ACGT FP6-026996

D6.4 – The integrated ACGT analysis environment

[image: image37.png]
The integrated ACGT analysis environment

Project Number:
FP6-2005-IST-026996

Deliverable id:
D 6.4
 Deliverable name:
The integrated ACGT analysis environment
Submission Date:
dd/mm/yyyy
[image: image1.jpg]
	COVER AND CONTROL PAGE OF DOCUMENT

	Project Acronym:
	ACGT

	Project Full Name:
	Advancing Clinico-Genomic Clinical Trials on Cancer: Open Grid Services for improving Medical Knowledge Discovery

	Document id:
	D 6.4

	Document name:
	The integrated ACGT analysis environment

	Document type (PU, INT, RE)
	RE

	Version:
	0.1

	Submission date:
	DD/MM/YYYY

	Editor:
Organisation:
Email:
	Dennis Wegener
Fraunhofer IAIS
dennis.wegener@iais.fraunhofer.de

Document type PU = public, INT = internal, RE = restricted

	ABSTRACT:

This deliverable describes the integrated ACGT analysis environment.

	KEYWORD LIST: Metadata repository, service integration, distributed services

	MODIFICATION CONTROL

	Version
	Date
	Status
	Author

	0.1
	08/01/09
	Draft
	D. Wegener

	0.2
	17/02/09
	Draft
	D. Wegener

	
	
	
	

	
	
	
	

List of Contributors

· Fraunhofer IAIS: Dennis Wegener
· University of Málaga: Johan Karlsson, Maximiliano Garcia, Javier Ríos, Andrés Rodrígues, Sergio Ramirez, Victoria Martin Requena, Antonio Muñoz Mérida, Oswaldo Trelles.
· INRIA: Basavanneppa Tallur
· FORTH, Alexandros Kanteriakis
· University of Amsterdam, Robert Belleman
· University of Amsterdam, Paul Melis
· Siveco, Sorin Portase
Contents
4Contents

51
Introduction

62
A metadata schema to integrate the data

62.1
File-related Metadata

72.2
BioMOBY Metadata

92.3
Use cases for Metadata

93
GridR user interfaces

93.1
The GridR R-package

113.2
The GridR Portlet

123.3
The ACGT GridR service

144
Workflow Environment

144.1
Workflow and Service Search

184.2
Workflow Execution using the Repo

215
Interactive visualization components

215.1
Service-based interactive visualization

225.1.1
Architecture overview

225.1.2
Visualization service design

225.1.3
Service implementation

235.1.4
Interaction with visualization services

235.1.5
Test cases

265.1.6
Conclusions and future work

275.2
R based visualization

275.3
Portal based visualization

275.4
UMA visualization tool?

346
Specific biostatistical R routine: chavl

346.1
Introduction

346.2
LLA methodology for hierarchical clustering

356.3
Specificity of Chavl software

356.4
Integration of LLAhclust package into ACGT

356.5
A typical example of the scenario for microarray data

387
Specific services for matching Gene Expression Profiles and Regulatory Networks

387.1
Description of the scenario

407.2
High Level Overview

418
References

43Appendix 1 - Abbreviations and acronyms

1 Introduction
This document reports on the integrated ACGT analysis environment – the knowledge discovery tools developed in WP6 and their technical integration as defined in WP9. In ACGT, we distinguish between different types of users, which are in detail physicians/clinicians, trial-chairmans and bioinformaticians/data miners. According to the knowledge and preferences of the respective group of users a different set of components of the ACGT environment serves as user interface
. In this document, we focus on trail chairmans and bioinformaticians. The work of a trial-chairman consists of setting up, managing and monitoring clinical trial as well as analyzing data generated in the trials, which can be done by components implemented inside the ACGT portal. A bioinformatician constructs workflows, creates new services and implements complex scenarios with the help of portal components as well as the GridR environment. Therefore, we present knowledge discovery tools that have been integrated into the portal, specific components integrated in the context of the GridR tools and services and a metadata schema for the integration of data which allows flexible data exchange. Details on the technical integration of tools and services into the ACGT portal can be found in D14.5 “Methodology for ACGT service integration in the ACGT Portal on the Business Process Layer”.
The meta-data schema to integrate the data is described in Section 2. An overview on metadata in general in the context of ACGT was given in D6.3 “Demonstration and report of a repository of knowledge-discovery-related metadata”. In addition, components handling metadata in the ACGT environment and in particular the metadata about services have been described. Here, we focus on file related metadata and the integration-aspect of the metadata. The GridR tools and services, which are in particular the GridR R package, the GridR portlet and the GridR service, are described in Chapter 3. Chapter 4 deals with knowledge discovery and advanced analysis in the context of the workflow environment. Chapter 5 presents the visualization tools. Chapter 6 gives details on the chavl package and Chapter 7 on services for Matching Gene Expression Profiles and Regulatory Networks, which both have been integrated using the GridR tools and services and the ACGT metadata components.
This document is a joint version of the planned deliverables D6.4 “The integrated ACGT analysis environment” (due at T0+32) and D6.5 “Demonstrator of analytical services” (due at T0+36). Chapter 2 on the meta-data and chapter 3-5 on the GridR tools and services, the workflow environment and the visualization tools cover the integration part. In addition to Chapter 3 on GridR, the Chapters 6 and 7 report on analytic R routines and services implemented and integrated into the ACGT environment.

[image: image2.png]

2 A metadata schema to integrate the data
This section describes the technical implementation of the file related metadata in ACGT and gives an overview over the metadata description of services of the BioMOBY project. In addition, different use-cases for the meta-data are presented.

2.1 File-related Metadata
File related metadata is the key component to integrate the data in ACGT. In the ACGT environment, file related metadata consists basically of four attributes describing the file in different ways:

· Security – this attribute contains security-related information, e.g. information on the owner of the file. (E.g. “/C=EU/O=ACGT/OU=DemoOrganisation one/CN=Jane Doe”)

· Datatype – this attribute refers to the datatype of the file, which is correlated to the datatype metadata described in Section 2.2 in D6.3. (E.g. “urn:eu-acgt.org:datatype:csv“)
· Description – this attribute contains a semantic description of the data

· Provenance – this attribute contains information on how the file was generated, e.g. by which workflow or service.

There are different components in the ACGT environment that are able to attach file-related metadata to files. The following list gives an overview over these components:
· Mediator (link to respective Deliverable) – the mediator prepares the data description which is then attached by the Data Access activities
· Data Access activities (link to respective Deliverable) - The data access services support file delivery to DMS by way of the deliverFilesToDMS activity. It has basic support for setting metadata. For all files it creates on DMS it will set the metadata as specified in the request: the ID of the metadata scheme and one or more name/value pairs have to be provided. Note that the activity may create one or multiple files, depending on the activity's input stream (which is filled by another activity). For all files it will use the provided metadata settings. The deliverFilesToDMS activity is generic, and supported by all types of data access service that are provided (i.e. relational data, DICOM data, and BASE data).
· GridR service (see also Section 3.3) – the GridR service attaches the datatypes to the output files of an R script according to the metadata description of the script inside the Metadata Repository.
· Enactor (link to respective Deliverable) – the enactor provides the provenance information…
2.2 BioMOBY Metadata
The BioMOBY [WIL2003] project aims to integrate web-services in bioinformatics. This integration is, in part, due to the use of three ontologies describing respectively data representation syntax, data domains and service functionality. These ontologies are open to extension by end-users and therefore scales well and has resulted in ontologies that cover the entire bioinformatics domain.

However, if we consider the data representation syntax ontology (from now called the data type ontology), we note that this ontology has grown in BioMOBY to an extent where the size is unmanageable. Service integration largely depends on agreements between service providers to use similar data types. If managed right, this can result in services that produce data which is highly compatible with other services.

Data type ontologies must be large enough to express the required data types but should also be manually controlled to ensure that service providers do not unnecessarily define new data types when a suitable data type already exists. This approach was adopted by the Spanish National Institute for Bioinformatics (INB). Their ontology is compatible with the ontology from BioMOBY but special effort has been made to promote service compatibility. New services and data types are suggested by service providers but are not added to the official INB service catalogue without prior approval from an ontology committee. A development catalogue where new data types and services can be registered without restriction is available for testing purposes. This approach is less scalable than the end-user defined approach in BioMOBY but can result in a good trade-off between openness (scalability) and control.

The ACGT project stores metadata in a custom metadata repository [BIT2008] (described with more detail in D6.3). Services and workflows are described using terms from a data type ontology and a service functionality ontology. Inspired by mechanisms in the BioMOBY data type ontology and the object-oriented paradigm, the repository includes metadata which is used to provide relations between data types. The available relations are; EXTEND, used to extend definition of existing data types, creating an inheritance dependency, composition relations where data types are composed by other data; CONTAINS (containing exactly one) and ARRAY (containing at least one). The composition relations also contain a name which indicates the semantic meaning of the relationship as a human-readable phrase and a description which further describes the semantic meaning of the relationship. Services that register their input/output to follow a data type from this ontology add this information to their public service interfaces, informing the clients which data they are willing to accept.
Developing ontologies from scratch is difficult and time-consuming. Therefore, the ACGT will adopt the BioMOBY data type ontology but as modified by INB. ACGT specific data types will be added as needed but care will be taken to re-use data types from the imported ontology.

The data type ontology contains a few mandatory data types with special properties:

· Root data type (Object).

· This data type is the root of the data type ontology and all other data types inherit from this data type. This data type always contains the following attributes (and consequently all other data types by inheritance):

· Unique identifier (URI)

· Description (human readable free-text)

· Primitive data types (Integer, Float, String, Boolean and Date Time)

· These data types are the only data types of which instances can contain data. Additionally, no other data type may inherit from either of these data types. However, other data types may, and should, have CONTAINS or ARRAY relationships with these primitive data types.

The data type ontology is extendible by service providers but appropriate pre-reviews of the suggested changes will be done before allowing the stable ontology to be modified. The following scenario shows how the concepts described so far can be used to define new data types.

Biostatistician A has just developed a new analysis tool and wishes to add this tool to the ACGT catalogue. This tool is made available according to the ACGT service recommendations (including security) and metadata about the tool should be published. The tool outputs a nucleotide sequence. Using the ACGT web-pages, A studies the available data types and finds the existing data type NucleotideSequence. Studding the definition, he finds that the data type has the following characteristics:

· Id

· Namespace

· Sequence (String) (raw sequence data)

· Length (Integer) (length of the sequence data)

This data type is partially correct as output for the tool but since the tool also annotates the sequence with a description, the service developer wishes to add this extra information. A therefore defines a new data type CommentedNucleotideSequence with the following added relations:

· EXTENDS NucleotideSequence

· CONTAINS String

· Name “comment”

· Description: “This field contains a description of the nucleotide sequence”

A then proceeds to register the tool using CommentedNucleotideSequence as the output data type.

This approach has the following advantages;

· A has successfully extended the data type ontology with a new data type that fits the output of his service. The addition of the new data type CommentedNucleotideSequence does not interfere with the definition of the existing data type NucleotideSequence.

· The output of his service is directly compatible with any service that consumes NucleotideSequence as input data type. Any such service will simply search for the fields as defined in the contract for NucleotideSequence and ignore any other fields.

· Other services that register with CommentedNucleotideSequence would, of course, also be aware of the comment field, as required by the contract.
2.3 Use cases for Metadata
The following list gives examples on the use-cases for file-related metadata:

· Service discovery. The data type field can be used for finding services or workflows that operate on a specific file format or that produce files of a given format. Details on the search can be found in Section 4.1.

· Semantic proof checks and file discovery. By using the semantic description of the data, extended proof checks on the input data for services can be made. In addition, the searching of files can also include semantic information which allows a more advanced file discovery.

· Workflow reconstruction. Provenance information about a data file can help to re-construct the workflow that was used to create the file. Services can be used either in a workflow or by manual execution. The provenance information includes detailed information on the order and the inputs of the services that have been called. Given a file in the ACGT system that was created by the execution of a set of services, the provenance information could be used to step by step build up a workflow in a reverse engineering way.
· Workflow suggestion. The metadata framework of ACGT could be also used to collect information on the execution of workflows. Part of this information can be used for workflow suggestion. E.g. when the user selects a file, the system could give him a list of workflows that can process the file, rated by some kind of quality criteria. Such a criterion could be e.g. the total number of executions of the particular workflow or the quality of the result it produces. In addition, also a community-based approach based on user ratings can be imagined. Besides that, the workflow suggestion could not only be based on the metadata, but also on the data itself. An approach for semantic similarity of datasets is described in [Pun08].
· Linking of components from different contexts. Metadata can be used to link components from different areas, e.g. linking of services with workflows, linking from workflows and database queries, linking of workflows and result files etc. These links would allow for navigation among different parts of the ACGT analysis framework and an extended search functionality (e.g. searching for alternatives w.r.t. data, services and workflows). The idea of hyperlinked provenance information is described in [Rue07].
3 GridR user interfaces
This section describes the integration of the GridR [Weg07] components, which are the GridR package, the GridR service and the GridR Session Applet, into the ACGT environment.
3.1 The GridR R-package

The GridR package was already described in detail in D6.2 Section 2.3. This section gives an overview on the updates of the GridR package since D6.2. The GridR package is available at the official R package archive CRAN (http://cran.r-project.org/). The package now splits up into a public non-ACGT based version and an ACGT specific extension.
The following table (Table 1) is a revised version of the table listing the functions for the users. In addition, the functions are described detailed in the help of the R package itself.
Table 1. GridR user functions.

	Function Name
	Action

	grid.apply
	Performs a remote execution of R functions; waits (callback) or sets a lock (grid.lock)

	grid.check
	Checks if varlist contains all variables and functions

to execute function f remotely. If not the missing

variables are returned

	grid.consistency
	Checks if the internal structure has errors or if there

are local files without a running job

	grid.isLocked
	Checks if a variable has a lock

	grid.waitForResult
	waits until all variables are unlocked

There is an ACGT specific extension of the GridR package available that provides the functionality of interfacing with the ACGT infrastructure. The extension consists of specific R functions (Table 2) and Java libraries.
Table 2. GridR ACGT functions.

	Function Name
	Arguments
	Description

	AcgtDownload
	fileID: the id of the file to download

localName: local path where to save the file
	downloads the file with ID "fileID" from the ACGT DMS to the file "localName"

	AcgtEnactRepo
	wfid: the id of the workflow to enact

param: a list of parameter name and input file id
	enacts a specified ACGT workflow and returns the name and the id of a result file in the DMS

	AcgtExecuteRepoScript
	scriptID: the id of the script to enact

fileIDs: a list of input file ids from the DMS
	executes a specified ACGT workflow and returns the name and the id of a result file in the DMS

	AcgtExecuteScript
	rCode: the rCode to execute as String
inputIDs: all inputIDs needed by the script as a vector

outputNames: all outputNames generated by the script as a vector
	executes a specified script and returns the name and the id of a result file in the DMS

	AcgtListRepo
	-
	returns a list of available workflows in the ACGT Repository

	AcgtReadFromDms
	f ileID: the id of the file to download

localName: local path where to save the file
	downloads the file with ID "fileID" from the ACGT DMS to the file "localName" and returns it

	AcgtUpload
	file: the local path of the file to upload
	uploads the specified file to the ACGT DMS and returns the fileID

	AcgtUploadToDms
	File: the local path of the file to upload

dataType: the datatype of the file, i.e. urn:eu-acgt.org:datatype:csv
	uploads the specified file with dataType to the ACGT DMS and returns the fileID

3.2 The GridR Portlet

The GridR portlet (see Fig. 1) consists of an applet that represents a frontend to the RSessionService. Users can connect in a console-style way to a running R session on a machine of the grid environment and submit R commands.
In addition, the applet provides the following functionality:

· Connect via web service to R sessions on remote grid machines
· Management of multiple sessions
· Browsing the working directory of the remote R session
· Up- & download local data to the working directory of the session

· Creating plots and viewing them (see Section 5.2)

· Make use of the GridR API to interface with other ACGT services

The backend of the Session applet is the RemoteSession service that is integrated into the ACGT security framework based on credential delegation and GAS. The credential information is passed to the applet via the portal page.

[image: image3]
Fig. 1. Screenshot of the GridR Session Portlet
The following table (Table 3) presents an example usage (based on functions of the GridR package, see Section 3.1):

Table 3. Example of GridR usage.

	Execution a script from the Repo:

	fileIDs=list()
fileIDs[[1]]=1618
grid.AcgtExecuteRepoScript("urn:eu-acgt.org:service:columnappender", fileIDs)

	Download of data from the DMS and read it into an object:

	demo = grid.AcgtReadFromDms(18571, "demo_public.csv")

	Upload of data to the DMS:

	id=grid.AcgtUploadToDms("localFilename")

3.3 The ACGT GridR service

The GridR service is a component of GridR that can be used within the workflow environment. It is implemented according to the ACGT service reference implementation. A prior version of the GridR service was already described in D6.2 Section 2.2. The registration of new GridR scripts in the metadata repository was described in Section 4.3 of D6.3. This section gives an overview on the updates of the GridR service since D6.2. The service is now fully integrated into the ACGT security framework. It now is based on credential delegation and is connected to GAS.

In addition to this, there exists another pair of functions for executing R scripts registered in the Repo and fetching the results:
executeRepoScript

Executes an R script that is stored inside the metadata repository in the grid environment. A list of integer IDs, referring to the grid data management system (DMS), specifies the input data for the R script. The service returns an ID (unique identifier) of the GridR execution which can be used by calling components to check for the result.
Arguments

	String repoID
	the ID of the R script to be executed in the metadata repository

	int[] inputFileIDs
	these are the IDs of the input files for the R script stored in the DMS

Return Value

	String gridrID
	the ID of the GridR job

Details

The following text describes details on the execution of the executeRepoScript method:

· The service creates a unique identifies (GridR ID) of the execution as return value.

· The service contacts the metadata repository for getting information on the input- and output-data and the script code of the R script.

· The input files in the DMS are checked for the correct data type.

· The GridR service acts as client of the gridge services GRMS and DMS. The connection to these services is initialized and a unique directory in the user’s home dir inside the DMS is created for storing data of the current GridR execution.

· The R code of the script is customized in a way that it can be executed in the grid, including e.g. a “matching” of the input data to data objects and the description of the outputs to Strings for naming the output files in the R code.

· A temporary local directory is created that is used for storing the customized R code that will be executed as file as well as an executable file (which is a shell script containing a special command for starting R on the execution machine in the grid).

· The files contained in the local temporary directory are uploaded physically to the DMS via gridFTP.

· The GRMS job description is generated, specifying which files to stage in to the execution machine, which command to execute and which output files to transfer back.

· The job is submitted and some monitoring info is stored in the log files of the tomcat container the GridR service runs in.

· After the execution finished, the result files of the GridR execution are automatically transferred to the DMS under the given names provided as arguments by the GRMS service. The GridR service performs a cleanup of the local temporary directory and returns a list containing the DMS IDs of the output files.

· The metadata repository is contacted for fetching the data types of the output files. The data types are assigned to output files in the DMS.
getRepoResult
Fetches the result of a GridR execution. According to the GridR ID the service checks for the result of the GridR execution. The service returns null in case the execution is not finished, and reads the result object and returns the IDs of the output files in case the result is available.
Arguments

	String gridrID
	the ID of the R script to be executed in the metadata repository

Return Value

	int[] outputIDs
	the DMS-IDs of the output files the R code generated

4 Workflow Environment
4.1 Workflow and Service Search

There are several types of tools (workflows and different kinds of services) for which the metadata repository can store metadata. In the repository, all of these concepts are represented as abstract tools with similar metadata. Therefore, searches for any kind of tool are done in a similar way.

Tools are annotated with certain metadata to simplify discovery:

· Data type references for input and output parameters

· Functional categories

· Type; currently several types are supported: R-script, Command-line type services, BPEL-workflows, BioMOBY web services etc

· Textual descriptions (for each tool, operation and parameter)

Access to the metadata is provided through a programming interface (mAPI) [BIT2008]. This programming interface contains several ways to search for tools (services or workflows). In summary, the most important pre-defined ways to search for tools provide a list of matching tools based on:

· Input data type compatibility (see section 2).

· By service name

· Functional category annotation (keyword describing the functionality of the tool). These keywords are arranged in a taxonomy where a given keyword can be related to more generic keywords, creating an inheritance relation. It is possible to use these relations when searching to restrict results to tools annotated with a given keyword or any inheriting keywords. For example, if the functional category taxonomy consists of the keyword “clustering” and two sub-keywords inheriting from clustering “hierarchical clustering” and “k-means clustering”, searching for a tool with annotation “clustering” would return also tools that are annotated with “hierarchical clustering” and “k-means clustering”.

All these factors can be combined to form more complex queries.
Additionally, custom filters can also be developed to programmatically filter service lists according to any combination of restrictions for metadata. One example would be how to filter according to registration date, limiting results to include only tools registered within a certain time-period (recent tools). Filters can be combined to further restrict the number of results.

This searching functionality is made available to end-users via the ACGT portal. The metadata registration portlet displays tools arranged in a browsable tree (see Fig. 2). Each branch is represented by a functional category and the children are either other tools or inheriting functional categories.

[image: image4.png]
Fig. 2. Browsable tree of functional categories and tools.
The portlet also provides functionality to search for tools based on input parameter data type (see Fig. 3). This allows users to find all tools than can process data formatted according to the given data type.

[image: image5.png]
Fig. 3. Searching based on input parameter datatype (datatype compatibility) and search string.
Currently, the portlet provides a simple text-based search where the user can enter a string which produces a list of all tools where the string matches (partially or completely) the tool name. This portlet will be replaced by the Magallanes search client (see Fig. 4 and Fig. 5) which provides a simple but powerful interface similar to traditional search engines such as Google. In addition to matching with tool names, Magallanes also matches against tool, operation and parameter descriptions. Additionally, if the descriptions contain URL links, Magallanes will also use that text in the matching/scoring process.

[image: image6.png]
Fig. 4. Magallanes search client. User entered the search term “sequence”, searching in datatype, service and functional category names and descriptions.
[image: image7.png]
Fig. 5. A user searches for “seqence”. There were no descriptions of tools in the repository using that exact string (incorrect spelling) but there were several tools and data types with using the word “sequence”. This alternative was displayed to the user as “did you mean…” suggestions.
Magallanes connects to the metadata repository through the mAPI programming interface and implements a searching procedure and scoring system based on the number of occurrences and relative word positions. Several words can be entered and used with AND, OR and regular expression operators.
The ranking/scoring is performed according to the following strategy: perfect matching is ranked highest. When no hits are found, Magallanes uses an approximate regular expression matching (Levenshtein distance [LEV1966]). The Levenshtein distance, defined between two strings not necessarily having the same length, is the minimum number of insertions, deletions, and substitutions of characters required to transform a string into another. Approximate regular expression matching, in which the d distance is the Levenshtein distance, is known as the matching with k differences or errors.

Levenshtein distance is used to identify similar words in the repository, producing a ranked list of possible options available to the client. This strategy ensures an up-dated dictionary adapted to the specific repository (e.g., in different languages), but it becomes influenced by the quality of annotations in the repository (e.g. misspelling words cannot be detected).

Magallanes uses this information to assist the end-users by suggesting other search terms (see figure 4). Such suggestions are especially useful when the user uses a similar word to one used in tool descriptions.

Workflow generation (future developments)
The search functionality in Magallanes can be used to locate services or data types. When the user selects a service, the portal will switch to the portlet for service invocation, allowing the user to enter the needed input data.

However, when the user selects a data type, it will be possible to specify that the data type is to be used in the process of workflow generation. According to the Workflow Management Consortium, a workflow is “the automation of a business process, in whole or part, during which documents, information or tasks are passed from one participant to another for action, according to a set of procedural rules”. In general, the participant can be either human or machine but in this discussion, participant refers to a web-service (machine-interpretable interface). The stand-alone version of Magallanes (see Fig. 6) can be used to semi-automatically generate workflows based on user-specified input and output data types.

[image: image8.png]
Fig. 6. User searched for datatypes AminoAcidSequence and Newick_text and selected those as input and output datatypes. Magallanes generated the workflow shown in the picture with four alternative paths from AminoAcidSequence to the intermediate data type Clustalw_Text. The user can at this stage select the preferred path and remote the alternatives before validating the workflow.
Bioinformatics research often involves connecting web-services together to form a workflow. However, the process of constructing workflows is complex. Ontology-supported workflow generation can be a good aid in this process. Interoperability between services in a workflow is possible since the ACGT services share the same data type ontology (and will share the same formats).

Briefly, the ontology-assisted workflow generation examines the target data type and iteratively connects services using a proprietary algorithm. In those cases where several paths are possible, the user interface displays those as alternatives and interactively allows an expert user to select which path is preferred. Feedback is given to the expert in the form of the service descriptions. Selection of alternative paths will be further supported by service quality information (such as availability rate, frequency of use; i.e. popularity).

Naturally, the workflows generated using the data type ontologies might not be complete and likely needs additional manual editing/improvements. In this case, Magallanes will export the workflow in a format that the ACGT workflow editor can interpret and load for further edition.

Ongoing improvements are related to graphical edition of the possible workflows (collaboration with Hokkaido University), exporting the generated workflow in standard formats (such as Taverna SCUFL and BPEL) and providing Magallanes functionality as web-services.
4.2 Workflow Execution using the Repo

In the ACGT environment, users directly invoke services (and workflows, which are also considered as services) at the portal. In order to execute a service, the user has to access the “Metadata Registration 2.0” tab. In the “Service Manager” portlet, a tree of services is displayed (see Fig. 7). The services are retrieved from the Metadata Repository and filtered according to permissions stored in GAS. From the tree, the user selects the service he wants to execute for displaying the details of the service. Also, services can be searched based upon description, name, Data Type compatibility or available mirrors associated with the service (see also Section 4.1). Based upon the selection of the user there are two situations that may occur:
· The user selects an RScript: RScripts have only one default operation called “Execute”. To execute the RScript, the user has to click the “Execute” button (see Fig. 8).

· The user selects a generic Service: To execute the service, the user has to execute one of the available operations by clicking the “Execute” button next to the operation’s name (see Fig. 9).
In both cases a form will be displayed where the user can edit the values of the operation’s input parameters. After editing is finished the user clicks the “Execute operation” button (see Fig. 10).

The portlet then connects to the Service Enactor to start up the service operation on user’s behalf. The status of the running service can be checked using the “Service enactings” Portlet under the “MyAcgt” tab.

[image: image9.png]
Fig. 7. Metadata portlet – Service discovery.

[image: image10.png]
Fig. 8. Detailed view of an RScript including the Execute-Button.

[image: image11.png]
Fig. 9. Detailed view of a generic service including Execute button of an operation.

[image: image12.png]
Fig. 10. Entering the service's parameters.

5 Interactive visualization components
Interactive visualization is a powerful paradigm for the user-controlled exploration of scientific data. Visualization is most often used in situations where automated data analyses techniques fail or are non-existent. In these cases visualization algorithms are used to map scientific data to a graphical representation that allows the scientist’s cognitive abilities, experience and expertise to visually detect structure and patterns. Interaction methods that influence the visualization algorithms put the scientist in the driver seat of an interactive vehicle that enable exploratory visual data analysis.

5.1 Service-based interactive visualization
One of the objectives of ACGT is to provide integrated access to the project’s results through a web based portal. This has the advantage that all of ACGT’s services are accessible to end-users through a standard web browser. The “ACGT Main Portal” is the main user interface that invokes the services required for the definition of clinical trials, data management and the definition of data analysis workflows. The decision to use a service-based design allows co-ordinated resource sharing and problem solving in a dynamic, multi-institutional, Pan-European virtual organization, including:

· precise control over access patterns to protect, for example, privacy-sensitive data and services, and

· controlled shared access to distributed computing resources.

Interactive visualization tools are used throughout the ACGT project, both by developers during the implementation of services and workflows but also by the end-users; the clinicians that define and manage a clinical trial. The decision on a service-based design and the integration of these services into a web based portal poses a significant challenge in the development of interactive visualization services for the representation and exploration of data. The visualization services should be able to provide:

· integration - the services must be ready for integration by third-party applications, and shared web portals in particular;

· flexibility - the visualization needs in the ACGT project range from simple 2D graphs to interactively rendered 3D volumes;

· interaction - the visualization services must both provide interaction capabilities for navigation (i.e. pan, zoom) as well as (re-)parameterization of visualization algorithms;

· responsiveness - a service based design over a networked distributed architecture will add latency to the response time after interaction that should be minimized;

· scalability - the services must be able to withstand increases in the number of simultaneous service requests.

Unfortunately, for interactive visualization these capabilities do not go well together. Methods that provide non-interactive visualization methods for the graphical representation of information and scientific data are abound. Most of these can easily be integrated into third party applications, web portals included, and they often provide flexible 2D and 3D visualization methods. They are, however, not interactive.

Interaction with applications that run on a distributed architecture is far from trivial. Their distributed design implies that communication must take place between components which, in turn, negatively influences responsiveness. Furthermore, existing paradigms for the construction of service-oriented architectures (e.g. WSRF) impose a significant amount of overhead on the performance of applications which has a negative effect on both responsiveness and scalability. This has led us to design and build a lightweight framework that allows for the implementation of third-party applications using network accessible visualization facilities.

Architecture overview

In its most basic form, the architecture consists of a collection of visualization services that are each accessible through the standard web protocol HTTP. Each visualization service can be seen as a regular web server from which the end-user requests one or more images using a conventional URL. The visualization service returns the output of in the form of an image or an intermediate representation suitable for processing by (an)other service(s). Changes to the visualization service state are made using HTTP requests. As the visualization service communicates with the outside world using only the HTTP protocol, integration of the service with existing applications is straightforward. The users of the service do not necessarily have to be web-based applications, as anyone can use the visualization results in any way. An example of this could be a movie creation service that requests a sequence of images and turns these into a single movie file.

Visualization service design

In its basic form, our service design does not require the installation of plugins in the browser. The design supports any kind of imaging output produced by the visualization algorithms and so is not limited by what is implemented on the browser side. The visualization services include support for interactive 2D and 3D renderings in a regular web browser with the only prerequisite that the browser supports Javascript. The architecture of this solution is presented next.

Service implementation

Each visualization service is implemented as a tiny application that consists of two parts: one part performs the actual visualization and rendering, the other part handles service requests via HTTP. Most visualization functionality is implemented using the classes provided by the Visualization Toolkit (VTK) and other libraries. Graphical rendering to images is performed through hardware-accelerated OpenGL libraries where available. To handle service requests, the application contains a minimal web server capable of servicing HTTP GET and POST requests [FGM99]. A tightly integrated system like this has multiple advantages over an architecture consisting of a regular visualization application coupled with a “full blown” web server, like Apache. In that case, some form of communication would have to be implemented between the two processes, resulting in overhead which negatively influences responsiveness and scalability. By merging both components into a single application we ensure the web server has direct access to the visualization output thereby greatly reducing overhead. Furthermore, incoming service requests can directly be applied to the visualization service without any intermediate processing or process communication induced by a web server.

Images sent from a visualization service to the browser are encoded in PNG format. For reduced image size and transmission time JPEG would have been an alternative choice. However, the compression algorithm used in JPEG is not lossless which may result in undesirable compression artefacts visible in the images.

Interaction with visualization services

We classify interaction with visualization in two categories: parameterization and navigation. Parameterization of scientific visualization services is done through HTTP, as described in the previous sections. Navigation is the type of interaction that allows the user to change the view on a visualization, i.e. panning, rotation and zooming. To accomplish this type of interaction we use AJAX (Asynchronous Javascript) procedures. Whenever the user interacts with a visualization, Javascript code in the HTML page sends updated view parameters to the instance of the visualization service that provides the image. The new view parameters are distributed by the service to the instances on the server to provide synchronized views. After sending the updated parameters, the Javascript code in the HTML page invalidates all images which causes the browser to fetch updated images from the visualization instances. This method provides synchronized interactive views in a web browser.

Test cases

We have applied our architecture to the visualization of OncoSimulator output data in three different test-case scenarios. Although for this description we limit ourselves to the domain of in silico tumour simulation data, the architecture is capable of visualizing other end-user domain data as well.

Test-case 1: The ACGT Portal

Integration with the ACGT portal is illustrated through a working prototype, shown in Fig. 11. This figure shows a screenshot of a web browser in which the output of two visualization services are visible. Each service shows a different simulation dataset but at the same time step. The left dataset corresponds to untreated tumour growth, while the right one shows the results of treatment with the drug epirubicin.

Isosurfacing has been applied to the simulation output to extract the tumour shape. The use of clipping and colour coding reveals differing numbers of cells on the inside of the simulated tumour. The user changes simulation timesteps and location of the clipping plane using the buttons underneath the views. The user can manipulate the 3D views to pan, scale and rotate the tumour with the mouse. The two 3D views are kept synchronized on the server during interaction. For synchronization we use a tuple space model, similar to the LINDA system [Gel95].

[image: image13.png]
Fig. 11. Visual comparison of two simulation datasets in a web portal. The left dataset corresponds to untreated tumour growth, the right shows the results of treatment with the drug epirubicin. The 3D views are interactive and synchronised: the view can be panned, rotated and scaled interactively using the mouse, while changes in one window are reflected in the other.
Test-case 2: The RecipeSheet

The RecipeSheet allows parameter spaces to be interactively navigated in an intuitive way by providing ways for different scenarios to be compared and easily altered [LH06]. It shows output for multiple scenarios so that the user can compare and explore alternative treatment scenarios simultaneously. For this it provides special GUI components and interaction methods.

To support interactive exploration of OncoSimulator treatment scenarios with the RecipeSheet, a Grid portlet has been created within ACGT with which simulator parameters can be set and one or more simulator jobs can be started. The portlet allows ranges of parameters to be specified, so that it can be used to start simulator runs that cover (part of) the parameter space of the Oncosimulator. When each of the simulator runs completes, its output is transferred from the Grid node that executed the run to a visualization service. When the output is fully transferred, the server adds the output to a list of available runs. In the list the parameters used for each run are stored. This list can be queried by users of the visualization service to discover which sets are available for use with the visualization services.

Fig. 12 shows the visualization services integrated with the RecipeSheet. The four views of the simulation output are not generated by the RecipeSheet. They are not even regular images. Instead, each image is an embedded web browser component that retrieves HTML pages from the visualization services. The four 3D views in these pages are interactive and synchronized, as described in Test-case 1. When a user changes any of the parameter values used for defining the current scenario, the RecipeSheet sends the updated values to the visualization service and reloads the image. The RecipeSheet does not know (and does not have to know) anything about how these visualizations are produced by the service, as the RecipeSheet is merely the service user. It only needs to know how to communicate with the service, what visualization elements the service provides and what parameters are available to influence these elements.

[image: image35.jpg][image: image36.png]
Test-case 3: The Personal Space Station

We have constructed a third test-case for our visualization services in the shape of an application for a personal Virtual Reality device called the Personal Space Station (PSS, see also Fig. 13). The PSS supports stereoscopic 3D rendering on a mirror display and optical hand and object tracking to create an environment where the user can “reach in and touch their data”. The optical tracking system tracks the user’s head so that the orientation of the projected image can be altered to generate a motion parallax effect. This effect is an important depth cue used by the visual system to get a sense of distance and size of a 3D object. Object tracking adds the ability for a user to change the orientation and location of a 3D visualization by changing the orientation and location of a handheld object.

The combination of stereoscopic rendering together with the intuitive interaction methods provided by hand and head tracking creates the illusion that objects appear to float in front of the user. This provides the viewer with an almost instantaneous understanding of the morphology of 3D objects. Within the ACGT project, this type of visualization can provide information on the shape of a simulated tumour obtained from an OncoSimulator experiment within the context of the medical images obtained from the patient. Especially in cases where tumour resection will take place after chemotherapy or radiation therapy, the decision on when to terminate treatment often depends on the shape and size of the tumour with respect to the surrounding organs. An example of this type of visualization is shown in Fig. 14.

[image: image14.jpg]
Fig. 13. Interactive visualization of Oncosimulator data on a Virtual Reality device called the Personal Space Station (PSS). The system combines stereoscopic rendering with head and hand tracking to give the illusion that objects appear to float in front of the user.
Conclusions and future work

The “visualization as a service” paradigm is a powerful and flexible way of allowing visualizations to be used by different parties. Our architecture allows interactive visualizations from third party applications such as web portals, desktop applications and even Virtual Reality devices.

The performance of the architectures can currently only be described in qualitative terms. We have had good results with use of our services in local and regional settings. Applications that are widely distributed have shown significant decreases in responsiveness of the visualization services. We are currently in the process of acquiring quantitative performance measurements.

The current implementation of our architecture uses the hardware resources from a limited number of workstations. To provide a scalable solution that can be used by multiple users from different locations, a collection of resources would need to be created. Unfortunately, this will be hampered by the fact that grid-accessible computing resources do not support interactive access in most cases.

[image: image15.png]
Fig. 14. Simultaneous visualization of patient imaging data (white), pre-treatment tumour contours (red) and simulated post-treatment tumour (green).
5.2 R based visualization

There are two ways of how R-based visualization can be used inside the ACGT framework. One way is to make use of the plotting functions provided by R within a GridR script and store the plots in a file. The plots have to be defined as outputs of this script, which will, after the execution with the GridR service (Section 3.3), result in having the plot files stored in the DMS which can be downloaded or visualized via the portal based visualization (Section 5.3). Another way is to make use of the R plotting functions within an interactive R-Session at the GridR Session portlet (Section 3.2). The plots will be stored as files in the local working directory of the R session and can be viewed inside the Java applet.
5.3 Portal based visualization

The DMS portlet uses a rather general approach to display content. When a user selects a file in the left panel of the browser, the portlet requests a download url for that file from the DMS server. The DMS server makes the requested file available via ftp and returns the ftp URL to the portlet. Then the portlet serves the browser an iframe in the right panel. The iframe's source address is pointing to the url retrieved from DMS. Now it is up to the browser to handle the file downloading (i.e. if the file is an image the browser displays the image; if the content type of the file is unknown a download dialog will appear). This simple way of treating content download and visualization avoids server congestion.
5.4 UMA visualization tool?

UMA will provide visualisation tools to assist during data analysis (KDD). The following software will be adapted for the ACGT grid environment:

· PreP+07 [MAR2009] is a standalone Windows XP application that presents a user friendly interface for spot filtration, inter- and intra-slide normalization, duplicate resolution, dye-swapping, error removal and statistical analyses. Additionally, it contains two unique implementation of the procedures (double scan and Supervised Lowess), a complete set of graphical representations (MA plot, RG plot, QQ plot, PP plot, PN plot, see Table 4 for complete list) and can deal with many data formats, such as tabulated text, GenePix GPR and ArrayPRO.

Table 4. Visualization tools available in PreP+07
	Name
	Method
	Use

	Slide view
	A synthetic reproduction of the scanned image from the available data.
	Comparison with the scanned image, identifying single spots, splitting the slide in blocks and manual testing.

	Slide view of coherent spots
	A synthetic reproduction of the scanned image only for coherent data.
	Evaluation of the quality of the slide and poorly scanned zones (negative or null values are not shown).

	Slide view with quality
	Uses the blue channel for displaying the quality of the measure.
	Combined with algorithms that provide a quality value for each spot. .

	AM and RG Graphs
	(AM) Logarithmic plot of ratio versus intensity; or (RG) log. of red versus green channel
	AM displays the dependencies of the ratio on the intensity (ratio correction and filtering); in the (RG) case the two color channels are emphasizing separately.

	Box Graph
	Box graph of each block of the slide.
	Classical statistical graph for detecting outliers and comparing the distribution of diverse data sets (useful tool for detecting contrast variations inter- or intra-slide).

	Density Graph and Density Graph per block
	This graph estimates the density of ratios (per block).
	Preliminary test on the distribution of the ratios. The expected density graph is a normal distribution (per block, helps detecting spatial errors).

	Intensity-Intensity Graph
	A scatter plot showing the intensity values of one scan acquisition versus the same values of another scan acquisition.
	This is a first step for comparing two slides. The data should be near the diagonal if the slides are good replicates of each other.

	Dispersion, Deviation and Correlation of Replicates
	The intensity values of the individual spots versus the mean of all the spots from the same replication group.
	Quality estimation of the replication. For dispersion graph, the data points should be along the diagonal, and the more noise, the more blurred they will be. If the deviation is high the quality will decrease

	Normality of Replications
	Applies the inverse of the normal distribution function to the distribution function of each replication group.
	One typical assumption is that the noise is normally distributed. This graph will test that hypothesis. If the data points lie along the diagonal, the noise is normal.

	Probability Normal Plots (PP/QQ/PN)
	Plots to compare expected normal distribution values against observed values
	QQ compares z-scores, PP p-values and PN compares p-values vs log-ratios

· Engene [NAVA2003] is an exploratory data analysis tool for gene expression data that aims at storing, visualizing and processing large sets of expression patterns. A variety of analysis tools for visualizing, pre-processing and clustering expression data is integrated. The system includes different filters and normalization methods as well as an efficient treatment of missing data. The clustering algorithms included in the system range from the classical partitional and hierarchical methods, to the complex fuzzy ones, including: k-means, HAC, Fuzzy c-means and Kernel c-means. Linear and non-linear projection methods such as PCA, Sammon, and different variants of Self-Organizing Maps (classical, Fuzzy and Probabilistic) are also provided, including a completely novel SOM strategy aiming at producing truly quantitative Self-Organizing maps. Novel strategies for data pre-processing, gene and sample clustering and feature selection are also incorporated. Additionally, a Java suite for interactive Self-organizing Maps and partitional clustering is also included in the system. This tool enables the analysis of large sets of gene expression data in an easy and transparent manner, allowing the analysis of the outcome of different pre-processing and clustering methods at the same time.
The functionality of these tools (in particular for static visualisation) will be made available as grid services using a generic grid service for command line services called GCOLEX. This generic grid service is fully embedded inside the Globus framework of ACGT, taking advantage of functionalities like execution in a secure environment and asynchronous calls to the web-services, allowing long-running data analysis. GCOLEX also offers interoperability with other components in ACGT environment. This service will be used to provide gene expression data functionality and covering also data visualization for UMA software.

Static visualization:

GCOLEX will provide images of most part of these kinds of services (pre-processing, Hierarchical clustering, SOM (Self-Organizing MAP), etc).

For example, data from gene expression matrix can be pre-processed (using filtering, applying logarithms, normalization, etc) and the results can be visualised as a static image (see Fig. 15. Visualization of a pre-processed gene expression matrix.

 REF _Ref222554552 \h
Fig. 15).
[image: image16.emf]
Fig. 15. Visualization of a pre-processed gene expression matrix.

In many case when the knowledge of input data is not complete, it is difficult to estimate correct values for the thresholds. Visualisations of some statistical info from data, like a value histogram, can be useful in these cases (see Fig. 16):

[image: image17.emf]
Fig. 16. Visualization of a value histogram.
Data can be further processed with other procedures such hierarchical clustering. These procedures select the two closest elements and group them to make a cluster which is considered a unique element. This procedure is repeated until all the elements are grouped into only one (the root) node (see Fig. 17). Parameters, such as the results distance (Euclidean, Manhattan, etc), normalization of data, joining methods (weighted average linkage and others) can be controlled for optimal results.

[image: image18.emf]
Fig. 17. Hierarchical clustering.
Another kind of visualization is SOM. This procedure implements the well-known Kohonen Self-Organizing Map. It maps a set of high dimensional input vectors into a two-dimensional grid. For map files, several graphical representations are displayed: the code vectors profiles (Fig. 18), the Sammon projection of the code vectors in the map (Fig. 19), and sorted expression matrix (Fig. 20), and, optionally, the Principal Component Projection (Fig. 21).

[image: image19.emf]
Fig. 18. Code vector profiles.
[image: image20.emf]
Fig. 19. Sammon projection.

[image: image21.emf]
Fig. 20. Sorted expression matrix.
[image: image22.emf]
Fig. 21. Principal component projection.
Dynamic visualization:

For some kinds of data (microarray data), dynamic visualisations are very useful. In these cases, an interactive tool will be provided in the portal (see Fig. 22, Fig. 23 and Fig. 24).

[image: image23.png]
Fig. 22. Interactive visualization tool (part 1).
[image: image24.png]
Fig. 23. Interactive visualization tool (part 2).
[image: image25.png]
Fig. 24. Interactive visualization tool (part 3).
6 Specific biostatistical R routine: chavl
6.1 Introduction

Cluster analysis is a powerful tool for exploring large data sets, and hence the gene expression data obtained from microarray experiments. The hierarchical clustering tool ‘Chavl’ is one of the knowledge discovery tools developed in WP6 that can be accessed and invoked from the Grid-R-based workflow. It is proposed to the users as an alternative to the classical clustering tools. Indeed Chavl offers several characteristics that are very interesting in a context where one is concerned with different types of objects. The following subsections detail the new contributions of Chavl with respect to other methods.
6.2 LLA methodology for hierarchical clustering

Most clustering methods – hierarchical or partitional – make use of some distance measure (Euclidean, city-block, correlation-based, etc.) and a clustering criterion (single linkage, complete linkage, wards minimum variance, etc.). Unlike these commonly used clustering methods, the clustering tool ‘chavl’ proposed by Inria is based on the Likelihood Linkage Analysis (LLA) of the similarity measure between the objects to be clustered. The clustering procedure takes into account not just the observed similarity between objects to be clustered, but the ‘likelihood’ of observing such a similarity under a statistical hypothesis of no-link, thus eliminating the bias in observed similarity measure. For example, if we consider the correlation between genes to measure their similarity (or 1- correlation as the distance), LLA will rather consider the observed value of the distribution function of the correlation coefficient under the null hypothesis of no-correlation, as a probabilistic measure of similarity between genes. Equivalently, the p-value associated with the test of no-correlation null hypothesis is taken as the distance between genes. Similar LLA-based criterion is used to select the clusters to be joined at each step to build a hierarchical classification.

6.3 Specificity of Chavl software

In chavl, different data types - such as numeric, nominal, ordinal, binary or categorical - are considered. A specific similarity measure is defined for a given data type and the most appropriate similarity measure (between objects) is computed depnding on the type of data. At each clustering level or step, a statistic measuring the quality of the partition (called global statistic) is computed which allows to determine the ‘optimal’ number of clusters. The function ‘LLAclusteval’ outputs besides the global statistic, another index called ‘local statistic’ that indicates ‘significant nodes’ or ‘strong clusters’. Originally written in FORTRAN 77, it is now made available as an R package, namely, LLAhclust.

6.4 Integration of LLAhclust package into ACGT

The optimized version 2 of LLAhclust package is now installed on the grid machines. This provides an alternative tool for clustering the rows (eg. Genes) or columns (eg. Samples) in two steps:

1) computation of the similarity matrix (using either LLAsimobj or LLAsimvar function) and

 2) computation of the hierarchy of clusters (using the function LLAhclust). Then the clustering tree can be plotted by using the function plot. The input to the function LLAsimobj /LLAsimvar is the pre-processed dataset (i.e. it is supposed that feature selection, data filtering and data transformation steps have been performed. For example, in case of microarray gene expression data, we suppose that normalization, log-transformation, standardization, gene filtering, missing value imputation etc. have been performed). Then the statistical evaluation of clustering scheme can be obtained using LLAclusteval function that will provide users with useful indications for detecting ‘significant’ nodes in the hierarchical tree.

6.5 A typical example of the scenario for microarray data
The most frequent scenario of gene expression data analysis is as follows:

· Clustering set of genes based on their expression profiles;

· Clustering set of samples from their expression signatures (cf. Figure1 below);

· Reordering the rows and columns of the data matrix;

· Drawing the heat maps (cf. Figure 2).

An example of the corresponding R script will be as follows.

library(LLAhclust)

library(RColorBrewer)

#importing data from the comma-delimited file “datafile.csv”

DataTable <- read.csv("datafile.csv", header=TRUE, row.names=2)

Clustering genes

step1. Computing similarities by LLA method

simgene <- LLAsimobj(DataTable, method = "LLAcosinus")

#

Computing cluster hierarchy

#

hiergene <- LLAhclust(simgene, epsilon=0.5)

Plotting the cluster tree

Plot of Global Statistics

#

statlevel <- LLAparteval(hiergene, simgene)

attach(statlevel)

plot(global.stat, type = "h", xlab = "level", ylab = "Global Stat", col="blue4")

plot(local.stat, type = "h", xlab = "level", ylab = "Global Stat", col="green4")

#

Clustering the columns (samples)

#

simsample <- LLAsimvar(DataTable, method="LLAnumerical")

hiersample <- LLAhclust(simsample, epsilon=0.5)

plot(hiersample, hang=-1, main= "clustering samples as variables")

#

Drawing the heatmap with LLA clustering

#

xx <- as.matrix(DataTable)

ddgene <- as.dendrogram(hiergene)

ddsample <- as.dendrogram(hiersample)

heatmap(xx, Rowv=ddgene, Colv=ddsample, col=cm.colors(256))

#

#

Example of heat map using library RColorBrewer

#

mypalette <- brewer.pal(11, "RdYlGn")

heatmap(xx, Rowv=ddgene, Colv=ddsample, col=mypalette, scale="none")

Figure 1. An example of a Cluster Dendrogram (122 samples) (Note: the Height variable on the vertical axis does not correspond to the aggregation index)

[image: image26.jpg]
Figure2. An example of a plot of Global statistic. The plot of the Global staitistic (y_axis) against the level (iteration number) (x-axis) for clustering 122 samples. The level with highest global statistic indicates the ‘best partition’

[image: image27.jpg]
Figure 3. an example of a heat map (representing all genes and all samples). The rows and columns of the expression matrix are re-ordered according to the clusters of 552 genes and122 samples. It is interesting to zoom in on a selected portion of the plot in order to visualize the association between a particular cluster of genes and a cluster of samples.
[image: image28.jpg]
7 Specific services for matching Gene Expression Profiles and Regulatory Networks
7.1 Description of the scenario
Cell, tissues, organs, organisms or any other biological systems defined by evolution are essentially complex physicochemical systems. They consist of numerous complicated and dynamic networks of biochemical reactions and signaling interactions between active cellular components. This cellular complexity has made it difficult to build a complete understanding of cellular machinery to achieve a specific purpose. To circumvent this complexity, Microarrays (MAs), biology knowledge and Gene Regulatory Networks (GRNs) can be combined in order to document and support the detected and predicted interactions. This scenario aims to uncover potential gene-regulatory ‘fingerprints’ and molecular mechanisms that govern the genomic profiles of diseases by combining the gene functions modeled in GRNs and the gene expression measured in MAs. GRNs are the “on”/“off” switches (acting as rheostats) of a cell operating at the gene level and can be perceived as network structures that depict the interaction of DNA segments during the transcription of the genes into mRNA. From a computational point of view GRNs can be conceived as analogue biochemical computers that regulate the level of expression of target genes. The nodes of this network are genes and edges are functions that represent the molecular reactions between the nodes. Most of the relations in known GRNs have been derived from laborious and extensive laboratory experiments. MA experiments involve more variables (genes) than samples (patients). This fact, leads to results with poor biological significance. On the other hand, very few methods of gene regulatory inference are considered superior to the others mainly because of the intrinsically noisy property of the data, ‘the curse of dimensionality’, and the unknown ‘true’ underlying networks.

The scenario utilizes well-established GRNs and combines them with the gene expression profiles assigned to specific categories or, phenotypes. The novelty of the approach relies on the identification of characteristic GRN functional subparts that match, differentiate and putatively characterize different phenotypes. The approach could be considered as orthogonal to approaches that map and visualize the gene expression profile of single samples on molecular pathways or, highlight metabolic pathways of differentially expressed genes.

The scenario comprises the following steps:

1. Decomposition of GRNs into Functional Paths. The scenario takes into account all possible interpretations of the network. The different GRN interpretations correspond to the different functional paths that can be followed during the regulation of a target gene. It unfolds into the following steps: (i) Different GRNs are downloaded from the KEGG repository (http://www.genome.jp/kegg/) and cashed locally; (ii) With an XML parser we obtain all the internal network semantics, i.e., genes (nodes) and relations and (iii) With a specially devised path finding process, all possible and functionally-valid network paths are identified and extracted. Each functional path is annotated with the possible valid gene values according to Kauffman’s principles that follow a binary setting, i.e., each gene in a functional path can be either ‘ON’ or ‘OFF’. The extracted and annotated paths are stored in a database that acts as a repository for future reference.

[image: image29.png]
· Figure 1 Decomposition and identification of functional paths of a pathway.

Since the regulation edge connecting two genes defines explicitly the possible values of each gene, we can set all possible state-values that a gene may take in a path. Thus, each extracted path contains not only the relevant sub-graph but the state-values (‘ON’ or ‘OFF’) of each gene as well. The only requirement concerns the assumption that for a path being functional, the path should be ‘active’ during the GRN regulation process. In other words we assume that all genes in a path are functionally active.

2. Matching GRN Functional-Paths with MA Gene expression Profiles. The next step is a gene expression/functional-path matching operation where the valid and most prominent GRN functional paths are identified. First, in order to combine and match GRN paths with microarray data the respective gene expression values should be transformed into two (binary) states - “on” and “off”. GRN and MA gene expression data matching aims to differentiate GRN functional paths and identify the most prominent of them with respect to the gene expression profiles of the input samples. This is a paradigm shift from mining for genes with differential expression, to mining for subparts of GRN with differential function.

Assume five input samples {S1, S2, S3} and {S4, S5} assigned to (phenotypic) class ‘POS’ and ‘NEG’, respectively, that engage five genes {g1, g2, g3, g4, g5}. Furthermore assume that we are about to explore (target) an artificial GRN being decomposed into four functional-paths {P1, P2, P3, P4}

In order to match the gene expression profile of a sample with a specific path we consider just the genes engaged in the path. Our notion of matching is realized as a consistency relation between functional GRN paths and gene expression profiles. In general, for each path we compute the number of samples being consistent with each class. Suppose that there are SP and SN samples belonging to the first and second class, respectively. Assume that path Pi is consistent with Si;1 and Si;2 samples form the first and second class, respectively. The formula (Figure 2) computes the differential power of the specific path with respect to the two classes.
Ranking of paths according to the above formula provides the most differentiating and prominent GRN functional paths for the respective phenotypic classes.

[image: image30.png]
· Figure 2 Matching GRN functional paths with samples’ gene expression profiles and matching formula.

In the present section we present the use of this scenario for the evaluation of the ACGT platform in performing bioinformatics research. In the following section we will explain how the different steps described above are implemented through existing and new ACGT services as a scientific workflow.

7.2 High Level Overview
The workflow to be implemented with the aid of the ACGT services is shown in Figure 3 below.

[image: image31.png]
· Figure 3 Workflow implementation of the scenario.
The workflow contains the following processing steps:

· Decompose. This activity takes as an input a GRN in the KGML format and emits a list of all the different functional paths in this network. It is implemented as an ACGT compliant Web Service.

· Discretize. This activity takes a gene expression data set with a corresponding class label matrix and performs a discretization algorithm so that the gene expression values are transformed into two (binary) states - “on” and “off”. This task is implemented as an R script executable through the GridR service available on the ACGT Grid platform.

· Map Gene Names. This step performs a translation between the gene identifiers used in the gene expression data to the corresponding KEGG identifiers both the pathway and the gene expression data use the same nomenclature. The DAVID tool (http://david.abcc.ncifcrf.gov/) is wrapped as a third party service and its “Gene Id conversion” functionality is made available through the Workflow Environment.

· Combine. In this last activity, the different paths extracted from the input pathway, the discretized gene expression data and the term mappings computed by the previous activities are used in order to be used into the core knowledge extraction process of this scenario. This process performs a ranking of the functional paths so that the most differentiating and prominent GRN functional paths for the respective phenotypic classes are returned as the final output of the workflow. It is implemented as an ACGT compliant Web Service.

8 References
	[BIT2008]
	Wiki – Bitlab public document (http://chirimoyo.ac.uma.es/wiki/index.php/Descargas)

	[FGM99]
	FIELDING R., GETTYS J., MOGUL J., FRYSTYK H., MASINTER L., LEACH P., BERNERS-LEE T.: Hypertext transfer protocol – http/1.1. http://www.faqs.org/rfcs/rfc2616.html.

	[Gel85]
	GELERNTER D.: Generative communication in linda. ACM Transactions on Programming Languages and Systems 7 (January 1985), 80–112.

	[Lev1966]
	Levenshtein, V.I.; Binary codes capable of correcting deletions, insertions, and rever-sals. Soviet Physics Doklady 10 (1966):707–710.

	[LH06]
	LUNZER A., HORNBÆK K.: RecipeSheet: Creating, Combining and Controlling Information Processors. In Proceedings of the 19th annual ACM symposium on user interface software and technology (UIST 2006) October 2006), pp. 145–153.

	[MAR2009]
	Victoria Martin-Requena, Antonio Munoz-Merida, M.Gonzalo Claros and Oswaldo Trelles (2009); "PreP+07: improvements of a user friendly tool to pre-process and analyse microarray data"; BMC Bioinformatics 2009, 10:16doi:10.1186/1471-2105-10-16

	[NAVA2003]
	Jorge García de la Nava, Daniel Franco Santaella, Jesús Cuenca Alba, José María Carazo, Oswaldo Trelles, and Alberto Pascual-Montano (2003); “Engene: the processing and exploratory analysis of gene expression data”, Bioinformatics, Mar 2003; 19: 657 - 658.

	[Pun08]
	Punko, Natalja, Rüping, Stefan and Wrobel, Stefan. Facilitating Clinico-Genomic Knowledge Discovery by Automatic Selection of KDD Processes. ICML 2008 Workshop on Machine Learning for Health Care Applications, Helsinki, Finland, July 9, 2008.

	[Rue07]
	Rüping, Stefan, Sfakianakis, Stelios and Tsiknakis, Manolis. Extending Workflow Management for Knowledge Discovery in Clinico-Genomic Data. In: From Genes to Personalized HealthCare: Grid Solutions for the Life Sciences, Proceedings of HealthGrid 2007, pp. 183-193, IOS Press, 2007.

	[Weg07]
	Wegener, Dennis, and Sengstag, Thierry, and Sfakianakis, Stelios and Rüping, Stefan and Assi, Anthony. GridR: An R-based grid-enabled tool for data analysis in ACGT clinico-genomic trials. In: Proceedings of the 3rd International Conference on e-Science and Grid Computing (eScience 2007), Bangalore, India.

	[WIL2003]
	Wilkinson, M.D., Gessler, D., Farmer, A., Stein, L. (2003). The Bio-MOBY Project Ex-plores Open-Source, Simple, Extensible Protocols for Enabling Biological Database Inter-operability. Proceedings Virtual Conference Genomic and Bioinformatics (3):16-26. (ISSN 1547-383X).

Appendix 1 - Abbreviations and acronyms

	DMS
	Data Management System

	GRN
	Gene Regulatory Network

	MA
	Microarray

	VTK
	Visualization Toolkit

[image: image32.png][image: image33.png][image: image34.png]

Fig. � SEQ Fig. * ARABIC �12�. Screenshot of the visualization services used in the RecipeSheet. The 2D graph in the lower left and the four 3D views on the right are generated by visualization services.

�To be updated

�Todo: check for figure

�We are looking for another figure here...

16/02/2009

Page 43 of 43

_1296391972

_1296397053

_1296391146

_1296391882

