	ACGT
	D9.1 – Definition of integration guidelines

	[image: image1.jpg]
Integration Requirements and Guidelines

Project Number:

FP6-2005-IST-026996

Deliverable id:

D 9.1

Deliverable name:

Integration requirements and guidelines

Date:

March 2007

[image: image2.jpg]

	

	COVER AND CONTROL PAGE OF DOCUMENT

	Project Acronym:
	ACGT

	Project Full Name:
	Advancing Clinico-Genomic Clinical Trials on Cancer: Open Grid Services for improving Medical Knowledge Discovery

	Document id:
	D 9.1

	Document name:
	Integration Requirements and Guidelines

	Document type (PU, INT, RE)
	INT

	Version:
	FINAL

	Date:
	30.03.2007

	Editors:
Organisation:
Address:
	Fatima Schera
Fraunhofer Institute for Biomedical Engineering (IBMT)
Ensheimer Straße 48
66386 St. Ingbert
Germany

Document type PU = public, INT = internal, RE = restricted

	ABSTRACT:

This document aims to define the necessary integration guidelines for the creation and adoption of syntactically and semantically interoperable software systems, tools, and services within the integrated ACGT environment. It describes some general aspects of software integration and interoperability with respect to the ACGT GRID infrastructure and analyzes the integration requirements of the various components within the ACGT environment. This document has been developed based on the information provided in the “Description Of Work” document and the Deliverable 2.1 (the ACGT User Requirements). It also builds upon the initial ACGT architecture specified in the Deliverable 3.1 and verifies the suggested approach.

	KEYWORD LIST: integration; interoperability; heterogeneity; semantic; grid

	MODIFICATION CONTROL

	Version
	Date
	Status
	Author

	0.14
	09.03.2007
	Draft
	Fatima Schera

	0.15
	22.03.2007
	Draft
	Stelios Sfakianakis

	0.17
	29.03.2007
	Draft
	Stelios Sfakianakis

	0.19
	30.03.2007
	Final
	Stelios Sfakianakis

	
	
	
	

List of Contributors

· Alberto Anguita, UPM

· Mathias Brochhausen, USAAR (IFOMIS)

· Stefan Castille, Custodix

· Erwin Bonsma, Philips

· Stephan Kiefer, FhG-IBMT

· Luis Martin, UPM

· Juliusz Puckaki, PSZN

· Georgios Stamatakos, ISSC

· Holger Stenzhorn, USAAR (IFOMIS)
· Dennis Wegener, FhG-IAIS
· Gabriele Weiler, FhG-IBMT

Contents

6Executive Summary

71
Introduction

71.1
Project background

71.2
Purpose and structure of this document

82
Integration and Interoperability

82.1
Software integration

82.1.1
Criteria for an optimal integration process

92.1.2
Integration styles

92.2
Software interoperability

102.2.1
Syntactic interoperability

102.2.2
Semantic interoperability

112.2.3
Example for a model to achieve interoperability: Levels of Conceptual Interoperability Model (LCIM)

133
Integration Requirements in ACGT

133.1
The ACGT Architecture

143.1.1
Standards for Services used in ACGT

153.1.1.1
Web Service Standards

153.1.1.2
Grid Service Standards

163.1.2
Classification of services and tools in ACGT

183.1.3
Implementation of analytical tools in the ACGT Grid infrastructure

193.1.4
Input and Output Data formats used by services

203.1.5
Data Management

213.1.6
Strategy for adding and removing 3rd-party services

223.1.7
Security implications of the ACGT architecture

223.1.7.1
Security considerations for services in ACGT

223.1.7.2
Data access

243.2
Integration of the ACGT components

293.2.1
User Access Layer

293.2.1.1
Users and User Interfaces

313.2.1.2
General User Interface Guidelines

313.2.1.3
Integration of the ACGT Portal Services

333.2.1.4
Integration of modelling and simulation tools

333.2.1.5
Integration of interactive data visualization tools

343.2.1.6
Workflow Editor

363.2.2
Business Processes Layer

363.2.2.1
Management of metadata

373.2.2.2
Integration of the Metadata Repository

403.2.2.3
Integration of the Application Repository and Enactment Service

403.2.2.4
Integration of the Service Registry

413.2.2.5
Integration of the ACGT Master Ontology

433.2.2.6
Workflows Management within the ACGT environment

443.2.2.7
Integration of the ACGT Semantic Mediator tool

463.2.2.8
Management of Virtual Organisations

463.2.2.9
Integration of Knowledge Discovery services

483.2.3
Advanced Grid Middleware Layer

483.2.3.1
Integration of databases and data wrappers

493.2.4
Common Grid Infrastructure Layer

493.3
Source Code Maintenance and Availability

494
Conclusion

505
References

516
Acronyms

Table of Figures
11Figure 1: Levels of Conceptual Interoperability Model

14Figure 2: ACGT high level architecture

23Figure 3: Data access in ACGT from the security point of view

Executive Summary

This document aims to define the necessary integration guidelines for the creation and adoption of syntactically and semantically interoperable software systems, tools, and services within the integrated ACGT environment. It describes some general aspects of software integration and interoperability with respect to the ACGT GRID infrastructure and analyzes the integration requirements of the various components within the ACGT environment. This document has been developed based on the information provided in the “Description of Work” document and the Deliverable 2.1 (the ACGT User Requirements). It also builds upon the initial ACGT architecture specified in the Deliverable 3.1 and verifies the suggested approach. In the current stage of the project it is not possible to define detailed Integration Guidelines, since many integration aspects regarding the different components are not yet clear. Although the current version of this document discusses various aspects of the integration and can be seen as the initial Integration Guidelines, it can not serve as the “ultimate” source of information for the integration in ACGT. Instead, an iterative process is proposed that will continuously revise this document and produce more detailed descriptions of the Integration Guidelines.
1 Introduction

1.1 Project background

ACGT is a new approach that enables collaboration among different scientific disciplines and integration in terms of data, methods, technologies, tools and applications. In the new area of “genomic medicine”, designers and analysts of clinical trials must consider how to develop methods for heterogeneous (e.g. genomic, medical) data source integration, including the use of ontologies which facilitates mapping and information retrieval.

In the ACGT project an advanced clinical and genomic information integration and data processing environment will be developed equipped with high-interoperable, high-performing and GRID-enabled knowledge discovery capabilities.

Special emphasis in ACGT project is given to interoperability aspects, focusing on the seamless data collection and integration of clinical trial databases, imaging databases, public sequence databases, and biobanks.

Integration targets all levels – from molecular to the human and the population. GRID-enabled mediation functionality, realised by the respective software components, tools and services, composes the means towards a knowledge-enriched, effective and reliable integration.

1.2 Purpose and structure of this document

This document represents guidelines that shall facilitate the integration of systems, tools and services within the ACGT environment with respect to syntactic and semantic interoperability.

In particular this document shall provide answers to the following questions:

· How do we define guidelines that are flexible enough and well-defined that they can form the basis for a broad integration of heterogeneous, legacy and future systems?

· How do we accommodate and exploit separate evolution of interoperating components while preserving integration?

· How do we design systems to facilitate interoperation with future and legacy tools?

· How do we design the system infrastructure to facilitate interoperation and integration?

In this document the following key issues are discussed:

· The data exchange protocols for interoperating systems and services, how to specify them adequately, how to validate them.

· System analysis and specification of schemes by which existing systems, databases, tools and services can be integrated into the ACGT environment.

· Integration of generic data manipulation, analysis and visualisation tools.

· Tools and standards for integrating databases and data models.

The integration guidelines defined in this document do not aim to be definitive, as they will evolve throughout the project’s life. Many aspects will continue to grow during the early phases of the project, so further revisions of this document are expected.

In the next chapter general software integration and interoperability aspects are described before these aspects are analysed in more detail for the ACGT architecture and the integration of its components in chapter 3.

2 Integration and Interoperability
2.1 Software integration

Integration concerns the design of components which are easy to use as part of a larger suite of components. The goal of the integration process is to make disparate and heterogeneous applications work together so as to produce a unified set of functionality, possibly by complementing each other. In general this is a Herculean task due to the heterogeneity of the software and hardware platforms, the diversity of architectural styles and paradigms, the security concerns, the geographic dispersion of the contributing software entities, etc. In some cases there are also non technical impediments to the integration process, such as crossing enterprise boundaries and rigid organizational policies. In spite of these problems, application and system integration is unavoidable in cases where the building of a single standalone application is difficult or even impossible because of the complexity of the application domain. Integration is also a viable solution for taking advantage of the available infrastructure, either existing (“legacy”) systems or deployed applications and computer resources, and increasing overall system capacity, performance, scalability, user functionality, and customer reach.
2.1.1 Criteria for an optimal integration process

According to [EAI] the following concerns should be taken into account when trying to build a good integration solution:

· Application coupling. The integrated applications should minimize their dependencies on each other so that each can evolve without causing problems to the others. In general tightly coupled applications make numerous assumptions about how the other applications work; when the applications change and break those assumptions, the integration between them breaks. Therefore, the interfaces for integrating applications should be specific enough to implement useful functionality but general enough to allow the implementation to change as needed.

· Intrusiveness. The integration process should not impose too many changes to the constituent applications. This non intrusiveness, to the degree that is possible, is necessary for reducing the integration costs and also ensuring that the integrated system maintains the virtues of the participating components. Nevertheless it can be the case that major changes are needed in order to achieve good integration.
· Technology selection. The choice of the technology platform and the relevant tools is also important. There are many offerings and usually the choice is made based on the familiarity and the experience of the developers, the inherent costs (e.g. licenses), the applicability of open source products, etc.

· Data format. Integrated applications must agree on the format of the data they exchange. Changing existing applications to use a unified data format may be difficult or impossible. Alternatively, an intermediate translator can unify applications that insist on different data formats. A related issue is data format evolution and extensibility—how the format can change over time and how that change will affect the applications.

· Remote Communication. It is typical in an integrated environment to have different applications call each other. This communication although similar in principle with the local function call available in the majority of the programming languages is in fact quite different because of the intervention of the network. The common fallacies of distributed computing
, such as that the network latency is zero, the communication is secure and reliable, etc. have to be considered and avoided. Generally speaking the integrated applications should make as few assumptions about their environment as possible. The adoption of asynchronous communication and the preparation for and handling of the communication errors (e.g. unreachable network/computer/application) are good advices to follow.
These criteria are of course too general and in every integration scenario they should be further elaborated and analysed. Nevertheless they are indicative of the complexity of the integration process and the effort that must be invested in building a unified system from different and heterogeneous parts.
2.1.2 Integration styles

In the last twenty or so years a number of integration approaches have been proposed and studied. These approaches can be roughly categorized as follows:
· Use of some shared area as the means for the communication and synchronization between the integrated applications. Examples of this setting are a common file system, a shared, possibly distributed, database, Tuple Spaces
, etc.

· Have each application expose some kind of programmatic interface with procedures or methods that can be invoked remotely (Remote Procedure Call - RPC). Examples of this kind of integration style are the CORBA and the Web Services architectures.
· Use asynchronous message passing through some common messaging component (a “queue”). This way of interaction involves what is generally called Message Oriented Middleware (MOM) and examples of such middleware components are the Java Message Service (JMS
) and the Advanced Message Queuing Protocol (AMQP
). Additionally, there are many commercial products available, e.g. IBM WebSphere MQ.
There are advantages and disadvantages to all of the above approaches in terms of ease of integration, standardization, performance and scalability, etc. Also there are cases where different approaches are combined and the resulting integrated environment has features that do not allow its classification into a single integration paradigm. An example of this is the World Wide Web where although the presence of Web Services (either SOAP or HTTP based ones) may indicate an RPC environment, the ubiquitous use of Uniform Resource Identifiers (URIs) as handles to data sources can also be a hint for its classification and use as a huge shared database of information.
2.2 Software interoperability

Closely related to the concept of integration is interoperability. Whereas integration is concerned with the building of a unified system that incorporates the functionality of its constituent parts, interoperability is more a virtue of a single software entity so that it can be easily deployed in an unanticipated environment. Therefore interoperability is a feature of “future-proof” applications that facilitates their integration and collaboration with other applications.
More formally, according to ISO/IEC 2382-01, Information Technology Vocabulary, Fundamental Terms, interoperability is defined as follows: "The capability to communicate, execute programs, or transfer data among various functional units in a manner that requires the user to have little or no knowledge of the unique characteristics of those units". [ISO2382] Therefore, interoperable systems are able to access and use the parts of other, separately designed systems, exchange data via a common set of business procedures and to read and write the same file formats and use the same protocols.
Interoperability can be achieved on different levels. The most important distinction is syntactic and semantic interoperability, which will be discussed in the next two sections. In section 2.2.3 we present a more advanced model of interoperability levels, the Levels of Conceptual Interoperability (LCIM).
2.2.1 Syntactic interoperability

Syntactic interoperability of software may be defined as the ability for multiple software components to interact regardless of their implementation programming language or hardware platform. The available mechanisms for software interoperability, concerned with the form (structured description) at the integration interface, are [HOW96]:

· Data type interoperability: Distributed and disparate programs support structured exchange of information through Application Programming Interfaces (APIs) invoked over a computer network.

· Specification level interoperability: Same as the previous one but also encapsulates knowledge representation differences at the level of abstract data types (e.g. a table, tree etc.). This enables programs to communicate at higher levels of abstraction and increases the degree of information hiding. CORBA and Enterprise Java Beans (EJB) fall into this category.

Syntactic interoperability in ACGT requires standardization of data formats and data structures for the representation of, access to and exchange between biomedical informatics resources.

2.2.2 Semantic interoperability

Semantics is a term that is frequently used to refer to the meaning of things. Moving away from this platonic concept, in practice, metadata is a related term that is used in order to specify the concrete descriptions of things. These descriptions aim to give details about the nature, intent, behaviour, etc. of the described entity but they are also data that can be managed in the typical ways so this explains the frequently used definition: “metadata are data about data”.

Based on these definitions we can define Semantic Interoperability as the ability of two or more computer systems to exchange information and have the meaning of that information accurately and automatically interpreted by the receiving system.
Semantic interoperability represents design intent and predicted behaviour as well as form (structured description) of the shared entities. It assumes that different information sources store information on related issues but each may offer a different meaning (semantics) of it.

The highest degree of interoperability is attained when access and use can be completely automated. To achieve this level of interoperability, programming and messaging interfaces must conform to standards that specify consistent syntax and format across all systems in the ACGT environment. Furthermore, all data must be annotated with metadata by means of terminology and ontology identifiers and codes that support computational aggregation and comparison of information that resides in separate resources.

2.2.3 Example for a model to achieve interoperability: Levels of Conceptual Interoperability Model (LCIM)

According to the “Levels of Conceptual Interoperability Model" [TUR] that was defined by the research at the Virginia Modelling Analysis & Simulation Centre (VMASC), interoperability comprises seven different levels.

[image: image3.png]
Figure 1: Levels of Conceptual Interoperability Model

These levels are (see Figure 1):
· Level 0: Stand-alone systems have No Interoperability.

· Level 1: On the level of Technical Interoperability, a communication protocol exists for exchanging data between participating systems. On this level, a communication infrastructure is established allowing systems to exchange bits and bytes, and the underlying networks and protocols are unambiguously defined.

· Level 2: The Syntactic Interoperability level introduces a common structure to exchange information; i.e., a common data format is applied. On this level, a common protocol to structure the data is used; the format of the information exchange is unambiguously defined.

· Level 3: If a common information exchange reference model is used, the level of Semantic Interoperability is reached. On this level, the meaning of the data is shared; the content of the information exchange requests are unambiguously defined.

· Level 4: Pragmatic Interoperability is reached when the interoperating systems are aware of the methods and procedures that each system is employing. In other words, the use of the data – or the context of its application – is understood by the participating systems; the context in which the information is exchanged is unambiguously defined.

· Level 5: As a system operates on data over time, the state of that system will change, and this includes the assumptions and constraints that affect its data interchange. If systems have attained Dynamic Interoperability, they are able to comprehend the state changes that occur in the assumptions and constraints that each is making over time, and they are able to take advantage of those changes. When interested specifically in the effects of operations, this becomes increasingly important; the effect of the information exchange within the participating systems is unambiguously defined.

· Level 6: Finally, if the conceptual model – i.e. the assumptions and constraints of the meaningful abstraction of reality – are aligned, the highest level of interoperability is reached, i.e. Conceptual Interoperability. This requires that conceptual models are documented based on engineering methods enabling their interpretation and evaluation by other engineers. In essence, this requires a “fully specified, but implementation independent model” as reported by Davis and Anderson [DA03]; this is not simply text describing the conceptual idea.

The LCIM shows that a layered approach to support composable services is necessary. The Web Service standards are not able to manage all levels. It is worth mentioning, however, that the LCIM focuses on technical support by information systems, such as command and control information systems in the military context.

3 Integration Requirements in ACGT
3.1 The ACGT Architecture

The main challenge of the integrated ACGT architecture is the interoperability of systems, tools and services that are made available to the users of the ACGT environment with the ultimate goal of secure, transparent, and unobtrusive sharing of data and functionality.
Most of the currently identified scenarios in the ACGT project are focused on data access and processing of data but there is also one scenario involving computational jobs and visualization [ACGT2]. In order to fulfil the requirements imposed by these scenarios a heterogeneous, scalable and flexible environment is needed and the following technologies, which have gained momentum in the recent years, are being considered for adoption:

· Web Services technologies
· Grid technologies
· Semantic Web technologies, such as RDF and OWL
Although initially separated, these technologies are currently converging in a complementary way. An example of this convergence is the Semantic Grid that came into existence as an effort to introduce the semantic web technologies into the grids and it’s usually defined as "an extension of the current grid in which information and services are given well-defined meaning, better enabling computers and people to work in cooperation."

As a result we think that ACGT should be based on a service oriented, semantically aware Grid infrastructure in order to achieve its goals by using state of the art technologies and standards:
· The choice of the Grid infrastructure is justified if one considers the advantages offered by the Grid: dependable, consistent, pervasive, and inexpensive access to high-end computational capabilities and integration of different resources in order to achieve advanced functionality that is not possible without grid. Grid is defined in [FKNT] as follows: "The real and specific problem that underlies the Grid concept is coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations. The sharing that we are concerned with is not primarily file exchange but rather direct access to computers, software, data, and other resources, as is required by a range of collaborative problem-solving and resource brokering strategies emerging in industry, science, and engineering." Such coordination of resources, which are not subject to centralized control, and usage of standard, open, general-purpose protocols and interfaces as well as delivery of nontrivial qualities of service are the most important attributes of the Grid.
· Service orientation (Service Oriented Architectures – SOA) is also a suitable architectural style for ACGT because it fosters the “loose coupling” of software entities and the separation of the interface from the implementation. It also promotes the discoverability of the software components and their “composability” is enabled by the provision (publishing, discovery) of their descriptions.

· Semantics is the necessary component for high level integration as described in the previous section. Metadata and semantic descriptions of data and functional entities enhance the system’s behaviour and give important benefits to the end users in terms of functionality, system responsiveness, etc.
The current ACGT Grid architecture is described in Deliverable 3.1 [ACGT3]. It is a layered architecture shown in Figure 2.

[image: image4.jpg]

Figure 2: ACGT high level architecture

The important thing about layered architectures is that, besides the level of abstraction, layers represent also an integration platform for components. Components on the same layer should operate on the same abstractions and understand each other. The integration within layers should occur both on the syntactic and the semantic level. For instance, all the services on the Advanced Grid Middleware Layer are separate components, but they are integrated syntactically – using Web Services technology, and semantically – they can communicate with each other and understand the meaning of information they interchange.

In comparison to the LCIM model described in paragraph 2.2.3, the layered ACGT architecture and the supporting infrastructure aim to achieve the level of semantic interoperability (level 3 on the Figure 1) and also make sure that the requirements of the level of pragmatic interoperability (level 4) are satisfied. The context of each ACGT application will be understood by the participating components of the whole ACGT system through usage of common components such as the Metadata Repository, the Service Registry, etc. Most of these components are presented in Section 3.2.
3.1.1 Standards for Services used in ACGT

As stated earlier, the ACGT platform is based on a service oriented architecture realized through Web Service technologies. Unfortunately, achieving interoperability in the Web Services world is a difficult task (see also Deliverable 5.1, Section 6.3.2). Nevertheless, in ACGT we have to make sure that interoperability and integration of different components is feasible. The adoption of well defined standards is the preferred way to guarantee the interoperability of the ACGT components. There are two main standards of services interfaces: the pure web service standards and the Grid standards.

3.1.1.1 Web Service Standards

The basic technologies used to implement Web Services are:

· XML, as a common serialization format

· SOAP, as the XML-based messaging protocol

· Web Service Description Language (WSDL), as the service description language

There are also a number of additional specifications and standards that cater for different aspects of web services, like:

· Security: WS-Security, WS-SecureConversation, WS-SecurityPolicy (an addendum to WS-Security), WS-Trust.

· Messaging and Addressing: WS-Addressing, WS-Notification, WS-Eventing

· Metadata: WS-Policy, WS-MetadataExchange, Semantic Annotations for WSDL

Quite a few of these specifications are not "standard" at all, many of them are not widely implemented, and so on, therefore it is usually suggested that in order to be always on the safe side systems should use the basic functionality offered by SOAP and WSDL. These problems have been identified and the Web Service Interoperability (WS-I) organization
 has been founded to offer guidance to WS implementers and users on how to increase interoperability. The most important deliverable of WS-I so far is the Basic Profile that consists of "a set of non-proprietary Web services specifications, along with clarifications, refinements, interpretations and amplifications of those specifications which promote interoperability." There is also the Basic Security Profile that provides guidelines on the use of WS-Security and the REL, Kerberos, SAML, UserName and X.509 security token formats. Although initial discussions resulted in the adoption of SAML in ACGT, the final decisions will be taken following experimentation and implementation experiences.
3.1.1.2 Grid Service Standards

The state of the art Grid architecture and standards are collectively identified as the Open Grid Services Architecture (OGSA) [FKNT]. OGSA is based on SOAP and WSDL and therefore should be to a large extent compliant with the web service technologies. The Web Service Resource Framework (WSRF
) was proposed as a set of specifications to provide guidelines and "standardized" interfaces for building stateful services. The most popular implementation of WSRF is the Globus Toolkit 4
. In WSRF a resource is the container of state and it is identified with WS-Addressing endpoint reference (a simple URI or more complex XML document). Communication with a WSRF service requires the inclusion of the identifier of the specific resource inside the SOAP Header so that the service could locate the state that it can match the request with.

The OGSA WSRF Basic Profile [WSRF-SEC] is a similar effort to WS-I to define a profile for WSRF implementations. Unfortunately Globus Toolkit 4 is not compliant with it in its current version (as of 4.0.3), for example it uses a deprecated (pre-standardization) version of WS-Addressing. In addition to this, WSRF and its use of endpoint references in general requires special machinery and handling from web service frameworks and toolkits that are WS-I compliant. The requirement for the identification of the resource's endpoint reference in the SOAP Header rather than in the operations' parameters puts hurdles in tools that inspect the WSDL descriptions of services and dynamically build code to invoke the services' operations. An example of this case is the Taverna workflow environment, which, as of version 1.5, can not incorporate WSRF services as activities in a workflow. There is work planned for supporting WSRF but it currently seems that using WSRF complicates the use of web services. It has yet to be established whether the extra benefits it offers are worth the hassle. We should need to establish how well the WSRF standard is taken up in the wider community
3.1.2 Classification of services and tools in ACGT

In the future ACGT environment a lot of different services will co-exist. The SOA paradigm defines the architecture as “loosely coupled software services to support the requirements of business processes and software users” but this is a very general definition. We would like to build the ACGT environment in a SOA compliant manner but it is necessary to add semantics and additional constraints and rules for building the ACGT services.
In order to have a better understanding the services in the ACGT environment can be categorized based on the following aspects:
· The position of the service in the ACGT architecture (see Figure 2),
· The role of the service in the ACGT environment, and
· The owner/maintainer of the service.
A classification of the services based on these criteria is given in Table 1.

	Classification criteria
	Kind of service
	Description

	Position in ACGT architecture
	Service of Common Grid Layer
	The Services from this layer are used for offering transparent access, monitoring, and utilization of the potentially heterogeneous hardware resources of ACGT. These services are responsible for the execution and control of Grid jobs, file transfer, etc.

	
	Service of Advanced Grid Layer
	The services from this layer are responsible for providing more advanced functionality in the Grid environment. Example of this advanced functionality can be the meta-scheduling facility, i.e. the management of different queuing systems for Grid jobs, or some higher level data management mechanisms such as replication.

	
	Service of Business Model Layer
	These are specific services for ACGT environment. They can be considered as the “users” of the Grid infrastructure, which means that they exploit the Grid foundation in order to implement their own functionality. They are closer to the end user and therefore they utilize high level terminologies and domain ontologies.

	Role in ACGT environment

	Infrastructure Service
	These services will be used for building the ACGT environment and therefore they belong to what is frequently called as “middleware”. They can be deemed as the “backbone” of the ACGT platform because they are fundamental components of the ACGT architecture. Most of the services from Grid layers belong to this group, e.g. Grid Security services. Additional examples of such services are the Service Registry, the Metadata Repository, etc.

	
	Analytical Tool Service
	Analytical Tool Services are tools for knowledge discovery and data mining tasks. They perform analyses in input data sets and they are “deterministic” in the sense that when they are given the same data and the same parameters they will produce the same result.

	
	Data Access Services
	These services are responsible for making the “wrapped” data sources available to the rest of the ACGT environment and also compliant with the architecture both in the syntactic and the semantic level. Most of these services are peripheral components of the architecture. As a unique exception to this, the Semantic Mediator is a data access service with the characteristics of the infrastructure services due to its vital role in the data integration process.

	Owner/maintainer of the service
	ACGT Service
	Service developed or adopted by the ACGT consortium that has full control over it. In this case control means the possibility to introduce common policies for building and using such a service, for instance applying the same security mechanisms, the same technology for accessing the service, etc. All Infrastructure Services should be ACGT Services.

	
	Third Party Service
	It is not possible to build everything from scratch. There are a lot of existing tools freely available that can be used without any limitations. The policy (evaluation procedures) for incorporating such services to the ACGT infrastructure has still to be defined. Developing additional components, wrappers etc may prove to be necessary (See also section 3.1.6).

Table 1 Logical core resource areas in ACGT architecture

The classification given in Table 1 can be used in order to acquire a better understanding of the ACGT architecture but it can also facilitate the investigation of the following aspects:
· Security - Classification of the services is very important from a security point of view. It is necessary for the definition of policies for the creation and management the services. For example, all ACGT Services should use the same authentication and authorization mechanisms, and therefore, after the necessary validation procedures, they can be treated as trusted services. On the other hand it is not possible to enforce any implementation changes to Third Party Services so there should be intelligent mechanisms that restrict the provision of any confidential data to them. The security implications of the ACGT architecture are described in section 3.1.7 in more details.
· Integration - From the point of view of integration for each group of services we can define what technology we support. As an example, for the ACGT services we can propose the use of some common technologies for their implementation (e.g. development tools, code libraries, etc.) so that achieving interoperability is easier and this would be useful especially for the Infrastructure Services.
3.1.3 Implementation of analytical tools in the ACGT Grid infrastructure

The implementation of the analytical tools and services should be studied in particular with relation to the Grid architecture and software. We have identified the following possibilities for the implementation of the analytical tools in the ACGT:

· Tools as "dumb" executables. A tool can be just an executable or an R script that makes no assumption about the Grid being present or not. In this case the tools are just input to higher level services and tools that execute them. Scripts written in the R language belong to this category since they require the presence of the R environment or some other service that invokes them passing their arguments in some "traditional" way e.g. as command line parameters or as standard input. They are not aware of the Grid environment and make no assumptions other than their execution environment e.g. either R, or a Unix process (or Java, Python, etc.) environment.

· Tools as Grid jobs. A tool can also be implemented as a "job" that can be submitted in the Grid for execution. Tools implemented as Grid Jobs can take advantage of the Grid infrastructure, e.g. clusters, in order to reduce their execution time [GRAM]. Usually Grid jobs are implemented as parallel programs that when executed in a cluster of more than one CPUs increase their performance and throughput. This definitely requires more effort from the programmer and there are many algorithms that can not be parallelized. Nevertheless it can be also the case that implementing an analytical algorithm as a Grid job relieves its programmer or publisher of the responsibility to find a place to host the execution environment of it; the tool can be run anywhere in the Grid without consuming resources of the publisher's site and we consider this a big bonus even if it hasn't been parallelized. An implication of this approach is of course that a job description [GRAM_JOB] is required every time we execute the tool that specifies the tool's inputs, outputs, and other run time constraints (e.g. software libraries that are needed) in the execution environment.

· Tools as Services. Another possibility is to have each tool implemented as a Web (or "Grid") Service. This means that each tool is accessed through a network endpoint (typically a HTTP URL), accepts requests and return responses using the SOAP format, and its interface is described in WSDL. In this case the tools are directly accessible as services, which means that they can be easily incorporated in a workflow. A possible disadvantage of this approach is that the tools are not executed on the Grid clusters but at the point where they are hosted. Also there is no possibility for relocating the service, at least not without some additional effort (e.g. editing the WSDL to include the new service endpoint and republishing this new description).

· Tools as Services executed on the Grid. A last possibility is a tool that is accessible through a Web or Grid service interface but takes advantage of the grid infrastructure in order to achieve better performance. This is a hybrid approach: a tool is a service that wraps a Grid job. Whenever the service accepts a new request, a job is submitted to the Grid that is responsible for taking care either the whole or part of the work that should be done for this request. This seems to combine the best of both worlds, especially for the tools that are computationally heavy: the tool is presented as a service with a WSDL described interface and it is implemented as one or more Grid job that take the burden of the computation work off to the Grid.

From the point of view of the architecture we can fold the types of tools to just two:

· Grid Jobs - submitted directly to Grid infrastructure using Grid Resource Management System (GRMS), which is the preferred solution, or even directly to Resource. The Grid Job is described using some Job Description document that us accepted by GRMS. GRMS takes care of the execution of the job in a transparent way to the user. The Grid Job can have the form of a simple script, or can be a Grid aware application taking advantage of the hardware infrastructure.

· ACGT Services - tools implemented as a Web Service, described in WSDL, accessed through network using the SOAP protocol. Services can provide simple functionality - no computational intensive tasks, act according to simple request-response rule. The other type of services is the one that includes services that perform some computational intensive tasks. Because they can not act in a request-response manner, for example if the computation takes a long time, these services require the implementation of state management functionality or at least support user sessions. For performing their computations these services can use Grid Jobs submitted to the Grid environment.

Both of these implementation strategies will be supported in the final ACGT environment.
3.1.4 Input and Output Data formats used by services

In the context of workflows and application-domain services the main concern is in the "connectivity" of services: the output of a service can be applied to the input of another service. In this context the following aspects should be considered:

· Type compatibility when connecting services This issue can be solved by defining a hierarchy of data types which in addition allows type polymorphism during service execution. The type information has to be supported by the metadata schema.

· Data format transformations, so that services originally incompatible can be connected This issue concerns workflow construction. Data type or format transformations could be handled either explicitly or implicitly. If it is handled explicitly then the user needs to add a component in his workflow that explicitly handles the data transformation. The alternative is to have a system that is able to identify the data type or format mismatch and resolve it automatically.

· Model and format uniformization, so that services can talk the same “language” This issue would prevent data mismatches by adopting one way of representing the data. Although this is an ideal solution and we should try to follow this direction, it is not very realistic as there are already many ways of representing the data that are relevant to the ACGT trials (e.g. gene expression data, clinical data, genomic data, etc).
· Multiple Data encoding This consideration is about the way into which the basic units of data are represented. For instance text can be encoded using either UTF-8, iso-latin1, ASCII, etc. This is well handled by most XML-based messaging protocols like SOAP as they have a specific syntax for defining the message character encoding used. But in ACGT we will need also to pass binary data for images. Binary encoding can also be useful for exchanging large text messages in a compressed encoding.

3.1.5 Data Management

It is realistic to believe that in the future ACGT environment the frequent use of the system will result in the generation of lots of data. Examples of such data could be the clinical and genomic data of patients but also results of the analysis of these patient data or other data produced as by-products of the users’ interaction with the ACGT platform, e.g. intermediate results of the workflows execution, provenance information, etc.
Data storage, management and access in the ACGT environment are supported by the Grid Data Management Suite (DMS). This suite is composed of several specialized components and allows the building of a distributed system of services capable of delivering mechanisms for seamless management of large amount of data. From the external applications point of view DMS is a virtual file system keeping the data organized in a tree structure. The main units of this structure are metadirectories, which make it feasible to impose a hierarchy over other objects and metafiles. Metafiles represent a logical view of computational data regardless of their physical storage location.

While the Grid data management services will take care of the issues of data availability and data access, an additional issue that should be discussed is the policy that governs the persistence and disposal of all this data. For the management of the life time of the data the following three models are considered [FMS]:

· Eternal: data are never disposed

· Claim: data are claimed and are kept until the claim is released.

· Expiration: data are assigned a lifetime which is used to calculate and record an expiration, i.e. the time when a file may be removed from the system.

The first case has serious problems if new data are constantly created, which should be the case for every system that is successful and has attracted a lot of users. In order to alleviate the issue of growing space usage there should be a cleanup mechanism in place that is activated either by the users themselves, or automatically, e.g. after some constant period of time.

In the second case the users are responsible for specifying ("claiming") that some data should be preserved for some time until these claims are released. This case could also lead to grows without bound (albeit slower) as failed processes and forgetful users neglect to release claims.

In the third model, the number of files is bounded by the product of the request rate and the average lifetime per request but this number may be very large if the lifetimes are not kept to reasonable values.

In the system described in [FMS] a mix of the second and third policies is followed. Whenever a user creates a file, a claim is created and assigned an expiration time. As long as the claim exists, the claim owner may update its lifetime or release the claim. A file may be removed when all its claims have expired. Claims are removed before a file is deleted and any time after they have expired. The lifetime of a file is defined to be the time until its longest claim expires. Presumably this would be the preferred solution also for ACGT in the case that the management of data lifetime becomes an issue.
3.1.6 Strategy for adding and removing 3rd-party services

For the definition of steps required to add and remove 3rd-party services and who will perform them we should distinguish two kinds of 3rd-party services:

· 3rd-party services chosen by the ACGT consortium which are required to fulfil the clinical trial requirements

· 3rd-party services chosen by a user of the ACGT platform in which he is interested in, for instance, incorporating some functionality or calculation into a workflow he is creating.

The integration of third party services is more troublesome than the integration of the ACGT services for yet another reason: the implementation and maintenance of a third party service is outside of the ACGT consortium’s control. Hence, in this case, there are many concerns about the security and confidentiality of the data, the availability of the services, etc. It is therefore important to establish a policy and relevant criteria about the requirements a third party service should meet in order to be integrated in the ACGT platform. For these reasons we have selected the concept of Service Quality as the criteria for granting data access to 3rd-party services. Possible attributes that define service quality are:

· Maturity/trust level, e.g. Production, Testing, Development, etc.

· Popularity, i.e. how much it is used by the users.

· Availability (online, offline)

These qualities of service should be supported by the service metadata schema and the service repository in general. This service quality information could be used in various cases. Some examples are:

· The user could be presented with only online working services and workflows. This is particularly useful during service discovery and workflow composition.

· Results to a service or workflow search could be sorted by popularity

· Data sets could be annotated with the level of trust required by a service so that it can process the data (e.g. preventing 3rd party services to be supplied with confidential data).

3.1.7 Security implications of the ACGT architecture

Regarding the general security process, different security levels should be defined for different types of tools and services, e.g.:

· tools and services that have been audited by an independent person

· tools and services integrated by someone ACGT trusts
· tools and services that ACGT can automatically give some guarantees about
The security level that a tool or service belongs to is part of its Service Quality metadata. In this way the owner of a dataset can decide which level of security would be necessary for his data and have an automatic checking before the service invocation or a workflow’s execution.

3.1.7.1 Security considerations for services in ACGT

Two groups of services are distinguished and strict security policies are defined for those groups within the ACGT:

· ACGT Services - services developed within the ACGT consortium. The security rules for these services should be unified and respected by all developers. There are several aspects of the security policies:

· authentication - realized by using an appropriate protocol

· authorization - authorization service

· auditing – logging access in a secure way
· communication security – encrypted communication

· Third party services - already existing services that would be incorporated into the ACGT environment.

All services should be audited to make sure the security services are implemented and configured correctly. This is of course easier for the ACGT Services than the third party services because of the immediate access to the source code and the software maintainer. Nevertheless a quality assurance committee will be needed for the technical validation of the software integrated in the ACGT in both cases.

On the practical side, the use of popular and high-grade software packages like Globus Toolkit can result in a good implementation of a service, although not necessarily a good configuration when a service is deployed. The employment of such high quality libraries, toolkits, etc. should therefore be promoted among the technical work packages.
3.1.7.2 Data access

Data access in ACGT from security point of view is depicted in Figure 3.

[image: image5.png]
Figure 3: Data access in ACGT from the security point of view
Within ACGT the basic functionality provided from WP11 will include the export of the patient information to the ACGT databases and anonymisation of the physical samples sent to a laboratory. The interface between security tools and services (WP11) and Clinical Data Management System (which includes the Trial Builder tool), developed in WP5, have not been specified yet.

The integration of databases that contain patient specific data requires a pseudonymization/anonymization procedure as an additional step for the protection of the personal data that is not strictly necessary for research (e.g. name, address, etc). However if a patient has data stored in two or more different databases then pseudonymizing the different data sets should retain the information that they relate to the same patient. Using immutable identifiers as basis for pseudonymization, together with secret keys protected by a Trusted Third Party (TTP), pseudonyms will be able to be linked across databases where needed.
Pseudonymisation should not pose any additional integration problems on the technical level as this process takes place before any access is allowed. The ACGT services should only have access to anonymized databases (where necessary, public databases do not need such a step) and access to these databases will be similar to that of a normal database. Access to the anonymized databases will be still strictly controlled to prevent indirect re-identification by end-users. The probability of re-identification will be determined before giving access to databases to end users.

Requirements to the pseudonymization tools

Key requirements to the tools developed in the ACGT for user authentication and data pseudonymization are:
· Tools should be fully configurable, which means:

· Have a unified approach even for different data sources. It should not matter for the end user if the original database is SQL, DICOM, CSV, etc. The steps needed to pseudonymize the data should be similar for all types of files and data sources.
· Allow different pseudonymization routines, such as pseudonyms, vault, search indexes, etc.
· Shields complex key management, i.e. storing keys, creating new keys, backing up keys, etc. Most of this key management should be handled by the tool because typically it is a complex and arduous task.
· Input - output mapping allows conversion of formats. Since the tool should be able to handle lots of different formats as input and output it would be possible to use it also as a converter between these different formats.
· Tools should be modular and should provide an API or GUI
· Tools should provide Data Protection Features

· Link to privacy enhancing techniques (PET) algorithms. It would be possible to plug in or attach extra PET dependent on the data source. Since PET cannot be used in all cases this would not be default. Making this modular also allows expanding the tool with new technologies as they get developed.
· Add new functions, e.g. free text parsing, fuzzy dates

· Validation of data fields, e.g. ICD or LOINC codes. Validation is crucial to prevent accidental entry of personal data in the wrong field.
· Tools will be user initiated or automatic at fixed time or change initiated
Update management system

Due to the requirement for pseudonymization of patient identifying data there is the need for keeping the pseudonymized databases synchronized with the original ones. The issues regarding the update and synchronization strategies from the security point of view have not yet been specified. Work is currently underway and they will be fully specified in future editions of this document. In this context the following aspects have to be considered:

· Frequency of data update

· Procedure for data adding / updating (update of complete record or ‘delta’ data entry). The export of the full database every time is only useful for small databases and it’s certainly a naive solution. Furthermore an anonymous database is ‘out of sync’ until next run (batch model). On the other hand the “Delta update” solution requires mechanism to detect changes and is heavily dependant on the data source
· Deletion handling

3.2 Integration of the ACGT components

During the elaboration of the user requirements and the design of the initial ACGT architecture a number of “components” (i.e. software entities with specific functionality) were identified. In the following table we have tried to enumerate them in relevance to the layer of the architecture that they mostly fit in and the related standards and technologies that can be used for their implementation and integration. Each of these components can be either supplied by a third party (e.g. it can be already available as open source) or should be developed in the context of ACGT. This is shown in the fifth column of the table. There are cases of course that available tools can be further enhanced or used as a basis for the development of the ACGT compliant ones so in some cases in this column the answer is a moderate “Yes/No”.
	Layer in Architecture
	Component Name
	Description
	Applicable Standards and Technologies
	Third Party?

	User Access Layer
	Portal
	This is the main point of user access to the ACGT environment
	GridSphere, JSR 168
	No

	
	Workflow Editor
	This is the end user application that is used for constructing and defining new workflows.
	BPEL
	Yes/No

	
	R-user interface
	In the ACGT analysis environment, R is used not only as an analysis tool itself, but also as a user interface to provide a programming language access to the ACGT tools and services.
	R
	Yes

	
	Visualization Tools
	These are mainly user interfaces that are used for the visualization of data.
	VTK, VTKfly
	Yes/No

	
	Trial Builder and Clinical Data Management System
	The Trial Builder will support a clinician on the design phase of a clinical trial. It will allow a clinician to capture data definition and further design specifications for a clinical trial in a standardized way. It will be a component based extendable application. The Trial Builder will be embedded into the Clinical Data Management System and will use the ACGT Master Ontology.
	CDISC-ODM
	No

	
	CRF Repository
	For the reuse of the developed CRFs or parts of them in later trials, a CRF repository could be developed. Semantic search based on the reference clinical trial ontology could be possible in the CRF repository.
	CDISC-ODM
	No

	
	Mediator Query Builder
	This user interface will act as a layer that allows non-technical users to successfully interact with the mediator. It will be in charge of catching users input, and transforming it into queries understandable by the mediator. As a result, this tool will be placed between the users and the mediator.
	OWL, SPARQL
	No

	
	Unification tool
	The unification tool, also called “view integrator”, is in charge of allowing users to define different integration profiles based on the needs of a specific trial.
	
	No

	
	Mapping Tool
	The Mapping tool will support system administrators in the mapping process. This support consists on offering administrators a visual environment in which they explore both the ontology and the source schema, and build the virtual schema. The results of such process are virtual schemas that represent the data source schemas in terms of the Master Ontology.
	OWL
	No

	Business Processes Layer
	Workflow Enactor
	This is the service that enacts the workflows and monitors their execution.
	SOAP/WSDL,BPEL, SAML
	Yes/No

	
	Application Repository and Enactment Engine
	This service enables the storage and execution of command-line tools and R scripts as Grid jobs via a web service interface. This allows the integration of independent tools in a WS-based workflow enactment scheme.
	SOAP/WSDL,BPEL, SAML
	No

	
	Master Ontology Service
	The role of Master Ontology Service should be to describe the world used by end users and provide a mapping between terms and physical resources in the Grid environment.
	OWL
	No

	
	Semantic Mediator

	The basic role of the Mediator within the ACGT environment is to provide ACGT users/tools with a mechanism for retrieving data from integrated database systems (originally distributed and heterogeneous).

	SOAP/WSDL, SPARQL
	No

	
	Service Registry
	The Service Registry is a service for the publication of the available business process services. The biggest part of this service store will be dedicated to the analytical services and tools and its primary role would be to assist the designing of new workflows.
	SOAP/WSDL, UDDI, RDF, SPARQL
	No

	
	Meta Data Repository
	The meta data repository provides the means to store, manage, and query relevant meta data information. In particular, meta data that is relevant for the validation and execution of analysis workflows will be supported.
	SOAP/WSDL, RDF, SPARQL
	No

	
	Grid-enabled R
	In the ACGT analysis environment, R is used both as a user interface and as an analysis tool itself. Used as an analysis tool, the goal is to achieve a seamless integration of R functionality and the ACGT semantic data services in a Grid environment.
	R
	No

	
	Knowledge Discovery Tools
	Data Mining and other analytical and knowledge discovery tools
	SOAP/WSDL, R
	Yes/No

	Advanced Grid Middleware Layer
	VO Management Service
	The service responsible for creation and management of virtual organization for ACGT consortium. It should provide means for adding new users, for managing roles of users in the system, and relationships between users.

	SOAP/WSDL, WSRF
	Yes

	
	Grid Authorization Service

(GAS)
	The main goal of GAS is to provide functionality that would be able to fulfill most authorization requirements of grid computing environments. GAS is designed as a trusted single logical point for defining security policy for complex grid infrastructures.
	SOAP/WSDL, WSRF
	Yes

	
	Grid Monitoring Service

(Mercury)
	The Mercury Monitor provides monitoring data represented as metrics via both pull and push access semantics and also supports steering by controls. It supports monitoring of grid entities such as resources and applications in a generic, extensible and scalable way.
	SOAP/WSDL, WSRF
	Yes

	
	Grid Resource Management Service

(GRMS)
	GRMS is a meta-scheduling system, which allows developers to build and deploy resource management systems for large scale distributed computing infrastructures. The main goal of GRMS is to manage the whole process of remote job submission and control to various queuing systems, clusters systems, or resources directly.
	SOAP/WSDL, WSRF
	Yes

	
	Data Management Service

(GDMS)
	GDMS is a collection of services for managing physical and logical files on the Grid.
	SOAP/WSDL, WSRF
	Yes

	
	Data Access Services
	These services will be responsible for accessing public and ACGT specific data sources. They are the sources of information for the Semantic Mediator but it will be possible for these data access services to be accessed directly if that’s desirable.
	OGSA-DAI, DICOM,SQL, SPARQL
	Yes/No

	Grid Infrastructure Layer
	Grid Job Execution Service
	Grid Resource Allocation Management (GRAM) is a component of the Globus Toolkit responsible for job execution. Grid computing resources are typically operated under the control of a scheduler which implements allocation and prioritization policies while optimizing the execution of all submitted jobs for efficiency and performance.
	SOAP/WSDL, WSRF, Globus Toolkit
	Yes

	
	Monitoring and Discovery Services
	The Monitoring and Discovery System (MDS) is a suite of web services to monitor and discover resources and services on Grids. This system allows users to discover what resources re considered part of a Virtual Organization and to monitor those resources. MDS services provide query and subscription interfaces to arbitrarily detailed resource data and a trigger interface that can be configured to take action when pre-configured trouble conditions are met.
	SOAP/WSDL, WSRF, Globus Toolkit
	Yes

	
	File Transfer Services
	File Transfer services are responsible for the efficient and secure movement and transfer of data in the ACGT environment.
	SOAP/WSDL, WSRF, RFT, FTP, GridFTP
	Yes

Some of the integration aspects in relation to these components will be further investigated in the following sections.
3.2.1 User Access Layer

3.2.1.1 Users and User Interfaces

During the initial design phase of the ACGT environment we have distinguished a number of roles that a user could be assigned to. The following different user roles have been identified:
· Clinician: A medical doctor (MD) having as main concern the investigations related to the treatment of individual patients. Clinicians’ interest in ACGT is to gain knowledge about the state of his/her patient by comparing his/her clinico-genomics data against datasets of clinical trials (ongoing or completed), using some, more or less, well established prognostic procedures. Web-based access should be sufficient for this category of users.

· Biomedical researcher: A biomedical researcher is any MD, PhD student, post-doc of senior scientist, whose main interest is in investigating the clinico-genomics aspects of a disease/illness. The focus of this category of users is research and therefore powerful and flexible analysis tools are needed. A biomedical researcher works essentially on the data of a single clinical trial. Weak or no programming skills should be expected from this category of users. An individual physical clinician will be identified as a biomedical researcher in the context of ACGT if his/her main interest is disease and not patients.
· Data miner: Data miners are typically biostatisticians/bioinformaticians interested in the developments of methods for clinical-trial data analysis or meta-analysis, and/or exploit data from several combined clinical trials. This category of users requires programmatic access to databases and a good programming or scripting environment.

· Patient: A patient is a person who is providing his/her data to the ACGT infrastucture in the context of a clinical trial. In the case of patients, access to the infrastructure is limited only to their own clinical data. Furthermore, patients can update their own clinical record only under the supervision of a researcher involved in the clinical study that is aware of the conventions used in that context.
With respect to the access rights to the ACGT infrastructure we can distinguish the following categories of system users in decreasing order of access rights:
· System administrators: They manage the internals of the system, such as server software updates, database maintenance, etc. No access restrictions are imposed on this category of users.
· Service developers: They provide new applications. They understand the scientific purpose of the tools they develop and have the right to modify the infrastructure on the server side to publish those tools, after their validation. Data miners working on the user-side of the ACGT infrastructure can propose new tools to service developers so that they can be published and made available to the whole ACGT community.

· Registered users: Registered users have privileged access to datasets contained in the ACGT infrastructure. We can further distinguish them to:

· Data producers: In this category we can classify the clinicians who provide their patients data in the context of a clinical trial.

· Data consumers: These are clinicians interested in collecting some data from clinical trials.

· Anonymous (guest/transient) users: Anonymous users can access the system freely, to explore its capabilities. This can include uploading clinical data temporarily for performing analyses outside the context of a formal ACGT registered trial.

On the other hand the major user interfaces that have been identified as required in ACGT so far are:

· The ACGT Portal that will be used for training but also as a hosting environment for various web based modules of ACGT

· The standalone Workflow Editor for constructing/defining new complex workflows

· The Mediator Query Builder for defining queries to the mediator in a user friendly manner

· The R environment is used not only as an analysis tool itself, but also as a user interface to provide a programming language access to the ACGT tools and services. This would be mostly useful to the expert end users who wish to perform complex analytical and knowledge discovery tasks.

· The Unification and Mapping tools are used in the process of designing the data integration and as mediator administration interfaces since they affect the way the semantic mediator works.

· The Clinical Trial Builder and CRF Management interfaces that mainly support the design of a clinical trial and the management and maintenance of the clinical report forms.
· The "Integrated ACGT environment", an all-encompassing user interface, accessible through the portal that will offer web based user interfaces for the following functionality:

· Navigating to available data sets, workflows, past workflow enactments, mediator queries, etc. organizing and providing information (i.e. data and metadata) about these artefacts

· Uploading new data sets, workflows, mediator queries, etc.

· Running (enacting) available workflows

· Providing notification functionality about new "information" that could be of interest to the user, such as the results of previously long-running workflows or new workflows that are probably pertinent to the user's area of expertise and interests

· Designing simple workflows without using the desktop based Workflow Editor

Some of these interfaces are mostly relevant to specific user roles. For example the Clinical Trial Builder and Clinical Data Management applications are valuable tools to a clinician in designing new clinical trials or managing clinical data. Some other interfaces could be of interest to more than one category of end users; for example, the training aspects of the Portal would be interesting to potentially all the end users. It is also possible that in the course of the project, taking into account the input from the users and considering the implementation aspects of ACGT in more detail, a more clear assignment of user roles to ACGT applications and interfaces will be identified, possibly by analysing and specialising the user roles even further.
3.2.1.2 General User Interface Guidelines
User interaction in ACGT should be encouraged by the system and offered in ways that are not anticipated a priori. In the final ACGT environment the users should be able to customize the way they interact with the system according to their needs and goals and not the other way around. This "open ended" communication between the system and the users could be supported by adopting the following design guidelines:

· Not enforcing artificial constraints in the way the users interact with the ACGT platform, i.e. avoiding the keyhole problem [SMEY] not only as far as the user interface is concerned but in every aspect of the system

· Choosing familiar and popular paradigms such as using hyperlinks to support the navigability of the information space.

· Encouraging the active participation of the users in improving the way they interact with the system, e.g. allowing the users to annotate their data and the tools and services they use to process it

The user interfaces would be the most important system components that support this kind of interaction and user experience.

3.2.1.3 Integration of the ACGT Portal Services

The main roles of the ACGT Portal are:

· It provides a unique access point for the ACGT Grid

· It provides a customizable client for ACGT services

· It integrates the usage of ACGT internal and external services

· It provides a channel for ACGT dissemination and exploitation.

In many respects the ACGT Portal gives access to the services of the Business Process Layer and it is the main point of entry in the ACGT environment
The ACGT Portal is built on the Gridsphere portal framework. GridSphere, is an open-source JSR-168 compliant portal framework that is ready to run with a suite of tutorial and example modular web components, called portlets. A portlet is a module of a dynamic web page created using Java. For creating dynamic web pages, JSP (Java Servlet Pages) was developed, which combines html with java - a JSP web server to run such applications is needed. As only some parts of the dynamic page actually needs to be modified while doing a set of actions, web page content was redesigned as a set of integrated dynamic JSP modules and a static HTML content.

Java Portlet Specification (JSR) 168 is one of the main standards in portal development. JSR 168 is a standard API for integrating portlets in portlet containers. JSR 168 defines a contract between the portlet container and portlets and provides a convenient programming model for portlet developers. The Java Portlet Specification V1.0 was developed under the Java Community Process (having as members experts from leading industry companies) as JSR 168, and released in October 2003. Right now, the second version of the standard, Java Portlet Specification V2.0 or JSR286, is under development.

The Java Portlet Specification V1.0 introduces the basic portlet programming model with:

· Two phases of action processing and rendering in order to support the Model-View-Controller pattern.

· Portlet modes, enabling the portal to advise the portlet what task it should perform and what content it should generate

· Window states, indicating the amount of portal page space that will be assigned to the content generated by the portlet

· Portlet data model, allowing the portlet to store view information in the render parameters, session related information in the portlet session and per user persistent data in the portlet preferences

· A packaging format in order to group different portlets and other J2EE artefacts needed by these portlets into one portlet application which can be deployed on the portal server.

The Gridsphere portal framework provides a standard based platform for the easy development of portlets. Portlets are defined by a standard API and provide a model for developing new portal components that can be shared and exchanged by various portlet containers. Gridsphere provides a portlet container, a collection of core portlets and an advanced user interface library that makes developing new portlets easier for application developers.

In order to become an ACGT integrated service, a service should be accessed through a specific portlet. For services with simple non-graphical interface, a specific portlet based on the XML based description of the service will be automatically generated upon service registration. The interaction with the user needed for the execution of such a service will practically consist of the configuration of some parameters and uploading of necessary input files at the initialization time.

If the service requires a more elaborated graphical interface, there will be three typical cases:

a. The service is executed through an application interface developed as a JSR 168 compliant portlet. In this case, a simple deployment of the portlet in the ACGT Portal shall be enough.

b. The service interface is implemented as a non standard portlet or as a JSP servlet. In this case, a porting operation should be performed in order to provide a JSR 168 compliant portlet. Porting non standard portlets to standard ones can be as easy as changing some libraries and functions, but can imply the modification of the portlet workflow.

c. The service does not have a JSP interface. In this case, one needs to create a JSR 168 compliant portlet, using the Gridsphere API.

If the service already has a Web interface, then the service can be executed under its own Web interface. Doing so, it will be very difficult to integrate the execution of the service in a more complex workflow, as the input and output files needed by the service will be manually treated. If the service does not have a Web interface or it has a Web interface but the workflow interruption for manual file transfers is not an acceptable option, than a new interface using JSR 168 compliant portlets should be created from scratch.

As part of the WP14 work a specific methodology to describe the process of ACGT service interface integration in the ACGT Portal will be developed.
3.2.1.4 Integration of modelling and simulation tools

For integration of modelling and simulation tools into the Grid environment a web based deployment of services, automatic procedures to generate customizable user interfaces and a help system are required.

To integrate legacy tools into the ACGT environment the input and output forms of these tools have to be analyzed and made compatible with the ACGT Grid environment. Furthermore, the simulation modules as well as the computational needs of typical simulation requests have to be analyzed so that scheduling scenarios for the grid resources are developed.

To avoid possible errors because of defective synchronisation of the computationally intensive modelling and simulation tools by the execution on the different grid machines the following possible management is suggested: reallocation of the task executed in the slowest/defective machine to another machine and an emission of a pertinent signal.

3.2.1.5 Integration of interactive data visualization tools

The data visualization tools are part of the top layer of the ACGT system architecture. As quasi stand alone components, the data visualization tools are not directly integrated into the ACGT system environment. They will stay independent external components, which are not integrated into the workflow editor but will be accessible through the workflow editor. There could be components inside the workflow which enable the user to select a visualization tool, to specify the parameters necessary for the program call and to map the input data to the from the workflow to the visualization tool.

The visualisation tools just have data inputs but no data outputs. The workflow ends at the level of these components. A future extension would be an external visualization tool and enhanced workflow components which allow processing of data from the visualization tool inside the workflow again.

Due to the fact that the visualization tools are external components there is a need for data management. The data which is processed within the workflow has to meet a set of predefined ACGT standard data formats. On the one hand there might be visualization tools which are already compatible to those standard formats. On the other hand there could be visualization tools which operate on different data formats which can cause problems if the data which is passed by the workflow manager to the visualization tool is of the wrong format and so is incompatible. So for the visualization tools there might be data-format wrappers which are responsible for converting the ACGT standard data formats to the formats needed by the visualization tools in order to have an easy way of connecting the visualization tools to the system. The input data formats of each visualization tool will be described in an XML file where the exact details on the data format can be specified. Additionally there should be some kind of mapping of data formats to visualization tools within the workflow components. At the workflow level it should be checked if the data is compliant to the standard formats, which will ensure that a data visualization tool only can be called on compatible input data.

The process of integration of a data visualization tool is as follows: The developer of a data visualization tool has to provide information about the data input the tool needs and details on the generated XML document containing description of data input and details on the program call. Inside the workflow the visualization tool will be open via a workflow node for running external applications. The visualization tool itself then has to be installed on the client machine or to be connected with the workflow editor environment.

The data visualization tools will run on the local machine (at client side), so there is no need for user management. Also at the workflow editor level there is no separate user management, the user management from the grid layer (GAS) will be used.

The design process of this component is not yet finished; the definition of the details is still in progress.

3.2.1.6 Workflow Editor

The workflow editor is the necessary end user component that provides the workflow authoring functionality. Some of the requirements for the Workflow Editor with respect to the user interface are:

· It should have a Graphical User Interface for a graph based modelling.

· The Graphical User Interface should be user friendly.

As more specific guidelines with respect to the integrated environment and the workflow editor interface we can propose that the user should be permitted to have some more freedom in designing and executing workflows. In essence we do not want to treat workflows as black boxes that are executed with no user intervention from start to end. So the user should be allowed to:

· Modify an existing workflow in whatever way suits him/her. The modified workflow should not replace the original one but it should be stored as a new one. Nevertheless, the provenance subsystem should record the user's act and the linking between the old and the new versions of the workflow.

· Have a visual representation of the status of the workflow enactment process and possibly have the ability to suspend and continue a workflow's execution.

· Be able to set breakpoints in the execution of a workflow that will allow him/her to examine the intermediate results and either continue or restart the workflow with different parameters. The notification about a breakpoint been reached could be realized either by some visual indication, or in the case of offline interaction through some RSS feed or an e-mail.

Most of these requirements are not new; there are many workflow editors currently available that offer similar functionality in terms of the interactivity. In our case this interactivity is enabled by the Grid infrastructure and the workflow execution is detached from the workflow authoring i.e. the workflow is not executed on the user's desktop and the various by-products of the execution (results, breakpoints, provenance, etc.) are managed and persisted in the Grid with emphasis given on the scalability and the performance of the system.

Taverna Workbench, a product of the myGrid project, is one of the most popular tools for creating and running workflows by bioinformaticians and molecular biology researchers. Nevertheless the adoption of Taverna in ACGT presents a number of issues:

· It can not be integrated in the ACGT’s integrated environment interface since this is web (portal) based application whereas Taverna is a standalone desktop application

· It uses myGrid’s ontologies and infrastructure
· It does not support a standard workflow language. Scufl, the workflow language of the Taverna, is considered to be an "internal" format and it suffers from lack of stability and backward compatibility.

· It does not currently support all fundamental workflow patterns, lacking some expressivity compared to other WF languages.

· Taverna enactor is a resource-intensive user (100-200 MB per workflow execution).

Nevertheless within the ACGT the open source tool Taverna should be supported because it is popular and users may be already familiar with it. On the other hand for simpler, dataflow-oriented workflows a web based workflow editor has better integration with the rest of the ACGT platform, mainly because the user does not need to install anything on his/her workstation. Moreover, provided that this web workflow designer will be an integral part of the ACGT portal, the ACGT service registries and repositories will be better integrated in the workflow authoring process.

Supporting Taverna means that the system should accept and store workflows created with it and handle (maintain, describe, enact) them in the same way that it handles the workflows created with the web workflow designer. On the other hand Business Process Execution Language (BPEL) is also a strategically important specification as it is one of the most mature and better industry-supported workflows language standards, although it has been designed for e-commerce and business transactions purposes and it would have to prove its suitability for scientific and medical environments. It is obvious that we should find the “common denominator” between the two environments and thus we propose the following:

· The web based workflow designer will store its workflows in BPEL 2.0 which is the industry standard for workflows

· A workflow can be described either in Scufl used by Taverna or in BPEL that will be used by the web based designer

· A transformation will be used in order to map from Scufl to BPEL (the other way seems to be “lossy” since the two languages are not truly equivalent)

· The system will preserve both descriptions (Scufl and BPEL) in the case of workflows created with Taverna

· The annotation of workflows with metadata descriptions for the inputs and outputs will take place after the upload of workflow descriptions in the system in the case of Taverna workflows. This is required in order to ensure that the correct terms from the ACGT ontologies are used and only in the case that we don’t find any way to integrate the ACGT ontologies with the semantic annotation functionality of Taverna.

Apart from the workflow description each workflow should have some additional metadata associated with it. Each workflow can be seen as a service with a single operation (‘enact-me’) that accepts the workflows parameters and returns the workflow results. So the schemas that are used to describe the services are also used to describe the workflows. The exact details of those schemas will be provided by other deliverables and/or work packages – there is already some version of them in D6.1. Additionally, there should be some metadata about what are the participating tasks in a workflow. OWL-S
 is an upper ontology that could be used in order to provide descriptions about composite services (a workflow can be considered a composite process) in addition to the atomic ones.

3.2.2 Business Processes Layer

The Business Processes Layer is the place where most of the ACGT specific business logic is implemented. Therefore special emphasis should be given in the integration of the services that are positioned in this layer. The most crucial integration aspect in the Business Process Layer is the semantic description of data, services, and tools. Semantics play an important role in ACGT: they facilitate the intelligent discovery of information (e.g. data, services) and ease the use and management of this information. An example of the latter is the case of the efficient workflow composition of the services where the semantic annotations of the services enable the validation of the correctness of the workflows at the design phase so that, for instance, data type incompatible services are not linked directly.
The integration in this layer relies also on the syntactic requirements that are imposed in order to achieve the basic interoperability between the services. As stated before, the syntactic interoperability is enabled by the adoption of the Web and Grid Services technologies and it will be facilitated by the employment of common toolkits and libraries such as the Globus Toolkit and the Gridge Toolkit. Additionally these syntactic requirements also include security technologies and standards that will enable the “safe” integration of the different components.
3.2.2.1 Management of metadata

There are a variety of ways that metadata could be managed, i.e. stored, retrieved, matched against, etc. Metadata is usually defined as "data about data" and it is important for supporting "semantics" in a machine to machine conversation. A question that should be answered in every such scenario is how the data is associated with its metadata in order to support the following use cases:

· What do these information items "mean"? i.e. given a data set I want to locate its meta data

· I am looking for information items with specific characteristics, i.e. given some metadata I want to locate data sets that have the given "meaning"

The way that data and metadata are associated and how this association is maintained is critical for supporting the use cases above and basically there are the following possibilities:

· Metadata embedded in Data

· Metadata associated with data through external means

In the first case the metadata are embedded in data and are directly accessible through the data itself. An example of this approach is the Semantic Annotations for WSDL
 proposal where the semantic annotation of a web service interface is hosted inside the WSDL description of the service. Also a microformat
 is a relevant technology that supports the embedding of meta data in XHTML documents, which can be extracted later on, for example as RDF descriptions using GRDDL
 or RDFa
. A variant of this case is to have the metadata wrap the data itself in a kind of semantic envelope. An example of this case is the headers of the HTTP messages, e.g. Content-Type.

In this approach it is evident that locating the meta data of some data is very easy because they are readily available in the data payload or in the context created when accessing the data. The inverse question though, i.e. searching for data based on metadata, requires additional machinery (either some central registry or a semantic crawler or a combination of both).

In the second approach the metadata are provided outside of the data and there is no linking information in the data itself. An example of this approach is a UDDI registry that provides information for a Web Service such as a business category for the service (in some classification scheme) and contact information.

This approach is actually that of a Metadata Registry, such as the one described by ISO 11179 [ISO-11179], that is the single authority for maintaining metadata descriptions and associations and also answering queries based on metadata.

Both approaches have advantages and disadvantages and can be combined and used together. If these approaches are combined a set of tools would be needed to do data transformations, remove metadata and generate new metadata descriptions for unannotated data. There could be a tool that converts data from an embedded format into a not-embedded format and vice versa as well.

In ACGT we have chosen to follow the approach of a Metadata Repository because, due to the diversity of the data, the first approach is not always applicable.
3.2.2.2 Integration of the Metadata Repository

Metadata means all information describing properties of data, workflows, operators, models etc. The exact schemas for each case are not available at this point in time, so we just refer to the appropriate WPs/deliverables that will define them. Possible uses for metadata include automatic checking, execution and recommendation of workflows as well as applicability of operators, application of models and conversion of data. The management of the metadata is the main task of the ACGT Metadata Repository.
Requirements for a metadata repository in ACGT

The metadata repository is an ACGT infrastructure service that is a crucial component for the semantic interoperability throughout the ACGT environment. Hence the major requirements relate to the performance, efficiency, and availability of this service. The way to achieve these requirements is an issue to be studied further but the replication and distribution of the metadata in multiple places seems to be an obvious solution. The employment of Grid specific data management services and technologies from the lower architectural layers will assist in fulfilling these requirements.
Types of metadata

In ACGT there would be a multitude of different types of metadata stored in the Metadata Repository. Examples of these types are shown in the Table 2 below:

	Metadata for Data
	Semantic information: Mapping columns to concepts of the ontology

Statistical information: Missing values, mean, etc.

Data Format

Role in Data Mining (observation, label, id)

	Metadata for Operators
	Required input

Delivered output

Parameters

Execution-relevant information (OS, dependency on libraries, etc.)

	Metadata for Models
	Generating operator

Required Input (data set description)

Delivered Output (classification, cluster, probability)

	Metadata for Services
	Publisher / Creator

Operations

Semantic information: Mapping input/output of operations to concepts of the ontology

Service Quality metadata

	Metadata for Workflows
	Involved Operators/Services

Functionality

Performance

Free-text comments

Table 2 Examples of the different kinds of metadata in ACGT
Usage example for metadata in ACGT

The following example of a complex query shall demonstrate the use of metadata. Assume a new ACGT user wants to analyze his own data using ACGT. After uploading his data, he may ask for a recommendation for good workflows by posing the following query:

Show all workflows that

· have already been used on semantically similar data and

· have already been used on statistically similar data and

· solve user’s problem and

· have shown good results and

· are applicable to user’s data and

· user has the credentials to execute

Then, rank the workflows by their expected performance and execute the 10 best workflows on user’s data.

Standards for metadata

A solution for the description of metadata should be light-weight, but extensible. There are a lot of different standards for the metadata descriptions but it is clear that the choice of the metadata standards depends greatly on the data that they would be used for. Here is a very short list of relevant languages and standards that could be used within ACGT to describe data, operators, models, services, and workflows:

· PMML, the Predictive Model Markup Language

· M4, a model for describing meta data in relational databases, developed by the Mining Mart project

· WSDL (Web Services Description Language), for the functional description of web services
· OWL-S and SAWSDL (Semantic Annotations for WSDL), for the semantic description of web services

· BPEL and other XML-based data format for the description of the ACGT workflows. It is not decided whether a simple ACGT Ontology on Workflows should be developed in ACGT.

Interfaces for access metadata

It is evident that since there is a multitude of different metadata schemas depending on the entities described (data sets, workflows, services, etc) the information retrieved should be expressed in a generic format like RDF that is close to the vocabularies/schemas involved. This of course does not mean that the actual information is stored in RDF format. The underlying storage could be a conventional SQL database wrapped with the necessary “glue” that exposes this information as RDF

Furthermore in order to access and query the metadata repository an expressive query language with strong emphasis on semantics like SPARQL and its corresponding access protocol
 should be used.
Update of metadata repository

There is currently no standard protocol for updating RDF data and there are discussions about creating a SPARQL Update language and protocol. Existing tools have custom (proprietary) support for updating or deleting RDF data. Also in the case of using RDF as an interface to the data and not as a storage format there could be non RDF ways of updating the information, for example SQL for a relational data store.
One of the two ways to manage updates of repository should be defined in the second edition of this document:
· decentralized way: every service provider, tool developer, etc. be allowed to update the metadata for his/her service, tool, etc

· centralized way: a centralized authority accepts requests and after validation of these requests, etc., has the unique right to update the repository

If we follow the second approach the consistency and integrity of the repository is more assured at the cost of introducing bureaucracy and losing “scalability”.

Data integrity

The metadata information will be kept in a persistent storage that will take care of the integrity issues at this level. In the higher levels every access to the metadata repository for updating its information should be authenticated and authorized based on the same policies and mechanisms that are used throughout the ACGT environment.

Data availability

As it was previously suggested it is reasonable to build the metadata repository as a logically centralized but physically decentralized entity. The Grid should be used for the replication of the metadata repository to various places in order to achieve availability and fail over. We envisage the use of the Replica Location Service (RLS
) and other Grid Data Management Services for assuring the availability of data and metadata.

Integration of a repository into the ACGT Portal
An interface for the metadata repository should be provided as part of the ACGT integrated environment. It will be needed for the workflow designer so that the user could browse the existing workflows and services.

3.2.2.3 Integration of the Application Repository and Enactment Service
The Application Repository and Enactment is a component responsible for storing information about grid-enabled applications and executing them in the grid. It has a dual Applications which can be grid-enabled would be for example command-line tools or R scripts, which will run as Grid jobs via a web service interface. The component provides the following functionality:

· Registering and un-registering of applications

· Submitting a registered application as Grid job

The repository should provide the following information about the grid-enabled applications: name, parameters, inputs & outputs, requirements, the R-script or a link to the executable file, etc.

3.2.2.4 Integration of the Service Registry

The Service Registry is a component responsible for storing information about services available in ACGT environment. It should provide the following functionality:

· registering and un-registering of services
· providing detailed information about each registered service, including: name, location, access protocol, metadata description,

· storing dependencies between services

· monitoring current state of the service

· providing information about the availability of the services

The information about services provided by the registry should be complete but structured based on different abstractions used on different layers. For instance metadata and semantic information is not important, actually useless, for services of the Grid layers, but very useful for end users and Business Process Layer services. The other option is to have separate service registries for each layer. For example Globus Toolkit is using its own service for storing information about other Globus components in Grid environment. This component can be used as a Registry Service for the Common Grid Infrastructure Layer but it can also store limited information for the services located on other layers.

Therefore it is not necessary to have one registry for all services but there can be separate registries for each layer of the architecture model and this is the preferable and chosen solution for ACGT.
3.2.2.5 Integration of the ACGT Master Ontology

ACGT seeks to provide complex data querying and mediation functionality for the ACGT Grid infrastructure. For this task the Master Ontology is required, in order to integrate and consolidate heterogeneous data stemming from different information sources. The ontology will make it possible to access these sources which are represented by a diversity of databases through both the same mechanisms as well as the same search categories. Hence the intention of the master ontology is to make transparent the lower level differences among the information sources to the user who is trying to retrieve the desired data.

The advantage of using ontologies for any project dealing with an enormous amount of data coming from different sources and being queried from different users in different countries, with different scientific background is obvious: ontologies provide the possibility to avoid the use of idiosyncratic terms. Thus, the aim is to provide a common reference ontology for the cancer domain, in order to avoid case-by-case resolutions [SMI]. The terminological differentiation and the growing number of terminologies for dealing with data is one of the most pressing problems. The so called “tower of Babel” problem is an obstacle for progress in the biomedical field. ACGT aims at resolving this problem for the cancer domain.

One of the definitions of ontology most often cited in informatics reads as follows: “Ontology is a formal, explicit specification of a shared conceptualization” [SBF]. However, this definition cannot prevent the existence of a multitude of non-interoperable ontologies, a fact that represents one of the main issues which the ACGT project is addressing with its Master Ontology. It is important to ensure that problems like that do not outweigh the considerable advantages the use of ontologies provide.

We believe that reference ontology for cancer research and management will inevitably contain entities from a wide range of topics, from the genetical and medical field to the administrative field (e.g. participation in a study) or the legal domain (e.g. consent). Thus, the range of the ACGT project presents one of the challenges to the Master Ontology, since a purely biological ontology cannot suffice to solve the problems at hand. The top level of the ACGT Master Ontology is Basic Formal Ontology (BFO).The BFO has been developed at IFOMIS and at the University of Buffalo. Methodologically BFO is based in four principles:

· Realism - reality exists independently of our representations,

· Fallibilism - scientific theories can be subject to revisions,

· Perpectivalism - there are plural legitimate perspectives on reality,

· Adequatism - no reduction of the different perspectives.

A central feature of BFO is the basic dichotomy between continuants and occurents which emphasizes two distinct modes of existence in time which is sometimes referred to as the SNAP-SPAN ontology [GSG]. Furthermore BFO exists now in an OWL-DL implementation which increases the possibilities of syntactical integration and reasoning.

Choosing a coherent and logically consistent top level for the ontology is a highly important step. Any systematization of the world (or of any given domain) has to start with basic ideas on what entities exist, or which are criteria to categorize the elements of reality on a basic level. In this process questions for the nature of things and their essentials have to be answered. This “Top Down” part of ontology development is vitally important in order to come to common and sound terms and principles.

As a second application the master ontology is employed as the backbone of a system to automatically and visually create clinical trial and study plans, the so called CRF creator application. The classes and relations found in the ontology are here the basic building blocks to set up the more complex content and structure of such a plan and facilitate and accelerate drastically the plan creation process. This approach integrates data into the framework of the ontology the very moment the data is produced.

Use of ontology in ACGT tools

In the scope of the ACGT project the main tool to employ and also access the master ontology is the mediator application (see section 3.2.2.7). Under its hood the mediator application combines on-the-fly the master ontology with other ontologies such as the Foundational Model of Anatomy (FMA) or the Gene Ontology (GO) and in turn presents them transparently by giving a single access view to the user. Therefore the mediator application is the tool through which all of the user interaction with the just mentioned ontologies has to take place. Within ACGT other vocabularies for data formats, service functionalities, service composition, etc. will be used.

Update of the ontology

The maintenance of the master ontology, i.e. all the tasks surrounding the creation and adjustment of the ontology, is led by IFOMIS for the duration of the project. Hence also the procedure of updating its content is undertaken there. In case that a clinician wants to add any new classes or new relations to the ontology or change some of the existing definitions, he/she should contact IFOMIS and propose his/her suggestions. IFOMIS in turn validates in collaboration with the respective clinician the need for performing this change and how these changes can again be implemented in an ontologically sound and valid way.
Mechanisms for the version control

All different versions of the master ontology are handled by the Subversion version control system
 and are stored on a publicly accessible server
. This system makes it possible to restrict changes to files on the server to a designated group of developers. Furthermore, Subversion also makes it possible to exactly keep track of all the changes undertaken by the different developers over the course of time.
Integration of other ontologies (FMA, GO) or terminologies into the ACGT Master Ontology

Other ontologies such as the Foundational Model of Anatomy (FMA) or the Gene Ontology (GO) will not be directly integrated or included in the master ontology. Rather the aforementioned mediator application links all those ontologies together on-the-fly and provides a transparent (rather black-box) view to the user accessing the ontologies. The reason for not integrating both the FMA and the GO is their inherent complexity. A direct integration of both of them would lead to a master ontology that can be hardly handled by automatic tools because of several computational complexity issues and also because such a combination is hard (if not impossible) to maintain by human curators. Also both FMA and GO are continuously ameliorated and hence all changes there would need to be transferred into our own copy.

Access to the ontology in the ACGT Grid environment

The Grid environment should only be a transparent and thin wrapper around the actual ontology processing (i.e. the API the mediator provides to access an ontology). Hence the basic methodology to access the ontology should be virtually the same.

The required GRID infrastructure will be added, so the ontology can be accessed as another GRID resource (through properly defined GRID services). The Master Ontology will fit the GRID infrastructure access requirements.

Tools for visualization and browsing of the Master Ontology

Tools for visualization and browsing of the Master Ontology are planned to be developed. The ACGT Master Ontology browser has been identified as a necessary component for several tools to be developed within WP7. Because of that, it has been decided to develop it as an independent tool available to both clinicians and researchers.

Incorporation of the ACGT Master Ontology into the ACGT Portal

This issue must still be further discussed; however the idea is to embed visualization and browsing services in the portal itself, making them available through regular web browsers.
Availability of the ontology

IFOMIS is the institute in charge of developing and maintenance of the ACGT Master Ontology. They will provide access to the current version of this resource to all partners during the ACGT project. The format is OWL-DL, a known standard for representing ontologies.
3.2.2.6 Workflows Management within the ACGT environment

Using the workflow manager the user will be able to upload a workflow definition and describe it in terms of functionality offered, free text comments, etc. The workflows will be defined in workflow language that will (should) be decided upon soon. Through this workflow manager the user can enact a workflow, see the status of a running workflow, and retrieve intermediate and final results.

The following components for the management of workflows in ACGT have been identified:

· The workflow manager will be the user point of access to the ACGT workflow management environment

· The workflow descriptions and other metadata will be stored in the metadata repository

· The workflow enactor component is responsible for the execution of workflows

Requirements for the workflow management
· For achieving interoperability and machine to machine communication the workflow management tool should have a Web Services support.

· The ACGT Workflow Management System should offer the ability to design workflows that contain invocations to Web Services.

· The integration with WS technologies like UDDI can be achieved.

· The ACGT Workflow Management System should support the Grid Middleware as an action environment.

· The ACGT Workflow Management System should use a “standard” workflow description language (BPEL4WS, XPDL, WS-CDL)

· The ACGT Workflow Management System should support semantic descriptions and discovery of workflows

· The ACGT Workflow Management System should support a provenance function

Workflow Enactor

The Workflow Engine (Enactor) will be deployed as a service that is separated from the workflow designer. There are some open source BPEL enactors that could be re-used and the transformation of Scufl workflows to BPEL ones will permit the execution of the Taverna authored workflows on them.

Taking all this into account, it seems necessary to design a solution which would allow getting the benefits offered by the different options, in an integrative manner. Possible solutions are:

· A single workflow engine for all workflow languages. This means to select one workflow language as the workflow language (BPEL) and translate the other supported workflow languages to that one. The selected language has to be rich enough to express the other workflow languages.

· Multiple workflow engines for each workflow language supported. This doesn't require translating workflows but requires "connecting" the workflow designer with the different workflow engines, possibly via plug-ins.

3.2.2.7 Integration of the ACGT Semantic Mediator tool

The name of the ACGT Semantic Mediator tool is ICGMS (Integrated Clinico-Genomic Mediation Service) and the purpose of this mediation service is to offer a uniform data access interface that allows users and tools to have access to distributed and heterogeneous data sources in a homogeneous manner. The main goal is to solve the problem raised by the huge amount in both number and size of biomedical databases. Clinicians are forced to query numerous databases and deal with different data formats. This is a very time consuming task which requires a great amount of resources. The integrated mediation service solves this difficulty, saving researchers a lot of work. Analytical tools also benefit from this service, as they can have access to a great number of data sources without having to deal with the heterogeneity that these data sources present.

Any tool that needs to have access to biomedical databases will be able to use the mediation services. These will include KDD tools as well as querying tools. An interface and result format has not been specified yet and will be described in the next version of this document.

Query language for the mediator: SPARQL

SPARQL should fit the needs of the mediator well. The main limitation of SPARQL (and of all query languages for RDF) is that it does not support aggregation of data. Or more generally, it cannot return any derived data that is not literally in the source data set.

SPARQL seems suitable as a query language as long as data is retrieved that literally appears in data sources. Its lack of support for aggregation means that these queries cannot be efficiently supported. There are two options here: The first option is for this aggregated information to be provided by views in the database, but obviously the queries that are supported are constrained by these views. Another approach is to do all aggregation at the client side. However, this can of course have a significant performance problem associated with it.

Mapping to the ACGT Master Ontology

The ACGT Master Ontology will act as a framework in the construction of virtual schemas representing the physical schemas to be integrated. These virtual schemas will actually be subsets of the Master Ontology. The Mapping Tool will aid administrators in this task.

Clinico-Genomic queries will be constructed by means of the Master Ontology, in order to guarantee semantic interoperability.

For end-users, visual interfaces (Query Builder) will be employed in the query construction process (although details are still under discussion). The goal is to offer a simple yet powerful query interface that allows inexperienced users to create complex enough queries. For analytical tools, a proper query interface format must be agreed. There are already ongoing discussions on this matter.

Incorporation into the ACGT Portal

The idea is to offer a web based access. This will give a seamless integration in the ACGT portal, as well as facilitating its utilization by end-users. Interfaces will be kept as simple and user-friendly as possible, without compromising their effectiveness.

Usage of standards

The service will be probably offered through Web Services standards. However, this depends on user requirements, which are still under development. Other options are Grid Services and APIs.

Accessed in the Grid environment

Proper Grid Services can be developed in order to give access to the main services of the mediator.

User management

Different users will present different kinds of integration needs, for example one clinical trial may require the integration of a specific set of databases, while a different clinical trial might differ in this aspect. The environment, based on the treatment of clinical trials as projects, will allow the management of different kind of users, with different roles and access rights. This user management should be integrated with and based on the Grid’s user management and authorization services (GAS) that are also used in the rest of the ACGT platform.
Integration of a data source into the mediation service

Each time a new source is required to be integrated in the mediation service, the first step is to obtain its schema structure (it will either be available, or will have to be inferred). These local schemas of the data sources will be accessible through the Metadata Repository. Based on these schemas a new virtual schema will be constructed, using the Master Ontology as a framework in this task. A priori, there are no specific interfaces the data source must comply. Database wrappers, to be developed within work package 5, will take care of hiding the specific interface differences existing in the data sources, so the Mediator Tool does not have to worry about this matter. As long as the database wrappers can deal with a data source structure, it will be suitable to be integrated in the mediator service.

Handling of possible errors

Changes in the schemas of the integrated databases are the main problem in this approach. This is especially true in public databases, where schemas might change several times a year. Each time this happens, mapping process has to be redone, or unification process will not work properly. To manage this situation, the Mediator Tool will offer a notification service which allows users to report query failures or unexpected results.

3.2.2.8 Management of Virtual Organisations

The most common definition for a virtual organization (VO) in a Grid area is the following: A VO is a set of individuals and/or institutions that allows its members sharing resources in a controlled manner, so that they may collaborate to achieve a shared goal. The major role of a VO is to organize a group of people working in the same field and provide them with mechanisms for better and safe resource utilization.

Management of the VOs in a Grid environment is based on:

· The ability to define different objects that are part of the VO: users, hardware resources, services, jobs

· The ability to define dependencies between objects – security policies

· The ability to define roles for the objects

Using mechanisms that a VO provides it is much easier to cope with dynamic user management for a Grid environment. There are also some additional features (virtual user management system) allowing to move the process of user management to one place so that no additional work of system administrators is required. All information about users can be put to the VO management system and is then used by other services in a dynamic way.
For the needs of the ACGT project a part of the Gridge Authorization System (GAS) functionality can be used as a VO management system. GAS provides mechanisms for defining all components and users existing in the grid environment. The designed structure of objects can be used for creating and managing VOs inside GAS. Typically, the VO security policy (inside GAS) can contain a set of objects, several groups of subjects and relations which connect all these items together. VO inside the GAS object tree is represented by object branch.

More details about GAS can be found in deliverable D3.1 “ACGT Initial Architecture”. [ACGT3]

3.2.2.9 Integration of Knowledge Discovery services

The Knowledge Discovery Services that will be available in ACGT can be distinguished into the Generic KD Tools and the Specialized KD Tools.

Generic KD tools are tools that can be used to solve a large number of analysis problems. As a prominent example, the R package allows executing arbitrary programs implemented in the R language, and thus serves as a programming language interface to the ACGT system. Also listed in this section there are generic learning operators, whose importance do not lie in the concrete algorithm that is implemented, but in serving as a reference implementation for other operators from that category. Those categories of KD operators can be defined based on their input and output types. The most important categories are:
· Induction operators, which induce models (e.g. trees, formulas, clusters) from data sets.

· Preprocessing operators, which transform data sets into other data sets (e.g. removing attributes or examples)

· Postprocesing operators, which transform models into models (e.g. by pruning or thresholding rules)

· Visualization operators, which transform data sets or models into images for human inspection

· Benchmarking operators, which construct performance measures from models plus data sets

· Meta operators, which implement KD algorithms based on other operators (e.g. parameter sweeps to optimize a performance measure)
Specialized KD services are those that are specific to the analysis of clinico-genomic data. Examples of this category are the Engene, a web tool for exploratory analysis of gene expression data, and PreP, a visual tool for the pre-processing of microarray data
Irrespective of their categorization, the Knowledge Discovery services will be integrated as services in the grid environment. The underlying components of these grid-services can either be performed by web services or by executable applications. In case of web services as underlying components for the grid-services the web services have to fulfil the common web service standards. If the underlying component is an executable application, it has to be a command line application with files as data input and output that requires a programming environment such as Java, C, Python, Bash shell, etc.
New client side components for accessing the Knowledge Discovery services will be integrated into the workflow editor. These components could represent wrappers of the grid-service clients, clients to web services or components which allow the user to run an executable application on the grid. With the help of these components the grid-enabled services can be accessed by the Workflow execution engine, the workflow editor and the extension components representing the user interface. An additional ACGT component called Application Repository and Enactment Engine will serve as a registry for the available Knowledge Discovery applications and a web service interface to the workflow enactor for the execution of these applications inside a workflow.
For grid-enabling services there will be a XML file for each service which contains a detailed description of the service’s operation, parameters, and inputs and outputs. Standard formats for the input and output data will be defined (e.g. for datasets, parameters, URL, binaries/models, etc.). Additionally PMML could be used as model description language. In the Knowledge Discovery services environment the ontology is used for the description of the data. For example in case of propositional data each column will refer to a concept of the ontology. Moreover a terminology for input and output data objects and for description of services will be defined. The input and output formats of the Knowledge Discovery services are described inside the service description document, but it should be checked during the workflow processing if the output generated by a service is of the type specified in the description document to prevent that the next service in the workflow starts working on wrong input data.

If an error occurs during the execution of a Knowledge Discovery service the grid middleware should notice that the job failed and stop the execution of the workflow. The particular error should be made visible to the user, e.g. by transferring the process’ “standard error” and “standard output” streams of the machine where the job was executed.

A service developer will integrate a grid service into the ACGT environment by deploying a service on a machine in the grid or making an executable application accessible on a grid-machine. There will be a description schema for the Knowledge Discovery services. According to this schema the service developer has to create a service description file in which the service’s operation, parameters and inputs and outputs are specified. These description files contain e.g. information of how to use the particular service or application. The description files are stored in a grid-wide repository. When developing a new Knowledge Discovery service or customizing an already available service or application the developer has to respect the standards regarding the input and output formats.

User management is not necessary at the knowledge discovery services layer; this is done by the security component of the grid-layer (GAS).

3.2.3 Advanced Grid Middleware Layer

3.2.3.1 Integration of databases and data wrappers

In ACGT trial-specific databases and external public databases (relational- or object-oriented, with distributed biomedical data) should be integrated. To provide a common syntactic interface, data wrappers will be developed, according to the following guidelines:

· Requirements for the integration of Data wrappers: optimisation of the performance

· Minimisation of the amount of data, which will be sent across the network

· Minimisation of the splitting of queries into several dependent sub-queries to reduce latency

· Requirements to usability for the integration of data wrappers

· Expressiveness should be sufficient: end users should be able to pose any queries they want, within reason.

· Existing standards and platforms should be re-used as much as possible.

· Relational databases can use a lot of tables that store metadata, "only" needed to interpret the actual data in the other tables. An example is the use of code tables (e.g. the SIOP CDMS). A still open question is if the wrapper should hide these "implementation details".
Ideally the query language supported by the data wrappers should be the same, irrespective of the underlying data source. To achieve this, one could define a query language that is the lowest common denominator over all query languages used by the various data sources. This has the obvious drawback that there is a loss of expressiveness. It will be impossible to express certain complex queries in this common query language, even though the underlying database may support it. Alternatively, one can define a wrapper query language that is more powerful than that supported by some of the underlying data sources. This can in theory be implemented but typically comes with significant implementation difficulties and performance penalties that it is not feasible in practice. Therefore, it may be inevitable that wrapper services for different types of data source will sometimes use (slightly) different query mechanisms. Further research is needed here, taking into account the differences between the various data sources that need to be accessed.
As mentioned in Section 2.2.2.7, SPARQL
 has been chosen as the query language for the mediator. As the mediator is one of the main users of the data access services, to facilitate integration it makes sense to also use SPARQL as the common query language to be supported by the data access services. Furthermore, the advantage of using SPARQL is that it is relatively simple, yet flexible enough to be applied to different types of data sources. For example, SPARQL can be used to query relational databases. Third-party software that transforms SPARQL to SQL already exists
. Note, however, that because SPARQL does not support aggregation, it is not as expressive as SQL. So SPARQL only supports a subset of the queries that can be carried out using SQL. However, SPARQL’s lack of aggregation does mean that it can be applied more easily to data sources that do not support aggregation either, such as DICOM image servers. SPARQL can express all queries that are supported by the DICOM Query/Retrieve protocol. In fact, SPARQL is too expressive. There are many valid SPARQL queries that simply cannot be expressed as a DICOM query. So for this reason as well, SPARQL is a good initial choice as the common query language for the data wrappers. It can be applied to both relational databases as well as DICOM databases, but in doing so, we will have to address the issue that in one case it is not expressive enough, whereas in the other case, it is too expressive.
3.2.4 Common Grid Infrastructure Layer

The Common Grid Infrastructure layer provides remote access to individual resources that are located in the Hardware Layer.
In a Grid environment that is compliant with OGSA a service is accessed through Web Services technologies. The programming interface is described in WSDL and it depends on the service's functionality. If the service is actually a WS-Resource then part of its functionality is described by the WSRF set of specifications

On the hardware level the concept of Grid assumes heterogeneity of hardware resources used to build computational environment and the only requirement for integration at this level is the use common communication protocols (TCP/IP) for the network connectivity.
3.3 Source Code Maintenance and Availability
During the course of the ACGT project the development efforts of the different work packages will be monitored and assembled in a central code repository. FORTH as the leader of Work Package 9 has taken the responsibility of setting up and maintaining this repository, which is already available at the following address: https://iapetus.ics.forth.gr/ACGT_Repository/

This ACGT Code repository is built upon Trac
 which is an open source, web based integrated source code management and issue tracking system. Trac also features some “wiki” functionality that allows users to add or update textual content in order to have in a single point both the source code and the related documentation. The underlying version control system is the Subversion system, a popular replacement of the older CVS system over which it has some substantial enhancements (atomic “commits”, versioning of directories, renames, and file metadata, etc.)
Access to this repository has been granted to representatives of all the technical work packages. More specific guidelines will be discussed and proposed for issues related to the styling of the code, the structure of directories, the license of the code, and so on.
4 Conclusion

This document aims to provide recommendations and guidelines that will ensure the integration and interoperability of software components within the ACGT technological environment. Integration in complex, distributed, and heterogeneous architectures is a laborious and challenging task and therefore analysis of the user requirements is necessary in order to identify the objectives of the system under development and how these can be accomplished. In this sense this document has been prepared based on the input given by the “Description of Work” document, the Deliverable 2.1, which presents the ACGT User Requirements, and the Deliverable 3.1, which introduces the initial architecture of ACGT.

In the previous sections we have promoted the adoption of well defined standards and common technological solutions as means to guarantee the interoperability of the ACGT components. The initial architecture document proposes a layered architecture based on the Grid and Web Services technologies. These technologies are sufficient for the support of a basic interoperability level that deals with the syntactic heterogeneity among the ACGT components. Nevertheless high level end user scenarios require the introduction of an advanced interoperability level that support the semantic integration of applications. The use of metadata to provide references to the relevant ontologies and classifications is the proposed solution.
We have also used the initial architectural plan as a guide in order to identify the specific integration requirements of each unit of functionality in each layer. To this end, an initial list of components has been presented and the integration needs, both syntactic and semantic, of most of these components have been specified. Nevertheless, it is obvious that at the current stage of the project no final decisions can be taken. The requirements and guidelines presented here are in many respects “embryonic” and we expect that they would evolve in the course of the project. The feedback from the development efforts and the experimentation would be valuable as practical experience on the integration problems is gained. Frequent updates to this document, possibly twice a year, and an iterative process with bidirectional interaction between the system developers and the editors of this document will result in detailed and pragmatic integration guidelines.
5 References

[ACGT2] The User requirements and specification of the ACGT internal clinical trial, Deliverable 2.1 of the ACGT project

[ACGT3] The ACGT Initial Architecture, Deliverable 3.1 of the ACGT project

[BKLW99] Busse, S., R.-D. Kutsche, U. Leser and H.Weber: Federated Information Systems: Concepts, Terminology and Architectures. Technischer Bericht Forschungsberichte des Fachbereichs Informatik 99-9, TU Berlin, 1999

[DA03] Davis, P.K. and Anderson, R.H. (2003). Improving the Composability of Department of Defense Models and Simulations. RAND Corporation

[EAI] Gregor Hohpe, Bobby Woolf, Bobby Woolf Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions Addison Wesley Professional (2003)
[FMS]: David Adams, File management on the grid, January 5, 2005, http://www.usatlas.bnl.gov/ADA/docs/fms.pdf
[FKNT] Foster, I., Kesselman, C., Nick, J. and Tuecke, S. The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration. Globus Project, 2002, www.globus.org/research/papers/ogsa.pdf
[GRAM] GT 4.0 WS GRAM Approach http://globus.org/toolkit/docs/4.0/execution/key/WS_GRAM_Approach.html
[GRAM_JOB] GT 4.0 WS GRAM: Job Description Schema Document http://globus.org/toolkit/docs/4.0/execution/wsgram/schemas/gram_job_description.html
[GSG] Grenon P., Smith B. and Goldberg L. (2004), Biodynamic Ontology: Applying BFO in the Biomedical Domain. In: Ontologies in Medicine, D. M. Pisanelli, Ed., Amsterdam: IOS Press, 20-38.

[MKB] M.K. Bergman Sources and Classification of Semantic Heterogeneities http://www.mkbergman.com/?p=232
[ISO-11179] ISO/IEC JTC1 SC32 WG2 Development/Maintenance ISO/IEC 11179, Information Technology – Metadata Registries (MDR) http://metadata-standards.org/11179/

[ISO2382] ISO 2382-01. Data Processing - Vocabulary. Part 01: Fundamental Terms http://jtc1sc36.org/doc/36N0646.pdf

[SMEY] Scott Meyers, The Keyhole Problem http://www.aristeia.com/TKP/draftPaper.pdf
[TUR] Turnitsa, C.D. (2005). Extending the Levels of Conceptual Interoperability Model. Proceedings IEEE Summer Computer Simulation Conference, IEEE CS Press

[SMI] Smith B. (2003), Ontology. In: Blackwell Guide to the Philosophy of Computing and Information, L. Floridi, Ed. Oxford: Blackwell, 155-166.

[SBF] Studer R., Benjamins V.R. and Fensel D. (1998), Knowledge Engineering: Principles and Methods, IEEE Transactions on Data & Knowledge Engineering, vol. 25 no. 1-2, 161-197.

[WSRF-SEC] I. Foster, T. Maguire, D. Snelling OGSA WSRF Basic Profile 1.0 http://www.ggf.org/documents/GFD.72.pdf
6 Acronyms

	ACGT
	Advancing Clinico Genomic Trials on Cancer

	API
	Application Programming Interface

	BPEL
	Business Process Execution Language

	CDE
	Common Data Elements

	CORBA
	Common Object Request Broker Architecture

	CRF
	Case Record Form

	DoW
	Description of Work

	DTD
	Document Type Definition

	EJB
	Enterprise Java Beans

	EAI
	Enterprise Application Integration

	FMA
	Foundation Model of Anatomy

	GO
	Gene Ontology

	GRAM
	Grid Resource Allocation Manager

	GRMS
	Grid Resource Management Service

	GUI
	Graphical User Interface

	HTTP
	Hypertext Transfer Protocol

	J2EE
	Java Platform Enterprise edition

	JSR
	Java Specification Request

	ID
	Identification number

	ISO/IEC
	International Organisation for Standardisation / International Electrotechnical Commission

	LCIM
	Levels of Conceptual Interoperability

	NCI
	National Cancer institute

	ODBC/JDBC
	Open Database Connectivity / Java Database Connectivity

	OGSA
	Open Grid Services Architecture

	OGSA-DAI
	Open Grid Services Architecture - Data Access and Integration

	PMML
	Predictive Model Markup Language

	RSS
	Really Simply Syndication

	SAML
	Security Assertion Mark up Language

	SOA
	Service Oriented Architecture

	SOAP
	SOAP (originally Simple Object Access Protocol)

	TTP
	Time-Triggered Protocol

	URI
	Uniform Resource Identifier

	VO
	Virtual Organisation

	WS-I
	Web Services Interoperability

	WSDL
	Web Service Description Language

	WSRF
	Web Service Resource Framework

	WSRP
	Web Services for Remote Portlets

	XML
	eXtensible Markup Language

[image: image6.png][image: image7.png][image: image8.png][image: image9.png][image: image10.png][image: image11.png][image: image12.png][image: image13.png][image: image14.png][image: image15.png][image: image16.png][image: image17.png][image: image18.png][image: image19.png][image: image20.png][image: image21.png][image: image22.png][image: image23.png]

� � HYPERLINK "http://web.archive.org/web/20030208015752/http://java.sun.com/people/jag/Fallacies.html" ��http://web.archive.org/web/20030208015752/http://java.sun.com/people/jag/Fallacies.html�

� � HYPERLINK "http://c2.com/cgi/wiki?TupleSpace" ��http://c2.com/cgi/wiki?TupleSpace�

� � HYPERLINK "http://java.sun.com/products/jms/" ��http://java.sun.com/products/jms/�

� � HYPERLINK "http://www.amqp.org/" ��http://www.amqp.org/�

� � HYPERLINK "http://www.ws-i.org/" ��http://www.ws-i.org/�

� � HYPERLINK "http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf" ��http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf�

� � HYPERLINK "http://www.globus.org/toolkit/" ��http://www.globus.org/toolkit/�

� � HYPERLINK "http://www.daml.org/services/owl-s/" ��http://www.daml.org/services/owl-s/�

� � HYPERLINK "http://www.w3.org/TR/sawsdl/" ��http://www.w3.org/TR/sawsdl/�

� � HYPERLINK "http://microformats.org/" ��http://microformats.org/�

� � HYPERLINK "http://www.w3.org/TR/grddl/" ��http://www.w3.org/TR/grddl/�

� � HYPERLINK "http://www.w3.org/TR/xhtml-rdfa-primer/" ��http://www.w3.org/TR/xhtml-rdfa-primer/�

� � HYPERLINK "http://www.w3.org/TR/rdf-sparql-protocol/" ��http://www.w3.org/TR/rdf-sparql-protocol/�

� � HYPERLINK "http://www.globus.org/grid_software/data/rls.php" ��http://www.globus.org/grid_software/data/rls.php�

� � HYPERLINK "http://subversion.tigris.org/"��http://subversion.tigris.org�

� � HYPERLINK "https://acgt.googlecode.com/svn/trunk"��https://acgt.googlecode.com/svn/trunk�

� http://www.w3.org/TR/rdf-sparql-query/

� http://sourceforge.net/projects/d2rq-map/

� � HYPERLINK "http://trac.edgewall.org/" ��http://trac.edgewall.org/�

	30/03/2007
	Page 4 of 52

