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Executive Summary 
The ACGT environment provides a unified architecture where data, processing and visuali-
zation tools, and knowledge discovery services cooperate in order to fulfil the end user goals 
and scenarios. The Workflow Environment in particular is a central suite of components 
where such cooperation is tested and validated every time the users try to build novel scien-
tific workflows and relevant experiments. The concept of service interoperability and espe-
cially the kind of it that relates to semantics is therefore of utmost importance so that the in-
tegration of the different ACGT software actors that participate in the complex user work-
flows is feasible. In this deliverable we focus on the semantics integration of the ACGT ser-
vices, which aims to ease the construction of meaningful workflows, i.e. workflows that not 
only execute successfully but also function and produce results that make sense according 
to the underlying domain knowledge of the users.  

To achieve this goal, Semantic Web technologies are the prominent tools, given not only 
their current endorsement and support by standardization bodies like W3C but also their 
sound theoretical foundations and their inherent compliance with the universal Web infra-
structure. This document therefore provides details for the design of a Semantic Web com-
pliant infrastructure that caters for the ACGT specific semantic annotation, discovery, and 
orchestration of services and tools. To a large extent previous results and deliverables such 
as the Metadata Repository and the Workflow Environment are part of this infrastructure and 
for that reason the current document aims to provide a consolidated view of the ACGT ser-
vice oriented architecture, with special focus on the semantics, and to fill in any missing 
pieces.  

A particular objective of this work is to offer links to existing standards and to investigate their 
applicability in the context of the ACGT platform. Nevertheless, the abundance of the avail-
able information in the field in terms of the specifications and the relevant efforts led us to 
consider a more limited set of them that appear to be “state of the art” and more close to 
standardization. An additional important factor is the emphasis on what appear to be the 
practical needs of the ACGT users rather than to generic but more costly solutions. For that 
reason we present the BioMOBY services and relevant ontologies both as the main source 
providing semantic information about domain specific data types and as a case study for the 
semantics enabled service discovery and workflow construction.  

The main outcome of this work is the definition of a generic semantic service integration ar-
chitectural framework using standard Semantic Web technologies, standards, and tools. 
Such a framework provides the semantic integration of not only ACGT services but also 
other third party services like BioMOBY.  
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1 Introduction 
The ACGT platform aims to facilitate the seamless and secure access and analysis of multi-
level clinico-genomic data using high-performing knowledge discovery operations and ser-
vices. In order to achieve this goal, a well defined data analysis and processing environment 
needs to be in place, which would make possible the integration and interoperability of the 
different ACGT components.  The goal of the integration process is to make disparate and 
heterogeneous applications work together so as to produce a unified set of functionality, 
possibly by complementing each other. Whereas integration is concerned with the building of 
a unified system that incorporates the functionality of its constituent parts, interoperability is 
more a virtue of a single software entity so that it can be easily deployed in an unanticipated 
environment. Therefore defining interoperability guidelines is a prerequisite for building the 
ACGT integrated environment. 

In ACGT two notions of interoperability have been specified (see Deliverable 9.1): the syn-
tactic and semantic interoperability. Syntactic interoperability of software may be defined as 
the ability for multiple software components to interact regardless of their implementation 
programming language or hardware platform. Syntactic interoperability in ACGT requires 
standardization of data formats and data structures for the representation of, access to and 
exchange between biomedical informatics resources. On the other hand, semantic interop-
erability is related to the “meaning” of the exchanged information and it is the ability of two or 
more interacting computer systems to have the meaning of that information accurately and 
automatically interpreted and “understood”. To achieve syntactic interoperability program-
ming and messaging interfaces must conform to standards that specify consistent syntax and 
format across all systems in the ACGT environment. Furthermore, in order to support the 
semantic interoperability, all data must be annotated with metadata by means of terminology 
and ontology identifiers and codes that support aggregation, comparison, summarization, 
mining, etc. of information that resides in separate resources. 

The complexity and the diversity of user requirements have a strong impact on the design of 
the ACGT architecture. This architecture has been early defined as “service oriented”. In a 
service oriented environment the service is the central entity. When we use the term service 
in this context we mean a software component that is capable of performing certain tasks for 
other services or the principal human user. A web service in particular is a software entity 
that is accessed through the ubiquitous web infrastructure and its related protocols and ma-
chine readable formats like XML. The adopted architecture for ACGT is therefore built 

 

Figure 1 The ACGT Architecture 
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around the notion of services and a view of it is shown in Figure 1. A layered approach has 
been followed for providing different levels of abstraction and a classification of functionality 
into groups of homologous software entities. In this approach we consider the security ser-
vices and components to be pervasive throughout ACGT so as to provide both for the user 
management, access rights management and enforcement, and trust bindings that are facili-
tated by the grid and domain specific security requirements like pseudonymization. Apart 
from the security requirements, the grid infrastructure and other services are located in the 
first (lowest) two layers:  the Common Grid Layer and the Advanced Grid Middleware Layer. 
The upper layer is where the user access services, such as the portal and the visualization 
tools, reside. Finally, the Bioinformatics and Knowledge Discovery Services are the “work-
horse” of ACGT and the corresponding layer is where the majority of ACGT specific services 
lie. 

For the realization of this architecture a multidisciplinary and multi paradigm approach has 
been followed. The ACGT platform is designed according to the following technologies and 
standards: Service Oriented Architecture (Web Services), the Grid, and the Semantic Web. 
In particular, Grid and Web Services technologies are the basis for defining the syntax and 
structure of the exchanged messages to achieve syntactic interoperability:  

 The machine to machine communication is performed via XML programmatic inter-
faces over web transport protocols (SOAP), which are specified using the Web Ser-
vice Definition Language (WSDL). These common data representation and service 
specification formats, when properly deployed, make the syntactic integration of the 
ACGT components a lot easier.  

 The Grid defines the general security framework, the virtual organization abstraction, 
the user management mechanisms, authorization definition and enforcement etc. It 
also provides the computational and data storage infrastructure that is required for 
the management and processing of large clinical and genomic data sets. 

On the other hand, the Semantic Web provides the infrastructure for the semantic interop-
erability: it adds the knowledge representation mechanisms by the means of RDF Schemas 
and OWL ontologies, the unique identification of concepts and resources through the URIs, 
the implementation-neutral query facilities with the SPARQL “universal” query language and 
the associated query interfaces, etc. It is the aim of this deliverable to support the use of 
such technologies in the ACGT platform for providing more user friendly, intelligent and ad-
vanced system behaviour. 

The need for semantics and the deployment of Semantic Web compliant technologies are 
guided by specific user requirements. It is usual the case that, when using services, scien-
tists need to: 

 Find them, i.e. locate them irrespective of their location or providing (hosting) organi-
zation 

 Interpret them – what do the services do or provide, what kind of “experiments” the 
end users can perform by using them 

 Know how to invoke them – what data and initial parameters do they need to supply 

 Know their behaviour – how they should be invoked (choreography) or being com-
posed (orchestration) to achieve a higher level goal or scenario. 

To this end semantic web services enable automation and greatly facilitate: 

 Service Selection and Invocation 

 Translation of messages and Mediation between different services 

 Service Composition 
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 Monitoring and Recovery 

 Contracting, Negotiation, verification, simulation, etc. 

In this document we have selected the service discovery, selection, and “matchmaking” as 
the primary use cases where semantics descriptions for services fit in. All of these are ad-
vanced features of a modern problem solving environment such as the Workflow Editor and 
Enactment environment that the ACGT, and in particular work package 9, aims to deliver.  

The rest of the document gives some background information about the Semantic Web stack 
of technologies in Section 2, and then proceeds to survey some of the proposed standards 
and technologies for the semantic annotation and discovery of services. The last part of the 
document presents the definition of a generic semantic service integration architectural 
framework using standard Semantic Web technologies, standards, and tools. Such a frame-
work provides the semantic integration of not only ACGT services but also other third party 
services like BioMOBY. 
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2 An “express course” in the Semantic Web 
The Semantic Web (Berners-Lee et al., 2001) aims to support the representation and ex-
change of information in a meaningful way so as to make possible the automated processing 
of descriptions on the Web. The objective is to enrich the unstructured information in the cur-
rent Web with machine processable descriptions of the semantics in order to make its navi-
gation and exploration by software agents as easy as it‟s for the human users today, or even 
easier.  In this context Semantic Web promotes a shift from the current “syntactic” world to 
the future “semantic” world of services, applications, and people and aims to make the ma-
chine to machine communication feasible so that not only data but also information and fi-
nally knowledge are shared.  

In technological terms the Semantic Web architecture consists of an array of technologies 
that can roughly be visualized in a layered design layout as depicted in Figure 2. The basic 
infrastructure in the bottom layers in this stack of technologies is the exactly the same to the 
syntactic web: Uniform Resource Identifiers (URIs) used for identification of web resources, 
universal encoding schemes for characters, i.e. Unicode, and XML and its related technolo-
gies (e.g. XML Namespaces) as a ubiquitous data serialization format. Some of the upper 
layers like Proof and Trust are missing or are work in progress. Here we will concentrate on 
the middle layers where the core infrastructure technologies of the Semantic Web reside: 
RDF, RDF Schema/OWL, and SPARQL. 

The Resource Description Framework (RDF) is a syntax neutral data model that enables the 
description of web resources in a simple way (Lassila, Swick, et al., 1999). At the core of 
RDF there is a model for representing and describing resources through named properties 
(also known as predicates) and their values. The resources can be anything that can be 
identified with a URI. Although in the initial specification of RDF resources were limited to 
web documents and web sites, it is possible and quite frequent in practice to describe, by the 
means of RDF and the various URI schemes, real world entities like people, or more abstract 
things like relationships and concepts.  The use of use of URIs and especially the HTTP 
based ones for identifying persons or other physical entities may seem strange at first but 
this is in compliance with the architecture of the World Wide Web (Berners-Lee et al., n.d.) 
which strongly suggests the use of URIs for identifying anything that can be of importance 
irrespective of how abstract or tangible it may be.  

The properties serve both to represent attributes of resources and to represent relationships 
between resources. They are also identified though URIs to make them unique. The combi-

 

Figure 2 The Semantic Web stack of technologies 
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nation of resources and the properties that connect them builds the simple RDF data model. 
In this data model the primary informational building block is the “triple” which denotes the 
subject – property - object expressions (Figure 3). The subject denotes the resource, and the 
predicate denotes traits or aspects of the resource and expresses a relationship between the 
subject and the object. Since an object of a triple can be the subject of another one, a set of 
RDF triples forms a directed graph where the RDF resources, both subjects and objects, are 
the nodes of the graph and the predicates are the labelled arcs.  

RDF as an abstract model is independent of any specific serialization syntax. The normative 
representation syntax for RDF graphs is XML but more lightweight formats, such as Turtle 
(Beckett & Berners-Lee, 2008), exist. Using such a simpler format we can give information 
about a person in the following way1: 

 

Or in a more condensed format (where we have grouped the RDF triples referring to the 
same subject): 

 

The simplicity and flexibility of RDF is evident but in certain cases its generality must be for-
mally confined so that software entities are able to correctly exchange the encoded informa-
tion. For example, stating that an animal is the creator of a web page does not make sense 
in the real world but RDF does not forbid anyone for making such a claim. Ontologies 
(Uschold & Gruninger, 1996) provide such a tool to specify what can be expressed in the 
context of an application domain or in a real world scenario, what is the underlying meaning, 
and how the information presented can be further processed to generate more information. 
Moreover ontologies and their less powerful relatives like taxonomies and thesaurus provide 
the means for achieving a common interpretation of a domain and a shared understanding of 
the concepts and relationships involved. In the Semantic Web there are two main technolo-
gies for providing such rigor: RDF Schema and OWL (Brickley & Guha, 2004; Dean, Schrei-
ber, et al., 2004).  RDF Schema provides the means for defining classes, class hierarchies, 
properties, property hierarchies, and property restrictions. Its expressive power is basically 
limited to the representation of concepts, their relations, and taxonomies of concepts. On the 
other hand the Web Ontology Language (OWL) was introduced to address the need for more 
expressiveness and extends the RDF Schema by providing three variants: OWL-Lite, OWL-
DL, and OWL-Full. Without delving into details, the different species of OWL provide different 
degrees of expressiveness and are able to define existential restrictions, cardinality con-
straints in properties, property types like inverse, transitive, and symmetric, and a lot more.  

                                                

1
 me: and foaf: are namespace bindings (their definitions are not shown in these examples) to provide 

abbreviated URI references. 

 

Figure 3 RDF Data Model 

me:stelios foaf:givenname “stelios”  
; foaf:family_name “Sfakianakis”  
;  foaf:workplaceHomepage <http://www.ics.forth.gr/cmi-hta> . 

me:stelios foaf:givenname “stelios” . 
me:stelios foaf:family_name “Sfakianakis” . 
me:stelios foaf:workplaceHomepage <http://www.ics.forth.gr/cmi-hta> . 
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The added features of OWL allow the ontologies built in conformance to it to be formally 
treated and the data represented are amenable to “reasoning” and inference, i.e. they can be 
processed according to formal logic rules to deduce new information. All these happen on 
the basis of the web infrastructure: RDF resources and their URI references are used, the 
open world assumption is followed, since partial information on the Web is a quite frequent 
phenomenon, and the ontologies themselves can be freely intermixed and meshed since hy-
perlinks are employed everywhere. 

     Since RDF is the common interchange and representation model of information, the Se-
mantic Web transforms the hyperlinked syntactic World Wide Web to a huge database or a 
Global Giant Graph, as Tim Berners-Lee put it. The standard query language for this huge 
database is SPARQL (Prudhommeaux & Seaborne, 2008), which is similar to SQL. In addi-
tion to the query language the SPARQL standard defines an application protocol for the 
submission of queries to RDF sources and the retrieval of results. With the query language 
and the access protocol defined, the SPARQL specifies a web friendly interface to RDF in-
formation, whether this is actually stored as RDF triples or not. It is therefore feasible to 
make SPARQL queries to relational or other databases through an appropriate wrapper or 
transformation process that translates, either online or in some pre-processing step, the in-
ternal data to an RDF compliant format.  As a result these Semantic Web technologies en-
able the connection of data between different and heterogeneous data sources, effectively 
allowing data in one data source to be linked to data in another data source (Bizer, Heath, 
Idehen, & Berners-Lee, 2008). 

3 Semantic Web Services: Technologies and Standards 
In the prototypical Web Service use case scenario shown in Figure 4 a “Service Requester” 
locates the available services by searching in a “Service Repository” (or Registry) where the 
services have been advertised by storing there their descriptions. This is actually the exact 
scenario followed in the ACGT platform as well, where the Metadata Repository is the central 
service registry. 

In order for such scenarios to take place, services should be annotated and described in the 
most appropriate way so that they are easily discovered and used. As shown in Figure 5, we 
can again identify two levels in the services descriptions: the semantic and the non-semantic 
level. The Semantic Service Stack adopts the following general types of service contracts 
(Sheth, 2003): 

 Information Model defines the data model for the input, output and fault messages of 
the services.  

 

Figure 4 Web Service interaction “protocol” 
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 Functional Descriptions define service functionality and its capabilities, i.e. what a 
service provide to its callers. 

 Non-Functional Descriptions define additional aspects of the service implementation 
and environment such as “quality of service” (performance, throughput, accuracy, etc) 
or policies, e.g. security. 

 Behavioural Descriptions define the external and internal behaviour of the service. 
The externally visible behaviour (“choreography”) is for example the “protocol” the cli-
ent has to follow when contacting the service, e.g. the sequence of operation invoca-
tions. On the other hand the internal behaviour is related to the way the service is im-
plemented by the composition and orchestration of other services.  

 Technical Descriptions define messaging details, such as message serializations, 
communication protocols, and physical service access points. 

There are a number of technologies, specifications, and efforts to define parts of the above 
aspects or to cover all of them in one unified approach. In the following subsections we sur-
vey some of them that have gathered some momentum over the last couple of years. We 
also propose the adoption of one of them and its customization in the context of ACGT. 

3.1 WSMO: Web Services Modelling Ontology 
Web Service Modelling Ontology (WSMO) is an ontology for semantically describing Seman-
tic Web Services (Roman et. al, 2005). It is a model for the description of semantic web ser-
vices that tries to overcome the limit of the existing technologies for the service description. 
Web Service Modelling Language (WSML) is a language that formalizes the WSMO. It uses 
well-known logical formalisms, namely, Description Logics, First-Order Logic and Logic Pro-
gramming, in order to enable the description of various aspects related to Semantic Web 
Services. It consists of a number of language variants with different underlying logic formal-
isms. 

The conceptual grounding of WSMO is based on the Web Service Modelling Framework 
(WSMF, see Figure 6), wherein four main components are defined. 
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Figure 5 “Stack" of technologies for Semantic Web Services 
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 Ontologies provide machine-readable semantics for the information used by all ac-
tors implied in the process of Web Services usage, either providers or consumers, al-
lowing interoperability and information interchange among components. 

 Goals specify objectives that a client may have when consulting a Web Service. A 
goal in WSMO is described by non-functional properties, postconditions, and effects. 
Non-functional properties specify information that do not affect the functionality of the 
element, including for example quality-related attributes. Post-conditions define the 
state of the desired information space. Effects describe the desired state of the world 
after the execution of the Web Service. 

 Web Services represent the functional part that must be semantically described in or-
der to allow its (semi-)automated use. In a WSMO specification, Web Services are 
described by means of non-functional properties, imported ontologies, used media-
tors, capability and interfaces. A service can be described by multiple interfaces, but 
has one and only one capability. 

 Mediators aim to overcome structural, semantic or conceptual mismatches that ap-
pear between different components that build the WSMO specification. Mediators are 
used as connectors to provide interoperability facilities among the rest of compo-
nents. Mediation within Semantic Web Services can be done at different levels: data 
level is mediation between heterogeneous data sources; protocol level is mediation 
between heterogeneous communication patterns; process level is mediation between 
heterogeneous business processes. 

WSMO is also working on the definition of a set of use cases in order to exemplify WSMO 
usage for specific real-life purposes. The different use cases provide valuable insight for test-
ing and adapting the modelling constructs provided in WSMO in real-world scenarios for Web 
Services. So, besides demonstrating how to model Web Services in WSMO, the use cases 
also allow demonstration of the adequacy of the WSMO approach in terms of providing an 
exhaustive framework for covering all relevant aspects of semantic description of Web Ser-
vices. 

 

Figure 6 Web Services Modelling Ontology 
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3.2 OWL-S: OWL for Services 

OWL-S2 (formerly DAML-S) builds on top of OWL and allows for the description of a Web 
service in terms of a Profile, which tells "what the service does/provides", a Process Model, 
which tells "how the service works", and a Grounding, which tells "how to access the ser-
vice" (Martin et. al, 2004).  The service profile describes what is accomplished by the ser-
vice, any limitations on service applicability and quality of service, and requirements that the 
service requester must satisfy in order to use the service successfully. The process model 
gives details about the semantic content of requests, the conditions under which particular 
outcomes will occur, and, where necessary, the step by step processes leading to those 
outcomes. In the process model a service can be described as an atomic process that can 
be executed in a single step or a composite process that, similar to a workflow, can be de-
composed in other processes based on control structures like „if-then-else‟ and „repeat-
while‟. Finally, Grounding descriptions supply information about the communication protocol 
and other transport information (such as port numbers) and the message formats and seri-
alization methods used in contacting the service.  

 

Figure 7 The top level of the OWL-S ontology 

                                                

2
 http://www.daml.org/services/owl-s/ 

http://www.daml.org/services/owl-s/
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Figure 8 The OWL-S Service Profile ontology 

The OWL-S profile provides a set of concepts to specify capabilities of services, with the goal 
of supporting capability-based discovery. Specifically, the OWL-S profile allows service pro-
viders to advertise what their services do, and service requesters to specify what capabilities 
they expect from the services they need to use (see Figure 8). Crucially, the profile provides 
an explicit description of those capabilities, so that they do not have to be extracted from in-
cidental properties such as the name of the service, or the company that provides it. By ex-
ploiting the structure of OWL-S profiles and their references to OWL concepts, a discovery 
process can find those services that are most likely to satisfy the needs of a requester. 

3.3 Semantic Annotations for WSDL 
In 2006, the W3C created a charter for the Semantic Annotation of Web Services 
(SAWSDL), which used WSDL-S as its primary input (Kopecký et. al, 2007). SAWSDL be-
came a W3C candidate recommendation in January 2007. 
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SAWSDL defines mechanisms using which semantic annotations can be added to WSDL 
components. SAWSDL defines how to add semantic annotations to various parts of a WSDL 
document such as input and output message structures, interfaces and operations. The ex-
tension attributes defined in this specification fit within the WSDL 2.0 extensibility framework. 
It provides mechanisms by which concepts from the semantic models that are defined either 
within or outside the WSDL document can be referenced from within WSDL components as 
annotations. These semantics when expressed in formal languages can help disambiguate 
the description of Web services during automatic discovery and composition of the Web ser-
vices. For example, the specification defines a way to annotate WSDL interfaces and opera-
tions with categorization information that can be used to publish a Web service in a registry. 
The annotations on schema types can be used during Web service discovery and composi-
tion. In addition, SAWSDL defines an annotation mechanism for specifying the data mapping 
of XML Schema types to and from an ontology; such mappings could be used during invoca-
tion, particularly when mediation is required. To accomplish semantic annotation, SAWSDL 
defines extension attributes that can be applied both to WSDL elements and to XML Schema 
elements. 

Semantic annotations are references from an element within a WSDL or XML Schema 
document to a concept in an ontology or to a mapping. The specification defines annotation 
mechanisms for relating the constituent structures of WSDL input and output messages to 
concepts defined in an outside ontology. Similarly, it defines how to annotate WSDL opera-
tions and interfaces. Further, it defines an annotation mechanism for specifying the structural 
mapping of XML Schema types to and from an ontology by means of a reference to a map-
ping definition. The annotation mechanism is independent of the ontology expression lan-
guage and this specification requires no particular ontology language. It is also independent 
of mapping languages and does not restrict the possible choices of such languages. 

The key design principles for SAWSDL are: 

 The specification enables semantic annotations for Web services using and building 
on the existing extensibility framework of WSDL. 

 It is agnostic to semantic representation languages. 

 

Figure 9 The Semantic Annotations for WSDL 
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 It enables semantic annotations for Web services not only for discovering Web ser-
vices but also for invoking them.  

Based on these design principles, SAWSDL defines the following three new extensibility at-
tributes to WSDL elements to enable semantic annotation of WSDL components: 

 an extension attribute, named modelReference, to specify the association between a 

WSDL component and a concept in some semantic model. This modelReference at-

tribute can be used especially to annotate XML Schema type definitions, element 
declarations, and attribute declarations as well as WSDL interfaces, operations, and 
faults. 

 two extension attributes, named liftingSchemaMapping and loweringSchemaMapping, 

that are added to XML Schema element declarations and type definitions for specify-
ing mappings between semantic data and XML.  

These mappings can be used during service invocation. Fortunately, SAWSDL is agnostic to 
both the domain model, which gives it a lot of flexibility: domain models can be as simple as 
agreed upon English-language terms or as complex as expressive ontologies that use formal 
models such as description logics. 

3.4 BioMOBY Object and Service Ontologies 
BioMOBY3 is a Web Service interoperability initiative in the field of bioinformatics aiming to 
facilitate the integration of web-based bioinformatics resources. Currently there are two ap-
proaches to achieve such integration: The first approach, based on the Web Services para-
digm, is referred to as "MOBY Services" (MOBY-S), while the second one is called "Seman-
tic MOBY" (S-MOBY4) and is based on concepts from the Semantic Web. MOBY-S uses a 
set of simple, end-user-extensible ontologies as its framework to describe data semantics, 
data structure, and classes of bioinformatics services. These ontologies are shared through a 
Web Service registry system, MOBY Central, which uses the ontologies to semantically bind 
incoming service requests to service providers capable of executing them. S-MOBY on the 
other hand employs RDF and OWL and the document oriented infrastructure of the WWW 
(the GET/POST methods of HTTP) for publishing and retrieving information from its discov-
ery servers. 

The key difference between classic web services and BioMOBY services is in the definitions 
of the input/output data structures. Web services utilize XML schema to describe the basic 
syntax. For example an interface of a web service might define a String as one input parame-
ter. However there is no way for another service or program to determine if that String is in-
tended to be a DNA Sequence or any of the data-types that are commonly represented as 
strings. To overcome this problem, BioMOBY defines a user extensible ontology of bioinfor-
matics data-types (Wilkinson M.D. et. al, 2008). Syntactic types are defined by a GO-like on-
tology, a simple structure with node connected by edges (Figure 10). Each node is a data 
class name and each edge defines the relationships between two classes.  

The Object Ontology currently consists of over 300 different data syntax definitions, including 
many of the common legacy flat-file formats, as well as novel objects that have been con-
structed de novo by participating service providers. All these objects are described the same 
way: In contrast to generic data models like RDF, the BioMOBY Object Ontology limits the 
relationship types to the following ones: 

                                                

3
 http://www.BioMOBY.org/ 

4
 http://www.semanticmoby.org/ 

http://www.biomoby.org/
http://www.semanticmoby.org/
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 “IS-A” is an inheritance relationship indicating that the first node (i.e. the “child”) of the 
triple is a sub-class of the second node (i.e. the “parent”). All relationships of the “par-
ent” are inherited and have the same semantics in the “child”.  

 “HAS-A” is a container relationship of “exactly 1” and indicates that the subject of the 
triple is defined as containing exactly one instance of the designated object. This is a 
transitive property. 

 “HAS” is a container relationship with “1 or more” and indicates that the subject of the 
triple is defined as containing at least one instance of the designated object. This is a 
transitive property as well. 

Figure 11 shows a sample of BioMOBY Object Ontology. All MOBY Objects inherit from the 
root "Object" Class, and since complex objects can only be derived through inheritance from 
(IS-A), or combination of (HAS-A/HAS) existing objects, every sub-object in a complex object 
is, itself, a valid MOBY Object which inherits directly or indirectly from the "Object" Class. 
Since all sub-components of all data-types are themselves BioMOBY Objects, generic re-
usable software is capable of extracting and/or assembling the data components of any pos-
sible BioMOBY object, including objects that did not exist when that software was created.  

The root class of the ontology – “Object” – possesses three properties – “namespace”, “id”, 
and “articleName” – and is designed to represent record identifiers (“ID numbers”) from well-
known resources (e.g. GO, EMBL). The value of the namespace property is a member of the 
Namespace Ontology, the value of the id property is the record-identifier within that resource, 
and the value of the articleName property indicates (as a human-readable phrase) the se-
mantic nature of the relationship between a given class and a class that is in a HAS or HAS-
A relationship to it. For example a visual representation of DNA Sequence data type is 
shown in Figure 11. The data type DNA sequence inherits an Object which is a String from 
Generic Sequence data type and an Integer from Virtual Sequence data type. 

The MOBY Namespace Ontology is derived from the Cross-Reference Abbreviations List of 
the Gene Ontology project (http://geneontology.org/cgi-bin/xrefs.cgi). It is simply a list of ab-
breviations for the different types of identifiers that are used in bioinformatics. The combina-

 

Figure 10 Moby Object Ontology 

 

 

Figure 11 Sample of BioMOBY object ontology. 

 

 

 

 

http://geneontology.org/cgi-bin/xrefs.cgi
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tion of a namespace and an id for a BioMOBY Object represents a unique identifier for a 
piece of data. For example, KEGG has KEGG_ID identifiers that are used to enumerate all of 
their sequence records and it is defined as "KEGG_ID" in the Namespace Ontology.  

If compared with the RDF data model as shown in Figure 3 one can see that the BioMOBY 
object model depicted in Figure 10 is more or less the same. Nevertheless, the BioMOBY 
object model, although conceptually similar to RDF, uses a different serialization format. For 
example the syntactic representation of DNA sequence data type of Figure 11 in XML is the 
following. 

<DNASequence namespace=”NCBI_gi” id=”111076”> 

   <Integer namespace=”” id=”” articleName=“length”>38</Integer> 

   <String namespace=”” id=”” articleName=“SequenceString”> 

      ATGATGATAGATAGAGGGCCCGGCGCGCGCGCGCGC… 

   </String> 

</DNASequence> 

Basically each BioMOBY object is repre-
sented in XML with an element with the 
same name and all the HAS/HAS-A 
tionships of a BioMOBY object are serial-
ized as “sub-elements” contained in the 
object‟s XML element.  

Besides the Object and Namespace 
tologies there‟s also the Service 
tion ontology of BioMOBY. The Service 
Ontology (Figure 12) is an attempt to or-
ganize bioinformatics tools into a 
zation system, such that tools of similar 
functions are grouped together, and can 
be discovered by the biologist using a 
consistent naming system. It‟s a simple 
subclass hierarchy which defines a set of 
data manipulation and bioinformatics 
analysis types.  These include classes 
such as  

 Retrieval for retrieval of records 
from a database 

 Parsing for the extraction of infor-
mation from various flat-file formats 

 Conversion for data-type syntax changes.   

Sub-classing is used to define more precise types of service operation.  

3.5 Service Semantics in ACGT 
Semantics provide “meaning” for “understanding” the entities and the processes in a domain 
of discourse. It is nevertheless true that defining the meaning of things as the main task of 
ontology engineering never ends. There is usually a multitude of views, abstraction layers, 
uses and goals to provide “meaning” to a certain artefact. Therefore we need to clearly de-
fine the role of semantics descriptions of services and to prioritize the different use cases of 
them in order to provide some useful and practical solution. For these reasons we have se-
lected the service discovery, selection, and “matchmaking” (composition) as the primary use 
cases where semantics descriptions for services fit in. All of these are advanced features of a 

 

 

Figure 12 Part of the BioMOBY Service Ontology 
as shown in the ACGT Workflow Editor 
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modern problem solving environment such as the Workflow Editor and Enactment environ-
ment that the ACGT, and in particular work package 9, aims to deliver.  

Revisiting the different kinds of semantic descriptions that were described in the introduction 
of Section 3 and can be specified for the ACGT services it seems that the functional and in-
formational descriptions are of particular importance. The Functional descriptions give se-
mantics descriptions about the service capabilities and therefore are important for the dis-
covery of services based on what they can do for the user. Also at the semantic level the In-
formational descriptions support the discovery, integration, and composition scenarios for 
web services since they provide information about the input and output messages of the ser-
vices. On the other hand the Technical information is strictly at the syntactic level, specifying 
transport and communication specific features or requirements of the services. Finally Be-
havioural descriptions are an interesting case where especially the externally visible behav-
iour of the service can be used for automatically constructing parts of a workflow or “workflow 
templates”.  

Another aspect related to the technologies we have briefly described above is the level of the 
ontologies employed. We need to distinguish two types of ontologies: 

 Foundational (upper-level) ontologies, such as the ones provided by OWL-S and 
WSMO. These are domain agnostic ontologies that aim to provide the general 
framework used for service annotation and discovery. 

 Domain specific ontologies, such as the BioMOBY‟s data types. These ontologies 
provide some classification of domain specific terms and concepts and therefore are 
orthogonal to the upper-level ontologies. These ontologies can be used to support 
service discovery and also composition of services based on the annotation of inputs 
and outputs. 

As an example an upper ontology for services can define that the proposition “a service of-
fers some functionality” is something that can be expressed but a more ground, domain spe-
cific ontology, like the BioMOBY Service ontology, is needed in order to specify what the 
possible “functionalities” are. 

As an upper ontology for the ACGT services we have chosen OWL-S and more specifically 
its ServiceProfile ontology. This ontology provides a bare minimum for supporting service 
discovery and selection: 

 Service name and description use some human readable but also machine search-
able text information 

 The service parameters are represented along with their categorization to inputs and 
outputs 

 The classification of services based on their capabilities and functionality can be sup-
ported by the building of a domain specific ontology with the ServiceProfile class itself 
as the root of the hierarchy 

Additional strong features of the OWL-S such as its modelling of preconditions and effects or 
its Process ontology to specify how the service is composed out of other services, which cor-
responds to the Behavioural semantics descriptions, are not used. These admittedly useful 
features are either not supported by the existing infrastructure of the ACGT, e.g. the Meta-
data Repository, or are not too important in supporting the service discovery use case.  On 
the other hand WSMO although is distinguished for including the notion of mediators in the 
ontology specification appears to be more heavyweight and business oriented5. An additional 

                                                

5
 There is an undergoing effort to provide a simpler conceptual framework for Web Services called 

WSMO-Lite (http://cms-wg.sti2.org/TR/d11/v0.2/)  

http://cms-wg.sti2.org/TR/d11/v0.2/
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“drawback” is also the fact that WSMO is defined in terms of WSML whereas OWL-S is 
based on OWL. Also SAWSDL is mostly involved on how to link the semantics directly from 
inside the WSDL service descriptions, which is not of immediate use in the ACGT. This is 
because the service metadata descriptions are more easily accessible and indexed in the 
Metadata Repository. Also as criticized elsewhere it may be the case that referencing a sin-
gle (or even a list of) concept identifiers is not enough for capturing the service semantics in 
the general case.    

As described above an upper level service ontology like OWL-S is not enough: there should 
be also some domain specific ontology (or ontologies) that fill in the missing semantics. Bio-
MOBY ontologies provide such domain specific ontologies. In particular its Object ontology 
supplies a large set of bioinformatics data types and formats that can be used for annotating 
the service parameters. Also the BioMOBY Services ontology accommodates a hierarchy of 
service capabilities that is again bioinformatics specific. Nevertheless, the choice of the do-
main specific ontologies is not very important for providing the semantic integration and in-
teroperability checking because they are not defining factors for building a generic semantic 
architecture. This is in contrast with the foundational (upper-level) ontology which is needed 
in order to specify the ontology framework used for discovering services and checking their 
semantic compatibility. We next describe how such a semantic framework is designed for 
ACGT and the use of domain and foundational ontologies in it. 
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4 A Semantic Framework for the ACGT Services and Tools 
The general architectural view of this framework is shown in Figure 13. It basically defines 
the following components: 

 The service registries and repositories. In ACGT this is the Metadata Repository but 
additional third party registries exist, such as the BioMOBY ones. These are the pri-
mary sources of service descriptions and need not be implemented with the same 
technologies or contacted and searched with the same protocols. We assume though 
that conceptually they are compliant with the minimal upper level service ontology we 
have selected, which is the OWL-S Service Profile.  

 The “RDFizers” are components (either “in-house” developments or “off the shelf”) for 
exporting the service registries information in the RDF format and in the schema de-
fined by the foundational ontology. 

 The Reasoner is the component that performs the actual tasks of service discovery or 
matching by employing certain inference rules on the RDF data exported by the 
“RDFizers”. These inference rules are of course in accordance with the foundational 
and domain specific ontologies.  

 The interested user interface tools, like the workflow editor, or other services contact 
the Reasoner in order to make the proper entailments and inferences and answer 
their queries. 

More detailed descriptions of these components follow. 

Semantic 
Descriptions

ACGT
Metadata
Repository

D2R Server

Biomoby
Service 
Registry

MOBY 
Central

“Inference”

OWL/RDFS 
Reasoner

Other 3rd

party 
source

“RDFizer”

 

Figure 13 The Semantic Integration Framework 

 



ACGT  D9.4 – Semantic Integration in ACGT 

 

06/04/2009 Page 25 of 34 

 

4.1 Metadata Repository 
In ACGT the Metadata Repository described in D6.3 is the authoritative source of information 
for discovering what the available ACGT services are, what they offer, what they need in or-
der to be invoked, who provides them, etc. 

 

The ACGT metadata repository is actually a relational database that stores the service re-
lated metadata according to schema shown in Figure 14. The main entities of the schema 
are services (tools), operations (specific functions of a tool), workflows (pre-defined flow of 
data between several operations), functional categories (descriptions of tool functionality) 
and data-types (the input or output data type of operation parameters).The repository itself is 
accessed through the Modular API (“mAPI”) by the various ACGT components. Neverthe-
less, in order to provide a semantic web compliant view of the repository‟s contents a map-

 

Figure 14 The ACGT Metadata Repository schema 
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ping to RDF is needed. For this reason the D2R Server6 is used. D2R Server (Bizer & Cy-
ganiak, 2006) is a tool that permits the publication of the contents of relational databases and 
SPARQL compliant query interfaces of their contents (see Figure 15).  

The way the relational data are transformed to RDF is specified in a mapping document that 
configures the D2R Server. The mapping format supported by the D2R Server is a declara-
tive language to describe mappings between relational database schemas and either OWL 
or RDFS ontologies. The mappings allow RDF applications to access the contents of rela-
tional databases using Semantic Web query languages like SPARQL. Doing such a mapping 
requires us to choose how tables, columns, and values in the database map to URIs for 
classes, properties, instances, and data values. A specific mapping file has been created for 
the ACGT Metadata Repository that makes the data exported by the D2R Server compliant 
with the subset of the OWL-S Profile ontology we have specified above. The most important 
transformations guided by this mapping file are the following: 

 A “Tool” entry and the corresponding “Operation” entry in the Metadata Repository 
represent a Service so they are mapped to an owls:ServiceProfile instance. 

 A “Parameter” entry designates an input or output parameter and therefore maps to 
the corresponding instance that is the object of the owls:hasInput or owls:hasOutput 
property. 

 The “FunctionalCategory” and the “FunctionalCategoryGraph” tables build up a clas-
sification of service functionalities where each service functionality is an indirect (or 
direct if it‟s the “root”) “child” of the owls:ServiceProfile class though the rdfs:subClassOf 
property.  

 Similarly the “DataType” and “DataTypeGraph” tables build up a domain specific on-
tology (actually hierarchy) of (semantic) data types for the annotation of input and 
outputs.  

The D2R Server instance for the ACGT Metadata Repository can be accessed at 
http://iapetus.ics.forth.gr/mrepo/  

4.2 BioMOBY Service Registry 
The BioMoby architecture is based on the consept of a central registry (“MOBY Central”) 
where the services descriptions are stored. Currently the most comprehensive BioMOBY 
registry seems to be that at University of Calgary, Canada (http://moby.ucalgary.ca/). The 
contents of this registry are publically available and can be retrieved in RDF format: 

                                                

6
  http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/  

 

Figure 15 The D2R Server architecture 

 

http://iapetus.ics.forth.gr/mrepo/
http://moby.ucalgary.ca/
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Object ontology http://moby.ucalgary.ca/RESOURCES/MOBY-S/Objects 

Service Ontology http://moby.ucalgary.ca/RESOURCES/MOBY-S/Services  

Namespace Ontology http://moby.ucalgary.ca/RESOURCES/MOBY-S/Namespaces  

Services (instances) http://moby.ucalgary.ca/RESOURCES/MOBY-S/ServiceInstances 

Table 1 Web addresses for accessing the BioMOBY service registry in Canada 

The RDF service descriptions retrieved are using the myGrid/Moby Service Ontology  
(Wolstencroft et. al, 2007) that is summarized in Figure 16. 

The core entity in this service ontology model is the operation, which represents a unit of 
functionality for the user. Operations could be grouped into units of publication represented 
by the Service entity. An Operation has input and output parameters. In turn, each input and 
output parameter has a name, a description and belongs to a certain namespace denoting its 
semantic domain type. 

 

Figure 16 myGrid-Moby Ontology 

The scope of the ontology is limited to support service discovery. Each hierarchy contains 
abstract concepts to describe the bioinformatics domain at a high level of abstraction. By 
combining the terms from the ontology, descriptions of services are constructed to detail: 

 What the service does 

 What data sources it accesses 

 What each of the inputs and outputs should be 

 Which domain specific methods the analysis involves 

Combining the domain ontology and the service ontology enables full descriptions of ser-
vices. To take an example the BLASTn service would be described in the following way: 

 The overall task being performed by the operation (i.e. the biological operation it per-
forms): aligning 

 The bioinformatics algorithm used (i.e. the underlying scientific method):  NCBIBlast 

 The data resource it accesses:  NCBI GenBank database 

 The number of inputs: 1 

 The number of outputs: 1 

http://moby.ucalgary.ca/RESOURCES/MOBY-S/Objects
http://moby.ucalgary.ca/RESOURCES/MOBY-S/Services
http://moby.ucalgary.ca/RESOURCES/MOBY-S/Namespaces
http://moby.ucalgary.ca/RESOURCES/MOBY-S/ServiceInstances
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 Input 1: DNA sequence (fasta format) 

 Output:  Blast report 

Integration in the general framework presented above requires the aligning of this ontology 
with the OWL-S Service Profile. This can be easily achieved by providing additional axioms 
to the Reasoner that allow the merger of the two ontologies: 

 The BioMOBY operation class corresponds to the OWL-S service profile, because as 

described above it‟s a unit of functionality offered to the user. Therefore a statement 
like this moby:operation rdfs:subClassOf owls:ServiceProfile will provide the Reasoner 

with enough knowledge for linking the two ontologies and supporting inference across 
both of them. 

 The inputParameter relation corresponds to the hasInput property in OWL-S. This can 

be stated like this: moby:inputParameter rdfs:subPropertyOf owls:hasInput . 

 Similarly the outputParameter relation corresponds to the hasOutput property in OWL-

S. This can be stated like this: moby:outputParameter rdfs:subPropertyOf 
owls:hasOutput . 

4.3 Reasoning and inference 
Reasoning is performed for matching the description of services requests coming from the 
end user applications to the contents of the service knowledge base. The way this matching 
query to the semantic descriptions of the available services is performed is guided by the 
foundational and domain specific ontologies.  

Inference is needed because these ontologies have 
specific “recipes” for extracting new knowledge. A sim-
ple example to make it clearer is the following: 

Find me services that perform gene expression analysis 

In this case “gene expression analysis” is a domain 
specific concept coming from the BioMOBY service on-
tology where it is identified as the 
moby:GeneExpressionAnalysis class. According to the 

way the OWL-S Service Profile ontology is used the an-
swer to this request will be returned in variable ?s when 

the following SPARQL query is submitted: 

SELECT ?s 
WHERE { 

?s a moby:GeneExpressionAnalysis 
} 

Even in this case inference is important and it is based 
on the fact that the BioMOBY Service ontology is a hi-
erarchy of service capabilities with rdfs:subClassOf 
properties and the following rule is supported by all 
RDFS/OWL Reasoners: 

IF ?x a ?c1 AND ?c1 rdfs:subClassOf ?c2 THEN ?x a ?c2 

This means that the reasoner will return not only ser-
vices that have been asserted to be in the specific 
category (class) but also services that belong to all its 
subcategories since according to the inference rule 

In RDFS and OWL a distinction 
between an Individual and a 
Class is made. A class is gen-
erally defined as a set of indi-
viduals or the instances that 
belong to this class.  

The participation of an individu-
al to a class is stated with the 
“rdf:type” property that in seria-

lization formats like Turtle can 
be abbreviated simply as “a”. 

On the other hand classes can 
be put into hierarchies using the 
rdfs:subClassOf property which 

denotes subset relationships 
(since classes are sets). 

The following uses these rela-
tions in a typical example: 

:Man rdfs:subClassOf :Mortal . 
:Socrates a :Man . 

The semantics of these rela-
tions allow for the following infe-
rence to be made: 

:Socrates a :Mortal . 
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above the instances of the child categories belong also to the parent category.  

Validation of input and output connections in a workflow is another example. As shown in the 
next image the “out” parameter of service A needs to semantically conform to the “in” pa-
rameter of service B in order to have a connection between the two services. 

A B

inout

 

This validation of connections can be performed by checking the semantic types of the pa-
rameters. In particular if the semantic type of the “out” parameter is Tout and the type of the 

“in” parameter is Tin, the connection is valid only if Tout is a subclass of Tin, denoted as Tout  

Tin. This “subsumption” relation is needed so as to guarantee that the every instance (data) 

of the “out” parameter is compatible with the type of data the “in” parameter.  

The RDF Schema standard defines the rdfs:subClassOf property for building hierarchies with 

the following inference rule 

IF ?c1 rdfs:subClassOf ?c2 AND ?c2 rdfs:subClassOf ?c3 THEN ?c1 rdfs:subClassOf ?c3 

By employing the rule above a reasoner can deduce that the “out” parameter need not have 
a direct subcategory of the class of the “in” parameter but any direct or indirect subclass of it.  

Searching for services accepting a given data type is also a frequent use case. Assuming 
that the user has some data of type ?dt, she wants to find services that accept this kind of 

data as input. A possible SPARQL query to do that is the following 

SELECT ?s 
WHERE { 

?s a owls:ServiceProfile ; owls:hasInput ?in . 
?in a ?dt . 

} 

Since the operation class of BioMOBY has been defined to be subclass of OWL-S Service 
Profile and the moby:inputParameter  is a rdfs:subPropertyOf owls:hasInput, this query will 

search also for BioMOBY services. The inference rules used are the transitive properties of 
rdfs:subClassOf (shown and used above) and rdfs:subPropertyOf : 

IF ?x ?op1 ?y AND ?op1 rdfs: subPropertyOf ?op2 THEN ?x ?op2 ?y 

Of course all these cases can be combined into more complex queries. A possible advanced 
and complex use case of the service discovery and composition tasks is presented in the 
next sub section. 

4.4 Magallanes: a tool for automatic workflow creation 
Bioinformatics research often involves combining independent web-services as workflows in 
order to solve more complex tasks. However, manual workflow creation is potentially com-
plex and prone to errors. This represents a real challenge to life scientists who wish to utilize 
web-services.  
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Automatic workflow generation (or service composition) aims to automate the task of con-
necting independent services as much as possible. Two services can be connected if the 
output of one is compatible with the input of the other. The goal is to find an optimal set of 
services that match inputs with outputs. 

Magallanes (Magellan) is a versatile, platform-independent Java library of algorithms that can 
be used for discovery of web services and associated data types. Additionally, Magallanes 
can connect compatible web-services into pipelining workflows that can process data se-
quentially to reach a desired output. In Figure 17, a standalone client using the Magallanes 
library is shown. User has located the AminoAcidSequence and NCut_Clusters data types 
and selected those as input and output data types.  Magallanes used service metadata to 
create the workflow using three different services to complete the workflow. 

The workflow generation uses the target data type and considers the available services 
which can be used to produce data of this data type and then connects services until it 
reaches the desired source data type. When several paths are possible, the user interface 
asks the user which alternative path to choose. Feedback is given to the user in the form of 
the service descriptions. After this stage, the workflow can be exported for further editing. 
Currently, such exports are possible for the Taverna workbench but the ACGT workflow edi-
tor format will be supported in future versions. Selection of alternative paths will be further 
supported by use of service quality information (such as availability rate, frequency of use; 
i.e. popularity). 

 

Figure 17 Magallanes client tool 
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The Magallanes library is directly compatible with the ACGT metadata repository through the 
use of the Modular API (see D6.3). It is therefore not implemented using the ontology based 
frawework presented above and the relevant Semantic Web technologies. Nevertheless it 
shows a desired end user functionality that can greatly facilitate the construction of scientific 
workflows.  

Magallanes is further described in Deliverable 6.4 where the initial task of locating data types 
is discussed.
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5 Conclusions 
The interoperability of the ACGT components is tested by the developers but it's also con-
tinually exercised by the users themselves. The ACGT Workflow Editor (Figure 18) is the end 
user application for the designing and execution of high level scientific workflows. In this web 
based application the users are facilitated to graphically combine the data retrieval and dis-
covery services and the knowledge extraction and data analysis tools. The definition of the 
syntactic representation of the data and most importantly the annotation of the services with 
semantic metadata descriptions gives a lot of flexibility in the workflow editor for supporting 
user friendliness and intelligence.  If properly annotated, incompatible services cannot be di-
rectly connected because the data types of their inputs and outputs do not conform to each 
other, either in the syntactic or the semantic level, while service recommendation and intelli-
gent workflow composition can be also supported.  

Therefore the semantic annotation of data and services is of utmost importance. In this 
document a generic Semantic Web compliant framework has been describe to support the 
semantic integration of the ACGT services and tools but also additional services outside the 
ACGT domain. We have argued that the Semantic Web provides the necessary tools to have 
such generic integration architecture implemented and deployed. Technologies and stan-
dards in this domain are an active area of research and in this deliverable a representative 
subset of them has been presented. Nevertheless the needs in the ACGT are more in the 
area of service discovery and “match making” and therefore a simple subset of the OWL-S 
upper ontology has been selected to be used. 

Upper ontologies address only a small part of the problem: the bulk of work lies in developing 
industrial scale ontologies that capture the real domain semantics. To this end BioMOBY Ob-
ject and Service ontologies present a possible solution that can be reused. It is not the objec-
tive in the work presented here to strictly define what is the specific domain ontology that 
should be used throughout the ACGT platform. Instead the general architecture for the se-
mantic integration is presented, which should be fully implemented in the near future.  

 

Figure 18 The ACGT workflow editor 
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