

Semantic Integration in ACGT

Project Number: FP6-2005-IST-026996

Deliverable id: D 9.4

Deliverable name: Semantic Integration in ACGT

Date: April 6, 2009

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 2 of 34

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: ACGT

Project Full Name: Advancing Clinico-Genomic Clinical Trials on Cancer:
Open Grid Services for improving Medical Knowledge Dis-
covery

Document id: D 9.4

Document name: Semantic Integration in ACGT

Document type (PU, INT, RE) INT

Version: 1.0

Date: 6/4/2009

Editors:
Organisation:
Address:

Stelios Sfakianakis
FORTH-ICS
Foundation for Research and Technology-Hellas (FORTH)
Institute of Computer Science
N. Plastira 100, Vassilika Vouton,
GR-700 13 Heraklion, Crete, Greece

Document type PU = public, INT = internal, RE = restricted

ABSTRACT:

This document aims to describe the ACGT infrastructure aiming at achieving semantic
interoperability among the services and tools. We present existing standards and investi-
gate their applicability in the context of the ACGT platform. Emphasis is particularly given
on what appear to be the practical needs of the ACGT users rather than to generic but
more costly solutions. For that reason we present the BioMOBY services and relevant
ontologies both as the main source providing semantic information about domain specific
data types and as a case study for the semantics enabled service discovery and workflow
construction. We finally define a generic semantic service integration architectural frame-
work using standard Semantic Web technologies, standards, and tools. Such a frame-
work provides the semantic integration of not only ACGT services but also other third
party services like BioMOBY.

KEYWORD LIST: semantics; web services; semantic interoperability; integration

MODIFICATION CONTROL

Version Date Status Author

0.1 15/03/2009 Draft Stelios Sfakianakis

0.2 2/4/2009 Draft Stelios Sfakianakis

0.5 6/4/2009 Pre-Final Stelios Sfakianakis

1.0 6/4/2009 Final Stelios Sfakianakis

List of Contributors

 Stelios Sfakianakis, FORTH-ICS

 Lefteris Koumakis, FORTH-ICS

 Manolis Tsiknakis, FORTH-ICS

 Stefan Rueping, FhG

 Thierry Sengstag, SIB

 Johan Karlsson, UMA

 Oswaldo Trelles, UMA

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 4 of 34

Contents

LIST OF CONTRIBUTORS ... 3

ACRONYMS .. 6

EXECUTIVE SUMMARY ... 7

1 INTRODUCTION ... 8

2 AN “EXPRESS COURSE” IN THE SEMANTIC WEB ... 11

3 SEMANTIC WEB SERVICES: TECHNOLOGIES AND STANDARDS 13

3.1 WSMO: WEB SERVICES MODELING ONTOLOGY .. 14
3.2 OWL-S: OWL FOR SERVICES .. 16
3.3 SEMANTIC ANNOTATIONS FOR WSDL ... 17
3.4 BIOMOBY OBJECT AND SERVICE ONTOLOGIES ... 19
3.5 SERVICE SEMANTICS IN ACGT ... 21

4 A SEMANTIC FRAMEWORK FOR THE ACGT SERVICES AND TOOLS 24

4.1 METADATA REPOSITORY .. 25
4.2 BIOMOBY SERVICE REGISTRY ... 26
4.3 REASONING AND INFERENCE ... 28
4.4 MAGALLANES: A TOOL FOR AUTOMATIC WORKFLOW CREATION ... 29

5 CONCLUSIONS .. 32

REFERENCES .. 33

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 5 of 34

Table of Figures

Figure 1 The ACGT Architecture ... 8

Figure 2 The Semantic Web stack of technologies ...11

Figure 3 RDF Data Model ...12

Figure 4 Web Service interaction “protocol” ..13

Figure 5 “Stack" of technologies for Semantic Web Services ...14

Figure 6 Web Services Modeling Ontology ...15

Figure 7 The top level of the OWL-S ontology ..16

Figure 8 The OWL-S Service Profile ontology ..17

Figure 9 The Semantic Annotations for WSDL ...18

Figure 10 Moby Object Ontology ..20

Figure 11 Sample of BioMOBY object ontology. ...20

Figure 12 Part of the BioMOBY Service Ontology as shown in the ACGT Workflow Editor ..21

Figure 13 The Semantic Integration Framework ...24

Figure 14 The ACGT Metadata Repository schema ...25

Figure 15 The D2R Server architecture ..26

Figure 16 myGrid-Moby Ontology ...27

Figure 17 Magallanes client tool ...30

Figure 18 The ACGT workflow editor ..32

file:///C:\Documents%20and%20Settings\ssfak\���������%20��������\D9.4\ACGT_D9.4_v05.doc%23_Toc226849459
file:///C:\Documents%20and%20Settings\ssfak\���������%20��������\D9.4\ACGT_D9.4_v05.doc%23_Toc226849462

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 6 of 34

Acronyms
API Application Programming Interface

BPEL Business Process Executable Language

CA Certification Authority

DMS Data Management Service

GUI Graphical User Interface

HTML Hyper Text Markup Language

N3 Notation 3 serialization format for RDF

OWL Web Ontology Language

OWL-S OWL for Services

OWL-DL OWL Description Language

RDF Resource Description Framework

RDFS RDF Schema

SAWSDL Semantic Annotations for WSDL

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language

URI Uniform Resource Identifier

WS Web Services

WSDL Web Service Description Language

WSMO Web Services Modeling Ontology

WSMF Web Services Modeling Framework

XHTML Extensible Hyper Text Markup Language

XML Extensible Markup Language

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 7 of 34

Executive Summary
The ACGT environment provides a unified architecture where data, processing and visuali-
zation tools, and knowledge discovery services cooperate in order to fulfil the end user goals
and scenarios. The Workflow Environment in particular is a central suite of components
where such cooperation is tested and validated every time the users try to build novel scien-
tific workflows and relevant experiments. The concept of service interoperability and espe-
cially the kind of it that relates to semantics is therefore of utmost importance so that the in-
tegration of the different ACGT software actors that participate in the complex user work-
flows is feasible. In this deliverable we focus on the semantics integration of the ACGT ser-
vices, which aims to ease the construction of meaningful workflows, i.e. workflows that not
only execute successfully but also function and produce results that make sense according
to the underlying domain knowledge of the users.

To achieve this goal, Semantic Web technologies are the prominent tools, given not only
their current endorsement and support by standardization bodies like W3C but also their
sound theoretical foundations and their inherent compliance with the universal Web infra-
structure. This document therefore provides details for the design of a Semantic Web com-
pliant infrastructure that caters for the ACGT specific semantic annotation, discovery, and
orchestration of services and tools. To a large extent previous results and deliverables such
as the Metadata Repository and the Workflow Environment are part of this infrastructure and
for that reason the current document aims to provide a consolidated view of the ACGT ser-
vice oriented architecture, with special focus on the semantics, and to fill in any missing
pieces.

A particular objective of this work is to offer links to existing standards and to investigate their
applicability in the context of the ACGT platform. Nevertheless, the abundance of the avail-
able information in the field in terms of the specifications and the relevant efforts led us to
consider a more limited set of them that appear to be “state of the art” and more close to
standardization. An additional important factor is the emphasis on what appear to be the
practical needs of the ACGT users rather than to generic but more costly solutions. For that
reason we present the BioMOBY services and relevant ontologies both as the main source
providing semantic information about domain specific data types and as a case study for the
semantics enabled service discovery and workflow construction.

The main outcome of this work is the definition of a generic semantic service integration ar-
chitectural framework using standard Semantic Web technologies, standards, and tools.
Such a framework provides the semantic integration of not only ACGT services but also
other third party services like BioMOBY.

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 8 of 34

1 Introduction
The ACGT platform aims to facilitate the seamless and secure access and analysis of multi-
level clinico-genomic data using high-performing knowledge discovery operations and ser-
vices. In order to achieve this goal, a well defined data analysis and processing environment
needs to be in place, which would make possible the integration and interoperability of the
different ACGT components. The goal of the integration process is to make disparate and
heterogeneous applications work together so as to produce a unified set of functionality,
possibly by complementing each other. Whereas integration is concerned with the building of
a unified system that incorporates the functionality of its constituent parts, interoperability is
more a virtue of a single software entity so that it can be easily deployed in an unanticipated
environment. Therefore defining interoperability guidelines is a prerequisite for building the
ACGT integrated environment.

In ACGT two notions of interoperability have been specified (see Deliverable 9.1): the syn-
tactic and semantic interoperability. Syntactic interoperability of software may be defined as
the ability for multiple software components to interact regardless of their implementation
programming language or hardware platform. Syntactic interoperability in ACGT requires
standardization of data formats and data structures for the representation of, access to and
exchange between biomedical informatics resources. On the other hand, semantic interop-
erability is related to the “meaning” of the exchanged information and it is the ability of two or
more interacting computer systems to have the meaning of that information accurately and
automatically interpreted and “understood”. To achieve syntactic interoperability program-
ming and messaging interfaces must conform to standards that specify consistent syntax and
format across all systems in the ACGT environment. Furthermore, in order to support the
semantic interoperability, all data must be annotated with metadata by means of terminology
and ontology identifiers and codes that support aggregation, comparison, summarization,
mining, etc. of information that resides in separate resources.

The complexity and the diversity of user requirements have a strong impact on the design of
the ACGT architecture. This architecture has been early defined as “service oriented”. In a
service oriented environment the service is the central entity. When we use the term service
in this context we mean a software component that is capable of performing certain tasks for
other services or the principal human user. A web service in particular is a software entity
that is accessed through the ubiquitous web infrastructure and its related protocols and ma-
chine readable formats like XML. The adopted architecture for ACGT is therefore built

Figure 1 The ACGT Architecture

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 9 of 34

around the notion of services and a view of it is shown in Figure 1. A layered approach has
been followed for providing different levels of abstraction and a classification of functionality
into groups of homologous software entities. In this approach we consider the security ser-
vices and components to be pervasive throughout ACGT so as to provide both for the user
management, access rights management and enforcement, and trust bindings that are facili-
tated by the grid and domain specific security requirements like pseudonymization. Apart
from the security requirements, the grid infrastructure and other services are located in the
first (lowest) two layers: the Common Grid Layer and the Advanced Grid Middleware Layer.
The upper layer is where the user access services, such as the portal and the visualization
tools, reside. Finally, the Bioinformatics and Knowledge Discovery Services are the “work-
horse” of ACGT and the corresponding layer is where the majority of ACGT specific services
lie.

For the realization of this architecture a multidisciplinary and multi paradigm approach has
been followed. The ACGT platform is designed according to the following technologies and
standards: Service Oriented Architecture (Web Services), the Grid, and the Semantic Web.
In particular, Grid and Web Services technologies are the basis for defining the syntax and
structure of the exchanged messages to achieve syntactic interoperability:

 The machine to machine communication is performed via XML programmatic inter-
faces over web transport protocols (SOAP), which are specified using the Web Ser-
vice Definition Language (WSDL). These common data representation and service
specification formats, when properly deployed, make the syntactic integration of the
ACGT components a lot easier.

 The Grid defines the general security framework, the virtual organization abstraction,
the user management mechanisms, authorization definition and enforcement etc. It
also provides the computational and data storage infrastructure that is required for
the management and processing of large clinical and genomic data sets.

On the other hand, the Semantic Web provides the infrastructure for the semantic interop-
erability: it adds the knowledge representation mechanisms by the means of RDF Schemas
and OWL ontologies, the unique identification of concepts and resources through the URIs,
the implementation-neutral query facilities with the SPARQL “universal” query language and
the associated query interfaces, etc. It is the aim of this deliverable to support the use of
such technologies in the ACGT platform for providing more user friendly, intelligent and ad-
vanced system behaviour.

The need for semantics and the deployment of Semantic Web compliant technologies are
guided by specific user requirements. It is usual the case that, when using services, scien-
tists need to:

 Find them, i.e. locate them irrespective of their location or providing (hosting) organi-
zation

 Interpret them – what do the services do or provide, what kind of “experiments” the
end users can perform by using them

 Know how to invoke them – what data and initial parameters do they need to supply

 Know their behaviour – how they should be invoked (choreography) or being com-
posed (orchestration) to achieve a higher level goal or scenario.

To this end semantic web services enable automation and greatly facilitate:

 Service Selection and Invocation

 Translation of messages and Mediation between different services

 Service Composition

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 10 of 34

 Monitoring and Recovery

 Contracting, Negotiation, verification, simulation, etc.

In this document we have selected the service discovery, selection, and “matchmaking” as
the primary use cases where semantics descriptions for services fit in. All of these are ad-
vanced features of a modern problem solving environment such as the Workflow Editor and
Enactment environment that the ACGT, and in particular work package 9, aims to deliver.

The rest of the document gives some background information about the Semantic Web stack
of technologies in Section 2, and then proceeds to survey some of the proposed standards
and technologies for the semantic annotation and discovery of services. The last part of the
document presents the definition of a generic semantic service integration architectural
framework using standard Semantic Web technologies, standards, and tools. Such a frame-
work provides the semantic integration of not only ACGT services but also other third party
services like BioMOBY.

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 11 of 34

2 An “express course” in the Semantic Web
The Semantic Web (Berners-Lee et al., 2001) aims to support the representation and ex-
change of information in a meaningful way so as to make possible the automated processing
of descriptions on the Web. The objective is to enrich the unstructured information in the cur-
rent Web with machine processable descriptions of the semantics in order to make its navi-
gation and exploration by software agents as easy as it‟s for the human users today, or even
easier. In this context Semantic Web promotes a shift from the current “syntactic” world to
the future “semantic” world of services, applications, and people and aims to make the ma-
chine to machine communication feasible so that not only data but also information and fi-
nally knowledge are shared.

In technological terms the Semantic Web architecture consists of an array of technologies
that can roughly be visualized in a layered design layout as depicted in Figure 2. The basic
infrastructure in the bottom layers in this stack of technologies is the exactly the same to the
syntactic web: Uniform Resource Identifiers (URIs) used for identification of web resources,
universal encoding schemes for characters, i.e. Unicode, and XML and its related technolo-
gies (e.g. XML Namespaces) as a ubiquitous data serialization format. Some of the upper
layers like Proof and Trust are missing or are work in progress. Here we will concentrate on
the middle layers where the core infrastructure technologies of the Semantic Web reside:
RDF, RDF Schema/OWL, and SPARQL.

The Resource Description Framework (RDF) is a syntax neutral data model that enables the
description of web resources in a simple way (Lassila, Swick, et al., 1999). At the core of
RDF there is a model for representing and describing resources through named properties
(also known as predicates) and their values. The resources can be anything that can be
identified with a URI. Although in the initial specification of RDF resources were limited to
web documents and web sites, it is possible and quite frequent in practice to describe, by the
means of RDF and the various URI schemes, real world entities like people, or more abstract
things like relationships and concepts. The use of use of URIs and especially the HTTP
based ones for identifying persons or other physical entities may seem strange at first but
this is in compliance with the architecture of the World Wide Web (Berners-Lee et al., n.d.)
which strongly suggests the use of URIs for identifying anything that can be of importance
irrespective of how abstract or tangible it may be.

The properties serve both to represent attributes of resources and to represent relationships
between resources. They are also identified though URIs to make them unique. The combi-

Figure 2 The Semantic Web stack of technologies

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 12 of 34

nation of resources and the properties that connect them builds the simple RDF data model.
In this data model the primary informational building block is the “triple” which denotes the
subject – property - object expressions (Figure 3). The subject denotes the resource, and the
predicate denotes traits or aspects of the resource and expresses a relationship between the
subject and the object. Since an object of a triple can be the subject of another one, a set of
RDF triples forms a directed graph where the RDF resources, both subjects and objects, are
the nodes of the graph and the predicates are the labelled arcs.

RDF as an abstract model is independent of any specific serialization syntax. The normative
representation syntax for RDF graphs is XML but more lightweight formats, such as Turtle
(Beckett & Berners-Lee, 2008), exist. Using such a simpler format we can give information
about a person in the following way1:

Or in a more condensed format (where we have grouped the RDF triples referring to the
same subject):

The simplicity and flexibility of RDF is evident but in certain cases its generality must be for-
mally confined so that software entities are able to correctly exchange the encoded informa-
tion. For example, stating that an animal is the creator of a web page does not make sense
in the real world but RDF does not forbid anyone for making such a claim. Ontologies
(Uschold & Gruninger, 1996) provide such a tool to specify what can be expressed in the
context of an application domain or in a real world scenario, what is the underlying meaning,
and how the information presented can be further processed to generate more information.
Moreover ontologies and their less powerful relatives like taxonomies and thesaurus provide
the means for achieving a common interpretation of a domain and a shared understanding of
the concepts and relationships involved. In the Semantic Web there are two main technolo-
gies for providing such rigor: RDF Schema and OWL (Brickley & Guha, 2004; Dean, Schrei-
ber, et al., 2004). RDF Schema provides the means for defining classes, class hierarchies,
properties, property hierarchies, and property restrictions. Its expressive power is basically
limited to the representation of concepts, their relations, and taxonomies of concepts. On the
other hand the Web Ontology Language (OWL) was introduced to address the need for more
expressiveness and extends the RDF Schema by providing three variants: OWL-Lite, OWL-
DL, and OWL-Full. Without delving into details, the different species of OWL provide different
degrees of expressiveness and are able to define existential restrictions, cardinality con-
straints in properties, property types like inverse, transitive, and symmetric, and a lot more.

1
 me: and foaf: are namespace bindings (their definitions are not shown in these examples) to provide

abbreviated URI references.

Figure 3 RDF Data Model

me:stelios foaf:givenname “stelios”
; foaf:family_name “Sfakianakis”
; foaf:workplaceHomepage <http://www.ics.forth.gr/cmi-hta> .

me:stelios foaf:givenname “stelios” .
me:stelios foaf:family_name “Sfakianakis” .
me:stelios foaf:workplaceHomepage <http://www.ics.forth.gr/cmi-hta> .

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 13 of 34

The added features of OWL allow the ontologies built in conformance to it to be formally
treated and the data represented are amenable to “reasoning” and inference, i.e. they can be
processed according to formal logic rules to deduce new information. All these happen on
the basis of the web infrastructure: RDF resources and their URI references are used, the
open world assumption is followed, since partial information on the Web is a quite frequent
phenomenon, and the ontologies themselves can be freely intermixed and meshed since hy-
perlinks are employed everywhere.

 Since RDF is the common interchange and representation model of information, the Se-
mantic Web transforms the hyperlinked syntactic World Wide Web to a huge database or a
Global Giant Graph, as Tim Berners-Lee put it. The standard query language for this huge
database is SPARQL (Prudhommeaux & Seaborne, 2008), which is similar to SQL. In addi-
tion to the query language the SPARQL standard defines an application protocol for the
submission of queries to RDF sources and the retrieval of results. With the query language
and the access protocol defined, the SPARQL specifies a web friendly interface to RDF in-
formation, whether this is actually stored as RDF triples or not. It is therefore feasible to
make SPARQL queries to relational or other databases through an appropriate wrapper or
transformation process that translates, either online or in some pre-processing step, the in-
ternal data to an RDF compliant format. As a result these Semantic Web technologies en-
able the connection of data between different and heterogeneous data sources, effectively
allowing data in one data source to be linked to data in another data source (Bizer, Heath,
Idehen, & Berners-Lee, 2008).

3 Semantic Web Services: Technologies and Standards
In the prototypical Web Service use case scenario shown in Figure 4 a “Service Requester”
locates the available services by searching in a “Service Repository” (or Registry) where the
services have been advertised by storing there their descriptions. This is actually the exact
scenario followed in the ACGT platform as well, where the Metadata Repository is the central
service registry.

In order for such scenarios to take place, services should be annotated and described in the
most appropriate way so that they are easily discovered and used. As shown in Figure 5, we
can again identify two levels in the services descriptions: the semantic and the non-semantic
level. The Semantic Service Stack adopts the following general types of service contracts
(Sheth, 2003):

 Information Model defines the data model for the input, output and fault messages of
the services.

Figure 4 Web Service interaction “protocol”

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 14 of 34

 Functional Descriptions define service functionality and its capabilities, i.e. what a
service provide to its callers.

 Non-Functional Descriptions define additional aspects of the service implementation
and environment such as “quality of service” (performance, throughput, accuracy, etc)
or policies, e.g. security.

 Behavioural Descriptions define the external and internal behaviour of the service.
The externally visible behaviour (“choreography”) is for example the “protocol” the cli-
ent has to follow when contacting the service, e.g. the sequence of operation invoca-
tions. On the other hand the internal behaviour is related to the way the service is im-
plemented by the composition and orchestration of other services.

 Technical Descriptions define messaging details, such as message serializations,
communication protocols, and physical service access points.

There are a number of technologies, specifications, and efforts to define parts of the above
aspects or to cover all of them in one unified approach. In the following subsections we sur-
vey some of them that have gathered some momentum over the last couple of years. We
also propose the adoption of one of them and its customization in the context of ACGT.

3.1 WSMO: Web Services Modelling Ontology
Web Service Modelling Ontology (WSMO) is an ontology for semantically describing Seman-
tic Web Services (Roman et. al, 2005). It is a model for the description of semantic web ser-
vices that tries to overcome the limit of the existing technologies for the service description.
Web Service Modelling Language (WSML) is a language that formalizes the WSMO. It uses
well-known logical formalisms, namely, Description Logics, First-Order Logic and Logic Pro-
gramming, in order to enable the description of various aspects related to Semantic Web
Services. It consists of a number of language variants with different underlying logic formal-
isms.

The conceptual grounding of WSMO is based on the Web Service Modelling Framework
(WSMF, see Figure 6), wherein four main components are defined.

Messaging, Transport, etc

Schema Interface Binding Operations Service

Schema Mappings Model References

Information Functional Behavioral
Non

Functional

Domain
Ontology

Capability
Categorization

Choreography Policy

WSDL,
XML Schema

SOAP, XML
HTTP, SMTP

Metadata
Annotations

(e.g. SAWSDL)

Service
Ontology

(OWL-S, WSMO)

Service
Semantics

Se
m

an
ti

cs
 D

e
sc

ri
p

ti
o

n
s

N
o

n
-S

e
m

an
ti

cs
 D

e
sc

ri
p

ti
o

n
s

Figure 5 “Stack" of technologies for Semantic Web Services

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 15 of 34

 Ontologies provide machine-readable semantics for the information used by all ac-
tors implied in the process of Web Services usage, either providers or consumers, al-
lowing interoperability and information interchange among components.

 Goals specify objectives that a client may have when consulting a Web Service. A
goal in WSMO is described by non-functional properties, postconditions, and effects.
Non-functional properties specify information that do not affect the functionality of the
element, including for example quality-related attributes. Post-conditions define the
state of the desired information space. Effects describe the desired state of the world
after the execution of the Web Service.

 Web Services represent the functional part that must be semantically described in or-
der to allow its (semi-)automated use. In a WSMO specification, Web Services are
described by means of non-functional properties, imported ontologies, used media-
tors, capability and interfaces. A service can be described by multiple interfaces, but
has one and only one capability.

 Mediators aim to overcome structural, semantic or conceptual mismatches that ap-
pear between different components that build the WSMO specification. Mediators are
used as connectors to provide interoperability facilities among the rest of compo-
nents. Mediation within Semantic Web Services can be done at different levels: data
level is mediation between heterogeneous data sources; protocol level is mediation
between heterogeneous communication patterns; process level is mediation between
heterogeneous business processes.

WSMO is also working on the definition of a set of use cases in order to exemplify WSMO
usage for specific real-life purposes. The different use cases provide valuable insight for test-
ing and adapting the modelling constructs provided in WSMO in real-world scenarios for Web
Services. So, besides demonstrating how to model Web Services in WSMO, the use cases
also allow demonstration of the adequacy of the WSMO approach in terms of providing an
exhaustive framework for covering all relevant aspects of semantic description of Web Ser-
vices.

Figure 6 Web Services Modelling Ontology

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 16 of 34

3.2 OWL-S: OWL for Services

OWL-S2 (formerly DAML-S) builds on top of OWL and allows for the description of a Web
service in terms of a Profile, which tells "what the service does/provides", a Process Model,
which tells "how the service works", and a Grounding, which tells "how to access the ser-
vice" (Martin et. al, 2004). The service profile describes what is accomplished by the ser-
vice, any limitations on service applicability and quality of service, and requirements that the
service requester must satisfy in order to use the service successfully. The process model
gives details about the semantic content of requests, the conditions under which particular
outcomes will occur, and, where necessary, the step by step processes leading to those
outcomes. In the process model a service can be described as an atomic process that can
be executed in a single step or a composite process that, similar to a workflow, can be de-
composed in other processes based on control structures like „if-then-else‟ and „repeat-
while‟. Finally, Grounding descriptions supply information about the communication protocol
and other transport information (such as port numbers) and the message formats and seri-
alization methods used in contacting the service.

Figure 7 The top level of the OWL-S ontology

2
 http://www.daml.org/services/owl-s/

http://www.daml.org/services/owl-s/

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 17 of 34

Figure 8 The OWL-S Service Profile ontology

The OWL-S profile provides a set of concepts to specify capabilities of services, with the goal
of supporting capability-based discovery. Specifically, the OWL-S profile allows service pro-
viders to advertise what their services do, and service requesters to specify what capabilities
they expect from the services they need to use (see Figure 8). Crucially, the profile provides
an explicit description of those capabilities, so that they do not have to be extracted from in-
cidental properties such as the name of the service, or the company that provides it. By ex-
ploiting the structure of OWL-S profiles and their references to OWL concepts, a discovery
process can find those services that are most likely to satisfy the needs of a requester.

3.3 Semantic Annotations for WSDL
In 2006, the W3C created a charter for the Semantic Annotation of Web Services
(SAWSDL), which used WSDL-S as its primary input (Kopecký et. al, 2007). SAWSDL be-
came a W3C candidate recommendation in January 2007.

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 18 of 34

SAWSDL defines mechanisms using which semantic annotations can be added to WSDL
components. SAWSDL defines how to add semantic annotations to various parts of a WSDL
document such as input and output message structures, interfaces and operations. The ex-
tension attributes defined in this specification fit within the WSDL 2.0 extensibility framework.
It provides mechanisms by which concepts from the semantic models that are defined either
within or outside the WSDL document can be referenced from within WSDL components as
annotations. These semantics when expressed in formal languages can help disambiguate
the description of Web services during automatic discovery and composition of the Web ser-
vices. For example, the specification defines a way to annotate WSDL interfaces and opera-
tions with categorization information that can be used to publish a Web service in a registry.
The annotations on schema types can be used during Web service discovery and composi-
tion. In addition, SAWSDL defines an annotation mechanism for specifying the data mapping
of XML Schema types to and from an ontology; such mappings could be used during invoca-
tion, particularly when mediation is required. To accomplish semantic annotation, SAWSDL
defines extension attributes that can be applied both to WSDL elements and to XML Schema
elements.

Semantic annotations are references from an element within a WSDL or XML Schema
document to a concept in an ontology or to a mapping. The specification defines annotation
mechanisms for relating the constituent structures of WSDL input and output messages to
concepts defined in an outside ontology. Similarly, it defines how to annotate WSDL opera-
tions and interfaces. Further, it defines an annotation mechanism for specifying the structural
mapping of XML Schema types to and from an ontology by means of a reference to a map-
ping definition. The annotation mechanism is independent of the ontology expression lan-
guage and this specification requires no particular ontology language. It is also independent
of mapping languages and does not restrict the possible choices of such languages.

The key design principles for SAWSDL are:

 The specification enables semantic annotations for Web services using and building
on the existing extensibility framework of WSDL.

 It is agnostic to semantic representation languages.

Figure 9 The Semantic Annotations for WSDL

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 19 of 34

 It enables semantic annotations for Web services not only for discovering Web ser-
vices but also for invoking them.

Based on these design principles, SAWSDL defines the following three new extensibility at-
tributes to WSDL elements to enable semantic annotation of WSDL components:

 an extension attribute, named modelReference, to specify the association between a

WSDL component and a concept in some semantic model. This modelReference at-

tribute can be used especially to annotate XML Schema type definitions, element
declarations, and attribute declarations as well as WSDL interfaces, operations, and
faults.

 two extension attributes, named liftingSchemaMapping and loweringSchemaMapping,

that are added to XML Schema element declarations and type definitions for specify-
ing mappings between semantic data and XML.

These mappings can be used during service invocation. Fortunately, SAWSDL is agnostic to
both the domain model, which gives it a lot of flexibility: domain models can be as simple as
agreed upon English-language terms or as complex as expressive ontologies that use formal
models such as description logics.

3.4 BioMOBY Object and Service Ontologies
BioMOBY3 is a Web Service interoperability initiative in the field of bioinformatics aiming to
facilitate the integration of web-based bioinformatics resources. Currently there are two ap-
proaches to achieve such integration: The first approach, based on the Web Services para-
digm, is referred to as "MOBY Services" (MOBY-S), while the second one is called "Seman-
tic MOBY" (S-MOBY4) and is based on concepts from the Semantic Web. MOBY-S uses a
set of simple, end-user-extensible ontologies as its framework to describe data semantics,
data structure, and classes of bioinformatics services. These ontologies are shared through a
Web Service registry system, MOBY Central, which uses the ontologies to semantically bind
incoming service requests to service providers capable of executing them. S-MOBY on the
other hand employs RDF and OWL and the document oriented infrastructure of the WWW
(the GET/POST methods of HTTP) for publishing and retrieving information from its discov-
ery servers.

The key difference between classic web services and BioMOBY services is in the definitions
of the input/output data structures. Web services utilize XML schema to describe the basic
syntax. For example an interface of a web service might define a String as one input parame-
ter. However there is no way for another service or program to determine if that String is in-
tended to be a DNA Sequence or any of the data-types that are commonly represented as
strings. To overcome this problem, BioMOBY defines a user extensible ontology of bioinfor-
matics data-types (Wilkinson M.D. et. al, 2008). Syntactic types are defined by a GO-like on-
tology, a simple structure with node connected by edges (Figure 10). Each node is a data
class name and each edge defines the relationships between two classes.

The Object Ontology currently consists of over 300 different data syntax definitions, including
many of the common legacy flat-file formats, as well as novel objects that have been con-
structed de novo by participating service providers. All these objects are described the same
way: In contrast to generic data models like RDF, the BioMOBY Object Ontology limits the
relationship types to the following ones:

3
 http://www.BioMOBY.org/

4
 http://www.semanticmoby.org/

http://www.biomoby.org/
http://www.semanticmoby.org/

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 20 of 34

 “IS-A” is an inheritance relationship indicating that the first node (i.e. the “child”) of the
triple is a sub-class of the second node (i.e. the “parent”). All relationships of the “par-
ent” are inherited and have the same semantics in the “child”.

 “HAS-A” is a container relationship of “exactly 1” and indicates that the subject of the
triple is defined as containing exactly one instance of the designated object. This is a
transitive property.

 “HAS” is a container relationship with “1 or more” and indicates that the subject of the
triple is defined as containing at least one instance of the designated object. This is a
transitive property as well.

Figure 11 shows a sample of BioMOBY Object Ontology. All MOBY Objects inherit from the
root "Object" Class, and since complex objects can only be derived through inheritance from
(IS-A), or combination of (HAS-A/HAS) existing objects, every sub-object in a complex object
is, itself, a valid MOBY Object which inherits directly or indirectly from the "Object" Class.
Since all sub-components of all data-types are themselves BioMOBY Objects, generic re-
usable software is capable of extracting and/or assembling the data components of any pos-
sible BioMOBY object, including objects that did not exist when that software was created.

The root class of the ontology – “Object” – possesses three properties – “namespace”, “id”,
and “articleName” – and is designed to represent record identifiers (“ID numbers”) from well-
known resources (e.g. GO, EMBL). The value of the namespace property is a member of the
Namespace Ontology, the value of the id property is the record-identifier within that resource,
and the value of the articleName property indicates (as a human-readable phrase) the se-
mantic nature of the relationship between a given class and a class that is in a HAS or HAS-
A relationship to it. For example a visual representation of DNA Sequence data type is
shown in Figure 11. The data type DNA sequence inherits an Object which is a String from
Generic Sequence data type and an Integer from Virtual Sequence data type.

The MOBY Namespace Ontology is derived from the Cross-Reference Abbreviations List of
the Gene Ontology project (http://geneontology.org/cgi-bin/xrefs.cgi). It is simply a list of ab-
breviations for the different types of identifiers that are used in bioinformatics. The combina-

Figure 10 Moby Object Ontology

Figure 11 Sample of BioMOBY object ontology.

http://geneontology.org/cgi-bin/xrefs.cgi

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 21 of 34

tion of a namespace and an id for a BioMOBY Object represents a unique identifier for a
piece of data. For example, KEGG has KEGG_ID identifiers that are used to enumerate all of
their sequence records and it is defined as "KEGG_ID" in the Namespace Ontology.

If compared with the RDF data model as shown in Figure 3 one can see that the BioMOBY
object model depicted in Figure 10 is more or less the same. Nevertheless, the BioMOBY
object model, although conceptually similar to RDF, uses a different serialization format. For
example the syntactic representation of DNA sequence data type of Figure 11 in XML is the
following.

<DNASequence namespace=”NCBI_gi” id=”111076”>

 <Integer namespace=”” id=”” articleName=“length”>38</Integer>

 <String namespace=”” id=”” articleName=“SequenceString”>

 ATGATGATAGATAGAGGGCCCGGCGCGCGCGCGCGC…

 </String>

</DNASequence>

Basically each BioMOBY object is repre-
sented in XML with an element with the
same name and all the HAS/HAS-A
tionships of a BioMOBY object are serial-
ized as “sub-elements” contained in the
object‟s XML element.

Besides the Object and Namespace
tologies there‟s also the Service
tion ontology of BioMOBY. The Service
Ontology (Figure 12) is an attempt to or-
ganize bioinformatics tools into a
zation system, such that tools of similar
functions are grouped together, and can
be discovered by the biologist using a
consistent naming system. It‟s a simple
subclass hierarchy which defines a set of
data manipulation and bioinformatics
analysis types. These include classes
such as

 Retrieval for retrieval of records
from a database

 Parsing for the extraction of infor-
mation from various flat-file formats

 Conversion for data-type syntax changes.

Sub-classing is used to define more precise types of service operation.

3.5 Service Semantics in ACGT
Semantics provide “meaning” for “understanding” the entities and the processes in a domain
of discourse. It is nevertheless true that defining the meaning of things as the main task of
ontology engineering never ends. There is usually a multitude of views, abstraction layers,
uses and goals to provide “meaning” to a certain artefact. Therefore we need to clearly de-
fine the role of semantics descriptions of services and to prioritize the different use cases of
them in order to provide some useful and practical solution. For these reasons we have se-
lected the service discovery, selection, and “matchmaking” (composition) as the primary use
cases where semantics descriptions for services fit in. All of these are advanced features of a

Figure 12 Part of the BioMOBY Service Ontology
as shown in the ACGT Workflow Editor

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 22 of 34

modern problem solving environment such as the Workflow Editor and Enactment environ-
ment that the ACGT, and in particular work package 9, aims to deliver.

Revisiting the different kinds of semantic descriptions that were described in the introduction
of Section 3 and can be specified for the ACGT services it seems that the functional and in-
formational descriptions are of particular importance. The Functional descriptions give se-
mantics descriptions about the service capabilities and therefore are important for the dis-
covery of services based on what they can do for the user. Also at the semantic level the In-
formational descriptions support the discovery, integration, and composition scenarios for
web services since they provide information about the input and output messages of the ser-
vices. On the other hand the Technical information is strictly at the syntactic level, specifying
transport and communication specific features or requirements of the services. Finally Be-
havioural descriptions are an interesting case where especially the externally visible behav-
iour of the service can be used for automatically constructing parts of a workflow or “workflow
templates”.

Another aspect related to the technologies we have briefly described above is the level of the
ontologies employed. We need to distinguish two types of ontologies:

 Foundational (upper-level) ontologies, such as the ones provided by OWL-S and
WSMO. These are domain agnostic ontologies that aim to provide the general
framework used for service annotation and discovery.

 Domain specific ontologies, such as the BioMOBY‟s data types. These ontologies
provide some classification of domain specific terms and concepts and therefore are
orthogonal to the upper-level ontologies. These ontologies can be used to support
service discovery and also composition of services based on the annotation of inputs
and outputs.

As an example an upper ontology for services can define that the proposition “a service of-
fers some functionality” is something that can be expressed but a more ground, domain spe-
cific ontology, like the BioMOBY Service ontology, is needed in order to specify what the
possible “functionalities” are.

As an upper ontology for the ACGT services we have chosen OWL-S and more specifically
its ServiceProfile ontology. This ontology provides a bare minimum for supporting service
discovery and selection:

 Service name and description use some human readable but also machine search-
able text information

 The service parameters are represented along with their categorization to inputs and
outputs

 The classification of services based on their capabilities and functionality can be sup-
ported by the building of a domain specific ontology with the ServiceProfile class itself
as the root of the hierarchy

Additional strong features of the OWL-S such as its modelling of preconditions and effects or
its Process ontology to specify how the service is composed out of other services, which cor-
responds to the Behavioural semantics descriptions, are not used. These admittedly useful
features are either not supported by the existing infrastructure of the ACGT, e.g. the Meta-
data Repository, or are not too important in supporting the service discovery use case. On
the other hand WSMO although is distinguished for including the notion of mediators in the
ontology specification appears to be more heavyweight and business oriented5. An additional

5
 There is an undergoing effort to provide a simpler conceptual framework for Web Services called

WSMO-Lite (http://cms-wg.sti2.org/TR/d11/v0.2/)

http://cms-wg.sti2.org/TR/d11/v0.2/

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 23 of 34

“drawback” is also the fact that WSMO is defined in terms of WSML whereas OWL-S is
based on OWL. Also SAWSDL is mostly involved on how to link the semantics directly from
inside the WSDL service descriptions, which is not of immediate use in the ACGT. This is
because the service metadata descriptions are more easily accessible and indexed in the
Metadata Repository. Also as criticized elsewhere it may be the case that referencing a sin-
gle (or even a list of) concept identifiers is not enough for capturing the service semantics in
the general case.

As described above an upper level service ontology like OWL-S is not enough: there should
be also some domain specific ontology (or ontologies) that fill in the missing semantics. Bio-
MOBY ontologies provide such domain specific ontologies. In particular its Object ontology
supplies a large set of bioinformatics data types and formats that can be used for annotating
the service parameters. Also the BioMOBY Services ontology accommodates a hierarchy of
service capabilities that is again bioinformatics specific. Nevertheless, the choice of the do-
main specific ontologies is not very important for providing the semantic integration and in-
teroperability checking because they are not defining factors for building a generic semantic
architecture. This is in contrast with the foundational (upper-level) ontology which is needed
in order to specify the ontology framework used for discovering services and checking their
semantic compatibility. We next describe how such a semantic framework is designed for
ACGT and the use of domain and foundational ontologies in it.

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 24 of 34

4 A Semantic Framework for the ACGT Services and Tools
The general architectural view of this framework is shown in Figure 13. It basically defines
the following components:

 The service registries and repositories. In ACGT this is the Metadata Repository but
additional third party registries exist, such as the BioMOBY ones. These are the pri-
mary sources of service descriptions and need not be implemented with the same
technologies or contacted and searched with the same protocols. We assume though
that conceptually they are compliant with the minimal upper level service ontology we
have selected, which is the OWL-S Service Profile.

 The “RDFizers” are components (either “in-house” developments or “off the shelf”) for
exporting the service registries information in the RDF format and in the schema de-
fined by the foundational ontology.

 The Reasoner is the component that performs the actual tasks of service discovery or
matching by employing certain inference rules on the RDF data exported by the
“RDFizers”. These inference rules are of course in accordance with the foundational
and domain specific ontologies.

 The interested user interface tools, like the workflow editor, or other services contact
the Reasoner in order to make the proper entailments and inferences and answer
their queries.

More detailed descriptions of these components follow.

Semantic
Descriptions

ACGT
Metadata
Repository

D2R Server

Biomoby
Service
Registry

MOBY
Central

“Inference”

OWL/RDFS
Reasoner

Other 3rd

party
source

“RDFizer”

Figure 13 The Semantic Integration Framework

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 25 of 34

4.1 Metadata Repository
In ACGT the Metadata Repository described in D6.3 is the authoritative source of information
for discovering what the available ACGT services are, what they offer, what they need in or-
der to be invoked, who provides them, etc.

The ACGT metadata repository is actually a relational database that stores the service re-
lated metadata according to schema shown in Figure 14. The main entities of the schema
are services (tools), operations (specific functions of a tool), workflows (pre-defined flow of
data between several operations), functional categories (descriptions of tool functionality)
and data-types (the input or output data type of operation parameters).The repository itself is
accessed through the Modular API (“mAPI”) by the various ACGT components. Neverthe-
less, in order to provide a semantic web compliant view of the repository‟s contents a map-

Figure 14 The ACGT Metadata Repository schema

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 26 of 34

ping to RDF is needed. For this reason the D2R Server6 is used. D2R Server (Bizer & Cy-
ganiak, 2006) is a tool that permits the publication of the contents of relational databases and
SPARQL compliant query interfaces of their contents (see Figure 15).

The way the relational data are transformed to RDF is specified in a mapping document that
configures the D2R Server. The mapping format supported by the D2R Server is a declara-
tive language to describe mappings between relational database schemas and either OWL
or RDFS ontologies. The mappings allow RDF applications to access the contents of rela-
tional databases using Semantic Web query languages like SPARQL. Doing such a mapping
requires us to choose how tables, columns, and values in the database map to URIs for
classes, properties, instances, and data values. A specific mapping file has been created for
the ACGT Metadata Repository that makes the data exported by the D2R Server compliant
with the subset of the OWL-S Profile ontology we have specified above. The most important
transformations guided by this mapping file are the following:

 A “Tool” entry and the corresponding “Operation” entry in the Metadata Repository
represent a Service so they are mapped to an owls:ServiceProfile instance.

 A “Parameter” entry designates an input or output parameter and therefore maps to
the corresponding instance that is the object of the owls:hasInput or owls:hasOutput
property.

 The “FunctionalCategory” and the “FunctionalCategoryGraph” tables build up a clas-
sification of service functionalities where each service functionality is an indirect (or
direct if it‟s the “root”) “child” of the owls:ServiceProfile class though the rdfs:subClassOf
property.

 Similarly the “DataType” and “DataTypeGraph” tables build up a domain specific on-
tology (actually hierarchy) of (semantic) data types for the annotation of input and
outputs.

The D2R Server instance for the ACGT Metadata Repository can be accessed at
http://iapetus.ics.forth.gr/mrepo/

4.2 BioMOBY Service Registry
The BioMoby architecture is based on the consept of a central registry (“MOBY Central”)
where the services descriptions are stored. Currently the most comprehensive BioMOBY
registry seems to be that at University of Calgary, Canada (http://moby.ucalgary.ca/). The
contents of this registry are publically available and can be retrieved in RDF format:

6
 http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/

Figure 15 The D2R Server architecture

http://iapetus.ics.forth.gr/mrepo/
http://moby.ucalgary.ca/
http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 27 of 34

Object ontology http://moby.ucalgary.ca/RESOURCES/MOBY-S/Objects

Service Ontology http://moby.ucalgary.ca/RESOURCES/MOBY-S/Services

Namespace Ontology http://moby.ucalgary.ca/RESOURCES/MOBY-S/Namespaces

Services (instances) http://moby.ucalgary.ca/RESOURCES/MOBY-S/ServiceInstances

Table 1 Web addresses for accessing the BioMOBY service registry in Canada

The RDF service descriptions retrieved are using the myGrid/Moby Service Ontology
(Wolstencroft et. al, 2007) that is summarized in Figure 16.

The core entity in this service ontology model is the operation, which represents a unit of
functionality for the user. Operations could be grouped into units of publication represented
by the Service entity. An Operation has input and output parameters. In turn, each input and
output parameter has a name, a description and belongs to a certain namespace denoting its
semantic domain type.

Figure 16 myGrid-Moby Ontology

The scope of the ontology is limited to support service discovery. Each hierarchy contains
abstract concepts to describe the bioinformatics domain at a high level of abstraction. By
combining the terms from the ontology, descriptions of services are constructed to detail:

 What the service does

 What data sources it accesses

 What each of the inputs and outputs should be

 Which domain specific methods the analysis involves

Combining the domain ontology and the service ontology enables full descriptions of ser-
vices. To take an example the BLASTn service would be described in the following way:

 The overall task being performed by the operation (i.e. the biological operation it per-
forms): aligning

 The bioinformatics algorithm used (i.e. the underlying scientific method): NCBIBlast

 The data resource it accesses: NCBI GenBank database

 The number of inputs: 1

 The number of outputs: 1

http://moby.ucalgary.ca/RESOURCES/MOBY-S/Objects
http://moby.ucalgary.ca/RESOURCES/MOBY-S/Services
http://moby.ucalgary.ca/RESOURCES/MOBY-S/Namespaces
http://moby.ucalgary.ca/RESOURCES/MOBY-S/ServiceInstances

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 28 of 34

 Input 1: DNA sequence (fasta format)

 Output: Blast report

Integration in the general framework presented above requires the aligning of this ontology
with the OWL-S Service Profile. This can be easily achieved by providing additional axioms
to the Reasoner that allow the merger of the two ontologies:

 The BioMOBY operation class corresponds to the OWL-S service profile, because as

described above it‟s a unit of functionality offered to the user. Therefore a statement
like this moby:operation rdfs:subClassOf owls:ServiceProfile will provide the Reasoner

with enough knowledge for linking the two ontologies and supporting inference across
both of them.

 The inputParameter relation corresponds to the hasInput property in OWL-S. This can

be stated like this: moby:inputParameter rdfs:subPropertyOf owls:hasInput .

 Similarly the outputParameter relation corresponds to the hasOutput property in OWL-

S. This can be stated like this: moby:outputParameter rdfs:subPropertyOf
owls:hasOutput .

4.3 Reasoning and inference
Reasoning is performed for matching the description of services requests coming from the
end user applications to the contents of the service knowledge base. The way this matching
query to the semantic descriptions of the available services is performed is guided by the
foundational and domain specific ontologies.

Inference is needed because these ontologies have
specific “recipes” for extracting new knowledge. A sim-
ple example to make it clearer is the following:

Find me services that perform gene expression analysis

In this case “gene expression analysis” is a domain
specific concept coming from the BioMOBY service on-
tology where it is identified as the
moby:GeneExpressionAnalysis class. According to the

way the OWL-S Service Profile ontology is used the an-
swer to this request will be returned in variable ?s when

the following SPARQL query is submitted:

SELECT ?s
WHERE {

?s a moby:GeneExpressionAnalysis
}

Even in this case inference is important and it is based
on the fact that the BioMOBY Service ontology is a hi-
erarchy of service capabilities with rdfs:subClassOf
properties and the following rule is supported by all
RDFS/OWL Reasoners:

IF ?x a ?c1 AND ?c1 rdfs:subClassOf ?c2 THEN ?x a ?c2

This means that the reasoner will return not only ser-
vices that have been asserted to be in the specific
category (class) but also services that belong to all its
subcategories since according to the inference rule

In RDFS and OWL a distinction
between an Individual and a
Class is made. A class is gen-
erally defined as a set of indi-
viduals or the instances that
belong to this class.

The participation of an individu-
al to a class is stated with the
“rdf:type” property that in seria-

lization formats like Turtle can
be abbreviated simply as “a”.

On the other hand classes can
be put into hierarchies using the
rdfs:subClassOf property which

denotes subset relationships
(since classes are sets).

The following uses these rela-
tions in a typical example:

:Man rdfs:subClassOf :Mortal .
:Socrates a :Man .

The semantics of these rela-
tions allow for the following infe-
rence to be made:

:Socrates a :Mortal .

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 29 of 34

above the instances of the child categories belong also to the parent category.

Validation of input and output connections in a workflow is another example. As shown in the
next image the “out” parameter of service A needs to semantically conform to the “in” pa-
rameter of service B in order to have a connection between the two services.

A B

inout

This validation of connections can be performed by checking the semantic types of the pa-
rameters. In particular if the semantic type of the “out” parameter is Tout and the type of the

“in” parameter is Tin, the connection is valid only if Tout is a subclass of Tin, denoted as Tout

Tin. This “subsumption” relation is needed so as to guarantee that the every instance (data)

of the “out” parameter is compatible with the type of data the “in” parameter.

The RDF Schema standard defines the rdfs:subClassOf property for building hierarchies with

the following inference rule

IF ?c1 rdfs:subClassOf ?c2 AND ?c2 rdfs:subClassOf ?c3 THEN ?c1 rdfs:subClassOf ?c3

By employing the rule above a reasoner can deduce that the “out” parameter need not have
a direct subcategory of the class of the “in” parameter but any direct or indirect subclass of it.

Searching for services accepting a given data type is also a frequent use case. Assuming
that the user has some data of type ?dt, she wants to find services that accept this kind of

data as input. A possible SPARQL query to do that is the following

SELECT ?s
WHERE {

?s a owls:ServiceProfile ; owls:hasInput ?in .
?in a ?dt .

}

Since the operation class of BioMOBY has been defined to be subclass of OWL-S Service
Profile and the moby:inputParameter is a rdfs:subPropertyOf owls:hasInput, this query will

search also for BioMOBY services. The inference rules used are the transitive properties of
rdfs:subClassOf (shown and used above) and rdfs:subPropertyOf :

IF ?x ?op1 ?y AND ?op1 rdfs: subPropertyOf ?op2 THEN ?x ?op2 ?y

Of course all these cases can be combined into more complex queries. A possible advanced
and complex use case of the service discovery and composition tasks is presented in the
next sub section.

4.4 Magallanes: a tool for automatic workflow creation
Bioinformatics research often involves combining independent web-services as workflows in
order to solve more complex tasks. However, manual workflow creation is potentially com-
plex and prone to errors. This represents a real challenge to life scientists who wish to utilize
web-services.

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 30 of 34

Automatic workflow generation (or service composition) aims to automate the task of con-
necting independent services as much as possible. Two services can be connected if the
output of one is compatible with the input of the other. The goal is to find an optimal set of
services that match inputs with outputs.

Magallanes (Magellan) is a versatile, platform-independent Java library of algorithms that can
be used for discovery of web services and associated data types. Additionally, Magallanes
can connect compatible web-services into pipelining workflows that can process data se-
quentially to reach a desired output. In Figure 17, a standalone client using the Magallanes
library is shown. User has located the AminoAcidSequence and NCut_Clusters data types
and selected those as input and output data types. Magallanes used service metadata to
create the workflow using three different services to complete the workflow.

The workflow generation uses the target data type and considers the available services
which can be used to produce data of this data type and then connects services until it
reaches the desired source data type. When several paths are possible, the user interface
asks the user which alternative path to choose. Feedback is given to the user in the form of
the service descriptions. After this stage, the workflow can be exported for further editing.
Currently, such exports are possible for the Taverna workbench but the ACGT workflow edi-
tor format will be supported in future versions. Selection of alternative paths will be further
supported by use of service quality information (such as availability rate, frequency of use;
i.e. popularity).

Figure 17 Magallanes client tool

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 31 of 34

The Magallanes library is directly compatible with the ACGT metadata repository through the
use of the Modular API (see D6.3). It is therefore not implemented using the ontology based
frawework presented above and the relevant Semantic Web technologies. Nevertheless it
shows a desired end user functionality that can greatly facilitate the construction of scientific
workflows.

Magallanes is further described in Deliverable 6.4 where the initial task of locating data types
is discussed.

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 32 of 34

5 Conclusions
The interoperability of the ACGT components is tested by the developers but it's also con-
tinually exercised by the users themselves. The ACGT Workflow Editor (Figure 18) is the end
user application for the designing and execution of high level scientific workflows. In this web
based application the users are facilitated to graphically combine the data retrieval and dis-
covery services and the knowledge extraction and data analysis tools. The definition of the
syntactic representation of the data and most importantly the annotation of the services with
semantic metadata descriptions gives a lot of flexibility in the workflow editor for supporting
user friendliness and intelligence. If properly annotated, incompatible services cannot be di-
rectly connected because the data types of their inputs and outputs do not conform to each
other, either in the syntactic or the semantic level, while service recommendation and intelli-
gent workflow composition can be also supported.

Therefore the semantic annotation of data and services is of utmost importance. In this
document a generic Semantic Web compliant framework has been describe to support the
semantic integration of the ACGT services and tools but also additional services outside the
ACGT domain. We have argued that the Semantic Web provides the necessary tools to have
such generic integration architecture implemented and deployed. Technologies and stan-
dards in this domain are an active area of research and in this deliverable a representative
subset of them has been presented. Nevertheless the needs in the ACGT are more in the
area of service discovery and “match making” and therefore a simple subset of the OWL-S
upper ontology has been selected to be used.

Upper ontologies address only a small part of the problem: the bulk of work lies in developing
industrial scale ontologies that capture the real domain semantics. To this end BioMOBY Ob-
ject and Service ontologies present a possible solution that can be reused. It is not the objec-
tive in the work presented here to strictly define what is the specific domain ontology that
should be used throughout the ACGT platform. Instead the general architecture for the se-
mantic integration is presented, which should be fully implemented in the near future.

Figure 18 The ACGT workflow editor

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 33 of 34

References
Beckett, D., Berners-Lee, T. (2008). Turtle - Terse RDF Triple Language, W3C Team Sub-

mission, Latest version available at http://www.w3.org/TeamSubmission/turtle/.

Berners-Lee, T. & Hendler, J. & Lassila, O. (2001). The Semantic Web, Scientific American,

284(5), 28-37

Berners-Lee, T., Bray, T., Connolly, D., Cotton, P., Fielding, R., Jeckle, M., et al. (2004).

Achitecture of the World Wide Web, Volume One. W3C, Retrieved 15 June 2008, from

http://www.w3.org/TR/webarch/

Bizer, C. and Cyganiak, R. (2006) “D2R Server: Publishing Relational Databases on the Se-

mantic Web”, 5th International Semantic Web Conference

Bizer, C., Heath, T., Idehen, K., & Berners-Lee, T. (2008). Linked data on the web

(ldow2008). In WWW '08: Proceeding of the 17th international conference on World

Wide Web (pp. 1265-1266). New York, NY, USA: ACM.

Brickley, D., & Guha, R. (2004). RDF Vocabulary Description Language 1.0: RDF Schema,

W3C Recommendation 10 February 2004. World Wide Web Consortium.

Dean, M., Schreiber, G., et al. (2004). OWL Web Ontology Language Reference. W3C Rec-

ommendation, 10.

Deliverable 6.3 “Demonstration and report of a repository of knowledge-discovery-related
metadata”

Deliverable 6.4 “The integrated ACGT analysis environment”

Kopecký, J., Vitvar, T., Bournez, C., and Farrell, J. (2007) “SAWSDL: Semantic Annotations

for WSDL and XML Schema.” IEEE Internet Computing 11(6), pp 60-67

McIlraith, Sheila A., Cao Son, Tran, & Zeng, Honglei (2001). Semantic Web Services, IEEE

Intelligent Systems, 16(2), 46-53

Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D., Parsia,

B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N., and Sycara, K. (2004) “Bringing

semantics to web services: The OWL-S approach”. In First International Workshop on

Semantic Web Services and Web Process Composition (SWSWPC 2004), Lecture

Notes in Computer Science. Springer, July 2004.

http://www.cs.cmu.edu/People/softagents/papers/OWL-S-SWSWPC2004-final.pdf

Prudhommeaux, E., & Seaborne, A. (2008). SPARQL Query Language for RDF. W3C Rec-

ommendation 15 January 2008. Available from http://www.w3.org/TR/rdf-sparql-query/

Lassila, O., Swick, R., et al. (1999). Resource Description Framework (RDF) Model and Syn-

tax Specification. W3C Recommendation, 22, 2004-03.

Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A., Feier,

C., Bussler, C., and Fensel, D. (2005) “Web Service Modeling Ontology” Applied On-

tology, 1(1):77–106

http://www.w3.org/TeamSubmission/turtle/
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.w3.org/TR/webarch/
http://www.cs.cmu.edu/People/softagents/papers/OWL-S-SWSWPC2004-final.pdf
http://www.w3.org/TR/rdf-sparql-query/

ACGT D9.4 – Semantic Integration in ACGT

06/04/2009 Page 34 of 34

Sheth, A. (2003) “Semantic Web Process Lifetime: Role of Semantics in Annotation, Discov-

ery, Composition, and Orchestration.” Workshop on E-Services and the Semantic Web,

WWW 2003.

Uschold, M., & Gruninger, M. (1996). Ontologies: Principles, Methods and Applications.

Knowledge Engineering Review, 11 (2).

Wilkinson M.D. et. al (2008) “Interoperability with Moby 1.0 - it's better than sharing your

toothbrush!“, Brief Bioinform. 2008 May;9(3):220-31

Wolstencroft, K., Alper, P., Hull, D., Wroe, C., Lord, P.W., Stevens, R.D., and Goble, C.A

(2007) “The myGrid ontology: bioinformatics service discovery,” International Journal of

Bioinformatics Research and Applications (IJBRA), 3(3), 303-325

