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Integrated Clinico-Genomics Knowledge Discovery: Scenario & Enabling Technology
The completion of the human genome drives us to the post-genomics era. In this environment the newly raised scientific and technological challenges push for trans-disciplinary team science and translational research. The vision is to compact major diseases on an individualized diagnostic, prognostic and treatment manner. In this context the linkage between the knowledge gained from genomics and (every-day) clinical practice (and theory as well) raises as a major challenge. 
1 Scenario description

Towards meeting the aforementioned challenge, we present an Integrated Clinico-Genomic Knowledge Discovery (I-CGKD) process and its utilization in the context of a corresponding clinico-genomic research trial scenario. The presented process and scenario are suited for the linkage of patients’ gene-expression (microarray) and clinical data. The whole approach composes and could be interpreted as a ‘screening’ scenario for the careful identification of those patient cases and genes which are more suitable to feed a gene-selection process. In other words, the task is to:

identify ‘strong’ causal correlations between patients’
 clinical and gene-expression profiles
[image: image1]The proposed scenario is envisioning an operational integrated clinico-genomics environment, enabled by various advanced technological components: (i) mechanisms for seamless access-to and recall-of remote and heterogeneous clinical and genomic data sources, and (ii) advanced and interoperable data processing services. Towards this end and for the clarification of the proposed scenario we present a visionary integrated clinico-genomics knowledge-discovery and decision-making process realised by, and unfolded into five steps. All the steps are applicable in various clinico-genomic research trial scenarios – as for the case of pre- and, post-surgical (chemo- or, radio-) breast cancer therapeutic protocols presented and described in the ACGT DoW and shown in figure 1, below.

Figure 1: Breast cancer Clinico-Genomic Trials: (i) ‘Entry point’ of the clinico-genomic trial is realized by access to the ACGT environment - integrating relevant data-sources from remote sits, in order to retrieve patients’ data that meet specified clinico-genomic/genotypic profiles; ‘1st and 2nd decision points’ are also supported by ACGT - induction and assessment of pre- and post-surgical chemotherapeutic treatment, and molecular signatures for the prognosis classification of breast cancer patients (a line for knowledge-discovery and clinical decision making research); ‘Comparative Genomics’ point is also supported by ACGT in order to ease exploration and induction of fundamental molecular knowledge (molecular pathways) involved in chemotherapy patients’ responses (a line for molecular biology research).
Step-1: Tissue/Samples Collection and Clinical Assessment
Tissue/samples are extracted from specific patients (e.g., breast-cancer) using standardised tissue-sample collection and preservation protocols – the specifics of the followed protocol(s) are to be recorded and retrieved by the respective information system that stores and manages the respective microarray experiments to be performed and the corresponding gene-expression profiling (see step-2 into the sequel). Step-1 may be performed in various treatment/therapeutic scenario-cases where for example, the appointed protocol involves a pre-surgical chemo- and/or radio-therapeutic treatment in order to ‘shrink’ the tumour and then, depending on the outcome, proceed to surgery operation and further (post-surgical) chemotherapeutic treatment (more detailed description in sections 3 and 4).
Step-2: Gene-Expression Profiling of Samples
Following standardised tissue-sample collection and preservation protocols and based on specific microarray experimentation procedures the molecular, i.e., gene-expression, profiles of the tissue-samples are extracted. It is commonly accepted that the technology of microarrays is not yet in a mature-state (at least) with respect to reproducibility of experimental data and findings. At the same time it is also realised that to overcome this problem major technological contributions are needed towards standardization of microarray experiments, i.e., storage and retrieval of all the procedural details and data of a microarray experiment - from the tissue to the gene-expression profiles. In this sense we need standard microarray information and data models (more detailed description in sections 3 and 4).
Step-3: Patients Clinical and Gene-Expression Data Mediation
The ultimate goal of ACGT is the integration of biomedical information at all levels, i.e., from molecules (and their annotations) to the cell (and its components), to the tissue and organs (and their dynamic simulation) and finally to the disease and the population. Based on the availability of clinical and respective gene-expression patients’ profiles (as stored in the aforementioned clinical and gene-expression information systems) we need mechanisms, operations and services to seamlessly access, retrieve and uniformly model the respective (potentially remote and distributed) heterogeneous information and data sources (more detailed description in sections 3 and 4).
Step-4: Clinico-Genomic Profiling & Phenotyping 

Step-4.1 Forming Clinico-Histopathology Phenotypical Profiles (CHPP)
The samples may be assigned (by the involved clinical specialist – oncologist, pathologo-anatomist, chemo- and/or radio-therapist) to various clinico-histopathological categories that present and correspond to specific Clinico-Histopathological Phenotypical Profiles – CHPP, e.g., profiles or, classes referring to specific tumour types, stages, drug response statuses  etc. This may be accomplished by reference to the quest specifics of a clinico-genomic research trial, i.e., targeted patient cohorts that meet specific and pre-specified clinico-histopathological criteria. Identification of such groups is supported by standard entries in the respective clinical information systems’ patient records to be retrieved by corresponding queries -- for example, the TNM standard (TNM: ‘T’umour stage, lymph-‘N’ode, and ‘M’etastasis status) could be employed (it is supported by the aforementioned OncoSurgIS), and coupled with information concerned with other patients’ characteristics (e.g., from medical image annotations and respective entries in the histo-pathologoanatomy information system) in order to form (potentially interesting) patients’ phenotypes.
· Automating Clinico-Histopathological Phenotyping.  Besides the investigator-guided process, advanced data-mining operations may be utilised in order to automatically discover and form indicative CHPPs, for example by employing and utilizing appropriate data-mining operations. 

· Descriptive CHPPs. Clustering of patients/samples to categories of ‘similar clinico-histopathology profiles’ helps to the identification of potentially interesting cohorts to target a clinico-genomic study. It is more an exploratory enterprise, especially in the environment of a multi-centric research clinical trial where a special need is to “find an adequate number of patients/samples meeting specific clinico-histopathological descriptive profiles to target and initiate appropriate statistical data analysis tasks”. Among others, the clustering operations should support feature focusing in order to help the investigator to focus on specific clinio-histopathological features of interest.
· Discriminant CHPPs. In the case that a decision-feature is selected (e.g., “metastasis vs. no-metastasis patients”)  then, with the aid of classification and feature-selection techniques and algorithms the clinical investigator may identify combinations of clinico-histopathological feature-value combinations being able to discriminate between pre-specified patient groups, e.g., “good/bad prognostic clinico-histopathological profiles”. These CHPPs could be contrasted with respective gene-expression profiles and assess correspondences and respective diagnostic/prognostic prediction performances (see step 4.2 in the sequel).
Note that a special prerequisite of the employed data-mining/knowledge-discovery is that, the results output they offer should be in a (semantically and syntactically) standard format so that it could be utilised by other knowledge-discovery operations and data-mining algorithms in a workflow mode. 

Step-4.2 Forming Gene-Expression Phenotypical Profiles (GEPP)
By measuring (with microarray experimentation) transcription levels of genes in an organism under various conditions, in different tissues, we can build up Gene Expression Phenotypical Profiles or, patterns - GEPP, which characterize the dynamic functioning of each gene in the genome. The identification of patterns in complex gene expression datasets provides two benefits: (a) generation of insight into gene transcription conditions; and (b) characterization of multiple gene expression profiles in complex biological processes, e.g. pathological states.


Microarrays & Fundamental Knowledge-Discovery Tasks

The microarray data are represented in a matrix with rows representing genes, columns representing samples (e.g. various tissues, developmental stages and treatments), and each cell containing a number characterizing the expression level of the particular gene in the particular sample, i.e, the gene expression matrix. There are two straightforward ways how gene expression matrix can be studied: (i) comparing expression profiles of genes by comparing rows in the expression matrix; and (ii) comparing expression profiles of samples by comparing columns in the matrix. Additionally, both methods can be combined (provided that the data normalization allows it). When comparing rows or columns, we can look either for similarities or for differences and accordingly induce and form clusters, association and classification rules. Clustering, association and classification results may reveal correlations between expression of certain genes (i.e,. the GEPPs) and guide to the identification of the genetic profile of different subgroups of disease types and possibly identify new subgroups or merge together subgroups that were previously believed to be genetically separate. 

The identified GEPPs may be explored for their correspondence to specific CHPPs so that a more careful and ‘revealing’ examination of a disease -- its genesis and development is achieved. We believe and state that the fundamental quest of a combined clinico-genomic (transcriptional) study is to:

“explore and uncover (potential) causal relations between
genome transcriptional mechanisms 

and 

clinico-histopathological states of diseases”
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The philosophy that underlies the above statement is exemplified in Figure 2, below. Characterization/Classification of a disease, and prediction of respective patients’ clinical outcome, could be done with reference either to solely clinico-histopathological profiles (CHPPs, i.e., the clinical characterization / classification of a disease) profiles or, to solely genomic/ transcription/ gene-expression profiles (GEPPs, i.e., the molecular characterization / classification of a disease). In both cases, and following a decision-making quest the availability of specific clinical and/or genomic (e.g., gene-expression disease-state signatures) classification and prediction models are assumed. 
Figure 2: In the course of decision-making, disease classification and prediction models may come solely form the clinical (CHPP) or, solely from the genomics (GEPPs) worlds. Because CHPPs are determinable by GEPPs the quest is to identify links, relations and ‘causations’ between CHPPs and GEPPs in a way that refined clinico-genomic ‘individualised’ disease models are identified. It is a knowledge-discovery task forwarded towards the discovery of clinico-genomic disease theories realised by abductive and inductive inference ‘rules’.
If all the above present the decision-making track in the course of a clinico-genomic track the real (and most interesting) task is the knowledge-discovery track which works in a more-or-less inverse way. That is, starting from observable clinico-histopathological disease states, descriptions and classes the quest is to find respective genomic profiles being able to discriminate between the different disease states. Based on the central-dogma of molecular biology, CHPPs are fully (?) ‘shaped’ and causally (?) determinable by respective GEPPs. In this setting the question that rises and the quest being posed is:
“which clinico-histopathology phenotypes

relate and how
with which gene-expression phenotypes?”

In the case that such combined-profiles are found and validated (and indeed there exists a huge number of microarray experiments for this) then, these profiles could be accommodated in a decision-making quest track as well. Such a decision-making scenario falls into the ‘individualized’ medicine context. That is, genomic/ gene-expression profiles ‘refine’ the sole CHPPs and the respective clinical decision-making and prediction models in a way to ‘screen’ specific patients/samples/tissues as more appropriate for specific (let say) treatment. The whole endeavor composes a knowledge-discovery scenario towards the identification of abductive and inductive inferential ‘rules’. In this setting a number of inductive techniques for knowledge discovery purposes should be employed and appropriately customized. 

( These tools are presented and detailed in section 5.



Step-5 Relating CHPPs with GEPPs
Based on the availability of both clinico-histopathology and gene-expression data (step-1, 2), as well as mediation mechanisms to retrieve such data from distributed & heterogeneous data sources (step-3) we may form patients’ CHPPs and GEPPs (step-4). The quest now, as discussed above, is to link and relate the two phenotypic profiling tupes. We introduce a specific scenario to achieve this. The scenario is based on a multi-strategy data-mining process – in the sense that it smoothly combines different data-mining methodologies, i.e, clustering, association rules mining and feature-selection with classification operations. We refer to this scenario-process as I-CGKD: Integrated Clinico-Genomic Knowledge Discovery.
Outiline of the I-CGKD process

At first we utilise an appropriate (unsupervised) clustering method in order to identify clusters of genes or, metagenes, based on their gene-expression profiles. It is mainly meant to reduce the dimensionality of the search space (i.e., from 1000ts of genes to 10ths of metagenes). These metagenes may represent potential interesting GEPPs. The question then is: “does these GEPPs relate and how to some potential CHPPs?”. This may be accomplished with the aid of an association rules mining (ARM) methodology in order to automatically discover ‘highly confident’ correlations between GEPPs and CHPPs.. Such correlations will help to a (potential) re-classification of the targeted disease in the sense that specific (strong) GEPPs point to specific CHPPs and respective behaviours. Moreover, if the description of the linked and identified CHPPs include a ‘decision variable’ (e.g., years-of-survival as the class/decision variable) then, we may initiate a gene-selection process on the population of samples being covered by the CHPPs and on the genes included in the GEPPs (i.e., genes in metagenes). In other words, we are now seeking for ‘individualised’ (i.e., the focused population of samples) molecular/genomic signatures.
The proposed process is inspired by respective multi-strategy machine learning and case-based reasoning methodologies. The whole approach, and the actual realization of the proposed scenario, is based on the smooth integration of three distinct data-mining components.
· Clustering. It is based on a novel k-means clustering algorithm operating on categorical data, named discr-kmeans. With this approach the clusters of genes that best describes the available patient cases are selected, i.e., clusters that cover an adequate number of genes and for which an adequate number of samples shows significant ‘low’ or, ‘high’ gene-expression values; we call them strong-clusters.

· Association Rules Mining. It is aimed for the discovery of ‘causal’ relations (rules with high confidence) between genes (actual clusters of genes, i.e., the metagenes) and patients’ phenotypic profiles.

· Feature Selection and Classification. For the selection of the most discriminant genes, i.e., genes being able to distinguish (i.e., with high accuracy) between patients’ pre-specified classes, i.e., decision variables of the focused patient cases (disease state, survival category etc),
Figure 3, below, illustrates the envisioned I-CGKD process, the engaged data-mining components as well as their utilization and interpretation in the course of the aforementioned scenario and quest, i.e., to link and relate clinico-histopathology with gene-expression patients’ profiles.
[image: image2.jpg]
Figure 3.  The Integrated Clinico-Genomic Knowledge Discovery (I- CGKD) scenario enabled by the smooth integration of different data-mining methods – the utilization and interpretation (of results) of each data-mining component in the course of supporting the scenario and quest to link and relate clinico-histopathology with gene-expression patients’ profiles.
Scope & Utilization of the I-CGKD Scenario Process

Scope. I-CGKD is meant to ease the discovery of (potential) molecular/gene-markers for specific (individualized) patients’ clinical profiles. The scope of the corresponding scenario, in relation to utilizing Knowledge Discovery (KD) operations, is to:
· identify potential users and their requirements, accompanied by a clarification of their involvement and roles;
· identify and state the basic biomedical questions and tasks to be addressed (i.e., relations and links with potential clinico-genomic trials), accompanied by (potential) engaged organizations (to approach the specification of the involved virtual organizations);
· identify the basic data-mining components to be utilized, accompanied with the needed IT infrastructure to support their operation (e.g., GRID, ontologies etc);
· identify and specify the involved Information Systems as well as the engaged data repositories and information resources, accompanied with the respective data and information flows;

· propose (based on the above) an overall reference-architecture;
· propose (based on the above) specific services to be supported by the proposed scenario accompanied with the corresponding workflows between users, data, methods;
· propose (based on the above) an overall reference-architecture and its relation with the overall ACGT reference-architecture
Utilization. The presented I-CGKD process could be followed by calls to respective data-mining operations and utilizing the output from each of them as input to another one.

( A discretized k-means approach for the identification of gene-expression profiles. A lot of work has been done in identifying co-regulated groups or clusters of genes, and respective methods to reduce the dimensionality and complexity of gene-expression data. I-CGKD process utilizes a discretized two-dimensional k-means clustering algorithm (discr_kmeans) that primary identifies clusters of co-regulated genes or, metagenes. With a subsequent filtering mechanism we may select those clusters that exhibit, in an adequate number of samples, strong gene-expression profiles. A sample with a strong gene-expression profile for a specific cluster of genes is one that exhibits, in an adequate percentage of the current clusters’ genes, ‘high’ or, ‘low’ gene expression levels. The adequate number of samples, as well as the percentage for considering a sample’s expression profile as strong is set by the expert user (molecular biologist and/or bioinformatician). Operations and respective services for the descritization of gene-expression values are assumed. The whole operation will result into ‘hybrid’ clinico-genomic attributes that combine both clinical and genomic (i.e., the discovered metagenes) patients’ attributes, the clinico-genomic attributes:

[image: image3.png]
· Strong-clusters and their interpretation. We are interested in ‘strong’ clusters because we want to identify potential subsets of samples that tend to exhibit mainly ‘high’ or ‘low’ expression levels for the respective cluster’s genes. This is why we decide to discretize the continuous gene-expression levels with a discretization value of n=2 (the implemented discr-kmeans allows more that two discretization values). This means that for these samples (referred as ‘strong-samples’), the respective cluster’s genes tend to be ‘dominantly’ up-regulated or, ‘dominantly’ down-regulated under the specifics of the experimental conditions. The genes of a cluster, accompanied by the ‘strong-samples’ covered by this cluster may be interpreted as a combined ‘clinico-genomic attribute’ linking patient cases and their genomic (gene-expression) profiles. The quest now is about causal relationships between genomic and clinical profiles.

( An Association Rules Mining (ARM) approach to link and relate clinical with gene-expression phenotypic profiles. In I-CGKD, discovery of associations between the formed hybrid clinico-genomic attributes is supported by using association rule mining (ARM) techniques.

· Interpretation and utility of discovered association rules. Each rule contains a combination of clinico-genomic attributes that uncovers not only significant but also causal relations between genomic and clinical patient profiles. Each association rule may be interpreted and utilized as a medium to focus on the genes and patient cases covered by it. The expert (molecular biologist or, physician) may inspect the discovered association rules and focus on the ones seems interesting for his/her research. Then, a gene-selection process may operate just on the sets of genes and patient cases being covered by the focused association rules, in order to identify genes that distinguish between patient case classes – the decision variables (e.g., “survival greater that 5 years” vs. “survival less than 5 years”).

( Molecular/Gene-Expression Signatures. With manual inspection or, with an appropriate automated filtering mechanism and respective operations, some interesting association rule and potential decision variable may be identified. The samples as well as the metagenes (i.e., genes in the cluster-of-genes covered by the rule) are captured in order to feed a gene-selection process. This process may be realized by various feature-selection techniques (PCA, ranking, greedy-elimination etc) that not only induce reliable discriminant genes but also, a “relatively” small number of them. This is because a small number of disease associated genes gives the opportunity for more complete and better biological interpretation (e.g., for the involved disease-related molecular pathways).
2 Importance of the problem and benefits of solving it
To generate new knowledge from genomic data, we need to combine the phenotypic and genomic profiles of very large numbers of patients, ideally from different parts of the world. With the availability and the standardised representation of the involved heterogeneous data types (i.e., clinical/phenotypic and genomic) representing patients’ characteristics we are be able to realize the value of new genome-based technologies and to apply these techniques for the benefit of individual patients.

To meet the genomic-/individualized medicine challenge the future R&D agenda should be forwarded towards some (among others) basic tasks:

· Disease reclassification. The classification of diseases can now be reorganized, beginning at a molecular level, by using new insights in pathophysiology derived from functional genomics. The integration of complex clinical/phenotypic and genomic data is required for the validation of functional genomic research. 
· Gene Expression Mining. Changes in gene expression under the influence of drug or disease perturbations can be studied. The identification of differential gene expression associated with biological processes is a central research problem in molecular genetics. High throughput gene expression assays enable the simultaneous monitoring of thousands of genes in parallel and generate vast amounts of gene expression data.  The large-scale investigation of gene expression attaches functional activity to structural genetic maps and therefore is an essential milestone in the paradigm shift from static structural genomics to dynamic functional genomics. Gene expression database mining is used to identify intrinsic patterns and relationships in gene expression data.
The presented I-CGKD process aims to advance microarray-based research clinico-genomic trials. Gene Expression Mining (GEM) presents the main vehicle. The presented I-CGKD process is to be used for the identification of intrinsic patterns and relationships in gene expression data.

Genomic information, in the form of gene expression patterns has an established capacity to define clinically relevant risk factors in disease classification, diagnosis, prognosis and therapeutic planning. Gene expression profiles may indeed prove to be powerful individual indicators of tumor behavior, but analysis should not force a choice of one form of data over the other; rather, analysis should evaluate and combine all forms of potentially relevant information. 
This integrative view underlies the development of clinico-genomic models and should underlie systems in support of personalized health planning. Various studies have demonstrated that multiple, related gene patterns, i.e., biomarkers or, molecular signatures, have predictive value - for example, discriminate between cancer phenotypic classes (i.e., cancer-types and stages or, recurrence states). 
Prediction accuracy can be improved by combining clinical factors with genomic data. Key biomarkers can, to a degree, replace traditional risk factors in terms of individual association with recurrence, but the combination of biomarkers and clinical factors currently defines models most relevant in terms of statistical fit and also, more practically, in terms of cross-validation predictive accuracy.

3 Enabling the I-CGKD scenario-process: Description of Services
Realization of steps 1-3 of the presented I-CGKD scenario process is depended on the availability of appropriate information systems to store and maintain respective patients’ clinical and gene-expression data as well as to a mediation infrastructure to retrieve data from (potential) distributed and heterogeneous data sources.  Towards this end we (briefly) present an Integrated Clinico-Genomics Environment – ICGE enhanced with data mediation capabilities (see figure 4 , below).

[image: image4.png]
Figure 4. Components and data/information-flows in an Integrated Clinico-Genomic Environment. 

ICGE is designed (being in its development phase) within the scope of a related to ACGT project run by FORTH (ACGT partner no: 2) – the Prognochip project. The components of the environment are detailed into the sequel.
(I) Clinical Information Systems. Required for the storage and retrieval of patients’ clinico-histopathological information with reference to follow-ups. Clinical information refers to the standard patients’ electronic health care record, i.e., from demographic, physiological, and historical/hereditary data to laboratory and tissue-based pathologo-anatomical findings. Genomic information refers to patients’ genomic findings, i.e., dna-sequences, gene-expression profiles, gene-markers etc. The anonymity, security, authentication and authorization issues will be also addressed. The engaged information systems as well the needed (seamless and mediated) data querying and recalling services should realize and conclude to a form of patients’ clinico-histopathology phenotypic profiling (CHPPs). Providers & Users: Clinical departments/units and involved (expert) personnel.
a. Clinical Information Systems: All relevant patients’ data are stored, managed and retrieved in appropriate Clinical Information Systems (CIS). All these systems are operational in the respective functional units at the University Hospital of Heraklion, Crete (ACGT partner short name: UoC, ACGT partner no: 13). For the purpose of the presented scenario three such information systems apply: CLIS - Onco-Surgery information system; and PAIS - Histopathologoanatomy information system, and LIS - Laboratory information System.
b. Standard Medical/Clinical Information Models: All three clinical information systems are build and obey standard medical/clinical information models (terminologies and vocabularies): SNOMED CT®: SNOMED Clinical Terms® - Systematized NOmenclature for MEDicine (http://www.snomed.org/), ICD – International classification of Diseases (http://www.cdc.gov/nchs/icd9.htm), LOINC® - Logical Observations Identifiers, Names, Codes (http://www.regenstrief.org/loinc/) suited for laboratory tests (ordering and results).  All these standard medical/clinical terminologies are integrated within the UMLS Metathesaurus (http://www.nlm.nih.gov/research/umls/ -- the UMLS Metathesaurus is a very large, multi-purpose, and multi-lingual vocabulary database that contains information about biomedical and health related concepts, their various names, and the relationships among them. It is built from the electronic versions of many different thesauri, classifications, code sets, and lists of controlled terms used in patient care, health services billing, public health statistics, indexing and cataloging biomedical literature, and /or basic, clinical, and health services research. In this documentation, these are referred to as the "source vocabularies" of the Metathesaurus. In the Metathesaurus, all the source vocabularies are available in a single, fully-specified database format). In this sense all three clinical information systems are UMLS compliant. 
c. Standard Medical/Clinical Data Models: Data and information exchange between the three clinical information systems is compliant with the HL7 – Health Level 7 standard (one of several American National Standards Institute - ANSI; www.ansi.org accredited Standards Developing Organizations, operating in the healthcare arena), and obey the respective HL7 Reference Information Model - HL7/RIM: HL7 is a language, and every language has a grammar; the HL7 RIM specifies the grammar of HL7 messages and, specifically, the basic building blocks of the language and their permitted relationships (http://www.hl7.org/library/data-model/RIM/modelpage_mem.htm). Moreover, access to the three clinical information systems is enabled by a specially build server which is compliant with COAS – the Clinical Observations Access Service (a set of interfaces and data structures with which a server can supply clinical observations. http://www.omg.org/technology/documents/domain_ spec_catalog.htm).
(II) Gene-Expression Information Systems & Genomic Profiles. Required for the storage of (fully annotated) microarray experiments. Capabilities and services for the generation of  respective patients’ gene-expression phenotypic profiles (GEPPs) are required (e.g., expression of all genes belonging to specific functional-class for specific patients). Providers & Users: Genomic laboratories/units and involved (expert) personnel.
· Gene Expression Information System: A specific microarray-experimentation and gene-expression profiling information system is utilised, the GIS, which is based on appropriate customization of the BASE - BioArray Software Environment (http://base.thep.lu.se/) system. BASE is a comprehensive free web-based database solution for the massive amounts of data generated by microarray analysis released under the GNU Public License (http://www.gnu.org/licenses/ gpl.html), and is designed, made available as open-source and supported by University of Lund, Sweden (ACGt partner short name: LundU, ACGT partner no: 8). BASE is a MIAME-supportive customizable database and analysis platform designed to be installed in any microarray laboratory and to serve many users simultaneously via the web. MIAME – Minimum Information About Microarray Experiments compose a worldwide and mostly utilised microarray experimentation and gene-expression profiling standard (http://www.mged.org/Workgroups/MIAME/miame.html) from the Microarray Gene Expression Data society (MGED; http://www.mged.org/). Data within BASE are retrieved via a relational (mySQL) database and communicated to the user through an Apache web server -- the user interface employs Java and JavaScript in addition to plain HTML, and C++ has been used for the more computationally intensive tasks on the server.
(III) Data Mediation Services. A middleware layer for seamless access and integration of data. To offer the seamless integration and retrieval of patients’ phenotypic and genomic profiles. It should encompass services for the realization of specific data-extraction gateways based on the standardized representation of the involved data and information items. The potential of RDF and ontological-engineering (e.g., OWL) technologies should be taken in consideration. Providers: Experienced informaticians; Users: research clinicians and/or research molecular-biologists.
· A specially designed and developed environment and service is designed, developed and utilized for retrieving data from the aforementioned clinical and gene-expression profiling (GeneIS/BASE) information systems – the Integrated Clinico-Genomic Mediation Service (ICGMS) – see figure 5, below. The service is designed, developed, employed and supported by the FORTH – Institute of Computer Science (ACGT partner name: FORTH, ACGT partner no: 2), and the actual information systems mediated are the ones presented in the previous steps. With ICGMS, actually via a dedicated Web-application and the respective GUI employed, the biomedical investigator can form combined clinico-genomic queries (e.g., “ get the gene-expression profiles for ‘microarray experiments meeting specific criteria’ of all breast cancer diseased women meeting a clinical profile of: ‘age over 40’, ‘ER+’, ‘lymph-node –’ and ‘followd-up for over 5 years’ ”. The query is split into several query forms, allowing cancerous sample selection (along with their associated gene expression profiles and patient characteristics), based on criteria of interest. After a graphical query is formed, the mediator translates it into an equivalent set of local queries, which are executed directly against the constituent databases. Then, results are combined and a standard data-enriched XML file is created for further utilization, e.g., for data-mining/ knowledge-discovery operations. Here we have to note that the current ICGMS development does not employ a standard ontology for mediation – in the course of ACGT the developers of ICGMS (FORTH) will devote efforts to enhance and extend the service towards the employment of the standard ACGT master ontology (just in the lines described and specified in the ACGT DoW, and to be delivered by the respective ACGT activities).
[image: image15.png]
Figure 5. Reference architecture and services for the seamless integration, standardized representation (information modeling) and intelligent processing of combined clinical (phenotypic) and genomic (gene-expression) patients’ data and profiles.

The information models underlying the clinical and gene-expression information systems, which are also appropriately used for mediating the respective patient data and information entries are detailed in section XX.
(IV) Data Mining & Knowledge Discovery Components. For the intelligent processing of combined phenotypic and genomic patients’ profiles and data. To be realized by a ‘puzzle’ of autonomous and integrated data-mining software components, customized for the task of gene-expression data analysis and respective knowledge discovery operations, i.e., data-preprocessing and normalization, clustering and classification, statistical methods for gene-selection and visualization tools. The aim is to offer an environment where both molecular biologists and clinicians could easily adapt their data-analysis needs towards the identification of reliable molecular/gene-markers. In the sequel we describe in more detail the involved data-mining operations and respective data/findings workflows for the realization of I-CGKD process. Providers: Informaticians – specialized on data-mining; Users: research clinicians, research molecular-biologists, data-miners. The data-mining methods and tools utilized are presented in section 5.
4 Clinical and Gene-Expression Information Models & Mediation mechanisms Underlying ICGE: A Breast Cancer elaboration

The aforementioned clinical information systems were build to a reference breast-cancer information-model which is shown in figure 6, below (in Greek – to be appropriately adapted to the provisioned ACGT cancer and master ontology). As it was mentioned, the Gene-Expression Information system (GIS) is based on the BASE system and is compliant with respective gene-expression standard information models (e.g., MIAME).
[image: image16.png]
Figure 6. Breast-cancer reference information model for the ICGE clinical information systems.
For the ICGE mediator component a reference information model was elaborated that integrates the respective clinical and gene-expression information models (see figure 7, below).
[image: image5.png]
Figure 7. Breast-cancer reference information model for the ICGE data mediation between the different information systems.
Mediation Queries & GUI. Through this model we are able to mediate data from clinical and from gene-expression information and data sources. For this purpose a special Web-based GUI (see figure 8, next page) is build in order to help the users to easily form their queries and retrieve (recall) respective data from the respective information systems.
· The biomedical investigator can form clinico-genomic queries through the web-based GUI of the mediator. The query is split into several query forms, allowing cancerous sample selection (along with their associated gene expression profiles and patient characteristics), based on criteria of interest. After a graphical query is formed, the mediator translates it into an equivalent set of local queries, which are executed directly against the constituent databases. 
· Finally, results are combined and an output data-enriched XML file is created for presentation to the user. The output XML file is also given as input data-mining tools for mining interesting clinico-genomic associations between the retrieved attributes for the selected samples. Data mining findings are annotated and stored in the Findings Repository. If desired, output XML files can be stored in the Findings Repository, annotated with their corresponding criteria of sample selection, for later use.
[image: image6.png]
Figure 8. The Web-based GUI (forms) for retrieving and mediating data from clinical and gene-expression patients’ records (currently in Greek – in the course of ACGT and based on respective master-ontology references it will be transferred to an English version).
5 Data-Mining Algorithms and Tools Enabling the I-CGKD scenario-process 

5.1  discr_kmeans – a clustering tool
The discretized two-dimensional k-means clustering algorithm identifies clusters of co-regulated genes. With a subsequent filtering approach we select those clusters that exhibit, in an adequate number of samples, strong gene-expression profiles. A sample with a strong gene-expression profile for a specific cluster of genes is one that exhibits, in an adequate percentage of the current clusters’ genes, ‘high’ or, ‘low’ gene expression levels. The adequate number of samples, as well as the percentage for considering a sample’s expression profile as strong is set by the expert user (molecular biologist and/or bioinformatician).

Assume we have s samples, g genes, and a 2-dimensional matrix M(s x g) that holds the gene-expression values of samples. Clustering of genes with the discretized k-means approach - called discr-kmeans. It unfolds into the following two steps:

Step -1: Discretization. We proceed with a method to overcome the error-prone variance of gene-expression levels by discretizing the respective continuous gene-expression values (i.e., continuous values of input objects to be clustered). A gene-expression value may be assigned to an (ordered) nominal value; assume n such values. In the case of n=2, value ‘1’ is interpreted as of ‘low’, and value ‘2’ as of ‘high’ expression level. The discretzation of gene’s gi expression-values is based on a method reported in. Define, 
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 is the integer part of the fraction. The resulting matrix MD(sj,gi) has values from 1 to n.

Step-2: Clustering. The main difference between normal k-means and discr-kmeans is that each cluster’s center is not represented by the average value of the current cluster’s genes but, by a 2-dimensional matrix that contains the percentage of the discretised cluster’s genes’ values, Ck(s,n). If si is a sample and p([1, n], Ck(si,p) is the percentage of genes in cluster k the discretized expression-values of which, and for sample si, is p. For example, in a domain with three samples and discretization value n=2, a cluster’s center is an array like the following:

	Value (
Sample (
	‘1’

%
	‘2’

%

	1
	80
	20

	2
	55
	45

	3
	10
	90


In the above matrix, 80% from all genes that belong to the cluster, the discretized value of sample 1 is ‘1’, which corresponds to a ‘low’ gene-expression level. Analogously in the same cluster, sample 3 exhibits a ‘high’ (value ‘2’) expression value. 

Initially we predefine the number of clusters, c, and we choose c random genes. We assume that each of the initialy chosen genes forms a unique cluster and we calculate its center. Then, we iterate through all genes and we assign each one to the closest cluster. The distance between a cluster Ck(s,n) and a gene gj is:
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As in regular k-means, we repeat this procedure until no change in cluster assignments appears or, until we reach a maximum number of iterations. We end-up, not only with clusters of genes but, with an indication of how ‘strong’ a cluster is. A cluster is considered ‘strong’ if it has a lot of ‘extreme’ discretized value percentages in the samples, i.e, close to 0%, or close to 100%. 

5.2.  HealthObs – an Association Rules Mining tool.
HealthObs is a system that incorporates ARM operations specially suited for clinical domains. HealthObs is able to operate over an integrated electronic health care record (IEHCR) environment. The special services that HealthObs brings relate to: (i) ease in query formulation – via friendly human-system interfaces, flexible enough to enhance the naturalness of data exploration inquiries; (ii) imposition and utilization of ARM directly on-top of XML structures (instead of flat files or, specific databases); and (iii) friendly visualization operations that ease inspection and interpretation of the discovered results. The overall system’s architecture (components and workflow) is show in figure 9, below.
[image: image17.emf]
Figure 9. HealthObs architecture: enabling components and their relations
Query Formulation in HealthObs. Query formulation supports the representation of the inquiry presented to the system. For instance, a user may decide to investigate the association between a limited number of clinical features (e.g., between clinical attributes: Lymphocytic-Infiltrate, Followup/Survival-period etc), and genomic attributes (e.g., strong clusters of genes). In Figure 10a, below, the system’s feature-selection interface is shown. A unique characteristic of HealthObs relates to the specification of the desired form of association rules: (a) if the user only check-tick ([image: image11.png]) a feature, this feature may or may-not be present in the rule, i.e., not-obligatory feature (e.g., age), (b) if the user not only checks a feature but, post an ‘IF’ ( [image: image12.png] , e.g., CL-1-399) or, ‘THEN’ ( [image: image13.png] , e.g., Lymphocytic-Infiltrate) tick on it then, the presence of the feature in the rules is obligatory in the ‘IF’ or, ‘THEN’ part of them, respectively.

[image: image18.png]
Figure 10. (a) Query formulation in HealthObs: Focusing ARM over specific features and specification of association rules’ structure; (b) Visualization of discovered association rules

Visualization in HealthObs. In Figure 10b, the visualization interface of HealthObs is shown. The interface is quite informative. The first two columns show the rules’ support and confidence figures, respectively. The rules are ordered according to their support level, and grouped into support-level categories indicated by different colours (or, grey-levels)- dark-shaded cells indicated higher, and light-shaded cells lower support group-levels. In the next columns the symbolic values for each of the selected features are shown, following a two-colour scheme: ‘black’ foreground for values in the IF part of the rule, and ‘green’ (lighter grey-level in the B&W) for values in the THEN part. So, one of the association rules is (row 1 in figure 3b): IF CL-7-5503=ON THEN followup-time-yr=great5 :: Support:16% , Confidence:100%. The rule states that: “for genes in cluster CL-57-5503 (a cluster with 5503 gene members) a set of patient cases (11% of the total cases) exhibit followup (i.e., survival) period over 5 years in 75% of the cases (i.e., the confidence).
5.3  MineGene – a Gene Selection tool
[image: image19.jpg]MineGene is a general-purpose machine learning tool to serve as an application platform for various Data Mining Operations including Gene Selection, classification and clustering algorithms. It is a collection of Machine Learning algorithms and heuristics for intelligent processing of gene expression data produced by DNA Microarray experiments. Its main purpose is to mine into vast and redundant documents for information regarding the ability of certain genes to discriminate between different sample states. Similar tools are GeneSpring and MolMine. MineGene, is designed and implemented to be suited as a plug-in in a gene expression database. With MineGene we give the ability to a gene expression database apart from storing, retrieving, sharing and querying of the data, to infer fundamental conclusions about the inner regularities, descriptive ability and possible relations of the data stored. 

The majority of the studies performed on gene expression data analysis follow a ‘one-way’ approach, thus they apply only one or a very limited set of algorithms. Even when a study is composed by many parts, each responsible for a specific aspect of the process, it is not possible to apply and test various algorithms for this aspect and infer invaluable conclusions not only for the data, but for the application spectrum of an algorithm as well. Moreover, even when we want to test a single algorithm it is desirable to have an environment capable to perform multiple runs with different inputs and parameters. MineGene is an effort to implement this environment though a Graphical User Interface (GUI). The picture at the right shows the initial, starting GUI of MineGene. 

Judging from studies recently published, there is not yet any standard method for microarray gene expression data analysis but some general guidelines that recently have started to be formed. These guidelines represent a sequencing procedure that starts after data acquisition and ends to the construction of a predictor or a clustering mechanism depending if we are performing Supervised Methods or Unsupervised Methods Unsupervised Operations. 
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