulator hypomodel. Using CHICRO, we have been able to encode the 
location of such a model within the defined perspectives. While perspectives are defined informally 

as categorising models using natural language expressions, formal semantic description uses language 
independent identifiers representing the meaning associated with linguistic descriptions. We have 
derived these identifiers from existing ontologies and in some cases created new identifiers allowing 

to fill gaps in the available repertoire of formalised ontologies. For example, in order to point at the 
category of neoplasm or tumour, we have used an ontological term from the Human Phenotype 

Ontology with identifier http://purl.obolibrary.org/obo/HP_0002664 . The ascription of the Wilms 
Tumour model to that value in the Perspective I is formally encoded in the following statement:  

 
<https://mr.chic-vph.eu/metadata#04e3c5aa-ad45-11e5-bd32-fa163e092aac> 

https://github.com/open-physiology/chic/tree/master/ontologies/internal
https://mr.chic-vph.eu/metadata%2304e3c5aa-ad45-11e5-bd32-fa163e092aac
http://purl.obolibrary.org/obo/HP_0002664
https://mr.chic-vph.eu/metadata#04e3c5aa-ad45-11e5-bd32-fa163e092aac
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<http://www.chic-vph.eu/ontologies/resource#hasPositionIn-1>  

 
<http://purl.obolibrary.org/obo/HP_0002664> 

  
This initial prototyping work has enabled us to refine our knowledge representation framework and 
to enhance the meta-model for annotation so as to support also the work of applications such as the 

Model Repository categorisation interface. By storing additional information and constraints of the 
CHICRO vocabulary, such as which values are allowed for a given perspective, and using services 

programmatically accessible, the semantic infrastructure has become better integrated and self-
contained.  

  
The semantic work carried out from this point onwards consists in extending the initial treatment to 
other perspectives that could then be handled uniformly by client tools. The manual prototype of the 

nephroblastoma hypomodels has been replaced with annotations generated through the Graphical 
User Interface (GUI) where annotation of additional models has taken place.  

  

SE3. Design of Model Parameter Annotations 
  

Deliverable D7.3 outlines the annotation of model parameters. Extending the work to support a 
similar treatment as explained above is ongoing. The areas of interest include the representation of 

the logic of model parameters themselves, such as whether a parameter is an input or output 
parameter for a given model. This characterisation is already supported in CHICRO. An important 
process, however, is to provide the means for formally recording a number of additional 

characteristics that are meaningful in the analysis of models and support the composition of 
hypomodels into hypermodels. The conceptual work done so far points at the description of two 

aspects specifically: i) units of measurements and ii) semantic interpretation.   
  

Semantic technologies and ontological resources are useful in this context in order to provide first: 
standardised identifiers for units of measurements involved and, second: standardised identifiers for 

the biological interpretation of model parameters. These standardised terms are useful in order to 
facilitate the semantic integration and to benefit from the formalised meaning associated with the 
terms. For example, we abstract from different conventional notations when using an identifier for 

the millilitre unit of volume instead of relying on strings such as ‘ml’ or ‘milliL’. An advantage we 
would like to derive from the use of a formalised representation of unit of measurement is, however, 

more significant and consists in recognising equivalent or convertible units as this would greatly 
facilitate the matching of parameters in the construction of hypermodels. The motivation is very 

similar for the record of semantic types characterising a parameter. However, the technical difficulty 
is greater given the open-ended nature of interpretation available. There is no tool allowing the on 
the fly creation of well-defined ontological terms at the time of annotation. Our strategy is therefore 

somewhat conservative and aims at providing a range of generic reusable terms belonging to well 
articulated ontologies that may not allow the annotation of a parameter with its most specific and 

detailed meaning. Despite this apparent limitation, the trade-off is a gain in applicability of the 
approach. This approach also allows for further development and refinement.   

  

SE4. Exploratory Design of Hypermodel Representation  
  

We have initiated a thread of work regarding how semantic metadata could facilitate the explicit 
description of qualitative properties of hypermodels and their relations. This strategy would consist 
in developing a modest vocabulary for characteristics and comparative relations corresponding to 

heuristics guiding model selection in a context of use. We are not proposing to power a model 
ranking and selection mechanism with semantics as the work required would be too substantial, 

However, explicit descriptions of a limited range of information could facilitate enhancements to the 
user experience.  

http://www.chic-vph.eu/ontologies/resource#hasPositionIn-1
http://purl.obolibrary.org/obo/HP_0002664
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MR. A Brief Outline of the Model Repository in the Context 

of  Hypomodel Integration  

 
The development of the Model Repository has been led by  ICCS. 

 
MR1. The Model Repository Facilitates the Semantic Annotation of 

the Model Categorization based on 13 Perspectives 

 
The Model and Tool Repository is the CHIC component which permanently hosts the models that 
have been developed in the context of the CHIC project. It also hosts tools such as linkers and data 

transformation tools which are necessary for the construction of the hypermodels. For each 
model/tool, the Model and Tool Repository stores all the related information including: 
 

 descriptive information (information about the models, references, etc.) 

 

 input and output parameters (for proper linking with other models/tools) 

 

 files related to each model (executables, documentation, etc.) 

 

 categorization of the models based on the perspective from which they are viewed in the 

basic science context. 
 

Currently, most of the information related to models and tools is stored in a relational MySQL 

database.  The use of a relational MySQL database provides many benefits, like the following: 
 

 SQL (Structured Query Language) databases are long-established standard, which is being 

adopted by ANSI & ISO. 
 

 SQL queries can be used to retrieve large amounts of records from a database quickly and 

efficiently. 

 

 By using standard SQL it is easier to manage database systems without having to write 
substantial amount of code. 

 

 SQL is a complete language for a database and it is used to create databases, manage security 

of a database, update, retrieve and share data with users. 
 

 SQL is used for linking front end computers and back end databases. Thus, it provides a 

client server architecture. 
 

 SQL supports the latest object based programming. 
 

 SQL is the database language which is used by businesses and enterprises throughout the 

globe.  

 

Even though there are many reasons for using a relational database, some of the meta-information 
related to models and tools will be converted to RDF triples so as to be stored in the CHIC 
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triplestore. RDF triples can be applied equally to all structured, semi-structured and unstructured 
content. By defining new types and predicates, it is possible to create more expressive vocabularies 

within RDF in order to describe information related to models. This expressiveness enables RDF to 
define controlled vocabularies with exact semantics.  Furthermore, triplestores have the ability to 

ingest diverse data, providing flexibility with respect to schema changes and mappings. They also 
allow for greater freedom, efficient handling of powerful queries and serving unforeseen information 
needs.  Moreover, they employ intelligent data management solutions which combine full text search 

with graph analytics and logical reasoning to produce deep, rich results. The cost for data integration, 
management and query definition is much lower than other approaches. It must be also noted that 

these databases (also known as RDF, OWL, or Graph databases) are now widely used to manage 
unstructured and structured data in media and publishing, life sciences and financial services. 

 
Consequently, the Model and Tool Repository has been updated in order to be able to automatically 
store into the CHIC RDF triplestore, information related to the categorization of the models. As 

stated in the Deliverable 6.1 “Cancer hypomodelling and hypermodelling strategies and initial 
component models”, mathematical and computational cancer models can be categorized depending 

on the perspective from which they are viewed in the basic science context. The definition of the 
thirteen perspectives and their indicative values is included in the aforementioned deliverable.  

 
Consequently, the Model and Tool repository and the CHIC semantics infrastructure make use of a 

common RDF mapping configuration file so as to produce a model (a set of RDF triples) based on 
the already locally stored relational data. The aforementioned configuration file maps some of the 
model repository’s database tables and columns to CHIC RDF vocabularies and OWL ontologies. 

This mapping defines the virtual RDF graph that contains some of the information from the Model 
and Tool repository’s MySQL database which is related to the categorization of the models. With 

this kind of integration between the Model repository and the CHIC triplestore, the user is able to 
categorize their model by visiting only a single CHIC component. After the submission of the user’s 

data, it is the Model repository’s responsibility to store the information related to the categorization 
of the model both to the repository’s relational database and to the CHIC triplestore. The page 
where the user categorizes their model is shown in Fig. MR1. 

 
 

Fig. MR1: The web page where the user categorizes their model 
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As shown in Fig. MR1, the user categorizes the model “ICCS Wilms Oncosimulator” for perspective 
V, named “Tumour type(s) addressed”. Since the “ICCS Wilms Oncosimulator” is an integrated 

cancer treatment support system modelling the growth of nephroblastoma tumours, the user checks 
the box “nephroblastoma”. After pushing the button “Categorize the chosen model”, all the 

corresponding information of this categorization is going to be stored both in the Model repository 
and the CHIC semantics infrastructure. The topology of the CHIC infrastructure that handles the 

semantic annotation of the categorization of the models based on the 13 perspectives that have been 
defined within CHIC, is shown in Fig. MR2.  

 
 

 
Fig. MR2: Topology of the CHIC infrastructure that handles the semantic annotation of the models 

 

 

MR2. Modules Used for the Semantic Annotation of Model 

Categorization  
 

As shown in Fig. MR2 , the following modules are used for the use case of the semantic annotation of 
the models categorization: 

 

 Controller:  The controller is the central module of the model repository that consists of 

many other submodules. It opens the local relational database connection and it handles web 
requests and presentation details that the user will see. It also calls the Loader module.  

 

 Loader:  The Loader is in charge of converting MySQL data into RDF property values that 

will be provided to the CHIC semantics infrastructure web services. It also loads the RDF 
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mapping configuration file and calls the application programming interfaces of the CHIC 
metadata store.  

 

 RDF mapping configuration file: This file includes the necessary information for mapping 

MySQL table and columns of the CHIC model repository to RDF properties, vocabularies 
and OWL ontologies of the CHIC metadata store.  

 

 API:  This module consists of all the web annotation services that are exposed from the 
CHIC metadata store and are being used, among others, for the semantic annotation of the 

models’ categorization. 
 

Table MR1presents the result of the semantic annotation of the categorization of the model named 

“ICCS Wilms Oncosimulator” for perspective V, in the form of subject-predicate-object expressions. 
The subject denotes the resource, and the predicate denotes traits or aspects of the resource and 

expresses a relationship between the subject and the object. The RDF statements that are included 
in Table MR1 represent the following knowledge base: 
 

 The CHIC resource with the URI https://mr.chic-vph.eu/metadata#04e3c5aa-ad45-11e5-

bd32-fa163e092aac,  represents a CHIC hypomodel. 
 

 The aforementoned CHIC hypomodel has the name “ICCS Wilms Oncosimulator” 
 

 The aforementioned CHIC hypomodel has the unique identifier "04e3c5aa-ad45-11e5-bd32-

fa163e092aac" 

 

 The aforementioned CHIC hypomodel addresses the tumour type named 
“Nephroblastoma”. As stated in the fifth row and third column of Table MR1, the 

“Nephroblastoma” term has the URI “http://purl.obolibrary.org/obo/HP_0002667“ which has 
been derived from the human phenotype ontology.  
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TABLE MR1: The RDF statements that represent the semantic annotation of the categorization of the model 
named ”ICCS Wilms Oncosimulator” for perspective V 

 

Subject Predicate Object 

<https://mr.chic-
vph.eu/metadata#04e3

c5aa-ad45-11e5-bd32-
fa163e092aac> 
 

<http://www.chic-
vph.eu/ontologies/resource#hasCH

ICuuid> 
 

"04e3c5aa-ad45-11e5-bd32-
fa163e092aac" 

 

<https://mr.chic-

vph.eu/metadata#04e3
c5aa-ad45-11e5-bd32-

fa163e092aac> 
 

<http://www.w3.org/1999/02/22-

rdf-syntax-ns#type> 
 

<http://www.chic-

vph.eu/ontologies/resource#Model-
ChicHypomodel> 

 

<https://mr.chic-
vph.eu/metadata#04e3

c5aa-ad45-11e5-bd32-
fa163e092aac> 

 

<http://www.chic-
vph.eu/ontologies/resource#hasNa

me> 
 

"ICCS Wilms Oncosimulator" 
 

<https://mr.chic-

vph.eu/metadata#04e3
c5aa-ad45-11e5-bd32-

fa163e092aac> 
 

<http://www.chic-

vph.eu/ontologies/resource#hasPos
itionIn-5> 

 

<http://purl.obolibrary.org/obo/HP_0

002667> 
 

 
 

The semantic knowledge base that has been described in Table MR1, has been produced from the 

Model Repository and has been stored in the CHIC triplestore in order for the other CHIC client 
components, like the editor or the CRAF (Clinical Research Application Framework), to be able to 

recognize the model named “ICCS: Wilms Oncosimulator” as a model that simulates the growth of 
nephroblastoma tumour, and more specifically, according to the human phenotype ontology, the 

growth of the neoplasm of the kidney that primarily affects children.  
 
The same procedure can be applied for the semantic annotation of the categorization of any new 

model, through the model repository. Nonetheless, since new CHIC RDF vocabularies and OWL 
ontologies may be incorporated in the future in order to represent new perspective values, the 

upgrade and the maintenance of the Model Repository and the CHIC semantics infrastructure is 
essential in order to ensure the correct mapping between the Model Repository’s relational database 

and the CHIC RDF schema.  
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CR. The Clinical Research Application Framework (CRAF) 

in the Context of Utilizing Integrated Hypermodels 

 
The development of the Clinical Research Application Framework (CRAF) has been led by FORTH. 

USAAR and KUL have provided the clinical user requirements and clinical feedback. ICCS has 
provided the basic science requirements, coordinated the provision of simulation software and 

provided feedback.  
 

The standardized cancer hypermodels are available to the clinicians through the CRAF (Clinical 
Research Application Framework) application. In the following paragraphs we describe in detail the 

workflow which has to be performed by a clinician in order to configure and execute a standardized 
cancer hypermodel using CRAF, and finally how to view the resulting report of the execution.  

 

CR1. Description and Versions 

 
The CRAF application comes in two versions, as a native desktop application (desktop CRAF) and as 
a web application (web CRAF). The reason for having two different versions has to do with the fact 

that the native application comes as an integrated and single package, complete with other native 
applications of the project which provide functionalities impossible to provide (yet) in the context of 

a web application. A use case in order to clarify the necessity of the desktop CRAF is that it is the 
execution base for the CCGVis application which provides real-time 3D visualization of the 
simulation results, along with the functionality to define 2D snapshots from the actual 3D model in 

order to include them in the reports and also the generation of a video which clearly shows the 
evolution of the simulation outcome in time. 

 
The desktop version of the CRAF application, is created using open source components and it is 

based on the technologies of Java SE 8 [CR1] and JavaFX [CR2]. The adoption of Java renders CRAF 
independent of the operating system of the execution system and it has been tested both on 
Microsoft Windows (versions 8+ are supported) and on Apple OSX computers (version El Capitan). 

 
The web CRAF application is a “Single Page Application” (SPA) [CR3] web application based on state 

of the art HTML5 technologies. The front-end of the application is based on the AngularJS  [CR4] 
web framework, which is a full client-side framework that has the advantage that all the rendering 

process happens to the client and not the server. AngularJS's templating system is based on 
bidirectional UI data binding. Data-binding is an automatic way of updating the view whenever the 
model changes, as well as updating the model whenever the view changes. The HTML template is 

compiled in the browser. The compilation step creates pure HTML, which the browser re-renders 
into the live view. The step is repeated for subsequent page views. In traditional server-side HTML 

programming, concepts such as controller and model interact within a server process to produce 
new HTML views. In the AngularJS framework, the controller and model states are maintained within 

the client browser. Therefore, new pages are capable of being generated without any interaction 
with a server. 

 
CRAF has a fully responsive layout which adapts to the screen size of any device, and it is suitable for 
usage from a personal computer, a tablet device or a mobile phone. CRAF is designed using the 

Material Design [CR5] principles and controls. The layout is flat and it presents only the necessary 
information to the end user. 
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CR2. Web CRAF Clinical Workflow 
 
CR2.1 Login and the Options of the Main Screen 

 
In order to access the CRAF the clinician has to provide the proper credentials at the login form (Fig. 

CR1) and click the login button.  
 

 
Fig. CR1.  CRAF Login Form 

 
if the credentials provided by the user are correct then CRAF successfully verifies the user and 
provides him permission to use the full functionalities of the CRAF application and access the data 

which are available specifically to him (data are filtered based on the user's permissions).  
 

Once the user is logged in, CRAF displays the main screen (home), which provides two main options. 
The clinician is asked to choose whether to define a "Domain specific" execution or a "Patient 

specific" execution (Fig. CR2). Both selections will result to the configuration and the complete 
definition of a hypermodel to be executed for a selected patient using the patient's data and the 
clinician's requests (e.g. duration of the simulation) resulting to a personalized outcome for the 

selected patient. The main difference among these two options, is that they are actually filters which 
initiate the same wizard like interface for configuring a hypermodel but using different order for the 

wizard's steps.  
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Fig. CR2.  Main CRAF window 

 

 

CR2.2 Configuring a Hypermodel Starting with the Patient Selection 

 
Once the clinician selects the Patient Specific option 

(Fig.CR3) from the main screen, then a wizard like 
procedure begins which has as a first step the 

selection of a patient from the patient list (Fig. 
CR4).  
 

As it is shown in Fig. CR4 CRAF displays the list of 
patients as a list of radio buttons. The patient list is 

interactive, and as the user picks another patient 
from the list, the patient's card at the right side is 

updated, in order to display the patient's 
corresponding data. When the desired patient is 
selected, the user proceeds to the next step (Fig. 

CR5), where he/she has to select the question of 
interest for the patient of interest. The questions 

displayed in this step are relative to the cancer type 
of the selected patient. 

 
 

Fig. CR3 Selecting the patient specific option 
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Fig. CR4 Patient selection 

 

 

 
Fig. CR5  Selection of question for the chosen patient 

 

 
When the patient and the question have been selected, then at the next step (Fig. CR6) CRAF 
displays all the available hypermodels that can be selected. At this case there is only one hypermodel 

available, and it is already selected. At this point there is also available the choice to create a new 
hypermodel at the "Hypermodel editor". By proceeding with the selected hypermodel, at the next 

step the clinician overviews the input/output parameters for the hypermodel (Fig. CR7), and if 
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necessary can make any adjustments directly from the CRAF application. When everything is set, the 
user can proceed to the execution of the model by clicking the "Execute" button. A window appears 

which notifies the user about the configuration status of the hypermodel (complete or not) and 
about the status of its execution (successful initialization of the execution of the hypermodel or 

failure to start). After the user closes the dialog window, CRAF returns to the main screen, ready to 
configure and execute a new hypermodel. 
 

 
Fig. CR6 Selection of the available hypermodels for the chosen patient and the chosen question 

 

 
Fig. CR7 Overview of the input/output parameters before the execution of the chosen hypermodel for the 

selected patient and the chosen question 
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CR2.3 Configuring a Hypermodel Starting with the Cancer Domain 

 
If the clinician selects the Domain Specific option 

(Fig. CR8) from the main screen, then the wizard 
starts as before but this time has as the first step the 
selection of the cancer domain (Fig. CR9). As the 

user selects the cancer domain of interest, the 
corresponding questions appear (Fig. CR10) and by 

picking one of them, CRAF shows the list of patients 
which fulfil the selected criteria (Fig. CR11) (patients 

that do not fit, can be hidden using the 
corresponding switch, in order not to distract the 
clinician with the excess of information). One step 

before the wizard completes, the user has to select 
among the available hypermodels (Fig. CR12). At the 

last step, once the hypermodel had been selected, 
the user has an overview of the input/output 

arguments of the hypermodel (Fig. CR13), and if 
necessary can make corrections/changes before 

starting the execution of this hypermodel. As above, when everything is set, the user can proceed to 
the execution of the model by clicking the "Execute" button. A window appears which notifies the 
user about the configuration status of the hypermodel (complete or not) and about the status of its 

execution (successful initialization of the execution of the hypermodel or failure to start). After the 
user close the dialog window, CRAF returns to the main screen, ready to configure and execute a 

new hypermodel. 
 

 
 

Fig. CR9 Available cancer domains 

 

 
 

Fig. CR8.  
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Fig. CR10. Selection of question for the chosen cancer domain 

 

 
Fig. CR11 Selection of the patient for the chosen question and cancer domain 
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Fig. CR12. Selection of the hypermodel for the chosen patient, question and cancer domain 

 

 
Fig. CR13. Overview of the input/output parameters before the execution of the chosen hypermodel for the 

selected patient and the chosen question 

 

 

CR2.4 List of Execution Results 

 
In order for the user to view the list of the executions of the hypermodels, he/she has to access the 
side menu and select the History option (Fig. CR14). The page of the list of the previous executions 
of the logged in user appears (Fig. CR15), where the user can create/view a report for the selected 
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execution or all of its outputs. Upon clicking the Outputs button, a dialog window appears which 
displays 3 tabs: 

1. Details 
In the Details tab (Fig. CR16), the user can see detailed information regarding the selected 

row (selected execution) form the history list. There is information regarding the full name 
of the patient (all the names in this document are pseudo anonymized and are not the real 
names of the patients), when the execution started and finished and the time needed in 

order to complete, and the corresponding cancer domain. 
2. Reports 

In the Reports tab (Fig. CR17), there is the full list of the reports that have been generated 
for the selected execution. Each report is in a pdf format and can be directly opened through 

the browser or downloaded locally to the clinician's PC. 
3. Outputs 

In the Outputs tab (Fig. CR18), there is the list of the output files of the hypermodel. The 

user can view directly on the browser all of the simple type parameters (such as numerics, 
strings etc.) or download any output files that cannot be displayed in the browser (such as 

dat files, other binary files etc.). There is also the option to download in a single zip file all 
the outputs, by clicking the "Download" button. 

 

 
Fig. CR14.  Main menu 
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Fig, CR15.  List of previous execution (History) 

 

 
Fig. CR16.  Detailed overview of a chosen execution from the history list 
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Fig. CR17. The list of the available reports for the chosen execution from the history list 

 

 

 
Fig. CR18.  Available outputs of the chosen execution from the history list. All the outputs can be downloaded 

as a zipped file. 

 

CR2.5 Desktop CRAF Clinical Workflow 
 
The desktop version of the CRAF application, offers most of the functionalities of the web version 

described above, but it is also a lot more enhanced as it is able to communicate with other native 
applications such as CCGVis. The applications are seamlessly integrated in a single package. As with 
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the web version of the CRAF application, the user has to login first in order to be able to access the 
data associated with the user and the functionalities of the tool(s) (Fig.. CR19). The main screen of 

the desktop CRAF (Fig. CR20) resembles in functionality and in layout to the main screen of the web 
CRAF (Fig. CR9). The similarities among the two flavours of the CRAF application (desktop app and 

web app) extend also to the screens that display the list of the previous executions (history list) (Fig. 
CR21 and Fig. CR15). However, in the desktop CRAF application, once the clinician has selected a 
completed execution from the list of the executions, the available options (Fig. CR22) include a “3D 

visualization” button which opens the CCGVis application, automatically initialized with the 
parameters and data from the selected execution.  

 



Grant Agreement no. 600841  

D6.3 – Initial Standardized Cancer Hypermodels 

Page 133 of 151 

 
Fig. CR19.  Desktop CRAF 

login 

 
Fiig. CR20. Desktop CRAF, selection of cancer domain 

 

 
Fig. CR21.  Desktop CRAF: List of executions 

 
Fig. CR22.  Desktop CRAF available options for a completed execution 
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CR2.6 CCGVis Integration and 3D Visualization 

 
The CCGVis application provides visualization of the imaging data of the hypermodel (both input and 

output) both in 2D as well as in 3D. It allows visualization in sagittal, transverse or coronal 
projections, through a user friendly interface. CCGVis is a C++ application based on the open source 
VTK system [CR6] for creation and manipulation of the 3D objects and on the Qt cross-platform 

application framework [CR7].  The CCGVis app communicates with the CRAF app through in a two-
way data exchange among the two applications. The CRAF application provides to the CCGVis 

application all the necessary data and parameters (such as imaging data, output files of the executed 
hypermodels, etc.) and the CCGVis returns to the CRAF application all the screenshots of the 

output images which the clinician has defined, the graphs and the figure captions to be included in the 
dynamic reports and all the other available metadata (Fig. CR23)). 

 

 
 

Fig. CR23.  Schematic of interaction among CRAF and CCGVis (and also CCGVis and DrEye) 

 
The CCGvis functionalities, apart of the 2D / 3D visualization also include the automatic generation 
of plots based on the outputs of the hypermodels, a side to side comparison view among the 

segmented tumour volume and the simulated tumour volume which provides an immediate 
qualitative overview of the tumour's progression, a save button which sends the current 

image/snapshot or plot directly to the output in order to be included in the report. The application is 
continuously evolving (in a rapid pace) to include new features. 

CRAF
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C.C.G.Vis
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Fig. CR24.  3D visualization of predicted tumour 
 
 

 
 

Fig. CR25.  Graph of tumour volume vs time 
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Fig. CR26.  3D slice view of nephroblastoma, showing segmented tumour volume 

 

CR2.7 Custom Reports 

 
Based on the selected patient, question, hypermodel and all the other configuration options every 
execution has different outcome and results. The CRAF application automatically generates pdf 

reports based on the outputs of the hypermodel's execution. 
 
The images below are a representative example of the report for the output of the execution of a 

lung cancer hypermodel. 
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CR3. References 

 
[CR1] https://java.com/en/about/ 
 

[CR2] http://docs.oracle.com/javase/8/javase-clienttechnologies.htm 
 

[CR3] SPA: Single Page Application. The application fits on a single web page with the goal of 
providing a more fluid user experience similar to a desktop application. In a SPA, either all necessary 

code is retrieved with a single page load, or the appropriate resources are dynamically loaded and 
added to the page as necessary, usually in response to user actions. The page does not reload at any 

point in the process, nor does control transfer to another page. Interaction with the single page 
application involves dynamic communication with the web server behind the scenes. 
 

[CR4] AngularJS: Open source web app framework by Google https://www.angularjs.org 
 

[CR5] The visual language of the Material Design, https://material.google.com 
 

[CR6] Visualization ToolKit (VTK), http://www.vtk.org/ 
 
[CR7] Qt application framework, https://www.qt.io 
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HE. The Hypermodelling Editor (HME) as a Supportive 

Technological Platform for the Integration of Hypermodels  
 
The development of the Hypermodelling Editor has been led by FORTH. ICCS has provided the 

major basic science requirements for the linking of hypomodels for the creation of hypermodels. 

 
The Hypermodelling Editor is a graphical (web based) tool for the basic scientists and the modellers 
that greatly helps in the the design of new hyper models in a visual and graphical way. The editor 

presents a “box and arrows” representation of the hypermodel, where each hypomodel is shown as 
a rectangle and each data exchange link between two hypomodels is depicted as line connecting 

them. Fig. HE1 shows the editor and an exemplary hyper model: 

 

 
Figure HE1. The main drawing "canvas" of the CHIC Hypermodelling Editor. 

 

The design of a new hyper model involves the selection of the needed hypo models and the 
specification of the connections between them. The selection of the hypomodels to include in a new 

hypermodel can be greatly facilitated if the hypomodels have been properly annotated so that the 
users are able to filter them. In the current stage of implementation all of the CHIC hypomodels 

have been annotated according the Perspectives I, IV, and V as defined in Deliverable 6.1: 
 

 Perspective I (“TUMOUR-AFFECTED NORMAL TISSUE MODELLING”) refers to whether 
the model tries to simulate the tumour, normal tissue, oedima, or treatment affected tissue 

 

 Perspective IV (“BIOMECHANISM(S) ADDRESSED”) refers to the cell processes modelled, 

such as the apoptosis, metabolism, necrosis, etc. 
 

 Perspective V (“TUMOUR TYPE(S) ADDRESSED”) refers to the specific cancer (tumour) 

type addressed by the model, such as the lung cancer, glioblastoma, prostate cancer, etc. 
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Fig. HE2 depicts the user interface in the Hypermodelling Editor that supports the selection of the 
models to be shown based on these criteria. Fig. HE3 specifically shows the selection of the 

Nephroblastoma cancer type and the results (5 models) that satisfy this selection criterion. When 
the user locates the subset of the models that can possibly use for constructing the hyper model, 

s/he can press the “add” (plus) button to include them into the drawing area. 
 

 
Fig. HE2. Filtering and selection of hypomodels using their semantic, perspective-based metadata annotations 

 
Fig. HE3. Filtering hypomodels based on the specific tumour type addressed 

 

When a new hypo model is selected and put into the main drawing area of the Editor, then user can 

“double-click” it and a window with more information about the model appears (Fig. HE4). The 
additional information includes information about the inputs and the outputs of the model, such as 

the data types of the parameters (e.g. number, string, etc), the units used, and the default values used 
if an input is not set explicitly to a value, or connected with the output of another model. 
Furthermore, the perspective-related metadata annotations are shown as “tags” under the 

description of the model.  
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Fig. HE4. Metadata for a specific hypomodel and its inputs and outputs 

 

The next step is to connect the models selected according to the user’s envisaged hypermodel and 

research question. To this end, there’s ongoing effort to take advantage of the metadata annotations 
at the parameters level in order to ease the selection of the model to connect to, and the validation 

of these connections. 
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EH. Execution of Hypermodels 
 

The development of the process for the Execution of Hypermodels has been led by CINECA and 
USFD.  

 
The most common hypermodel execution related scenario in CHIC is that a user, following 

appropriate authentication, has uploaded patient-specific data that has been pre-processed to a 
central repository so as to render it suitable inputs for predictive models.  From the CRAF web 
interface or the CRAF desktop application the user selects an existing hypermodel  

(Nephroblastoma, Lung cancer, Glioblastoma, Prostate Cancer),  or from the hypermodelling editor 
links available hypomodels into a new hypermodel,  and then requests its execution from the 

hypermodelling framework (VPH-HF) with a certain input set. When the execution is finished, the 
hypermodelling framework notifies CRAF and the In Silico Trial Repository of the status of the 

execution and uploads the output files centrally in the In Silico Trial Repository. During the run the 
user can monitor the status of the execution and retrieve the hypermodel output set once it has 
finished to be further analysed using pertinent visualization tools ( Fig. EH1) . 

 

 
 

Fig. EH1. Hypermodel Execution  Workflow 
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DI. Discussion 
 

The four novel paradigmatic CHIC hypermodels as well as their component models (hypomodels) 
have been outlined in their initial standardized forms.  More precisely, the following components and 

processes have been outlined: i) the nephroblastoma oncosimulator hypomodel and the 
nephroblastoma integrated hypermodel, ii) the non small cell lung cancer oncosimulator hypomodel 

and the non small cell lung cancer integrated hypermodel, iii) the biomechanical hypomodel for 
nephroblastoma and non small cell lung cancer, iv) the angiogenesis hypomodel for nephroblastoma 
and non small cell lung cancer, v) the metabolic hypomodel for nephroblastoma and non small cell 

lung cancer, vi) the molecular hypomodel for nephroblastoma and non small cell lung cancer, vii) the 
gross phenomenological hypermodel for nephroblastoma and non small cell lung cancer, viii) the 

glioblastoma hypermodel, ix) the prostate  hypermodel,  x) a brief outline of the process of 
semantically describing hypomodels and hypermodels, xi) a brief outline of the model repository in 

the context of  hypomodel integration,  xii) the clinical research application framework (CRAF) in the 
context of utilizing integrated hypermodels, xiii) the hypermodelling editor as a supportive 
technological platform for the integration of hypermodels and xiv) the process of hypermodel 

execution.  
 

The entire process of the development of the initial standardized versions of the CHIC hypemodels 
as well as their handling and execution appears to be a successful one. Extensions of the 

technological tools and services including inter alia the handling of missing or incomplete data, 
supporting the prospective hypermodeller to create a new hypermodel using the hypermodelling 

editor will be mainly presented in the corresponding subsequent technological deliverables.  
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CO. Conclusions 

 
In this document the initial standardized versions of the four paradigmatic novel cancer hypermodels 
developed by the CHIC project concerning nephroblastoma, non small cell lung cancer (NSCLC), 

glioblastoma multiforme and prostate cancer have been outlined. The component hypomodels, their  
static and/or dynamic coordination and their links have also been outlined. Mechanistic multiscale 

mathematical and computational modelling and several statistics based methods of machine learning 
have been recruited in order to develop both the hypomodels and the hypermodels. Clinically 

relevant questions dictate the precise mathematical and computational strategy to be adopted for 
each scenario. Pertinent technological procedures and components such as the procedure of 
semantically annotating hypomodels and hypermodels, the model repository, the Clinical Research 

Application Framework (CRAF), the hypermodelling editor, and the procedure for the execution of 
hypermodels have been briefly outlined in conjunction with the hypermodel integration process. 

Initial prediction results produced by the hypermodels, some of which demonstrated during the 
recent project reviews, have also been presented. Remarks on several facets of the initial  

standardized versions of the hypermodels have further enlightened the process of developing cancer 
hypermodels. The content of the deliverable suggests that the process of the development of the 
initial standardized versions of the CHIC hypermodels as well as their handling and execution has 

been a successful one. Clinical adaptation and partial validation of hypermodels are to be presented 
in deliverable D6.4.  
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Appendix 1 – Abbreviations and acronyms 

 

AD Androgen Dependent 

ADC Adenocarcinoma 

ADSCC Adenosquamous Cell Carcinoma 

ADT Androgen Deprivation Therapy 

AJCC American Joint Committee on Cancer 

Akt Protein kinase B (PKB) 

ALK Anaplastic Lymphoma Kinase 

AMD Advanced Microdevices 

ANSI American National Standards Institute 

API Application Program Interface 

ATP Adenosine Triphosphate 

AUC Area Under Curve 

BED University of Bedfordshire 

bGS biopsy Gleason Score 

BMS Bio-Mechanical Simulator 

BS Biomechanics Simulator 

CGAL Computational Geometry Algorithms Library 

CHIC Computational Horizons in Cancer 

CINECA Consorzio Interuniversitario del Nord Est Italiano Per il Calcolo Automatico 

(Interuniversity Consortium for High Performance Systems) 

CKP Cell Kill Probability 

CKR Cell Kill Rate 

CNS Central Nerous System 

COSMIC Catalog of Somatic Mutations in Cancer 

CRAF Clinical Research Application Framework (CRAF) 

CS Cell Simulator 

CSF Cerebrospinal Fluid 

CSS Cancer Stem Cell 

CSV Comma Separated Values 

CT Computed Tomography 

DC Dendritic Cell 

DGM Diffusion Coefficient of Grey Matter 

DICOM Digital Imaging and Communications in Medicine 

DIFF Terminally Differentiated Cell 

DRE Digital Rectal Examination 

DWM Diffusion Coefficient of White Matter 

EAU European Association of Urology 

EBRT External Beam Radiation Therapy 

ED Equivalent Dose 

EGF Epidermal Growth Factor 

EGFR Epidermal Growth Factor Receptor 

ERBB2 erb-b2 Receptor Tyrosine Kinase 2 

ERK Extracellular Signal-Regulated Kinases 

FEM Finite Element Method 

FORTH Foundation for Research and Technology Hellas 

GBM Glioblastoma Multiforme 
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GF Growth Fraction 

GC Geormetrical Cell 

GPSM Gleason, PSA, Seminal Vesicle and Margin Status 

GS Gleason Score 

GUI Graphical User Interface  

HE Hypermodelling Editor 

HER3 Human Epidermal Growth Factor Receptor 3 

HTML Hypertext Markup Language 

ICCS or 

ICCS-

NTUA 

Institute of Communication and Computer Systems – National Technical 

University of Athens 

IMRT Intensity Modulated Radiation Therapy 

ISO International Organization for Standardization 

KUL Catholic University of Leuven 

LADC Lung Adenocarcinoma 

LCC Large Cell Carcinoma 

LIMP LImited Mitotic Potential 

LQ Linear Quadratic 

LSCC Lung Squamous Cell Carcinoma 

MAPK Mitogen-Activated Protein Kinase 

MD Molecular Dyamics 

MRI Magnetic Resonance Imaging 

MUSCLE Multiscale Coupling Library and Environment 

MUT Mutant 

NBC Number of Biological Cells 

NCCN National Comprehensive Cancer Network 

NCI National Cancer Institute 

NGCT Neighbour Geometrical Cells  belonging to the Tumour  

NIH National Institutes of Health 

NK Natural Killer 

NSCLC Non Small Cell Lung Cancer 

NSG NOD-scid IL2rγnull Mouse Model of Human Skin 

OER Oxygen Enhancement Ratio 

OFAT One Factor at A Time 

OS Oncosimulator 

OWL Web Ontology Language 

pAKT phospho-AKT 

PCa Prostate Cancer 

PDE Partial Differential Equation 

PSA Prostate Specific Antigen 

PUN Phenomenological Universalities (Approach)  

RDF Resource Description Framework 

RP Radical Prostatectomy 

RT Radiotherapy 

RTK Receptor Tyrosine Kinase 

SASA Solvent Accessible Surface Area 

SBML Systems Biology Markup Language 

SCC Squamous Cell Carcinoma 
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SCID Severe Combined ImmunoDeficient  

SCLC Small Cell Lung Cancer 

SQL Structured Query Language 

STAT Signal Transducer and Activator of Transcription or Signal Transduction And 

transcription 

SVM Support Vector Machines 

TCGA The Cancer Genome Atlas 

TKI Tyrosine Kinase Inhibitors 

TRUS Trans-Rectal Ultrasound 

UBERN University of Bern 

UCL University College London 

ULC Undifferentiated Large Cell Carcinoma 

UML Unified Modeling Language 

UNITO University of Turin 

UOXF University of Oxford 

UPENN University of Pennsylvania 

USAAR University of Saarland 

USFD University of Sheffield 

VEGF Vascular Endothelial Growth Factor 

VPH Virtual Physiological Human 

VTK Visualization ToolKit 

WT Wild Type 

WT Wilms Tumour =  Nephroblastoma 

XML EXtensible Markup Language 

  

 


