

D9.5 Report on the Final ACGT
Workflow Environment

D9.6 Report on the Final specifica-
tions of meta-data for the ACGT da-
ta, tools, services and workflows

Project Number: FP6-2005-IST-026996

Deliverable id: D 9.5 & D 9.6

Deliverable name: Report on the final ACGT Workflow Environment and spe-

cifications of meta-data for the ACGT data, tools, servic-

es and workflows

Date: September 1, 2010

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 2 of 43

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: ACGT

Project Full Name: Advancing Clinico-Genomic Clinical Trials on Cancer:
Open Grid Services for improving Medical Knowledge Dis-
covery

Document id: D 9.5 & D9.6

Document name: Report on the final ACGT Workflow Environment and spe-
cifications of meta-data for the ACGT data, tools, services
and workflows

Document type (PU, INT, RE) PUB

Version: 1.0

Date: 01/09/2010

Editors:
Organisation:
Address:

Stelios Sfakianakis
FORTH-ICS
Foundation for Research and Technology-Hellas (FORTH)
Institute of Computer Science
N. Plastira 100, Vassilika Vouton,
GR-700 13 Heraklion, Crete, Greece

Document type PU = public, INT = internal, RE = restricted

ABSTRACT:

The present document is a merger of the deliverables 9.5 and 9.6. It offers a comprehen-
sive description of the final ACGT workflow environment and the metadata specifications
for the data, tools, services, and workflows. The design considerations, architecture, and
implementation of the workflow management system are provided in sufficient detail. In
the second part of the document the use of metadata annotations in ACGT is described in
a unified view by consolidating input from previous deliverables.

KEYWORD LIST: workflows, metadata, services, workflows, semantic interoperability,
provenance, orchestration

MODIFICATION CONTROL

Version Date Status Author

0.1 23/03/2010 Draft Stelios Sfakianakis

0.5 25/08/2010 Draft Stelios Sfakianakis

0.9 01/09/2010 Draft Stelios Sfakianakis

1.0 01/09/2010 Final Stelios Sfakianakis

List of Contributors

 Stelios Sfakianakis, FORTH-ICS

 Lefteris Koumakis, FORTH-ICS

 George Zacharioudakis, FORTH-ICS

 Manolis Tsiknakis, FORTH-ICS

 Dennis Wegener, FhG

 Johan Karlsson, UMA

 Max Garcia, UMA

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 4 of 43

Contents

LIST OF CONTRIBUTORS .. 3

ACRONYMS .. 6

EXECUTIVE SUMMARY ... 7

1 INTRODUCTION .. 8

2 THE DESIGN AND IMPLEMENTATION OF THE ACGT WORKFLOW ENVIRONMENT10

2.1 DESIGNING THE ACGT WORKFLOW ENVIRONMENT ...10
2.2 ARCHITECTURE ...11
2.3 THE WORKFLOW EDITING ENVIRONMENT ...12

2.3.1 Implementation ...13
2.3.2 Command Line Tools ..15
2.3.3 Tags ...15
2.3.4 Magallanes integration ..16
2.3.5 New “look and feel” ...17
2.3.6 Workflow execution monitoring functionality ..18

2.4 PROXY SERVICES INFRASTRUCTURE ..19
2.4.1 Generic Guidelines for the Implementation..20

Getting access to the proxy certificate ... 21
An (easy) Example: Data Access Services .. 21

2.4.2 A Case Study: Interoperability with the Biomoby Services ...22
MOBY Central integration ... 23
Invocation of the Biomoby tools ... 24

2.5 BPEL TRANSFORMATION ...27
3 METADATA FOR THE ACGT DATA, TOOLS, SERVICES AND WORKFLOWS30

3.1 METADATA FOR DATA...31
3.2 METADATA FOR TOOLS AND SERVICES ...32

3.2.1 Tools ..32
3.2.2 Data types ..33
3.2.3 Datatype ontology ...34
3.2.4 Functional descriptions ...35

Functional category ontology ... 35
Service discovery ... 35

3.3 METADATA FOR WORKFLOWS ...36
3.3.1 Why “Tagging”? ..38
3.3.2 Workflow Provenance ...39

Implementation ... 40
REFERENCES ...42

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 5 of 43

Table of Figures

Figure 1 The secure workflow environment through Proxy services 12

Figure 2 The initial screen of the Workflow Editor .. 14

Figure 3 Command line tool window .. 15

Figure 4 Tag based search for workflows in the Workflow Editor ... 16

Figure 5 Data Types conflict .. 16

Figure 6 A partial workflow recommendation from Magallanes .. 17

Figure 7 The new workflow editor user interface .. 18

Figure 8 Tags at the workflow editor .. 18

Figure 9 Monitoring status panel ... 19

Figure 10 A small part of the BioMOBY object ontology. ... 22

Figure 11 Part of the BioMOBY Service Ontology as shown in the ACGT Workflow Editor.. 23

Figure 12 The "Russian doll"-type format of the Biomoby messages 24

Figure 13 The serialization of the Biomoby input message .. 25

Figure 14 Data type serialization in Biomoby and in the ACGT-Biomoby gateway 27

Figure 15 The Tool related metadata schema ... 33

Figure 16 The Data Type related metadata schema .. 34

Figure 17 The workflow lifecycle .. 37

Figure 18. A tag “cloud” ... 39

Figure 19 The major entities of OPM and their relationships.. 40

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 6 of 43

Acronyms
API Application Programming Interface

BPEL Business Process Executable Language

CA Certification Authority

DMS Data Management Service

DN X.509 Distinguished Name

GUI Graphical User Interface

HTML Hyper Text Markup Language

N3 Notation 3 serialization format for RDF

OPM Open Provenance Model

OWL Web Ontology Language

RDF Resource Description Framework

RDFS RDF Schema

SAWSDL Semantic Annotations for WSDL

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language

URI Uniform Resource Identifier

WS Web Services

WSDL Web Service Description Language

XHTML Extensible Hyper Text Markup Language

XML Extensible Markup Language

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 7 of 43

Executive Summary
The ACGT computational environment aims to provide a semantics enabled platform for the
implementation of state of the art research experiments in the context of clinical trials for
cancer. The ACGT Workflow Environment in particular is a set of end user interfaces and

components of the grid infrastructure for the design, archiving, execution, and management
in general of the ACGT scientific workflows. The aim of this environment is to assist the us-
ers in their scientific research by supporting the composition of different data access and
knowledge extraction and analytical services into complex workflows. This way the users can
extend and enrich the functionality of the ACGT system by reusing existing ACGT compliant
services and producing “added value” composite services. This reuse and composition of
services is in some sense a programming task where the user actually writes a “program” to
realize a scenario or to test a scientific hypothesis. In this dynamic environment describing
the informational and computational resources in a machine readable way through the use of
Metadata makes possible a whole array of advanced yet necessary scenarios like resource

identification and discovery, interoperability, dynamic decision making, provenance, and so
forth. In essence metadata is the crucial component of every large and complex system that
abstracts and captures the essential information of the underlying data independent of their
representational details.

In this document we present the final design of the ACGT Workflow Environment and also
the approach that has been followed in ACGT in order to support semantics based interope-
rability and integration through the means of metadata. This report builds upon a number of
technical deliverables, extends and complements them with the most recent developments
just before the conclusion of the project.

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 8 of 43

1 Introduction
The significance of the workflow technologies in the bioinformatics and in scientific research
in general has been acknowledged and actually proven in practice in the recent years. It is
then no surprise that the ACGT consortium in the project’s description of work included the
provision for delivering a workflow management tool for the end users to design their custom
data analyses. Nevertheless during the course of the project we opted to define our own in-
frastructure for the design and execution of the scientific workflows instead of using some of
the existing solutions such as the Taverna Workbench or Triana and Kepler. This was not an
easy decision and it was driven by the following forces:

 The security framework of ACGT is very strict and based on the recommendations of
the Ethical Board the technologies used need to provide a certain set of security func-
tionality. In particular the need to know the principal user’s identity in every step down
the pipeline of the data access and service invocation required the “delegation of us-
er’s credentials”, something that was not provided “out of the box” in any of the well
known scientific workflows systems.

 The ACGT architecture that is based on Grid technologies and Service Orientation
hinted the provision of a workflow management system that is virtually centralized
and accessible remotely by open standards and state of the art technologies. At that
time none of the candidates/workflow tools offered a robust “service oriented” dep-
loyment solution with central user management supported by the Grid Virtual Organi-
zation (VO) mechanisms.

 Better control on the appearance, functionality, metadata integration, roadmap, etc.
was an additional objective. It may be argued that such requirements are excuses
that hide a “not invented here” syndrome but it is frequently the case that customizing
an existing software application is more difficult than building a new one from scratch
with the specific requirements driving the design and implementation1.

So instead of using existing solutions in this area (e.g. the Taverna Workbench which was
and still is a strong “competitor” scientific workflow management system) we have decided to
do the following:

 Design and implement a new Workflow Editor from scratch. Emphasis was given to
the user friendliness, the graphical user interface, and the use of ubiquitous web
technologies and standards

 Support the execution of the scientific workflows by expressing them in the standard
Business Process Execution Language (BPEL) and then employing an open source
production quality BPEL enactor.

 Comply with the security and ethical constraints imposed due to the sensitivity of the
data in terms of the patient’s anonymity and the privacy and authorization

The outcome is what is collectively called the ACGT workflow environment. The ACGT
Workflow Environment and its features and scope have been nicely summarized in the deli-
verable D9.2 where there’s the following passage:

The term “ACGT Workflow Environment” collectively describes the end user interfaces
and the grid infrastructure for the design, archiving, execution, and management in gen-
eral of the ACGT scientific workflows. The aim of this environment is to assist the users
in their scientific research by supporting the composition of different data access and
knowledge extraction and analytical services into complex workflows. This way the users

1
 As it is frequently said “reinventing the wheel” is necessary if the existing wheels are square.

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 9 of 43

can extend and enrich the functionality of the ACGT system by reusing existing ACGT
compliant services and producing “added value” composite services. This reuse and
composition of services is in some sense a programming task where the user actually
writes a “program” to realize a scenario or to test a scientific hypothesis.

This document aims to be an update to deliverable 9.2. We present updated information on
the design of the ACGT workflow environment and its rationale and report on its implementa-
tion. Strongly connected to this environment is the definition of the metadata for data, servic-
es, and workflows because such metadata largely drive the composition of services, the ex-
ecution of the resulted workflows, and the management of the data and the meta information
produced. In the second part of this document we therefore describe the ACGT approach on
the production and consumption of the metadata descriptions.

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 10 of 43

2 The Design and Implementation of the ACGT Workflow
Environment

2.1 Designing the ACGT Workflow Environment

One of the most important constraints for the management of personal clinical and genomic
data is the compliance to the ethical and legal data protection requirements. In ACGT a ge-
neric data protection framework has been defined which is based on a technical security in-
frastructure as well as on organizational measures and contractual obligations [4]. In this set-
ting user authentication and authorization are very important but also auditing of user actions
is of great significance so that every access to the data is recorded along with the identity of
the principal user who initially requested this access.

Most of these security requirements are dealt with the Grid infrastructure layer. In particular
the Grid Security Infrastructure (GSI [23], Deliverable 11.2) supports user authentication
through digital signatures and also the delegation of user privileges to a service so that it can
retrieve data or perform an action on the user's behalf and without the user's intervention.
The delegation mechanism is important because it allows ``single sign on'' for the users of
the Grid and also simplifies from the users' point of view the execution of long running chains
of services that need authentication since the user is not required to be present and supply
his credentials in every processing step.

In agreement with the authors in [3] the decision of using a standard workflow definition lan-
guage in ACGT has been taken. The scientific workflows domain lacks any such language
that is supported by more than one workflow management tool and therefore BPEL [2] was
chosen from the business process management world as the most prominent and well sup-
ported technology: BPEL is the de facto standard for Web Services orchestration and busi-
ness process modeling. It features a complete set of control structures that exist in impera-
tive programming languages (if/else, repeat/until, while, etc.) and also constructs for parallel
loops and XML processing. BPEL also supports the definition of both abstract and executa-
ble workflows and the deployment of a workflow as a new composite web service. Finally its
wide popularity and support both from the enterprise and open source worlds give better
guarantees about its future and evolution.

Nevertheless the choice of BPEL gave rise to two more requirements. The first one is the
provision of a user friendly workflow authoring environment. It is true that there are a couple
of open source BPEL editors, for example the Eclipse BPEL Designer2, but the level of ab-
straction is too low to be used for bioinformatics workflows: the XML syntax and the BPEL
specificities would alienate most domain users. In simple words, such workflow designers
require their users to be fairly fluent in BPEL in order to be used effectively. Therefore we
saw the need for a new ACGT workflow editor that is accessible over the web and more tai-
lored to the needs of the bioinformatics user community. The requirement for this new
workflow editor to be web based was introduced due to our confidence that the World Wide
Web has a lot of advantages over traditional standalone desktop applications such as:

 Ubiquitous access from a wide range of networks and devices e.g., laptops, net-
books, and handheld devices like iPADs and tablet PCs, and contemporary smart-
phones.

 Zero install and upgrade, because the actual execution code is delivered on demand
over the web and through the browser.

2
 http://www.eclipse.org/bpel/

http://www.eclipse.org/bpel/

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 11 of 43

 Portability and autonomy, because most of the computation is performed on the serv-
er side where also the users’ data are kept.

 Strong momentum and community support, since in the last couple of years many
web applications, such as the GMail and Google Docs from Google, have been on
the spotlight and replacing desktop applications of similar functionality. The Yahoo!
Pipes3 web application was particularly influential because it’s a kind of pipe-
line/workflow editor for the data on the web.

The second prerequisite introduced by the use of BPEL for the ACGT workflows is an infra-
structure that would make possible the invocation of the ACGT secure grid services from in-
side the BPEL-based workflows. Especially the use of GSI for securing Web Services re-
quires a BPEL Engine that is able to invoke them without compromising security. In particular
each BPEL workflow should also be a GSI secured service that is able to accept the dele-
gated user credentials and subsequently delegate them further to all the services that need
to be contacted in the context of the specific workflow.

Unfortunately BPEL and the Web Services standard security specifications do not comply
with such requirements. The whole concept of “credential delegation” is based on the use of
“proxy” certificates, which are certificates where the user is considered as a Certification Au-
thority. Proxy certificates are extensions to the standard X.509 certificates and do not enjoy
much of support outside the Grid community. This problem required the introduction of
“Proxy” services, described in the next section, that following the “Proxy design pattern” [9]
offer the bridge between the business process view of BPEL engines and the Grid secure
services of the ACGT ecosystem.

2.2 Architecture

In software engineering terms the ACGT Workflow Environment comprises a number of
tools, services, and components that provide the infrastructure for the design and manage-
ment of scientific workflows and, at the same time, address the architectural and security re-
quirements of the ACGT platform. This environment is centralized, hosted inside the ACGT
Grid but outside the users' premises, and supports the whole workflow life cycle: from de-
signing new workflows, to their enactment, provenance management, reusing and re-
purposing. It comprises the following entities:

 Workflow Editor: the graphical web-based tool that enables the design and editing of
workflows in an easy and intuitive way

 Workflow Enactor: the BPEL compliant, third party orchestrator for the enactment of
the workflows

 Proxy Services: the gateways and representatives of the real ACGT services that
present a BPEL and Web Services compliant interface to the Enactor

 Enactor Proxy, for executing the deployed workflows and providing access to the
enactment and monitoring information.

 Workflow Repository: the database for keeping workflow definitions, execution state,
provenance information, user sessions, etc.

Most of the above are shown in Figure 1 below and will be described in the following sec-
tions.

3
 http://pipes.yahoo.com

http://pipes.yahoo.com/

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 12 of 43

Figure 1 The secure workflow environment through Proxy services

2.3 The workflow editing environment
The ACGT Workflow Editor aims to assist physicians in their scientific research by supporting
the composition of different data access, knowledge extraction and analytical services into
complex workflows. In its initial design and also its subsequent revisions the following re-
quirements were followed:

 The Workflow Editor should be as user friendly as possible and follow the abstrac-
tions the users (clinical and biomedical researchers, bioinformaticians, etc) are famili-
ar with. In particular implementation details such as XML messaging, Grid authentica-
tion and authorization, workflow languages and relevant technologies are transparent
to the users. An example of this is the case of processing tools and services where
the requested functionality is delivered “asynchronously”, after the invocation in a
specific order of two or more methods. The Workflow Editor presents such services
as single abstract activities that given some specific input, the final output is returned,
in a single step irrespective of the underlying message exchange protocol.

 Integration with the rest of the ACGT platform is of utmost importance. For example
user authentication is performed “under the hood” by the Grid authentication mechan-
isms using X.509 credentials and MyProxy (see Deliverable 11.2), the Grid file sys-
tem (DMS, see Deliverable 9.3 “Data and Metadata Management in ACGT”) is al-
ways accessible through the Editor, and all the services that can be included in the
users’ workflows are retrieved from the ACGT Metadata Repository.

 Build upon the semantic data integration in ACGT so that, in addition to rudimentary
checks based on the syntax of the data, connections between services that represent
data exchange are checked based on their semantics as well.

 A desktop application look and feel by supporting the graphical building of the
workflow, menus and dialogs

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 13 of 43

 Efficiency, performance

2.3.1 Implementation

The ACGT workflow editor has been designed as a web application consisting of two com-
ponents:

 The client side, which runs as a “rich internet application” (RIA) inside the user’s web
browser, using ubiquitous web technologies like HTML and Javascript.

 The server side, which is located in a central point and is responsible for more com-
putational heavy or the core “business-logic”.

These two components communicate with each other in a unidirectional, “firewall friendly''
way, i.e. the client side makes requests to the server side and not the other way round. The
server side of the editor consists of a number of Java Servlets that communicate with the edi-
tor through asynchronous web requests, what is called AJAX in technical terms, with a Java-
script Object Notation (JSON) formatted payload. With this asynchronous exchange of mes-
sages between the browser and the server, the Workflow Editor provides a desktop applica-
tion's look and feel and interactivity.

Each activity put in a workflow represents a kind of “service” (R script, Data access service,
Semantic Mediator query, third party service, etc) that has certain functionality delivered
through its outputs when supplied with a set of inputs. Therefore the service descriptions
supplied by the server side to the client side workflow editor include in addition to the name
and textual description of the service the schema for the input and output parameters. This
schema is formatted according to the JSON Schema [27] extended with the additional infor-
mation providing the semantic type of the parameters. All the information shown in the Editor
is retrieved from the ACGT Metadata Repository and therefore is more abstract, mostly sup-
porting semantics based composition of the services.

The users start their session with the Workflow Editor by entering their user name and pass-
word into the ACGT Portal. The editor itself is agnostic to the real authentication process that
is taking place in the server side and it just requires a user name and a password that are
sent through encrypted HTTP authentication mechanisms to the back end. In the current
Grid enabled deployment these user name/password credentials are used for MyProxy au-
thentication. After their successful authentication users are presented with a screen similar to
what is shown in Figure 2.

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 14 of 43

Figure 2 The initial screen of the Workflow Editor

Each user has his/her own virtual private workflow repository for storing his/her workflows.
The stored workflows can be subsequently retrieved, changed, and new versions can be
saved. The available ACGT services are shown in a tree like structure according to their
classification in the back end service registry. Furthermore, the users are allowed to browse
their private area in the Grid based file system to locate files that they wish to enter into their
workflows.

Following the examples of existing scientific workflow management tools, the ACGT
Workflow Editor follows a dataflow, instead of control flow, paradigm: its workflows are di-
rected acyclic graphs (DAGs) where the links between the nodes of the graph represent data
that are transmitted between the services and each service will start execution when it has
data in all its input parameters. The actual workflow construction is done visually, by “drag-
ging-and-dropping'' and connecting, by drawing lines, the output and the inputs of analytical
and data management services. For each processing step inside the workflow there is al-
ways metadata information about the input and output parameters and in the cases of a
GridR data analysis script [22] or a mediator query the script or query code is shown as well.

When a workflow is ready the user is allowed to “enact” it (i.e. run it) by specifying any re-
quired input parameters. The execution state of the workflow is readily available to the end
user in the editor’s notification area. The active, i.e. currently running, services in the
workflow are highlighted and the start and end times of all the completed execution steps are
shown (see paragraph “Workflow execution monitoring functionality” below). Users are also
able to execute the same or a different workflow multiple times in a row and even close their
session with the Editor by logging out. The workflows are executed in the server side and
their state is saved so that, when the user connects again, he/she can get immediate feed-
back about the status and results of the active or finished “enactments”. Finally, a workflow
that a user feels confident about its status and usefulness can be published so that also oth-
er people can use it. The publication process includes the supply of the necessary metadata
(e.g. descriptions of inputs and outputs, functional classification, etc.) and the registration of
the executable workflow in the ACGT service registry.

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 15 of 43

The editor is accessible through the ACGT Portal. More information about the technologies
used, user interfaces, the functional and non-functional requirements of the first version of
the workflow editor can be found in the Deliverable D9.2. Of course since 2008 there are a
lot of updates and new functionalities in the workflow editor.

In the following sections we will describe the new components of the workflow editor and the
new look and feel of the environment.

2.3.2 Command Line Tools

Command line tools are internally treated differently from regular services (the same is true
for Mediator queries and R-Scripts). To insert a command line tool the user has to click on
the corresponding icon from the upper toolbar of the editor:

A window appears which displays all the command line tools that are available and can be
added to the workflow. As we can see in Figure 3 a special window appears which displays
all the available command line tools to the user (available command line tools are tools that
he/she has created and tools that are public to the ACGT community). From the command
line tools window the user can select one tool and view the inputs/outputs of the tool (com-
mand line tools in ACGT workflow environment are considered to be services that have in-
puts and outputs and run over the grid as web services) and the description of the tool.

Figure 3 Command line tool window

2.3.3 Tags

The ACGT Workflow editor is a Web2.0 application based on the principles of the semantic
web. One of the most informative systems for categorization in the social semantic web is the
tagging system. Taking advantage of the tagging system we added this functionality at the
workflows repository. Each workflow can be mapped by the user to one or more categories.
These categories can be one of the already existing in the system or new ones. In such a
way, a user who wants to search for a workflow can narrow the search by adding tags and
make the searching of related workflows fast and easy (see Figure 4).

In order to be insensitive to misspellings, plural versus singular words, etc the Double Meta-
phone phonetic algorithm [16] is used to index the tags and provide approximate matching in
tag searches.

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 16 of 43

Figure 4 Tag based search for workflows in the Workflow Editor

2.3.4 Magallanes integration

Magallanes (Magellan) is a tool that can be used for discovery of web services and asso-
ciated data types [18]. Additionally, Magallanes can connect compatible web-services into
pipelining workflows that can process data sequentially to reach a desired output.

The new and final version of the workflow editor integrates the automatic service composition
functionality of Magallanes. This functionality aims to automate the task of connecting inde-
pendent services as much as possible. Two services can be connected if the output of one is
compatible with the input of the other. The goal is to find an optimal set of services that
match inputs with outputs. A detailed description about the technology and architecture of
Magallanes can be found in the Deliverable D9.4 “Semantic Integration in ACGT”.

Taking advance of Magallanes the workflow editor gained “intelligence”. A user has the op-
tion to connect objects (services, Biomoby, r-scripts, mediator queries and command line
tools) with each other. Sometimes the data types of an input to an output mismatch. In this
case the workflow editor will check the data type compatibility and see that the data types are
incompatible. When for example a user tries to connect a service B after the service A in a
workflow the editor checks if the output of service A is the same or compatible with the input
of service B. If the output and input are incompatible then the editor prompts the user that
he/she cannot connect these two services. Figure 5 shows the warning message when a
data type conflict occurs.

Figure 5 Data Types conflict

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 17 of 43

Then asks the user if he/she wants to invoke Magallanes tool and try to find a path from ser-
vice A to service B. If the user selects to invoke Magallanes the editor send a request to
Magallanes tool with the specific input and output services, using servlets, and a new window
will appear with an image of a graph from the selected input to the selected output via vari-
ous services (Figure 6).

Figure 6 A partial workflow recommendation from Magallanes

2.3.5 New “look and feel”

In the new version of the workflow editor colors have change in order to be in-line with the
general look and feel of the ACGT portal. Furthermore the figures of the services have
change making the services in a workflow more informative (different figure for different type
of service such as Biomoby, r-script, mediator query and generic service). We also have new
functionalities in the workflow editor, such as the tagging system of a workflow, Magallanes
proposal and command line tools, which is supported by the user interface with icons, win-
dows and figures which are in-line with the general look and feel of the workflow editor. In the
following figures you can see the new workflow editor, the command line window and the
tagging system of the workflows.

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 18 of 43

Figure 7 The new workflow editor user interface

Figure 8 Tags at the workflow editor

2.3.6 Workflow execution monitoring functionality

The execution of a workflow is monitored in the “Status” panel at the bottom of the workflow
editor (Figure 9). Status panel contains information about the workflow status (e.g. response
from enactor, errors during deploy/run etc) and information about the execution (start-up
time, status and time of all the services in the workflow).

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 19 of 43

Figure 9 Monitoring status panel

Monitoring starts automatically when an execution of a workflow starts. In addition active
workflow elements (services, r-scripts, mediator queries, etc) can be seen blinking in the
workflow area. Once the execution of a workflow has started, it is running as a background
process. The user can leave the session and the process continues. The status of a specific
workflow which is running or has ended or has failed can be retrieved/watched by selecting
the corresponding execution “process” from the list that pops-up after selecting “Open…” in
the “Enactments” menu. When an execution is selected the workflow is automatically loaded
and the monitoring process starts.

2.4 Proxy services infrastructure

In designing and building the ACGT workflow environment the integration of the Grid security
to the workflow enactor proved to be the most challenging task. In particular, the workflow
engine should support the delegation of user rights so that all the services that participate in
a workflow are contacted by the enactor in the name of the end user with no need for the us-
er to be present during the workflow execution. What is more, there are numerous existing
third party services which it would be nice to be integrated in scientific workflows and which
do not support these security standards and it is neither possible nor desirable that these
services be re-implemented. Thus, what is needed is a design approach which permits the
mixture of heterogeneous systems. Taking into consideration that this mechanism must con-
form also to legal requirements, it becomes obvious why it is challenging to comply with the
above and at the same time provide a functional, efficient and non-restrictive platform.

There's an old adage saying that ''Every problem in computer science can be solved by
another layer of indirection''. The incompatibilities between the BPEL processes and the GSI
secured ACGT services can be overcome by supplying the necessary layer of indirection: the
Proxy Services. The idea is nothing novel: the “Proxy design pattern” allows the provision of
"a surrogate or placeholder for another object to control access to it" [8]. In our case the
proxies or wrapper services provide BPEL friendly facades of the original, “real” ACGT ser-
vices, effectively working as calls transformation bridges between the two worlds.

The core idea behind wrapper services is that we transform the interface of the underlying
service and we pass extra pieces of information, which empowers us to detour the usual flow
of credential delegation and bypass the enactor. This information is an ID, unique for each
enactment, with which the proxy service can retrieve the delegated credentials and pass
them on to the service which is “substituted” (see Figure 1). The BPEL workflow therefore is
constructed in such a way as to pass this extra parameter in every outgoing request. The
value of this extra parameter enters the BPEL engine through the Enactor Proxy: this is an
inverse proxy service that presents a GSI compliant interface of the BPEL workflow. The
Enactor Proxy saves the security context of the workflow enactment in the database and
submits the corresponding database ID to the BPEL engine with the other parameters. The
BPEL engine accepts these parameters and forwards the ID to the Proxy Services, which,

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 20 of 43

based on this ID, subsequently retrieve the security context and make the GSI compliant re-
quest to the real service.

The proxy services mechanism can be also used to provide higher level abstractions. An ex-
ample of this is to remodel the interface of the service in order to simplify it or provide
through one ``gateway'' adapter service access to many services by dynamic creation of cus-
tom interfaces. In the case of the “GridR Proxy Service”, by using the wrapping technique we
were able to encapsulate the underlying “GridR Service” [22] and hide its technical details,
but also to support the notion of ``Scripts as Services'', in which a different web service inter-
face is exposed from the same single proxy service, depending on the actual R-script that is
being proxied. All the inputs and outputs of the R script are presented as input and return pa-
rameters of the corresponding web service, through a dynamically created script-specific
WSDL interface.

In a similar manner the wrapping technique has been applied to provide secure access to
WSRF OGSA-DAI resources [1] and simplify the connection to them by enclosing and hiding
the technical hindrances of OGSA-DAI, like perform documents and stateful resources. In-
stead of writing and applying “perform documents” to OGSA-DAI resources, users can view
the data resources as web services and each OGSA-DAI data resource as a different web
service. Furthermore, the “Proxy services” design strategy is flexible enough to overcome
many technical obstacles, like long running executions which are transformed into asyn-
chronous executions with “polling” interfaces, transparent and non-intrusive addition of log-
ging mechanisms, and so forth.

2.4.1 Generic Guidelines for the Implementation

The implementation of Proxy services depends a lot on the kind of the original service that
will be "proxied". From the above discussion we see two major uses of proxies:

 Implement the security delegation mechanism in an enactor transparent way. Since
this type of proxies provide the same functionality as the original services but they al-
so augment ("decorate") it with the proper security context we call them Decorators4.

 Provide either a high level view of the original service functionality (e.g. as is the case
with OGSA-DAI services where we don't want the user to be aware of low level de-
tails like "perform documents") or an enactor friendly interface (i.e. a WS-I compliant
web service interface). Let's call this specific type of proxies as Adapters5.

In either case the proxy service presents a
modified WSDL interface to the enactor but the
details differ. The main difference is that in the
case of credential delegation every operation
supported by the Proxy service must require

an additional "enactmentId" parameter of

type (XML Schema) String6. This parameter
should have this exact name and type and
should be the first in the list of parameters of
every operation of the Proxy service interface.

The final thing to keep in mind is that Proxy services are contacted by the BPEL enactor so
their interface needs to comply with its requirements. In designing the web service interface

4
 http://en.wikipedia.org/wiki/Decorator_pattern

5
 http://en.wikipedia.org/wiki/Adapter_pattern

6
 http://www.w3.org/TR/xmlschema-2/#string

A Proxy service could be very well both
a Decorator and an Adapter. In fact this
is the case for the OGSA-DAI Data
Access (Proxy) Services because they
require the user credentials to perform
the delegation (and therefore the

"enactmentId" parameter) and they

are also Adapters since their WSDL is a
lot different than the OGSA-DAI one.

http://en.wikipedia.org/wiki/Decorator_pattern
http://en.wikipedia.org/wiki/Adapter_pattern
http://www.w3.org/TR/xmlschema-2/#string

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 21 of 43

they are apparently many different WSDL styles7. Nevertheless it seems that BPEL and the
Apache ODE Workflow Enactor specifically do not support Web Services implemented in ac-
cordance to the RPC/Encoded style. The WS-I consortium also recommends against the use
of SOAP Encoding rules. The services implemented following the Document/Literal style8 in
WSDL are the ones that are fully compliant with BPEL and ODE. Furthermore, the ACGT
tool for the BPEL transformation works with the WDSL version 1.1 and its SOAP 1.1 binding.
So in conclusion the requirements for the Proxy service interface description are the follow-
ing:

 Use the WSDL version 1.1 web service description language

 Use (and specify in the WSDL document) the SOAP version 1.19 protocol

 Use (and specify in the WSDL document) Document/Literal wrapped style

Getting access to the proxy certificate

In cases where the original service that is "proxied" is a GSI enabled Grid service, the dele-
gated proxy certificate can be retrieved using the ''enactmemtId'' parameter. In order to make
this easy and transparent to the proxy service developers a ''' proxyAuth.jar''' jar library is
provided. The ProxyAuth class of this jar offers a ''getCertificate()'' method that given the
enactmentId returns the [GSSCredential] proxy certificate.

Having the credential the proxy service code should use it and proceed to the actual call to
the "original" service as if it were the real client.

An (easy) Example: Data Access Services

The original ACGT Data Access Service (DAS) presents an OGSA-DAI10 compliant interface.
The target (original) OGSA-DAI service requires valid ACGT user credentials when con-
tacted and therefore the corresponding proxy services would be a "Decorator" as described
above and all its operations will have an "enactmentId" string parameter. Furthermore we
aim to provide a simple interface to the user based on the core functionality of the service,
which is "data access" in relational (or Semantic Web) data. Therefore we design the Proxy
interface to offer the following operations:

 submitSQL (enactmentId: String, DataSet: String, SQL_query:

String, DirName: String, FileName: String): String This is an opera-

tion to send an SQL query. ''DataSet'' is the (OGSA-DAI) resource id of the database,
''DirName'' and ''FileName'' designate the names of the folder and the file in DMS
where the results will be stored. The return value is a ''job id'' that references this
specific request (query) so that the client (i.e. the enactor) can use in order to find the
status thereof.

 submitSPARQL (enactmentId: String, DataSet: String,

SPARQL_query: String, DirName: String, FileName: String):

String The same as above but for SPARQL queries for Semantic Web databases.

 hasFinished(enactmentId: String, jobid: String): boolean This op-

eration returns the status (finished or not) of the query identified by the ''jobid''

7
 http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/

8
 http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/#N1019C

9
 http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

10
 http://sourceforge.net/apps/trac/ogsa-dai/wiki/UserDocumentation

http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/
http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/#N1019C
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://sourceforge.net/apps/trac/ogsa-dai/wiki/UserDocumentation

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 22 of 43

 getResults(enactmentId: String, jobid: String): int This returns the

DMS id of the file that persists the results of the query (if finished).

The resulted WSDL is at https://iapetus.ics.forth.gr/proxies/DASProxyService.wsdl

2.4.2 A Case Study: Interoperability with the Biomoby Services

The BioMOBY project [24] offers an impressive number of bioinformatics tools and services.
It builds upon an registry where the Biomoby compliant tools are registered and discovered
by interesting clients based on their metadata and semantic based descriptions. In particular,
as described in Deliverable 9.4, the Biomoby framework is based on a set of end-user-
extensible ontologies as its framework to describe data semantics, data structure, and
classes of bioinformatics services. These ontologies are shared through a Web Service regi-
stry system, MOBY Central, which uses the ontologies to semantically bind incoming service
requests to service providers capable of executing them [25].

In order to foster interoperability the Biomoby tools should be created according to the follow-
ing guidelines:

- Use of the Biomoby object ontology (Figure 10) to define the inputs and outputs. The
Biomoby object ontology is a graph where the nodes represent object classes and
supports two types of relationships: ISA, representing subclasses and HAS-A/HAS
representing containment. The root (the more general) data type is the Object type
and every other class is a direct or indirect subclass of it.

- Use of the Biomoby service classification ontology to define functionality and tools
capabilities. This is a simple subclass hierarchy which defines a (generic) set of data
manipulation and bioinformatics analysis types such as “Retrieval”, for retrieval of
records from a database, “Parsing”, for the extraction of information from various flat-
file formats, “Conversion”, for data-type syntax changes, etc.

- Implement the tool programmatic interface according to Biomoby web access proto-
col and serialization formats. In particular the Biomoby tools use a SOAP based (i.e.
Web Service) communication protocol that is described below.

- Register to the Moby Central registry(-ies) with the appropriate tool description so that
categorization and semantics-based discovery of the tool is possible.

Figure 10 A small part of the BioMOBY object ontology.

https://iapetus.ics.forth.gr/proxies/DASProxyService.wsdl

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 23 of 43

Therefore in order for the ACGT platform to gain access to the Biomoby based bioinformatics
tools a “gateway” infrastructure needs to be in place that give access to the MOBY central
registry and “understands” the Biomoby specific protocols and conventions in order for the
Biomoby services to be invoked and accessed from inside the ACGT knowledge discovery
platform. The details of the implementation of this gateway are given in the following sub sec-
tions.

Figure 11 Part of the BioMOBY Service Ontology as shown in the ACGT Workflow Editor

MOBY Central integration

In order to offer an efficient integration mechanism the ACGT-Biomoby gateway uses a local
repository of the contents of the MOBY central. The rational is that the contents of the Bio-
moby registries do not change very often and having a local “cache” of the registry will pro-
vide additional opportunities for making optimizations. In general there are a few Biomoby
registries available worldwide with different contents but currently the most comprehensive
one seems to be that at the University of Calgary, Canada (http://moby.ucalgary.ca/). The
contents of this registry were retrieved in RDF format and stored in a local RDF (Sesame11-
based) repository. This local repository is also augmented by the contents of the Biomoby
object, classification (service), and data types (Namespace) ontologies that were also down-
loaded from the Calgary registry. The relevant web addresses for directly accessing these
ontologies are shown in the table below.

Object ontology http://moby.ucalgary.ca/RESOURCES/MOBY-S/Objects

Service Ontology http://moby.ucalgary.ca/RESOURCES/MOBY-S/Services

Namespace Ontology http://moby.ucalgary.ca/RESOURCES/MOBY-S/Namespaces

Services (instances) http://moby.ucalgary.ca/RESOURCES/MOBY-S/ServiceInstances

Table 1 Web addresses for accessing the BioMOBY service registry in Canada

11
 http://www.openrdf.org/

http://moby.ucalgary.ca/
http://moby.ucalgary.ca/RESOURCES/MOBY-S/Objects
http://moby.ucalgary.ca/RESOURCES/MOBY-S/Services
http://moby.ucalgary.ca/RESOURCES/MOBY-S/Namespaces
http://moby.ucalgary.ca/RESOURCES/MOBY-S/ServiceInstances
http://www.openrdf.org/

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 24 of 43

It’s evident that the content of this local repository is not fully synchronized with that of the
original MOBY Central. It can be though periodically updated by downloading the content of
the MOBY Central in an offline mode and rebuilding the local database.

Invocation of the Biomoby tools

The ACGT-Biomoby gateway is a software component that is also in charge of making the
actual communication with the Biomoby tools, i.e. for submitting requests to them and retriev-
ing the results from these invocations. The need for such a “middleman” in the invocation of
the Biomoby services is imposed by the Biomoby specific messaging principles.

Normally after retrieving a tool description from the MOBY Central, clients interact with the
actual tool by sending a request in the form of an input message, and then receiving the re-
sponse in an output message. This request response communication is based on Web Ser-
vices technologies [5], i.e. the messages are serialized in XML and the communication pro-
tocol is SOAP. But SOAP and XML define the envelope of the input and output messages:
the “payload” of the message is formatted in compliance with the Biomoby conventions.
These conventions explicitly define the syntax of the input messages and the output mes-
sages in a way that is strongly connected with the data types of the input parameters and the
results as defined in the Biomoby Object ontology.

Figure 12 The "Russian doll"-type format of the Biomoby messages

A high level view of a Biomoby message “on the wire” can be seen in Figure 12. The SOAP
message contains, in its body, a string-encoded Biomoby message. In general this Biomoby
message consists of (Figure 13):

 An outermost XML tag “MOBY”, identifying the message as a Biomoby formatted
message.

 A child XML element “mobyContent” within which formatted service provision informa-
tion can be placed such as database version, software name and version, etc. In ad-
dition, this element is the container for any error reporting and exception information
that the service provider wishes to pass back to the client.

 One or more “mobyData” XML elements within “mobyContent”, which contain:

 Zero or more instances of a BioMoby Object being passed into or out of the service.
These are the input parameters submitted in an input message or the results in an
output message.

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 25 of 43

Figure 13 The serialization of the Biomoby input message

Based on the information above, we have identified a number of problems with the Biomoby
messaging formats and protocols when used in a state-of-the-art service oriented software
architecture:

 The whole message as shown in Figure 12 presents an “onion” layered mix of encod-
ings. The Biomoby specific message with its parameters etc. is encoded as a String
that is further encapsulated into a SOAP call.

 Some of the existing functionality of SOAP and web services is duplicated. For ex-
ample, errors are sent inside the Biomoby message instead of declaring the possible
error conditions in the WSDL and using the standard fault mechanisms of SOAP.

 Interaction with the Biomoby services requires knowledge of these serialization con-
ventions and the Biomoby specific ontologies so no generic Web Service clients can
be used.

 The web service description (WSDL) of a Biomoby service does not provide enough
type information for making possible the interoperability with modern Web Service
platforms. In particular the WSDLs of all Biomoby tools declare operations that accept
a single string input but of course this cannot be any string: it should be a Biomoby
message encoded as a string.

In conclusion, the main problem introduced by the Biomoby API in a Service Oriented Archi-
tecture such as the ACGT platform is that the machine readable descriptions of the Biomoby
services are not type safe and compliant with the existing generic Web Services tools and
infrastructures. The objective therefore is to build an ACGT-Biomoby gateway that presents a
standard web service interface to the rest of the ACGT platform. This gateway can be used
as a Biomoby “Proxy” service (see the “Proxy services infrastructure” section above) that,
although a single instance, through dynamic inspection of the messages can contact all the
existing Biomoby compliant service and be a “proxy” for them. In order to do so all the ne-
cessary information about the parameters and data types of each Biomoby service are expli-
citly defined in dynamically created WSDL documents. Therefore the mapping to WSDL that
is performed by the gateway includes the following

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 26 of 43

 Each parameter of the Biomoby service, be it “primary” or “secondary”, is explicitly
defined as an input parameter of the SOAP call. This is also the case for the results
of the invocation.

 Each input and output data type is fully described in an XML schema that is included
in the WSDL. Biomoby defines how each type (node) in the Object ontology should
be serialized in a transitive way based on its super types and the “contains” relation-
ships that itself or its super types may have. The XML schema produced is also com-
pliant to the semantics of the Object ontology (i.e. there’s mo loss of information) but
the actual syntax slightly differs. Each Biomoby object type is represented by an XML
Schema elementType while the containment properties (e.g. “SequenceString” in the
example of Figure 10) are serialized as XML elements. This arrangement makes
possible to use a more specific data type in place of one of its super types because
“content-wise” they have the same structure (with the possibility of the more specific
type to have more properties, but not less). Figure 14 shows an example of the differ-
ences between the two syntaxes i.e. the Biomoby original data type serialization
compared to the one of the ACGT-Biomoby gateway. Both represent the XML syntax
for a parameter called “param1” of the NucleotideSequence type. It is worth mention-
ing that in the case of the Gateway the same XML fragment can be used for both the
NucleotideSequence and its super type GenericSequence because they have the
same “Length” and “SequenceString” properties.

 Due to the way the mapping of the Object ontology to the XML Schema is performed
the explicit semantic information is lost. For example the Gateway’s XML fragment in
Figure 14 there’s no indication that the “param1” object is a NucleotideSequence.
Nonetheless, this semantic information still exists in the Gateway’s WSDL. Every in-
put parameter and result is annotated with its Biomoby Object type through the
means of Semantic Annotations for WSDL and XML Schema (SAWSDL [20]).

Following the above design decisions the ACGT-Biomoby Gateway presents a Biomoby ser-
vice-specific WSDL and makes the appropriate transformations and mappings between the
two messaging paradigms. For the rest of the ACGT platform each Biomoby service appears
to be a standard Web Service that is also semantically described using the SAWSDL annota-
tions inside the WSDLs. On the other hand, in the Biomoby world, the Gateway presents it-
self a Biomoby compliant client application.

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 27 of 43

Figure 14 Data type serialization in Biomoby and in the ACGT-Biomoby gateway

2.5 BPEL Transformation

In order for the data flows created by the workflow editor to be “enacted” a transformation to
an executable language should be performed. In our case the BPEL workflow enactor is ac-
tually used as a “virtual machine” for the execution of the high level scientific processes de-
signed in the workflow editor but a transformation step to BPEL is required.

It should be noted that this transformation is needed because the Workflow Editor does not
use the BPEL as its native workflow description language. This can be the case in some fu-
ture version of the editor but so far the workflows are persisted in a custom format. The rea-
son for this is mainly simplicity: we don’t explicitly represent all the BPEL structures in the
editor either ways. Instead, additional information about the positioning of the services in the
graph (i.e. the coordinates for the visualization of the workflow) needs to be stored, and this
information has no semantic effect, e.g. to the actual execution of the workflow.

Although the internal format used by the workflow editor for storing the workflow descriptions
is XML-based, the transformation to BPEL presents a lot of challenges. Some of the reasons
for this are the following:

 In the workflow editor a simplified view of the workflow activities is shown. This is re-
quired in order to facilitate the end users when they design their workflows by pre-

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 28 of 43

senting a more coarse-grained and abstract view of the services and activities. In par-
ticular details of the service interface such as complex message exchange patterns
as in the case of “polling” (asynchronous) operations or the passing of the “enactment
id” to the proxy services are hidden. Instead, each node in the process graphs of the
workflow editor represent the high level functionality the users are familiar with, irres-
pective of the low level interface, security, and other characteristics of the services.

 BPEL is mostly an imperative language whereas the process view in the workflow
editor uses by and large a declarative notation. More specifically, the data flows of the
workflow editor need to be mapped to assignments of variables in the BPEL descrip-
tions. Furthermore the BPEL variables need to be correctly initialized and XML speci-
ficities like namespace handling increase the complexity of the mapping.

 The BPEL specification mandates a lot of additional information to be specified like
the proper definition of partners and partner roles, the specification of XPATH ex-
pressions and XSLT mappings for complex handling of XML messages, etc. The XML
basis of BPEL and its focus on the more coarse grained business requirements adds
up verbosity and makes “programming in the small” [6] more difficult. The extension
mechanisms of BPEL can of course ameliorate these “shortcomings” at the cost of
making the produced process descriptions more coupled to a specific BPEL engine
implementation.

The mapping to BPEL and the creation of the BPEL descriptions of our workflow editor's data
flows are performed by the BPEL transformation tool which is a subcomponent of the
workflow editor's back end. This tool is accessible over the network by the editor's client side
and accepts the editor's workflow XML definition and produces a zipped package of all the
necessary files for the process deployment in the Apache ODE12, which is the third party
BPEL enactor used in ACGT.

For each Proxy service there's a unique identification and the configuration of the BPEL
mapping tool includes all the necessary information. In particular each proxy service is de-
scribed by its network end point, whether it requires user proxy (GSI) credentials, etc. Each
service, be it Proxy or not, is a “partner” in the BPEL parlance and its WSDL is either speci-
fied in the input workflow definition of the editor or in the case the Proxy services in the map-
ping tool's configuration. The BPEL transformation tool retrieves these WSDL descriptions,
slightly modifies them to include the partner role(s) specifications, and stores them temporari-
ly for inclusion in the output zip archive in the last step of the transformation process.

The transformation tool leverages the “flow” construct of the BPEL to map the graph repre-
sentation of the editor's workflows to an identical graph in the BPEL description. The use of
the “flow” element has the additional benefit that at runtime, when the final BPEL process is
deployed and enacted, independent activities are executed in parallel. The data f lows be-
tween the execution steps in the input description represent (data) dependencies and there-
fore the corresponding “source” and “target” links are introduced in the BPEL output. Since
BPEL is more control-flow oriented, certain variables are introduced to represent the ex-

changed messages and the data connections between the activities in the input description
are modeled as the assignments of “output” to “input” BPEL variables.

The whole BPEL process is a new web service and therefore a WSDL is also produced with
the appropriate process and client partner roles. The interface of this process/web service is
a simple one, having just one asynchronous operation called “enact”. This operation accepts
the necessary input for the initiation of the underlying process and it's asynchronous because
the process could take a lot of time to finish. In the BPEL process description the very first
activity is a “receive” of the input message of the “enact” operation and the corresponding

12
 http://ode.apache.org

http://ode.apache.org/

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 29 of 43

initialization of the process’ variables. By symmetry, the final activity is the return of the
process results to the initial requester in a “callback” message.

Finally the new BPEL process is deployed in the Apache ODE and made available as a new
web service.

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 30 of 43

3 Metadata for the ACGT data, tools, services and
workflows

Metadata is the crucial component of every large and complex system that abstracts and
captures the essential information of the underlying data independent of their representation-
al details. In ACGT the use of metadata is pervasive: from digital artifacts (data) that are pro-
duced or consumed by tools, to the tools and services themselves, and the high level
processes (workflows) expressing the orchestrated execution of a series of processing tasks.

Metadata are a special type of data that comprises the information that is pertinent to an enti-
ty without being the entity’s “content” per se. Metadata can vary from simple descriptive an-

notations, such as the creator of a file or its last modification time, that provide more context
and explanation about the entity described, to more high level information used for the inter-
pretation of the data, for example the format used, the purpose of the data, or in abstract
terms its meaning. In ACGT we make use of metadata for various artifacts:

 Data sets stored as files and databases

 Services and tools invoked over the network

 Workflows

 Results of workflows and services invocations

Some of these metadata are provided by the users, such as descriptions for their workflows,
while the majority of the metadata are produced by the system itself or entered by the admin-
istrators and the services implementers.

So for the administration and manipulation of the metadata we have defined the following
components in the ACGT architecture:

 Metadata Repository and its access services, which is currently used for storing me-
tadata about services, workflows, R scripts, mediator queries, and command line
tools.

 Grid Data Management services, used for the management of users’ data files.

 Workflow Repository, in the premises of the ACGT Workflow Environment, with
enactment and provenance information

So there’s a clear separation about the storage of metadata:

 For the file related metadata the DMS is to be used. This means that data uploaded
by the users or produced by the enactments of their workflows are annotated with
metadata which are persisted by the DMS

 For the “active” content, i.e. services and workflows, the Metadata Repository is used
both as a registry and a “yellow page” directory. The service related metadata there-
fore are stored in the Metadata Repository.

 Provenance information i.e. what was produced by whom and from what input is
stored in the Workflow repository.

This separation of the service, data, and provenance related metadata was decided because
the data which the users are in control for are stored in the DMS anyways and therefore it’s
better for consistency reasons to have a single database to store both the data and their me-
tadata. Finally the workflow repository is somewhat in the middle of the two other repositories
in the sense that it relates the service and workflow static information, which persists in the
metadata repository, with their results, which are stored in the Grid data management facili-
ties, through the means of the enactment information, which is dynamic in nature, that is

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 31 of 43

maintained in the workflow repository. Linking and correlation between these repositories is
achieved by the means of the unique identifiers supported by each repository.

3.1 Metadata for Data
File related metadata is the key component to integrate the data in ACGT. In the ACGT envi-
ronment, file related metadata consists basically of the following attributes describing the file
in different ways:

 Identification. Each of the data file stored in DMS is identified by a unique number.

 MIME type. This provides the generic file format, e.g. zip file, text, etc [8].

 Datatype, which gives the semantic type of the content of the file. The value range of
this element is the datatype ontology managed in the metadata repository (see para-
graph 3.2.3 on page 34).

 Owner – this attribute contains security-related information, e.g. information on the
owner of the file., i.e. its X.509 distinguished name (DN) such as

“/C=EU/O=ACGT/OU=DemoOrganisation one/CN=Jane Doe”

 Description – this attribute contains a textual description of the data

 Provenance – this attribute contains information on how the file was generated, e.g.
by which workflow or service.

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 32 of 43

3.2 Metadata for Tools and Services

A well-defined metadata schema is essential to enable tool providers to publish metadata
descriptions for their tools and for clients to find (discover) tool based on metadata. The
scope of the ACGT metadata repository is tools and their operations (specific functions of a
tool), data-types and functional categories. In the following subsections, only the main con-
cepts of the schema are described as this was previously described in D6.3.

3.2.1 Tools

A Tool represents a grouping of software components which can be used to solve a specific
problem. A Tool acts as a container of operations with closely related functionality. An opera-
tion is a software sub-component that solves a specific task and could have several parame-
ters; either input or output as well as for service customization (optional input parameters).
Each I/O parameter is associated with a specific data type.

The metadata for tools include the author and authority (organization of the author). Each
tool and operation can be associated with human-readable descriptions (long and short ver-
sions). The short description is intended for quick browsing and the longer version is in-
tended for users that wish to more carefully study tool/operation documentation.

The tool metadata also specifies the underlying protocol. Currently several types of tools are
supported: traditional SOAP services [5], BioMOBY [25], BPEL workflows and secure ACGT
services. Currently, there are at least two special types of such secure services; based on R-
scripts [22] and command lines [10].

SOAP-based web-services can include their WSDL descriptions when publishing. The WSDL
contains specifications about data format and information needed for the client to bind to the
service (such as the protocol specifics and endpoint). For BioMOBY web-services, WSDL is
not used to specify the format of the data. In this case, the data type metadata is used to in-
fer the exact format according to the BioMOBY specification.

Workflows are viewed as abstract tools (“black boxes”) which require inputs and produce
outputs. Potential workflow metadata is an image representing the workflow and definition (in
BPEL format).

For ACGT services based on command line execution, the schema includes the command to
execute (path). R-based ACGT services include the R-script which is retrieved by the service
and executed on the GRID.

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 33 of 43

Figure 15 The Tool related metadata schema

3.2.2 Data types

The data type metadata defines a shared taxonomy of data types. This enables tool compo-
sition (combination). The taxonomy follows the object oriented paradigm where data types
are related to other data types. Data types can inherit parts from another data type and add
additional structure. They may include (contain) or be arrays of other data types. The inter-
pretation of such relations between data types is domain specific for the service type. For
example, BioMOBY web services would interpret these relations as directly specifying the
data format. For generic SOAP services, these tables would only be used to specify a hie-
rarchy of data types without any assumptions of the data formats (which are specified in the
WSDL descriptions).

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 34 of 43

Figure 16 The Data Type related metadata schema

3.2.3 Datatype ontology

Rather than starting from scratch, ACGT has adopted the datatype ontology from the Span-
ish National Institute for Bioinformatics (based on BioMOBY) where many important data-
types in bioinformatics are already included, such as sequences and phylogenic trees. In
some cases, it has been necessary to extend the BioMOBY datatype ontology with some
ACGT specific additions:

 DMSFileID – this datatype represents identifiers of files in the DMS data repository
[17].

 MicroarrayDerivedData: data-type that uniforms all gene expression raw data formats
(Genepix, arraypro, etc.) keeping the following information for a raw o pre-processed
gene (when available). This datatype is used for CLP services [6] based on PreP+07
[11]. Data of this datatype contains the following attributes:

o Control Signal

o Control Background

o Target Signal

o Target Background

o LogRatio

o LogIntensity

o X position

o Y Position

o Block (Grid)

o BlockX

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 35 of 43

o BlockY

 GeneExpressionMatrix: File contains gene expression data derived from a collection
of MicroarrayDerivedData files or cell files. Information is represented as a matrix,
where each row corresponds to gene info (in different experiments) and each column
represents values from each experiment. Additionally, we can add metadata per gene
(row) or per experiment (column).

 Cluster: File contains a data (vectors) classification for matrix gene expression. It
does not contain the original data, but their references.

3.2.4 Functional descriptions

Tools can be associated with one or more functional category. A functional category is a
keyword that describes the general function of the tool. The functional categories can be re-
lated to other functional categories to create a taxonomy of keywords. Since the keywords
are arranged in a hierarchical structure, this makes it possible for clients to discover tools
that are annotated with a more generic functional keyword and all inheriting keywords. For
example, if the functional category taxonomy consists of the keyword “clustering” and two
sub-keywords inheriting from clustering “hierarchical clustering” and “k-means clustering”,
searching for a tool with annotation “clustering” would return also tools that are annotated
with “hierarchical clustering” and “k-means clustering”.

Functional category ontology

We have adopted the service type ontology from the Spanish National Institute for Bioinfor-
matics with some ACGT specific expansions related to Gene Expression (GE) and Microar-
ray data:

 GE Data Management – Procedures related to transformations of GE data (matrixes, re-
ductions, transposing) and data management (uploading, downloading, etc.)

 Microarray PreProcessing

o GE Matrix Preprocessing – Procedures for adjusting, filtering, filling, transposing
and transforming original data sets and preparing them for clustering procedures

o GE Data Normalization – One notable procedure in this functional category is
Quantile based normalization which is well adapted to process large gene ex-
pression datasets, and has been implemented to run in multiprocessors. Other
simpler methods can be also applied, like logarithms, standard deviations, etc.

o GE Plots – Procedures for plots (intensity-intensity, density etc).

 Microarray PostProcessing

o Clustering – Procedures for clustering (hierarchical, k-means, fuzzy methods,
etc.)

o Projection Methods – Procedures for projection (PCA and non-linear techniques
like Sammon mapping and Self-Organizing Maps)

o Statistical Analysis – Currently containing two methods to create histograms with
the data distance distribution.

Service discovery

The service discovery in ACGT is based on Magallanes [18]. It permits users to search for
data types and services using a scoring system based on the number of occurrences and
relative word positions of matching hits.

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 36 of 43

The algorithm initially searches for words similar to the keywords in the service and data type
metadata. The similarity threshold can adjusted. If no hits are found, it becomes necessary to
fall back on approximate expression matching. There are two widely used approaches for
approximate expression matching: the Hamming distance [12] which compares strings of the
same length and the Levenshtein distance [13], which compares two strings not necessarily
having the same length, measuring by the minimum number of insertions, deletions, and
substitutions of characters required to transform one string into another. Levenshtein dis-
tance is also known as the matching with k differences or errors. If the search does not gen-
erate hits, the system suggests alternative search terms (“did you mean…?”). These plaus i-
ble alternatives to the user’s query are obtained by computing the Levenshtein distance au-
tomatically (and letting the user influence the suggestions) to identify words similar to each
keyword, and to estimate the distance using multiple keywords.

Magallanes uses a feedback mechanism to continually learn and refine its discovery capabili-
ties. The feedback values record user selections of resources associated with specific key-
words. This value is adjusted when the user selects another resource using the same key-
word.

3.3 Metadata for Workflows
The ACGT scientific workflows are digital entities of their own and therefore metadata are
also needed in order to describe their origin, functionality, etc. Before delving into the details
about the workflow annotation in Figure 17 we show the “workflow lifecycle” that is supported
in the ACGT platform. It is important to emphasize the following:

 By default each workflow originates as private in its author’s storage area: no one
else but its original author and creator is able to view and edit it.

 Due to the way BPEL is designed each edit of the workflow in the Editor does not re-
sult in a version of it that is immediately executable. In order for some version of the
workflow to become “ready to run”, a “Deployment” (in the BPEL Enactor) must be
performed. This means that the abstract representation of the workflow in the ACGT
Workflow Editor must be transformed to BPEL and registered with the Enactor. The
details of the BPEL transformation are given in Section 2.5.

 Each new version of a workflow in the Editor overwrites the previous, i.e. only the
most recent version is kept. The same is also true for the executable versions. It can
therefore be the case that the two versions, the BPEL executable one and the other
that is the editable in the Editor, become “out of synch” with each other.

 After the deployment the workflow (actually its BPEL version) can be executed but it’s
still private. If the user wants to share it with the community then a publication step is
necessary during which the workflow is registered in the Metadata Repository as a
new service.

 After the publication the workflow is available to all legitimate ACGT users for execu-
tion but the downside is that it’s not editable anymore. Nevertheless any user can see
it and save a copy of this that can be edited. The new copy is again private and the
whole edit/deploy/publish circle can be repeated by the author of the original workflow
or any other ACGT user.

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 37 of 43

Figure 17 The workflow lifecycle

Based on this lifecycle there are different types of workflow metadata. During the whole cycle
the basic set of metadata used for workflows follow the Dublin Core Metadata Element Set
[7] which has been standardized as ISO Standard 15836:2009. In particular we use:

 Title, the actual name of the workflow given by the user who created it

 Creator, the identification for the user who authored the workflow. This identification is

based on the ACGT user certificate, i.e. it’s his X.509 Distinguished Name (DN).

 Date, the UTC date (and time) in the ISO 8601 format, of the workflow’s last modifica-
tion. Furthermore, the initial creation data and time in kept through the Created meta-
data element.

 Description, a free text specification of what the workflow does or any other descrip-

tion given by the user.

 Subject, the list of the keywords (“tags”) given by the user that possibly describe the
“topic” of the workflow. There’s no constraint on the what these keywords can be, e.g.
drawn from a controlled vocabulary. The user is allowed to use whatever words or
phrases he/she can come up with. Please refer to paragraph 3.3.1 below for the ra-
tionale for using tags.

 Source, the identifier of the original workflow that the described one was derived

from. This metadata element is filled in when a new copy of a workflow is saved: the
newly created workflow references back the copied workflow. This way a “pedigree”
chain of workflows can be created where each one is based (in whole or in part) to
another. Of course if a workflow is created from scratch then there’s no “source” me-
tadata element attached to it.

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 38 of 43

This set of elements is absolutely minimal for providing descriptive metadata of the users’
workflows. More technical metadata are supported when a workflow is deployed in the enac-
tor, i.e. when it has been transformed to BPEL (Section 2.5) and can be executed. These
metadata elements include:

 The Date when the actual “deployment” took place, so that the system is able to iden-

tify cases where the deployed BPEL version of the workflow does not agree (i.e. it’s
older) with the most recent version that the user edited in the workflow editor

 The Endpoint where the BPEL workflow is accessible from. According to the BPEL

specification a newly deployed workflow is a Web Service that can be sent requests
in order to start execution and therefore this HTTP based endpoint is its entry point
that triggers its enactment.

After the registration the workflow becomes a new service/tool, it is registered in the Metada-
ta repository and therefore all the metadata information that is applicable for common servic-
es and tools, such as the functional category, semantic information about input and output
parameters, etc. are also used.

3.3.1 Why “Tagging”?

A quite popular way of classifying content in Web 2.0 web sites is through “tagging”. A tag is
a keyword which acts like a subject or category. The user is allowed to attach whatever key-
words she wants to identifiable content such as links in the case of social bookmarking, or
videos and photographs in the case of digital content sharing. The important thing is that tags
can be shared, used in searches, or recommended based on the choices of other users for
the same content. The new term “folksonomy”, as a fusion of the words “folks” and “taxono-
my”, has been suggested to describe this method of classifying content through tags that are
collaboratively generated and shared. Of course these “poor man’s” classification schemes
are informal in nature, could contain duplication in meaning, or be simply erroneous but
again they are contributed by the users and the more people contributing the more robust
and stable these “folksonomies” become. A self adapting and auto regulating method is
usually followed through the use of tag clouds (Figure 18). In simple terms a tag cloud is a
visual representation of a user’s tags where each tag is weighted based on the user prefe-
rences and how many times he has used the tag. Through such an approach “good” tags are
likely to prevail assuming that the user participation is high.

In the ACGT Workflow Environment the tags are not shared among the users. For example
there’s no possibility for one user to see another user’s tags. This isolation was again influ-
enced by the security restrictions imposed by the ACGT architecture.

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 39 of 43

Figure 18. A tag “cloud”

3.3.2 Workflow Provenance

Provenance is important information gathered during the execution of a scientific workflow
that ensures the reproducibility of the analyses performed [21]:

Metadata in the form of provenance information records the how, where, what, when,
why, which, and by whom of data generated in a scientific experiment. Scientists can
manually record provenance information, or software tools can automatically generate it.
Scientists traditionally use provenance information, along with (implicit) domain exper-
tise, to interpret and evaluate data accurately. Provenance information also lets re-
searchers verify and validate experimental procedures. [19]

In the ACGT Workflow Environment the Open Provenance Model13 is used as the underlying
ontology for recording and inferring the provenance information. The Open Provenance
Model (OPM) defines the following entities (or “Nodes” as they say in the provenance graph):

 Artifact: Immutable piece of state, which may have a physical embodiment in a physi-

cal object, or a digital representation in a computer system.

 Process: Action or series of actions performed on or caused by artifacts, and resulting

in new artifacts.

 Agent: Contextual entity acting as a catalyst of a process, enabling, facilitating, con-

trolling, or affecting its execution.

13
 http://openprovenance.org/

http://openprovenance.org/

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 40 of 43

The basic relationships between these entities are depicted in Figure 19. The artifacts are
shown with circles, the Processes with rectangular shapes, and the Agents with octagons.

Figure 19 The major entities of OPM and their relationships

For the ACGT Workflow Environment the data files persisted in the Grid Data Management
System (DMS) are the sole Artifacts. These files are immutable, although the immutability is
not enforced by the system but rather it is a convention followed by the majority of the ACGT
services. The DMS files are used as parameters or created as output in the services’ invoca-
tions. The ACGT services therefore are modeled as Processes and the same is also true for
the workflows themselves. In our provenance graphs the user is modeled as the Agent that
originates and monitors the execution of the workflow. The causal relationships used in the
ACGT workflow provenance graphs are:

 Used. This relationship binds together a Process (i.e. a service or workflow invoca-

tion) to its input data file(s).

 WasGeneratedBy. This is used to connect the output data files of Process with the

Process itself.

 WasControlledBy. This relates the user (Agent) to the workflow (Process) enacted.

 WasTriggeredBy.This relationship connects the (source) Process that represents the

service execution in the context of a workflow to the (target) Process that represents

the same workflow enactment. Normally this type of relationship between the

workflow and its constituent services is a kind of containment or membership but un-

fortunately the Open Provenance Model lacks any such notion. Therefore the Wa-

sTriggeredBy relationship seems to be a not identical but yet similar in meaning

property, in the sense that it is compliant with the semantics that the run completion

of the workflow required the execution of its participating services.

Implementation

The proxy services infrastructure described in Section 2.4 is used for the unobtrusive genera-
tion of provenance data. The proxy services work as interceptors of the requests to the
ACGT services and therefore they have access to the data used and produced during the

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 41 of 43

execution of the ACGT tool. Therefore they are perfect tools for the job and so far the proxies
for GridR scripts and Semantic Mediator queries have been enhanced to persist the prove-
nance information in a specific database that is part of the Workflow Environment.

Each wholly or partially successful enactment of a workflow results in the generation of a
provenance graph. The unique enactment id therefore is used to also identify this prove-
nance graph. In these graphs all the service executions of the proxies that support the gen-
eration of provenance information are recorded as Processes with their causal relationships
and the DMS files are represented as Artifacts that were either consumed or produced by the
services. The workflow itself is represented as a Process that triggered the execution of the
participating services, as described above.

The OPM, in agreement with the Semantic Web, requires the use of Unique identifiers for the
identification of the entities participating in a provenance graph and for the graph itself. The
provenance component of the ACGT Workflow Environment uses HTTP and HTTPS URIs to
identify the Artifacts and Processes to provide identification, retrieval, and linking facilities for
constructing a web of data and metadata in accordance with the Semantic Web vision. The
agents (users) are identified by their unique X.509 DN.

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 42 of 43

References

[1] M. Antonioletti, M. Atkinson, R. Baxter, A. Borley, N. Hong, B. Collins, N. Hardman, A.
Hume, A. Knox, M. Jackson et al., “The design and implementation of Grid database
services in OGSA-DAI,” Concurrency and Computation: Practice & Experience, vol.
17, no. 2, pp. 357–376, 2005.

[2] A. Arkin, S. Askary, B. Bloch, I. Francisco Curbera, B. Yaron Goland, N. Kartha, S.
Commerce, and O. Alex Yiu, “Web Services Business Process Execution Language
Version 2.0.” [Online]. Available: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-
v2.0-OS.html

[3] A. Barker and J. van Hemert, “Scientific Workflow: A Survey and Research Direc-
tions,” LECTURE NOTES IN COMPUTER SCIENCE, vol. 4967, p. 746, 2008.

[4] B. Claerhout, N. Forgó, T. Krügel, M. Arning, and G. De Moor, “A Data Protection
Framework for Transeuropean genetic research projects.” Studies in health technolo-
gy and informatics, vol. 141, p. 67, 2008.

[5] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana. Unrave-
ling the web services web: An introduction to SOAP, WSDL, and UDDI. IEEE Internet
Computing, 6(2):86-93, 2002.

[6] F. DeRemer and H. Kron, “Programming-in-the large versus programming-in-the-
small,” ACM SIGPLAN Notices, vol. 10, no. 6, pp. 114–121, 1975.

[7] Dublin Core Metadata Initiative. Dublin core metadata terms.
http://dublincore.org/documents/dcmi-terms/, Last accessed: August 2010

[8] Freed, N. and Borenstein, N. Multipurpose internet mail extensions (MIME) part two:
Media types, RFC 2046, November 1996

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of
reusable object-oriented software, Addison-Wesley Reading, MA, ISBN: 0201633612,
1995

[10] M. Garcia, J. Karlsson, and O. Trelles: Web service catalogue for Biomedical GRID
infrastructure, Studies in health technology and informatics, 2010, 159: 76-87

[11] Antoon Goderis, David De Roure, Carole Goble, Jiten Bhagat, Don Cruickshank, Paul
Fisher, Danius Michaelides, and Franck Tanoh. Discovering scientific workflows: The
myExperiment benchmarks. IEEE Transactions on Automation Science and Engineer-
ing, April 2008.

[12] RW. Hamming: Error detecting and error correcting codes. The Bell System Technical
Journal 1950, 29(2):147-160.

[13] V. Levenshtein: Binary codes capable of correcting deletions, insertions and rever-
sals. Soviet Physsics-Doklady 1966, 10(8):707-710. Original in Russian in Doklady
Akademii Nauk SSSR (1965) 163(4):845-848.

[14] P. Lord, P. Alper, C. Wroe, and C. Goble. Feta: A light-weight architecture for user
oriented semantic service discovery. The Semantic Web: Research and Applications,
pages 17-31, 2005.

[15] V. Martin-Requena, et al: PreP+07: improvements of a user friendly tool to prepro-
cess and analyse microarray data; BMC Bioinformatics 10(16), 2009.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://dublincore.org/documents/dcmi-terms/

ACGT D9.5 & 9.6 – Report on the Final ACGT Workflow Environment and specifications of meta-data

01/09/2010 Page 43 of 43

[16] L. Philips. The double metaphone search algorithm. C/C++ Users Journal, 18(6):43,
2000.

[17] J. Pukacki, et al: Programming Grid Applications with Gridge. Computational Me-
thods in Science and Technology; 12(1), 47-68, 2006

[18] J. Ríos, J. Karlsson, and O. Trelles. Magallanes: a web services discovery and auto-
matic workflow composition tool. BMC Bioinformatics (2009) 10:334.

[19] S. S. Sahoo, A. Sheth, and C. Henson, "Semantic Provenance for eScience: Manag-
ing the Deluge of Scientific Data", IEEE Internet Computing, vol. 12, no. 4, 2008, pp.
46-54

[20] Semantic Annotations for WSDL and XML Schema, W3C Recommendation 28 Au-
gust 2007, http://www.w3.org/TR/sawsdl/

[21] Y. Simmhan, B. Plale, D. Gannon, A survey of data provenance in e-science,
SIGMOD Record 34 (3) (2005) 31-36

[22] D. Wegener, T. Sengstag, S. Sfakianakis, S. Ruping, and A. Assi, “GridR: An R-
Based Grid-Enabled Tool for Data Analysis in ACGT Clinico-Genomics Trials,” in e-
Science and Grid Computing, IEEE International Conference on, 2007, pp. 228–235.

[23] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kessel-
man, S. Meder, L. Pearlman, and S. Tuecke, “Security for Grid services,” in High Per-
formance Distributed Computing, 2003. Proceedings. 12th IEEE International Sympo-
sium on, 2003, pp. 48–57.

[24] M.D. Wilkinson and M. Links. BioMOBY: An open source biological web services pro-
posal. Briefings in Bioinformatics, 3(4):331-341, 2002.

[25] Wilkinson M.D. et. al Interoperability with Moby 1.0 - it's better than sharing your
toothbrush!, Brief Bioinform. 2008 May;9(3):220-231

[26] K. Wolstencroft, P. Alper, D. Hull, C. Wroe, PW Lord, RD Stevens, and CA Goble.
The myGrid ontology: bioinformatics service discovery. International journal of bioin-
formatics research and applications, 3(3):303-325, 2007.

[27] K. Zyp, A JSON Media Type for Describing the Structure and Meaning of JSON Doc-
uments, Internet-Draft, March 23, 2010. Available at http://tools.ietf.org/html/draft-zyp-
json-schema

http://www.w3.org/TR/sawsdl/
http://tools.ietf.org/html/draft-zyp-json-schema
http://tools.ietf.org/html/draft-zyp-json-schema

