

Health-e-Child Project Requirements

010101 101010 110101

MAAT GKnowledge

Project Objectives

- Establish Horizontal and Vertical integration of data, information and knowledge
- Develop a grid-based biomedical information platform, supported by sophisticated and robust search, optimisation, and matching techniques for heterogeneous information,
- Build enabling tools and services that improve the quality of care and reduce its cost by increasing efficiency
 - Integrated disease models exploiting all available information levels
 - Database-guided decision support systems
 - Large-scale, cross-modality information fusion and data mining for knowledge discovery
- A Knowledge Repository?

Project General Info

Instrument: Integrated Project (IP) of the

Framework Program FP6

Project Identifier: IST-2004-027749

Coordinator: Siemens AG, Dr. Jörg Freund

Partner: 14 European (companies, hospitals, institutions)

Timetable: 01-Jan-06 to 31-Dec-09 (4 years)

Total cost: 16.7 Mio. €

EC funding: 12.2 Mio. €

Web page: http://www.Health-e-Child.org

Project Map

Health-e-Child

Clinical Context

Diseases

- Heart diseases (Right Ventricle Overload, Cardiomyopathy),
- Inflammatory diseases (Juvenile Idiopathic Arthritis), and
- Brain tumours (*Gliomas*)

Clinical Institutions

- I.R.C.C.S. Giannina Gaslini (IGG), Genoa, Italy
- University College London, Great Ormond Street Children's Hospital (GOSH), London, UK
- Assistance Publique Hopitaux de Paris NECKER, Paris, France

Clinical Departments

- Cardiology
- Rheumatology
- (Neuro-)Oncology
- Radiology
- Lab (Genetics, Proteomics, Lab)
- Administration

Data Integration Challenge (1)

3 Hospital Nodes

 Integration of data stored in Hospital's IS + fresh new data to be acquired

Acquisition of large samples of Imaging data

• 3 diseases X 300 cases X 2 modalities X 300 images

i.e. at most 540000 images ~ 270 GB

- A Distributed Platform for sharing, manipulating and inferring data
 - Decision Support System
 - Disease Modelling
 - Knowledge Discovery / Data Mining
 - Image Processing
 - Automatic segmentation of right ventricle
 - to determine volume, ejection fractions etc for cardiac MR and ultrasound images
 - Brain tumour segmentation/registration to determine volume, location etc
 - Volume of synovial fluid in wrist MR scans
- Grid technology as the <u>enabling infrastructure</u>

Data Integration Challenge (2)

		IGG	GOSH	NECKER
Cardiology	DB	MS ACCESS + Excel	TOMCAT	NO - Paper-based
	PACS	YES - But not operational	YES	NO
Rheumatology	DB	MS ACCESS + Excel	NO - Paper-based	NO - Paper-based
	PACS	NO - PACS in 2007	YES	NO
Radiology	DB	Not Available	RIS	RADOS
	PACS		YES - But not operational	YES - But being tested
Molecular Genetics	DB	MS ACCESS + Excel		
	PACS	NO		
NeuroOncology	DB	MS ACCESS + Excel		
	PACS	NO		
Proteomics	DB	MS ACCESS + Excel		
	PACS	NO		

Data Integration Challenge (3)

- Heterogeneous Data/Imaging Sources
 - DB Backends: from simple MS ACCESS to complex Patient Information Systems like TOMCAT, RIS ...
 - No or few linkage bw department's IS
 - Various imaging modalities: MRI, CT, US, X-Ray...
 - Various imaging devices: Siemens Bi-Plan, GE Vivid7, Sequoia, HP128...
- Heterogeneous Connectivity
 - PACS not yet present in all Hospitals/Departments
 - Hospitals have different Hardware/Network/Security constraints
- A 3-Phase Data Integration Scheme
 - 1st: A temporary offline data acquisition application
 - 2nd: An online data acquisition application (interacting with the platform)
 - 3rd: A background <u>data integration service</u> (in the platform)

Early Faced Issues

Mainly Non-Functional since project has just started

- Selecting grid m/w services wrt project requirements
 - Lots of services/functionalities available
 - Different implementations with different levels of maturity
- Clustering grid m/w services
 - To reduce the h/w requirements & maintenance (1 server / Hospital)
 - To facilitate deployment (3 clinical sites + at least 5 institutional sites)
- Decentralisation of grid m/w services
 - Sites need to be as much as possible autonomous
- "Griddification" of Applications
 - Some of the HeC applications might be "griddified"
 - Griddification has to be balanced against runtime and development complexity criteria

Current Investigations

- Selecting grid m/w services wrt project requirements
 - => Services selection based on URS + Grid Questionnaire
- Clustering grid m/w services
 - => "Xenification" of OSs + clustering services wrt functionality
- Decentralisation of Grid Services
 - => Dependent on gLite developments, but already some possibilities with Master/Slave configurations
- "Griddification" of Applications
 - => Introduced a classification of applications. Grid Questionnaire will certainly help in making decisions
- Grid Access
 - => Abstracting grid access through dedicated service

Remaining Challenges

- Data Integration in Hospitals (post phase 2)
 - What mechanisms to use? What will be the limitations (in particular with proprietary systems?
- Patient Data Distribution & Sharing
 - What technology/implementation?
- Patient Image Files Sharing
 - Enabling the sharing of large files over the internet
 - MRI @ GOSH = 500MB/patient
 - CT @ NECKER = 3.5GB/patient ... raises bandwidth problems
- Griddification of Applications
 - Appears relevant for computation heavy algorithms or batch processing
 - However many clinical algorithms have short runtime (e.g. image processing, since clinicians need almost instantaneous results)

Conclusion - Middleware Requirements

Non-functional Requirements

- Hospital Sites should be <u>autonomous</u>
 - Sites should not depend on any central services
- Hardware requirements remain too high for Hospitals
 - Getting access to the grid through <u>one box</u> would be ideal
 - e.g. <u>1 Server per Hospital</u>
- Fine-grained security mechanism for accessing data (at the record level?)

Functional Requirements

- Pseudonymisation as a native middleware service?
- Native Streaming facilities for sharing large DICOM files
- [Native patient-centric data model(s)
 - (flexibility) Optionally data model could be selected from existing standards (e.g. HL7...) or even created from scratch
 - (interoperability) Optionally a native commodity for exporting/exposing data through different data models would be nice (model-driven)
 - (interoperability) Optionally a data model (schema) discovery mechanism could help
- Native connectors to external backends for batch data integration]
- 1. Are <u>HealthGrids</u> likely to become the enabling infrastructure for <u>Distributed PACS</u>?
- 2. Is the Grid likely to become the enabling infrastructure for Knowledge Repositories?

One server per Hospital

 Single entry point to HeC Platform

One workstation per Department

 For complex tasks a dedicated user interface is used

Generic computers on Intranet

 Most functionalities accessible from generic web browsers

Clinician's HeC Identity

Approach (1)

Approach (2)

- An intermediary access layer: the <u>HeC Gateway</u>
 - To decouple client applications from the complexity of the grid and other computing resources
 - Towards a <u>platform independent implementation</u>
- Domain Specific Functionality exposed in the HeC Gateway
- Grid mainly used as a Distributed & Federated PACS
 - Different modalities of images to be anonymised and shared
 - Clinical Reports
 - Misc. Files

Platform Use Cases (1)

(high-level) Use Case	Comment	Scope			
1. Collect Information					
Data Acquisition		Local			
Data Annotation		Local & Global			
2. Retrieve & Exploit Information					
View Case	Requires high responsiveness	Local & Global			
Find Similarity	Requires high responsiveness	Local & Global			
Query	Requires high responsiveness	Local & Global			
Knowledge Mining		Global			
Use Decision Support System	Requires high responsiveness	Local & Global			
Use Disease Models	Requires high responsiveness	Local & Global			
3. Maintain Platform					
Maintain Patient Database		Local			
Maintain Information Schema		Local & Global			
Maintain Tools		Global			
Maintain VO		Global			
Maintain Grid		Global			
Manage Sharing		Global			

1st Technical Accomplishments

- Establishment of a Common Development Environment
 - Indispensible to synchronise partners and leverage synergy
- Creation of the Health-e-Child Virtual Organisation (VO)
 - Establishment of a Certificate Authority (36 certs delivered so far)
 - HeC VO Structure in place, being tested
- 1st gLite Test-bed deployed in May 2006 on HeC dedicated servers
 - ~20 computers involved
 - Being refined according to project requirements
- 1st embryo HeC gateway
 - Authentication Client Application & Grid Service (VOMS enabled)
 - HeC Portal & Factory (exposing domain specific functionality)