

Demonstration and Report of the Ontology
Mediation Services

Project Number: FP6-2005-IST-026996

Deliverable id: D7.3

Deliverable name: Demonstration and Report of the Ontology Mediation Services

Submission Date: 18/04/2008

D7.3 – Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

Page ii © 18/04/2008

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

18/04/2008 Page 1

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: ACGT

Project Full Name: Advancing Clinico-Genomic Clinical Trials on Cancer:
Open Grid Services for improving Medical Knowledge
Discovery

Document id: D7.3

Document name: Demonstration and Report of the Ontology Mediation
Services

Document type (PU, INT, RE) RE

Version: 1.0

Submission date: 18/04/2008

Editor:
Organisation:
Email:

Luis Martín
Universidad Politécnica de Madrid
lmartin@infomed.dia.fi.upm.es

Document type PU = public, INT = internal, RE = restricted

ABSTRACT:

This deliverable gives a description of the ontology mediation tools developed within
WP7, that aim at solving semantic heterogeneities in data access, at achieving
database integration, at supporting the clinical trial building process, and at navigating
the ontology. This is a technical document focused in describing the services offered by
the different tools that have been developed, and in identifying their user base. The
selected scientific approaches for the implementation of these technologies are
described as well.

Together with the ACGT Master Ontology on Cancer, a collection of software tools
have been developed. These tools have the goal of solving semantic heterogeneity and
providing database integration. The ACGT Semantic Mediator acts as the coordinator
of all the tools, and offer the main querying services to the clients.

At the end of the document, a section regarding the main usages of the ACGT Master
Ontology on Cancer has been included. This section also describes the Obtima tool.

KEYWORD LIST: clinical trials, database integration, web services, semantic
mediation, ontologies

D7.3 - Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

Page 2 18/04/2008

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

18/04/2008 Page 3

MODIFICATION CONTROL

Version Date Status Editor

0.1 26/11/2007 Internal Draft Version Luis Martín

0.2 30/11/2007 Draft Version Luis Martín

0.9 12/02/2008 Pre-final Luis Martín

1.0 18/04/2008 Final Luis Martín

List of contributors:

− Luis Martín, UPM

− Alberto Anguita, UPM

− Stefano Chiesa, UPM

− Cristian Cocos, IFOMIS

− Norbert Graf, USAAR

− Gabriele Weiler, FhG

− Haridimos Kondylakis, FORTH

− Andreas Persidis, BIOVISTA

D7.3 - Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

Page 4 18/04/2008

Contents
1. Introduction ..6

1.1. The ACGT Semantic Mediation Layer ..6
1.2. MO: Short Presentation, Motivation, Challenges and Objectives8
1.3. Structure of this document ..9

2. Semantic Mediation Tools ...10
2.1. The ACGT Semantic Mediator ..10

2.1.1. Services and Interface...10
2.2. Mapping Tool ..11

2.2.1. Mapping Format ..11
2.2.2. The ACGT Mapping API..12
2.2.2.1. Interface and Services ..12
2.2.3. The ACGT Mapping GUI ...13

2.3. Ontology Representation Model: OWLBasicModel.......................................14
2.3.1. Adopted features from OWL language ..14
2.3.2. Services and Interface...15

2.4. Instance Level Heterogeneities...16
2.4.1. OntoDataClean..16
2.4.1.1. Transformation Methods ...18
2.4.2. OntoQueryClean..19
2.4.2.1. Transformation Methods ...21

2.5. The Master Ontology Viewer...21

3. The ACGT Master Ontology on Cancer..24
3.1. The Mapping Process ...25

3.1.1. Mapping schema entities...26
3.1.2. Identifier construction ..27
3.1.3. Terminology matching ...28

3.2. Master Ontology and Global Schema: Query Formulation28
3.2.1. Master Ontology structure, RDFS as query Schema28
3.2.2. Paths vs. Natural Language ..29
3.2.3. Query Language..30

3.3. Master Ontology in the Clinical Trial Building Procedure31

4. Conclusions and Future Work ..40

Glossary ...41

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

18/04/2008 Page 5

References ...42

D7.3 - Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

1. Introduction
One of the main goals of the ACGT project is giving access to heterogeneous, disparate
sources of information in a seamless, transparent way. For that purpose, a Data Access
Infrastructure is being developed. This infrastructure is comprised by a set of resources of
the ACGT Platform, namely the ACGT Master Ontology on Cancer (ACGT-MO), the ACGT
Data Access Services (ACGT-DAS), and the ACGT Semantic Mediation Layer (ACGT-SM).
Figure 1 shows the architecture of this infrastructure.

Figure 1: The ACGT Data Access Infrastructure

As can be seen, the ACGT-DAS have the responsibility of accessing the actual data sources,
and to overcome syntactic heterogeneities. The client of the ACGT-DAS is the ACGT-SM,
which uses the interface provided by the ACGT-DAS—i.e. SPARQL[1] language for
querying, SPARQL Result Format [2] for the retrieved results—, and that makes use of the
ACGT-MO to overcome semantic issues. This document is focused on the set of tools that
comprise the ACGT-SM.

1.1. The ACGT Semantic Mediation Layer
The ACGT-SM is comprised by a set tools of different nature. The main resource is the
Semantic Mediator, responsible for solving the semantic heterogeneities and the database
integration tasks. This tool makes use of a collection of satellite resources, dealing with
different issues related to the main problem. Table 1 lists the different resources that
comprise the ACGT-SM, and describes their natures and aims, together with the different
technologies used in their development.

Page 6 18/04/2008

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

Resource Aim Interface Technologies used

Semantic Mediator Solving semantic
heterogeneities and
provide database
integration

Web
Service

Java[3], SPARQL,

OWL[4],

OGSA-DAI[5],

XML

Mapping API Providing a set of
operations to support
the mapping process

API Java, OWL, RDFS[6], XML

Mapping GUI Guiding a user in the
mapping process

GUI Java, Swing[7]

OWLBasicModel Providing a model and
set of operations to
represent OWL
ontologies

API Java, Jena[8], OWL, RDFS

OntoDataClean Solving instance level
heterogeneities in
retrieved data

Web
Service

Java, OWL

OntoQueryClean Solving identifier
heterogeneities in
queries

Web
Service

Java, OWL

Table 1: The ACGT Semantic Mediation Layer Tools

Figure 2: The ACGT Semantic Mediation Layer Architecture

18/04/2008 Page 7

D7.3 - Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

Page 8 18/04/2008

Figure 2 shows the architecture of the Semantic Mediation Layer. The Semantic Mediator
acts as the core of the ACGT-SM, coordinating the invocation of services from the others,
except in the case of the Mapping GUI and Mapping API, that work independently. The
product of these tools (a mapping) is used in the mediation process.

1.2. MO: Short Presentation, Motivation, Challenges and
Objectives

The ACGT Consortium chose ontologies as main knowledge representation (KR) tool, in
order to represent the relevant parts of medical knowledge gathered along the years by
cancer researchers and clinicians involved with the theory and practice of oncology. The
advantages of ontologies versus other KR strategies have been extensively covered in the
Computer Science literature (see [9] [10] [11] [12]). Medicine is one of the research fields that
stand to benefit greatly from the “ontological turn”, as can be seen from the ACGT project.

 ACGT aims to collect data coming from various sources; such data, hence, boasts a
huge degree of heterogeneity. Clinical trials, in particular, are easy prey to inconsistent
gathering procedures and flimsy storage systems. Lack of standardization prevents objective
comparison of same types of data acquired as result of such trials, hence renders it quite
useless. The consequence is a the lack of interoperability, and the difficulty of carrying out
research spanning different trials of the same type (let alone trials of different types) [13]. We
regard the choice of an ontology-based data management system as a major step towards
the advancement of a consistent data collection and processing policy in medical informatics.
Furthermore, the taxonomy at the core of each and every ontology can be utilized in building
case report forms (CRFs), as a sizeable amount of entries on actual CRFs take the more-or-
less direct shape of (a branch of) a taxonomic tree.

Among the challenges of the ACGT MO development, the large scope of the project
was certainly the most demanding. Many areas, such as clinical studies, clinical cancer
management and care, genomic research etc., had to be reflected; all these could easily
make the subject of a plethora of more focused and targeted domain ontologies, wherefrom,
ideally, the ACGT MO might be constructed in modular manner. That, unfortunately, could
not happen, be it for the simple fact that no such targeted ontologies exist yet, or are not in a
consistent shape to meet the quality demands of the ACGT consortium. ACGT partner
IFOMIS1 is active in numerous international efforts aimed at developing cutting-edge
ontologies. The Ontology for Biomedical Investigation (OBI) [14], for example, is an ontology
that “will support the consistent annotation of biomedical investigations, regardless of the
particular field of study”.

In order to provide a consistent and sound representation, the ACGT MO employs the
resources of a Top Level Ontology or Upper Level Ontology. We haven chosen the Basic
Formal Ontology (BFO)2 as Top Level for the ACGT MO, since BFO has proven to be highly
applicable to the biomedical domain [15]. The ACGT Master Ontology, hence, inherits BFO’s
foundational principles: realism (ontologies as representations of reality rather than concrete
specifications of conceptual schemes), perspectivalism (many equally valid perspectives on
reality), fallibilism (our ontologies are fallible and perpetually evolving), and adequatism (no

1 http://www.ifomis.uni-saarland.de/
2 http://www.ifomis.uni-saarland.de/bfo/

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

18/04/2008 Page 9

emphasis on reducing the various ontological categories to few basic ones). Another design
principle implicit in BFO’s structure is the conviction that a properly constructed ontology
should steer clear of a taxonomical tree that allows multiple parent classes for the same child
class [16]. Aside from promoting theoretical accuracy, the directive of multiple inheritance
avoidance has, among others, the advantage of yielding a much more intuitive and clutter-
free taxonomic tree.

Presented as an .owl file and written in OWL-DL, the ontology was built, and is being
maintained/curated, using the Protégé-OWL free open-source ontology editor3. In a first
instance, the .owl file is intended to be browsed using the same tool, although ACGT
member Biovista is currently developing an online browsing tool that will make the ontology
available on the WWW (see section 2.5).

1.3. Structure of this document
This document is structured as follows: section 2 gives the detail of the architecture, services
and algorithms used for each of the tools comprising the ACGT-SM and the Ontology
Viewer. Section 3 regards to the Master Ontology main usages within the project. Section 4
presents the main conclusions from our implementation experience so far and the future
lines within WP7.

3 http://protege.stanford.edu/

D7.3 - Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

Page 10 18/04/2008

2. Semantic Mediation Tools

2.1. The ACGT Semantic Mediator
The ACGT Semantic Mediator is the core software resource among the set of ontology
mediation tools developed in WP7. The main aim of this software layer is providing access to
integrated sets of data sources, solving the semantic heterogeneities. The Semantic
Mediator provides users with two services, namely i) Launch a Query, and ii) Retrieve
Schema.

The ACGT Semantic Mediator has two main groups of clients, end users and KDD
tools. The profile of the former is a physician involved in a clinical trial. This kind of user
normally needs a friendly interface to communicate with the mediator, since it is very difficult
for him to formulate a query in SPARQL. This interface is not part of the Mediator itself, and
its development will take place during the next phase of ACGT. By contrast, the KDD tools
usually communicate with the Mediator via its software interface, which is based in web
services technology, using the SPARQL language.

2.1.1. Services and Interface
Table 2 describes the main services offered by the ACGT Semantic Mediator.

Service INPUTs OUTPUTs Description

Launch Query A SPARQL query A set of results Process the query
and retrieves the
data from the
different databases

Retrieve Schema None An RDFS
representing the
schema of the
integrated
databases.

Retrieves an
RDFS that
represents the
intersection of the
available mappings
with the global
schema. This
model represents
the universe of
possible queries
that can be
answered by the
mediator.

Table 2: Semantic Mediator Services

As can be seen, an RDFS representing the possible queries can be obtained. This schema is
a subset of the global schema, and its purpose is twofold: 1) reducing the complexity of the
query translation process, and 2) constraining the universe of possible queries that can be
formulated, increasing accuracy of the information retrieval.

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

18/04/2008 Page 11

2.2. Mapping Tool
Establishing mappings between the global and local schema is a key procedure for semantic
mediation and database integration. These mappings are used as a means to store the
semantic knowledge for the mediation process. They contain the knowledge needed to
perform query translation. The ACGT Semantic Mediation Layer follows a Local as View [17]
based approach, so local views for the underlying databases need to be created. These local
views are contained in the mappings.

2.2.1. Mapping Format

The information contained in a single mapping between the global schema and a schema of
a data source can be represented in XML. The complete grammar of the proposed XML
format for the mappings can be found as a DTD in Figure 3.

<?xml version="1.0" encoding='UTF-8'?>
<!ENTITY % unnamed "">
<!ELEMENT mapping (map)+>
<!ELEMENT map (domain_map,combined_links?,ontoclean?)>
<!ELEMENT ontoclean (conceptualtophysical?,physicaltoconceptual?)>
<!ELEMENT conceptualtophysical (#PCDATA)>
<!ELEMENT physicaltoconceptual (#PCDATA)>
<!ELEMENT domain_map
(src_domain,src_domain_condition?,target_domain,target_domain_condition?)>
<!ELEMENT range_map
(src_range,src_range_condition?,target_range,target_range_condition?)>
<!ELEMENT path_map
(src_path_contition?,src_path,target_path_condition?,target_path)>
<!ELEMENT src_domain (#PCDATA)>
<!ELEMENT src_domain_condition (#PCDATA)>
<!ELEMENT target_domain (#PCDATA)>
<!ELEMENT target_domain_condition (#PCDATA)>
<!ELEMENT src_range (#PCDATA)>
<!ELEMENT src_range_contition (#PCDATA)>
<!ELEMENT target_range (#PCDATA)>
<!ATTLIST target_range id CDATA #IMPLIED>
<!ELEMENT target_range_condition (#PCDATA)>
<!ELEMENT src_path_condition (#PCDATA)>
<!ELEMENT src_path (int_link,int_entity?)+>
<!ELEMENT target_path_condition (#PCDATA)>
<!ELEMENT target_path (int_link,int_entity?)+>
<!ELEMENT int_link (#PCDATA)>
<!ATTLIST int_link value_binding CDATA #IMPLIED>
<!ELEMENT int_entity (#PCDATA)>
<!ATTLIST int_entity id CDATA #IMPLIED>
<!ELEMENT link_map (range_map,path_map)>
<!ELEMENT combined_link (link_map+)>
<!ATTLIST combined_links joined_on CDATA #IMPLIED>
<!ATTLIST combined_links compound_on CDATA #IMPLIED>

Figure 3: A DTD representing the XML mapping format

D7.3 - Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

Page 12 18/04/2008

This format can be used to express mappings between paths in an OWL ontology and an
RDFS representing the structure of a data source. To support the construction of these
mappings, a couple of tools have been created: The Mapping API and the Mapping GUI.

2.2.2. The ACGT Mapping API

2.2.2.1. Interface and Services
The Mapping API is divided in two main functional sets that encapsulate functions for
different usages. The first set, called Mapping Editor, provides functionalities for building and
modifying mappings. The second set is called Mapping Browser, and allows users to consult
the mapping, providing services to find subsumed paths. This set is designed to be used by
the mediation software. The two sets of supported operations are detailed in tables 3 and 4.

Operation INPUTs OUTPUTs Description

save File path An XML mapping
file

Saves the current
mapping into an
XML file

addEntryToMapping A pair of paths An entry Adds a mapping
entry to the
mapping

getEntryList An entry list Retrieves the
current entry list

getEntry A position in the
entry list

An entry Retrieves the
requested entry

removeEntry A position in the
entry list

- Deletes the entry
in the specified
position

getClasses - A list of classes Retrieves the list of
properties
contained in the
model

findPaths A class and a
depth

List of paths Retrieves all the
possible paths with
a maximum of the
given depth with
the specified class
as domain

Table 3: Mapping Editor Operations

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

Operation INPUTs OUTPUTs Description

load File path - Loads a mapping
stored in an XML
file

getCorrespondence A path A path Retrieves the path
that is mapped to
the given path

getSubsumedPaths A path A list of paths Retrieves all the
subsumed paths of
a given path

Table 4: Mapping Browser Operations

2.2.3. The ACGT Mapping GUI
The Mapping GUI is a user interface to build mappings for the semantic mediation process.
This interface provides simple and intuitive access to the main Mapping API functionalities.
The audience of this tools are the engineers and experts involved in the mapping process.
This tool has not been designed to be used by clinicians or any other type of end users of the
ACGT platform. The next section gives an overview of the interface of this tool. An
screenshot of the Mapping GUI is shown in figure 4.

Figure 4: The Mapping GUI

18/04/2008 Page 13

D7.3 - Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

Page 14 18/04/2008

As can be seen, the interface is completely symmetric. The source schema is shown on the
left side and the target schema on the right. The user selects the paths she wants to be
included in the final mapping. The tool allows to export the mapping in XML format.

2.3. Ontology Representation Model: OWLBasicModel
OWLBasicModel is an API designed to offer editing capabilities for ontologies. The purpose
is to offer a simple set of features for performing basic editing functions over ontologies, and
parsing/writing OWL and RDF files. Many features of the OWL language are ignored in order
to offer a very simple model of ontologies.

The API includes functionality for both browsing existing OWL and RDF files and
building/editing new or existing files, excluding many of the advanced features of the OWL
language. This way, external applications can have a simplified view of the OWL language,
performing some basic operations for accessing and modifying OWL files. The selection of
OWL features was based on the requirements specification obtained from the Mapping Tool
and Semantic Mediation Approach design.

2.3.1. Adopted features from OWL language
Many features of the OWL language are ignored in order to facilitate the editing of OWL files.
Basically, OWLBasicModel considers the RDF Schema features plus some OWL restrictions.
The next OWL features are ignored by the model:

• No distinction is made between the different types of properties.

• Restriction applied over classes and properties, except for restrictions in the range of
a property when applied over a specific class.

• Header information (except for imports)

• Equality statements

• Annotation properties

The architecture of the OWLBasicModel API is shown in figure 5.

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

Figure 5: Architecture of the OWLBasicModel API. Arrows indicate data flow among
components

The OWLBasicModel API utilizes the Jena API. The latter is an open source semantic Web
framework for Java supported by HP. Among other capabilities, it allows parsing ontologies
written in OWL language. A complete documentation of the API can be downloaded from the
project page, and new versions are released periodically, providing a strong support for
users. It is known to be one of the De Facto frameworks for ontology managing, which is why
we decided to use it in our API.

The API uses the Jena API to initially parse the OWL files, and then create its own
model. A loaded model can be saved into a file using serialization of Java objects. Retrieving
the information from these serialized files will result in lower loading times compared to using
Jena. One module for producing rdf-schema files from an existing ontology (or created
through the API) is included. It allows obtaining the rdf-schema representation of an existing
OWL file, or of a newly created ontology.

2.3.2. Services and Interface
Table 5 describes the main services offered by the OWLBasicModel API.

Operation INPUTs OUTPUTs Description

parse File path - Parses an OWL
file and creates the
corresponding
model

load File path - Loads a previously
serialized model
into memory

save File path A serialized model
file

Saves a serialized
version of the
current model into
a file

18/04/2008 Page 15

D7.3 - Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

Page 16 18/04/2008

generateRDFSchema File path An RDF Schema
file

Creates a file
containing the RDF
Schema
representation of
the current model

addRDFClass Class URI, parent
class URI

- Adds a class into
the current model

addProperty Property URI,
parent property
URI

- Adds a property
into de current
model

getRDFClasses - List of class URIs Retrieves the list of
classes contained
in the model

getProperties - List of property
URIs

Retrieves the list of
properties
contained in the
model

getPropertyDomainList Property URI List of classes
URIs

Retrieves the list of
classes that form
the domain of a
given property

getPropertyRangeList Property URI List of classes
URIs

Retrieves the list of
classes that form
the range of a
given property

Table 5: Description of the main services offered by the OWLBasicModel API

2.4. Instance Level Heterogeneities

2.4.1. OntoDataClean
When performing data integration, there are two kinds of heterogeneities that must be solved
in order to allow the correct merging of data coming from different sources. On one side, we
have schema level heterogeneities, due to differences in the schemas of the different data
sources. This is solved by means of adopting an ontology acting as a common framework.
On the other hand, sources may present instance level heterogeneities. These are due to
different formats for storing the same kind of data—e.g. scale heterogeneities, utilization of
synonyms, etc. OntoDataClean is designed in order to solve the second kind of
inconsistencies. It offers a series of transformation methods for preprocessing and
homogenizing data. These methods are specifically focused on the biomedical domain,
although it can be used on other kinds of data. The tool is offered as a Web Service, so it can
be accessed from any machine connected to the Internet. Its interface is designed to accept
2-dimensional data matrices. This format suits the results of querying a generic data
repository—one dimension contains the retrieved variables, while the other dimension stores

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

the different results—, thus making it ideal for preprocessing results obtained from any kind
of data sources.

In order to increase compatibility and usability by non-technical users,
OntoDataClean utilizes an ontology representing the domain of generic transformations that
can be applied over a set of data. Instances of that ontology specify how actual data must be
preprocessed. Figure 6 shows the basic architecture of the tool.

Figure 6: Architecture of the OntoDataClean tool

The input of the tool is the data to be preprocessed, arranged in a 2-dimensional matrix, and
the instance of the preprocessing ontology that specifies how that data must be
preprocessed. The output will be another 2-dimensional matrix with the resulting
preprocessed data. As it was explained before, the preprocessing ontology defines a set of
transformations that can be applied over a matrix of data. The ontology is composed by a
series of classes, each devoted to a kind of transformation. By instantiating these classes
and giving values to their attributes, the user can indicate the tool the exact transformation
methods that he wants to use. This preprocessing ontology is shown in figure 7.

18/04/2008 Page 17

D7.3 - Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

Page 18 18/04/2008

Figure 7: Preprocessing ontology employed by OntoDataClean.

2.4.1.1. Transformation Methods

Table 6 describes the service offered by OntoDataClean.

Service INPUTs OUTPUTs Description

cleanData 2-dimensional
data matrix and
preprocessing
ontology instance

2-dimensional data
matrix

Applies the
methods specified
in the ontology
instance to the
data contained in
the submitted
matrix

Table 6: Description of the service offered by OntoDataClean

By means of this service, the user can utilize the five different methods for transforming data
in OntoDataClean. The next paragraphs briefly describe these methods, and how to use
them.

Duplicate cleaning
This method allows eliminating duplicate values in the data. In order to do this, an instance of
the class Duplicate must be created. The Columns property will be filled in this case with the
column names we want to be used in order to evaluate the duplicity of two different rows of
data. For each pair of rows in the data matrix, the system will determine its duplicity by
comparing all values specified by Columns. If every value is equal, then one row is
eliminated.

Missing value transformation
The missing value transformation method can perform transformations when specific values
(considered by the user as missing values) are encountered in the original data. For this
purpose, an instance of the class Detection will be created. Its property Columns will indicate
the system on which columns of data the method must be applied, as usual. The properties
MissingValueRanges and RepresentativeValues will contain the values subject to be
modified by the method—either ranges of values or specific values.

The class that determines how to transform a value subject to be modified is
Transformation. One instance of this class will be related to the previous instance of
Detection through the property DetectionSiblingTransformation. It is mandatory for each
instance of Detection to have associated an instance of Transformation. Furthermore, one
and only one of the four existing properties in Transformation must be filled, specifying what
kind of transformation to apply. Optionally, one or more instances of the class Condition can
be attached to the instance of Detection. This allows specifying additional conditions in order
to determine which values must be transformed.

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

18/04/2008 Page 19

Scale transformation
This method allows performing algebraic transformations over numeric values, by means of
instances of the class Scale. The property expression will contain the algebraic expression to
apply on the values of the specified columns. Of course, non-numeric values will not be
affected by this transformation. The property roundToInt allows specifying whether final value
must be rounded to the closest integer value, or leave it as a decimal value.

Synonym transformation
The synonym transformation method allows specifying pairs of synonyms which the system
will use in order to perform substitutions. The class that must be instantiated is Synonym.
The property name must be filled with a string value that will be recognized as the value to
substitute. The property preferredName must contain the value that will substitute the
previous value. Optionally, a database can be referenced in order to specify the pairs of
values to use in the substitutions.

Pattern transformation
Pattern transformations allow performing complex modifications over string values by
specifying a series of properties. It can be used to recognize values that match a given
regular expression (using the property RegularExpression) in order to substitute these values
with another value. The other option is to specify a rule string (using the property Rule),
which allows reorganizing the original value so it adjusts to a different format.

2.4.2. OntoQueryClean

Instance level inconsistencies must be solved when integrating results from heterogeneous
data sources, but also when generating subqueries in a federated environment such as the
one adopted by the ACGT Semantic Mediator. When an integrated query is launched against
the mediator, it may include literals that restrict the values that are queried. For example, a
user might want to restrict the age of patients suffering some kind of illness by specifying that
that value must be over 30. The value that he will include in the restriction will depend on the
data format offered by the mediator. However, this format may not resemble the one used by
the different data sources that the mediator has to access, therefore this restriction must be
preprocessed in order to generate the correct subqueries. OntoQueryClean aims to solve
this issue by offering a series of methods for restriction preprocessing. It is based on the
previously described tool OntoDataClean. Again, it makes use of an ontology defining the
domain of transformations for restriction translation. This is an adapted version of the one
employed by OntoDataClean. Only three transformation methods are kept—synonym, scale
and pattern—and one more for operator preprocessing is included. Figure 8 depicts this
ontology.

D7.3 - Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

Figure 8: Preprocessing ontology employed by OntoQueryClean

OntoQueryClean makes use of OntoDataClean in order to perform the scale, pattern and
synonym transformations. It collects the required information from its own preprocessing
ontology and its data matrix, and invokes OntoDataClean. Afterwards, it performs the
necessary transformations over the existing operators. Figure 9 represents the architecture
of this tool.

Figure 9: Architecture of OntoQueryClean

The input of the tool is a preprocessing ontology instance and a 2-dimensional data matrix
(containing both operators and data). The result will be again a 2-dimensional matrix
containing the preprocessed operators and data.

Page 20 18/04/2008

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

18/04/2008 Page 21

When receiving a data matrix composed of operators together with literals,
OntoQueryClean extracts the literal information and submits it to OntoDataClean so it is
properly preprocessed—the information from the preprocessing ontology regarding literal
transformation is extracted as well and submitted. After receiving the results, the tool
performs the necessary transformations over the operators, and adds the results to the
preprocessed literals.

2.4.2.1. Transformation Methods

Table 7 describes the service offered by OntoQueryClean.

Service INPUTs OUTPUTs Description

cleanData 2-dimensional
data and operator
matrix and
preprocessing
ontology instance

Preprocessed 2-
dimensional data
and operator
matrix

Applies the
methods specified
in the ontology
instance to the
data and operators
contained in the
submitted matrix

Table 7: Description of the service offered by OntoQueryClean

This service allows using the methods offered by OntoQueryClean. Scale, synonym and
pattern transformations are used exactly the same as in OntoDataClean. The operator
transformation method allows entering expressions for evaluating result operators given
other operators. This is done using the class Operator, and specifying this expression in the
OperatorExpression property. This property can hold constant operators—namely “=”, “!=”,
“<”, “>”, “<=”, “>=”—, operators contained in a specific column—given by the name of the
column enclosed between ‘{‘ and ‘}’ characters, and functions of operators which result in
another operator. The supported functions are: i) Opposite —“opp(op)”— computes the
opposite of the argument, ii) Complementary —“comp(op)”— calculates the complementary
of an operator, iii) Union —“union(op1, op2)”— computes the union of two operators, and iv)
Intersection —“int(op1, op2)”— calculates the intersection of two operators. For example, the
operator expression “union(<, <=)” would always return the operator “<=”.

2.5. The Master Ontology Viewer
The ACGT project has at its core the ACGT Master Ontology (MO) which is the basis for a
number of current and planned ACGT services. Since the ontology is a work in progress the
ability to explore and visualize it is required for substantial and in depth reviews from the
appropriate experts in the group. Since the ACGT MO is already quite large, the ability to
search has grown to a necessity, a feature that is not easily found on all ontology viewers.

A lot of current ontology viewers are overloaded with functionality that makes the
learning curve of a new tool quite steep. For that reason, and for ubiquitous access, the
Biovista Ontology Viewer has been built from the ground up to be a web based viewer,
practically usable by anyone who has internet access. This way it is much easier to test, by a

D7.3 - Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

Page 22 18/04/2008

wide range of interested partners during the development period, and to later integrate it in
the ACGT web site.

Given that most fully featured viewers are proprietary and that both the ACGT
consortium and the EU require source availability it was decided to develop the ACGT
ontology viewer from scratch thus being able to develop custom features that closely meet
the current and future requirements of the project.

In preparation for the development of the Biovista ACGT Ontology Viewer a lengthy review
on available OWL ontology viewers was performed. The objective of the review was to find a
suitable code base in order to jump start the development.

Some observations from this work are the following:

• All of the reviewed tools are Java based

• Some of the most interesting viewers are also editors which increases by far the
complexity of the program

• Some of the most interesting viewers have a non open source, proprietary license

• A lot of open source projects are currently abandoned or they were too simplistic to
start with

• The two main backend libraries are the Jena library (HP sponsored) and the OWL
API and all projects seem to utilize one of them

Table 8 summarizes our findings on these viewers (Biovista’s ontology Viewer is also
included for comparison):

Viewer Web based Easy to Use Search API Open Source

Protege no, java based No, full editor yes yes

SVG-OWL
(mindswap)

No, java based Crashes with
ACGT ontology

 unsure

DUMPONT Yes but simplistic yes no Jena yes, dead

SWOOP No, java based No, full editor yes OWL Yes

ObjectViewer Yes but simplistic yes no Jena yes, dead

Ocelot Yes but simplistic yes no Jena Yes, dead

Growl Yes, applet based no OWL no

Owlsight yes yes no Jena no

Biovista OV Yes yes yes Jena Yes

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

18/04/2008 Page 23

Table 8: List of existing ontology viewers

The Ontology Viewer presents a tree view of any given ontology. It introduces the concept of
Ontology View's whereby the user is free to design more targeted and specific ontologies
starting from the master ontology. Following is a list of the prominent features and
capabilities built into the Ontology Viewer:

• The Ontology Viewer UI layout is split into three panels:

1. The left panel gives a user a listing of the various ontology view's that he may

choose from. All user actions related with view management such as creation,
updating and deletion are handled from UI elements of this panel.

2. The center panel provides a tree view of the ontology currently being viewed by

the user. The tree constructed from the ontology data is a standard component of
the GWT library, and is highly customizable.

3. The right panel in the layout shows the details of the node that has been selected

from the tree view. All actions relating to the node selected are performed through
menus available at the bottom of the right panel.

• The master ontology used by the Ontology Viewer is not maintained as a separate
local copy instead it is loaded directly from the ACGT SVN every time a user reloads
the application. This allows the user to always obtain the most recent view of the
master ontology. The URL used for downloading the master ontology is:

http://acgt.googlecode.com/svn/trunk/document.owl

• The Ontology Viewer provides a quick search feature through which a user may find
a node of interest in the current ontology by giving a search string. The search is fast
and for cases where multiple matches are found will pop up a dialog box wherein the
user can select the node of interest to him.

• The Ontology Viewer also provides a search feature which can be used to find all
views that may contain a search string.

• The Ontology viewer has the capacity to communicate with web services. One such
service already being used is the Biovista bibliography web service.

http://acgt.googlecode.com/svn/trunk/document.owl

D7.3 - Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

Page 24 18/04/2008

3. The ACGT Master Ontology on Cancer
The ACGT Master Ontology has been designed from the outset in accordance with modular
principles. A sizeable part of the work undertaken by IFOMIS consisted in parsing actual
clinical trial report forms (CRFs) and attempting to capture in electronic format the knowledge
contained within. A further step is to develop and enrich the ontology obtained so far with
constraints and axioms that govern the behavior of the classes and relations in the ontology:
this represents the shifting of focus from the simple quantitative activity of adding nodes in
the ontology’s subsumption hierarchy, to an essentially qualitative stage in the development
of the MO. This step is of particular importance, as the MO-based CRF builder (among
others) requires a rich network of relations in order to capture the complexity of clinical trial
information, and output CRFs boasting a reasonable—certainly perfectible, if not perfect—
degree of exhaustiveness. Adding constraints, however, calls for further enhancing the
ontology with information about human anatomy—hence further extending the taxonomic
tree.

 The initial plan was to proceed, thanks to the modular design of the MO, at importing
the Foundational Model of Anatomy (FMA™4), which is the topmost, state of the art,
electronic representation of human anatomy available nowadays. The FMA is, however,
available as a frame-based system, and the challenges of rendering it as an .owl file have
been extensively documented. We are aware of two major groups of attempts at obtaining an
OWL equivalent of the FMA, one by C. Golbreich [18], and the other by the FMA curators
themselves [19]. The latter provides two versions of such a translation: an OWL DL
component that contains the FMA constructs that are compatible with OWL DL, and an OWL
Full component that imports the OWL DL component and adds the FMA constructs that OWL
DL does not allow (e.g., metaclasses and classes as property values). Both versions have
major shortcomings, besides the fact that the degree of conversion accuracy leaves a lot to
desire: the corresponding .owl files are very big, while the latter, though smaller, is not even
usable for reasoning and inference purposes, as it is obviously not DL compatible. The sheer
size of the OWL files, however, makes both quite challenging from the perspective of
effective computability.

The Golbereich translation efforts do, prima facie, offer reasons for a more optimistic
outlook, as they are more accurate than the rough conversion undertaken by the FMA
team—though, nevertheless, it has still been deemed as not being accurate enough. Besides
questionable factual accuracy, it still suffers from the same ailments most FMA translations
do, namely raising inference problems hard to solve in terms of time and memory, due to the
complexity of the information contained.

Confronted with such issues, we have decided on an alternate course of action,
targeting the NCI Thesaurus (NCIT). While an OWL format of the thesaurus exists, the NCIT
contains much more information, well beyond our needs in terms of strict anatomy.
Thankfully, we have managed to locate an effort currently unfolding at Manchester
University, under Prof. Alan Rector’s tutelage, whose main object is to mine the NCIT for
anatomical information. The ontology has been enriched with some parity and partonomy
knowledge. It has around 8000 anatomical concepts extracted from the NCI Thesaurus, and
annotations and mappings provided by the NCI. We, hence, regard importing this module as

4 http://sig.biostr.washington.edu/projects/fm/index.html

http://sig.biostr.washington.edu/projects/fm/index.html

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

18/04/2008 Page 25

an answer to our quest for an anatomy section, and the best such conduct currently available
in terms of developing the ontology at this stage.

Finally, IFOMIS continues its efforts at (a) providing constraints for the ontology
classes (especially in collaboration with ACGT medical partners), and (b) assisting ACGT
associates in the mapping process. More concretely, the latter has benefited from the
interaction between ACGT partners FORTH and IFOMIS, in that several CIDOC-CRM5
conceptual schemes and diagrams issued by FORTH have been translated in ACGT MO
lingo. It is our hope that our contribution in the mediation process will assist the other
partners in developing a comprehensive and robust management system, capable to fully
exploit the master ontology, and provide means for ontology enrichment, adjustment and,
eventually, improvement.

3.1. The Mapping Process
In order to specify the complexity and the expressiveness of the required mappings we have
to carefully examine the source and the target schemata that are going to be integrated. We
have to note that in a LAV data integration system we need a richer target schema with equal
or higher expressive power to fully capture the semantics of the source schemata

An ontology or a data model can be used as a target schema. That schema uses
nodes, links, properties, multiple is-a relations (ISA), and multiple instantiations, in order to
describe a domain of interest. An ontology is an explicit declaration of a conceptualization
[20] which includes a set of concepts, their definition and their inter-relationships. Moreover,
the language used to describe the target schema should permit ISA relationships between
both classes and properties. We chose to adopt RDF/S [21] as the target schema language,
despite its problems and the lack of expressiveness. This is because it is already a standard
proposed by W3C, its industrial usage is starting to emerge, and it is the most practical
approach for the time being. Furthermore, it is richer than most source models and adds “no
constraints” for integration. A suitable part of an ontology in a suitable encoding can be used
or interpreted as target schema. Considering source schemata, ACGT tries to integrate only
Relational and XML sources and not object-oriented ones, since the objective is to be
practical and effective. The most successful database integration scenarios are those that try
to integrate traditional databases.

In this document we use as example target schema the CIDOC Conceptual
Reference Model, a part of which is shown in Figure 10. Whereas the CIDOC CRM was
created for information from cultural heritage, it is adequate to model other domains as well
since it provides a core ontology for information integration. We regard a core ontology as
the upper level of an Enterprise or Target model. A well formulated core ontology should be
complete expressing the basic concepts that are common across a variety of domains and
providing the basis for specialization into the nuanced concepts and vocabularies of
individual domains. The primary role of the CRM is to serve as the “semantic glue” needed to
transform disparate, localized information sources into a coherent and valuable global
resource. Essential to the CRM are subsumption hierarchies of both classes and properties,
and the concept of multiple inheritance. It uses properties on properties in order to denote a
dynamic sub-typing of roles and the scope notes of some properties declare that these

5 CIDOC CRM is FORTH’s proprietary ontological framework, destined initially to serve archaeological data
environments.

D7.3 - Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

properties can be deduced from other data paths in the model. Furthermore CRM does not
enforce cardinality constraints into the target schema as they are considered to be
implementation details with only minimal explanatory value.

Figure 10: A part of the CIDOC CRM ontology. (The strong lines imply ISA relationships)

Considering source schemata, ACGT tries to integrate only Relational and XML sources and
not object-oriented ones, since the objective is to be practical and effective. The most
successful database integration scenarios are those that try to integrate traditional
databases.

3.1.1. Mapping schema entities
We consider the mapping of two schemata as a sufficient specification for the transformation
of each instance of schema 1 into an instance of schema 2 with the same meaning as shown
in Figure 12. We refer to the same meaning as it is understood by experts. The definition
should be independent of particular instances. The mapping should make it possible to
implement an automatic transformation algorithm for all instances of schema 1 into instances
of schema 2, only following the specification of the transformation, i.e it should not depend on
any further information.

Figure 12: The basic mapping schema

In order to have an efficient mapping, independently of the data model used, we need to
define:

• The mapping between the Source Domain classes and the Target Domain classes.
• The mapping between the Source Range classes and the Target Range classes.
• The proper Source Path.
• The proper Target Path.

Page 26 18/04/2008

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

• The mapping between Source Path and Target Path

In some cases, we may need to combine paths sharing the same instances. Each path f the
source schema is mapped individually to the target schema. Each class-role-class can be
seen as self-explanatory, context independent proposition. The mapping allows creating sets
of propositions equivalent to the meaning of each source document, but in terms of the target
schema. Such a mapping is shown in figure 13.

Figure 13: An example mapping

Databases can be seen as collections of statements or propositions. There is no proposition
without a relationship. Even though it is easy to make a schema with only one class, it is
impossible to make a schema without relationships. The mapping allows creating sets of
propositions equivalent to the meaning of each source proposition, but in terms of the target
schema. As the propositions are self-explanatory, they can be merged into huge knowledge
pools, ignoring the boundaries of the source documents they were derived from.

 The inputs of this sub-process are the target and the source schemata (their
corresponding propositions) and the output is a file with the mappings. The domain expert
has to specify the mappings of the target and the source schemata possibly assisted by an
IT expert in the beginning. An appropriate graphical tool should also be used. That tool
should be available to make the whole process more intuitive, to ensure consistency
between target and source schemas and to help the experts with the appropriate
visualizations for the result of those mappings. The “ACGT mapping tool” fulfills that role.
Moreover, in a LAV system in order to be able to fully capture the semantics of the source
schema the mapping should be complete for each source. We define the mapping of a
source to be complete if for every class and role defined in the source schema (or the part of
interest) there is a mapping to the target schema.

3.1.2. Identifier construction

This sub-process has to do with the definition of identifier creation and transformation
conventions and algorithms for the particular instances in the sources. This is to ensure that
local identifiers and keys in sources can be turned into URIs and vice versa. The art is to
ensure that (a) no two identifiers denote the same object, and that (b) most probably two
independent systems will come up with the same identifier for the same real world item.
Requirement (b) is weaker than (a). The identity problems arise in several different contexts
and provoke intense philosophical debate. However, it has not been addressed in a
systematic and efficient way. Moreover, the interpretation of instances cannot be automated.
Consider for example two patient instances with the name “Martin”. There is no method to
determine whether the instances refer to the same person using only the schema knowledge.
However, instances level heterogeneities solving tools—i.e. Ontodataclean—can automate
the process of unique identifier generation.

18/04/2008 Page 27

D7.3 - Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

Page 28 18/04/2008

3.1.3. Terminology matching

The final step is to match terminology that appears typically as data in the sources. There are
only three relationships of matching terms: Equivalence, overlap, subsumption. Identifiers for
terminology appearing as data must be transformed into URIs and any other data instances.
For instance, “Hospital: person_type 12” can be turned into “HospitalPersonType:12”.

3.2. Master Ontology and Global Schema: Query Formulation

One of the main roles of the Master Ontology within ACGT is acting as Global Schema,
representing the integration to the universe of integrated databases. The MO is used in this
context to build the necessary queries that will begin the process of information retrieval.
Although the Semantic Mediator is able to process these queries, translating them into
proper ones that are sent to the Data Access Services, this software cannot run without the
schema.

 There exists two ways to use an ontology in query translation. The first one is using
the ontology as domain model, but not as global schema. In this case, the knowledge
needed is extracted from the ontology and expressed in such a way that the underlying
databases can be integrated. This approach is called Global as View. By contrast, the
ontology can be used as global schema in the second way. Here an isolated view for each
one of the underlying databases is created using knowledge extracted from the ontology, but
there is no need of creating an ad-hoc schema, as the ontology itself can be used for this
purpose. This solution is called Local as View. In the ACGT Semantic Mediation Layer a
Local as View based approach has been selected. This means that the Master Ontology will
act as the representation of all the possible queries for the different integrated repositories.

 The main reason for the selection of this approach is the nature of the domain of post-
genomic clinical trials. This is a constantly changing domain, since clinical trials are a
research discipline. Data in these trials can change throughout the time, so there is a need of
a flexible database integration approach. Another reason for the selection of Local as View is
the Master Ontology characteristics. The ontology has been created to be friendly for end
users. This means that, for a clinician, it is easier to deal with the Master Ontology than with
a database schema like model. This proximity will enhance the construction of friendly
ontology interface tools for different purposes—e.g. query construction tool.

 The following sections explain how the ontology is used as global schema. Section
3.2.1 explains the structure of the ontology and where the schema is contained exactly.
Section XX2 is devoted to query formulation using paths from the ontology, and their relation
with natural language. Section 3.2.2 explains the main features of the query language used
by the mediator, and its relation with the global schema.

3.2.1. Master Ontology structure, RDFS as query Schema

The MO consists of a hierarchy of classes, each of them described by properties and
connected to other classes by relations. These classes and relations can be restricted
through a variety of assertions. Such restrictions allow external applications to perform
inference over the ontology content. For example, two classes may be stated as being
disjoint from each other, meaning that no individual can be an instance of both classes
simultaneously. OWL-DL [4], the chosen language for representing the MO—specifies the

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

types of relations and restrictions that the MO can include. This language is an extension of
RDFS, used for representing schemas of RDF databases.

 While proper inference may be very useful in specific areas, it is of no use for the SM.
The MO is utilized by the SM as a global schema for representing a virtual RDF repository.
For that reason, only the RDF Schema content of the MO is useful when acting as global
schema. OWL-DL specific information is ignored for this task—all properties defined in OWL-
DL language such as ObjectProperty or FunctionalProperty are considered as plain RDF
properties. There is one exception: range restrictions given by the tag owl:allValuesFrom are
still considered. This decision was taken based on the following criteria: “Information
contained in the MO regarding valid paths should always be considered when using it as a
global schema”. An allValuesFrom restriction can turn valid paths into incorrect ones,
impacting the range of queries that the global schema should offer. Figure 14 depicts to
what extent OWL-DL characteristics of the MO are considered when using it as a global
schema by the SM.

OWL-DL

RDFS
+

owl properties
+

owl:allValuesFromRDFS

Figure 14: The green area represents the characteristics of the MO considered by the SM

when using it as global schema of the virtual RDF repository

Future work may include the use of more features of the MO in the SM. Inference on the
ontology content may be applied by an advanced query interface in order to assist users in
the construction of proper queries.

3.2.2. Paths vs. Natural Language

Paths in the MO are used to express queries against the virtual RDF repository. A path is
comprised by an ordered list of alternating classes—representing entities in the real world—
and relations linking those classes—representing how those entities relate to each other. The
results of a given query are made up of instantiations of the nodes contained in the path of
the query. This query paradigm is somewhat closer to natural language than a standard
relational query paradigm. In a relational query language, relations are specified by means of
comparing different key fields, which may not have a direct meaning in reality. On the other
hand, a path itself specifies which entities are to be queried and how they must relate to each
other. Such relations are given by the RDF relations present in the path. These relations do
express a real world relation of entities, and are therefore much closer to human
understanding of reality. For example, in order to extract which patients are treated in a

18/04/2008 Page 29

D7.3 - Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

specific hospital named Hospital_A as part of a clinical trial, a corresponding SPARQL query
for the SM would be the one shown in Figure 15.

PREFIX h: <http://www.ifomis.org/acgt/1.0/>
SELECT ?patient
WHERE
 ?patient h:undergoes ?clTrial
 ?clTrial h:isFacilitatedBy ?hospital
 ?hospital h:hasIdentifier ?hID
 ?hID h:hasStringValue “Hospital_A”

Figure 15: SPARQL query for extracting the patients being treated in a specific hospital

Following the WHERE clause, the path that this query expresses can be easily visualized:
Patient → undergoes → ClinicalTrial → isFacilitatedBy → Hospital → hasIdentifier →
HospitalIdentifier → hasStringValue → “Hospital_A”. This path can be expressed in natural
language by the following sentence: “Patients that undergo clinical trials facilitated by
hospitals that have identifiers whose string values match Hospital_A”. Although long, the
sentence can be easily understood by a non-technical user.

 An equivalent relational query would involve relating many indexes from different
tables. These indexes would not necessarily correspond to an entity in reality, thus such
query would not be so close to natural language.

 Future work might involve developing an advanced GUI that provides, to some extent,
a natural query language interface. A dedicated module would be in charge of producing
equivalent SPARQL queries that can be sent to the SM.

3.2.3. Query Language

As has been mentioned before, the SM provides access to a virtual RDF repository which
represents the integration of all underlying RDF databases. In order to allow querying RDF
data, it is necessary to support an RDF query language. The chosen language is SPARQL
[fixme]. This language is a W3C recommendation since January 15th, 2008.

 Creating a SPARQL query involves specifying one or more paths in an RDF schema
(in this case the MO), and relating or restricting some of its elements. A path is composed by
a set of triples. A triple consists in two classes (or instances of classes) and a relation
between them.

 In order to avoid several complexity-related problems of the SM, some restrictions have
been imposed over the query language. These do not constrain the types of queries that the
user can formulate, but force her/him to follow a style of query formulation that significantly
ease the design of the SM. These restrictions are described below:

• Reduction of space of queries: this is not exactly a way to reduce the design
complexity of the SM, but rather to increase its efficiency by decreasing the
computational complexity of the semantic translation. The idea is to omit elements of

Page 30 18/04/2008

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

18/04/2008 Page 31

the MO which would not produce any results if queried. Following this approach, only
mapped classes of the MO and their superclasses are presented in the global
schema. In addition to this restriction, it is recommended to avoid as much as
possible the use of highly generic classes in queries—the ones in the top of the
hierarchy of the MO. Including these in a query may involve elevated response times
due to very large searches in the existing mappings.

• Language restrictions: several restrictions on SPARQL have been imposed in order
to reduce the complexity of the SM.

o Variable constraints: The main restriction is about where the constraints must
be placed in a query. In order to avoid ambiguities, all constraints must be
included in the FILTER section of the query. This is only a syntax restriction
does not lead to any loss of expressivity in the query language.

o Path linking: linking different paths in a query is restricted to the WHERE
section. This is due to the same reason as the variable constraint restriction.

These restrictions/recommendations will be formally specified in the document describing the
complete approach (D7.4 – Consolidated approach for semantic mediation and integration of
heterogeneous data sources for clinical trials).

3.3. Master Ontology in the Clinical Trial Building Procedure

The ultimate goal of ontology-based information management in eHealth is the direct
integration of data created in different environments (e.g. clinical data, DICOM data, research
data, laboratory data, etc.). The collection and storage of such data is most important for
clinical trials. Even today in many multicentre trials paper-based CRFs are still used. From
the participating hospitals CRFs are sent to a central data facility, where the data is entered
into a trial database. This is very time consuming and error-prone.

Preferable systems used today are Web-based remote data entry systems where the
data are captured at the participating site and transferred electronically to the trial central
data facility. Most of these management systems allow design of the trial and especially
creation of eCRFs (electronic CRFs) by trial leaders without any informatics skills. The user
is free in defining the items for the CRFs and the names for the database tables and
attributes that are set up automatically from these definitions. The biggest disadvantage of
these management systems is the lack of comprehensive and standardized metadata. This
limits interoperability which means that similar data in different clinical trials cannot be
compared. A sensible analysis of the collected data for extended research across different
trials will only be possible if an Ontology is integrated in such tools. It is of utmost importance
that ACGT will do so. To explore this approach, an Ontology-based Trial Management
System for ACGT (ObTiMA, see D2.2) is under development that enables chairmen of
clinical trials to set up a patient data management system with comprehensive metadata in
terms of the ACGT-Master Ontology (MO). This will allow the seamless integration of data
collected into the ACGT mediator architecture.

Clinicians and other end-user are not used to handling ontologies and they should not
be aware of the fact that an Ontology is used in ACGT. They cannot be bothered with
theoretical aspects and design principles of databases or ontological metadata. Therefore, in
ObTiMA the trial chairman will define both by creating the CRFs for his trials. With the help of

D7.3 - Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

Page 32 18/04/2008

the Trial Builder, the trial chairman can define the questions on the CRFs, the order in which
the questions will appear and constraints on the possible answers. In order to create a
question on the CRF he has to describe it semantically by choosing a description from the
ACGT MO. By using the Trial builder all items that are needed by the end-user will be
automatically connected to the corresponding item in the Ontology if available. If not, a new
item in the ontology will be created. This will maintain the Ontology and will only add such
items to the Ontology that are really relevant for the trial. Such a process is described and
specified in more detail as a submission system for the maintenance of the MO.

For example, the clinician may want to collect information on the patient’s gender. He
can see that there is relation between the classes ‘Patient’ and ‘Gender’. To create the
referring question the clinician chooses the class ‘Gender’. The needed attributes to create
the possible answers on the CRF can be determined automatically. On the CRF the label of
the question appears as the name of the class ‘Gender’. The allowed values are set
automatically to “male,” “female,” and “ambiguous gender” since the class ‘Gender’ is defined
as an enumeration in the ontology containing these values. Thus, a multiple choice question
is automatically created on the CRF. This procedure automatically implements the semantics
of the ontology in the CRFs. We expect that this description is a path from the ontology
starting at the class ‘Patient’ since this class normally is the focal point of CRFs. Starting
from the class ‘Patient’, for example, the clinician sees the possible classes and relations
from the ACGT-MO that are sensible to connect with ‘Patient’, e.g. that the patient can have
diseases, a blood pressure, a birth date, etc. Now, he has the opportunity either to select one
of the classes to create a question on the CRF or to explore them further and show their
subclasses or relations to assemble more complex questions. This is called the clinical view
of the ACGT-MO (as shown in figure 16).

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

Patient

Figure 16: Clinical view of the ACGT-MO.

18/04/2008 Page 33

D7.3 - Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

Page 34 18/04/2008

The clinician will also have the ability to enter every question/item on a CRF via an entry
field. This entry field is directly connected to the MO and is in fact a search field of the MO.
The MO will be searched by this item and the corresponding Thesaurus. Such a Thesaurus
is needed and implemented in the system. Controlled vocabularies are available from the
Enterprise Vocabulary Services (EVS). Having found the item in the MO a clinical view of the
MO is presented to the clinician depicting the item and the dependencies in a tree diagram.
This allows the clinician to validate the correctness of the item and to copy not only the
searched item to the CRF but a whole branch or a part of it. In both cases (using the clinical
view or using the entry field for search) the clinician is not aware that he is actually dealing
with the MO. Two possibilities may occur in case a clinician wants to add a new item to a
CRF in the above described way.

1. The item (or a synonym of the item (found in an implemented Thesaurus)) is found in
the MO:

No further steps are necessary. By copying the item (or even a whole branch) to
the CRF the link to the MO is automatically created. The end user is only
confronted with the clinical view of the MO.

2. The item or a synonym of the item is not found in the MO:

In this case the clinician is able to add this item to a selected branch of the MO.
Entering new classes to the MO is part of the submission system of the ACGT-
MO. A new window will open and the user will get the clinical view of the
Ontology. He can add the item to any branch he chooses as the correct place of
the working version of the Master Ontology. This is done by walking through the
clinical view of the MO and labelling the parent branch of the MO. By labelling, the
item will be automatically added to the MO. The same can be done for a whole
ontology/annotation database. This results in an extended MO. A notification of
the change will be automatically sent by email to the curators. The curators will
discuss new entries either change them or validate them. If inconsistencies exist,
tools have to be developed to clear the inconsistencies with the help of the curator
of the MO. In every case the link to the item on the CRF has to be maintained. At
regular intervals the draft version of the MO will be updated to the standard MO.
The next time a clinician needs the same item in a new CRF, he will only run
through point one of this section.

It is of utmost importance to realize that by using this process extending the MO will not
become a bottleneck for new clinico-genomic trials within ACGT, nor for the flow of ACGT
processes in general. It is no longer necessary to wait for an extended version of the MO
including a complete set of all items for a new trial. One can start with creating new CRFs for
a trial regardless of the content of the MO. By using the trial builder in the above described
way, the MO will automatically be extended, and only those items will be added, that are
needed and used in clinico-genomic trials. The more clinico-genomic trials will use the trial
builder via the ACGT platform, the faster the MO will grow.

The integration of existing data sources via the mediator is the general policy of the
ACGT project. Yet the ultimate goal of ontology-based information management in eHealth
must be the direct integration of data created in different environments (e.g. clinical research,
laboratory data, etc.). ACGT aims to provide solutions that demonstrate the possibility to
already create data in an ontology-governed way.

http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocabulary

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

18/04/2008 Page 35

To explore this approach, an Ontology-based Trial Management System for ACGT
(ObTiMA) is under development that enables those who undertake clinical trials to set up
patient data management systems with comprehensive metadata in terms of the ACGT-MO.
This will allow seamless integration of data collected in these systems into the ACGT
mediator architecture.

The main components of ObTiMA are the Trial Builder and the patient data
management system. The Trial Builder allows a trial chairman to define the master protocol,
the Case Report Forms (CRFs) and the treatment plan for the trial, in a way that is both
semantically compliant with the ACGT-MO and user-friendly. From these definitions, the
patient data management system that allows the collection of relevant data for individual
patients can be set up automatically. This collected data is stored in trial databases whose
comprehensive metadata has been rendered in terms of the ACGT-MO. The data can thus
be seamlessly integrated through OGSA-DAI web services into the mediator architecture.
Trial databases with comprehensive ontological metadata and the OGSA-DAI services are
both automatically set up from the definitions made by the trial chairman in the Trial Builder.

The process of setting up a clinical trial requires tools to overcome the gap between
clinical practice and biomedical reality representation. Even if an ontology provides natural
language definitions for its entities and relationships (is, in other words, ‘human
understandable’) they are still defined in a way that is not based on practical or clinical
perceptions of reality. In order to meet this desideratum, the Trial Builder provides an
application specific view on the ontology. This view is meant to assist clinicians in clinical
practice, as well as when tackling workflows typical of clinical trial management.

So far a first prototype of the Trial Builder has been developed that shows in principle
how the procedure of CRF creation from the ontology can look like. In the following we will
describe the functionality as well as the limitations of the prototype. The procedure
conducted in the Trial Builder implements the semantics of the ontology in the CRFs in an
automatic fashion. The “ontology description” for one item on a CRF is a path from the
ontology starting at the class Patient, as this is normally the focal point of CRFs. Starting
from the class Patient, for example, the clinician grasps the relevant ACGT-MO classes and
relations that connect with Patient, e.g that the patient can have diseases, a blood pressure,
a birth date, etc. In figure 17 the ontology view of the Trial Builder that allows the creation of
an item from the ontology is shown. The currently selected ontology path is depicted on the
top. It initially consists only of the class Patient. Below that the classes and relations that
connect with patient are shown. Here the clinician has the opportunity to either select one of
the classes in order to create a question on the CRF, or to explore them further and show
their subclasses (by pressing the button “Subclasses” behind the selected class) or relations
(button “Relations”) and assemble more complex questions. Since we do not want to restrict
the questions on the CRFs by the structure of the ontology, different possibilities to create
questions from the ontology classes are implemented in the Trial Builder.

In the current prototype the user is able to create three types of items with respect to
the ontology description, that are items of type “Value”, “Exist” and “Count”. For each of them
a button appears in the user interface behind the classes.

D7.3 - Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

Figure 17: Trial Builder View to create an item from the ontology

Figure 18: Trial Builder View after creating a value-item from the class gender

“Value-Items” are items that query “values” of attributes from the ontology. Examples are
birthdate, gender or weight of the patient’s tumor.

For example the clinician wants to collect information on the patient’s gender on the
CRF. He can see that there is a relation between the classes “Patient” and “Gender.” In order
to create the corresponding question, the clinician chooses the class Gender by pressing the
button “Value” behind this class. The attributes required in order to create the possible
answers on the CRF can be determined automatically. On the CRF the label of the question
appears as the name of the class (Gender). The allowed values are set automatically to
Male, Female, and AmbiguousGender since the class Gender is defined as an enumeration
in the ontology containing these values. A multiple choice question has hence been
automatically created on the CRF (s. figure 18). The attributes that are automatically
determined from the chosen ontology path can be changed in each case manually by the

Page 36 18/04/2008

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

clinical trial chairman. When the clinician e.g. prefers to have the label “ambiguous gender”
instead of “AmbiguousGender” he can change that.

Figure 19: Trial Builder View after pressing the button “Subclasses” behind the class
Disease

Figure 20: Trial Builder View after creating an exist item from the class InfectiousDisease

“Exist-Items” are items that query if an instance for the selected class exists for the patient.
E.g. if the patient has an infectious disease or if the patient has a tumor. To create an item
that queries if the patient has an infectious disease the clinician has to press the button
“Subclasses” behind the Class “Disease”. The effect is that the subclasses
“InfectiousDisease” and “NonInfectiousDisease” are shown in the following view (s. figure
19). The clinician can create the question by pressing the button “Exist” behind the class
18/04/2008 Page 37

D7.3 - Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

“InfectiousDisease”. The item is automatically created. The label of the item is assembled
from “Has” and the name of the class. This is only a suggestion that is not always correct and
therefore can be changed by the clinician. The allowed values are automatically set to “yes”
and “no” (s. figure 20).

“Count-Items” are items that query how many instances for a selected class exist for
the patient. For example the question how many siblings the patient has. For creating the
Item “Count of siblings” the clinician has to press the button “Count” behind the class Sibling.
On the CRF the item is automatically created. The suggestion for the label is assembled of
“How many” and the class name plus an “s”. The data type is set to “number” (s. figure 21).

Figure 21: Example CRF created with the Trial Builder from the ontology

The attributes for setting up the appropriate database for storing the data are determined
automatically from the selected ontology paths and the changes the trial chairman applies to
them, e.g. the question itself, data type of the answer and optionally possible data values,
range constraints and measurement units. The complete ontology annotation is stored in one
XML –file for each CRF in the databases for the patient management system. From these
files the mapping data for the mediator can be created automatically depending on what
information the mediator can “digest” in order to keep the queries feasible.

The described process leads to the direct integration of the data collected in the
clinical trial at hand into the semantics of the ontology. Using the ontology will not be time
consuming for the clinician, and it will be a useful tool aiding his work in clinical trial
management. Through the integration of the ACGT-MO into ObTiMA, data sharing between
clinical trials becomes possible in an easy way. This is necessary to leverage the collected
data for further research like cross-trial analysis.

The described prototype still has some drawbacks and limitations. Currently it is not
possible to create all types of items that are needed on a CRF. Items from more complex
descriptions of ontology classes can not be created. It cannot be indicated that two items
refer to the same instance. E.g. when creating an item that queries the length of a tumor and
one that queries the weight of a tumor it can not be indicated if the tumor in both items is the
same or if the items refer to different tumors.

Page 38 18/04/2008

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

18/04/2008 Page 39

Between two instances in different items no relations can be applied. E.g. when one
creates an item that queries the radiation dose for a patient and one that queries the weight
of the tumor it is not possible to indicate that the radiation of the one item is applied to the
tumor from the other item.

At the moment in each step only one item can be created. It would be very useful, if
more than one item could be create in one step. E.g. when selecting the class tumor it could
be possible to create items for each of the attributes of this tumor. The usability of the
graphical user interfaces has to be improved in order that they are more understandable by
clinicians. We are currently redesigning the user interfaces addressing these aspects.

D7.3 - Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

Page 40 18/04/2008

4. Conclusions and Future Work
The present document is a report of the software tools implementation made for semantic
mediation in WP7. These tools are an evolution of the first version of the semantic mediation
layer, and implement the changes and improvements that were decided upon after the first
implementation experience. These changes and improvements are:

• Change query language from RDQL to SPARQL

• Use of an enhanced mapping format

• Development of a simple and fast ontology representation model

• Provide access to a simplified schema of the integrated repository

• Development of a mapping API and tool

• Development of tools to deal with instance level heterogeneities in queries and
databases

• Ontology Browsing

It has been decided to separate these new features in different tools. The first version of the
Semantic Mediator followed a monolithic approach. From our point of view, it is easier to
maintain the software if it is composed by a set of collaborating components. Furthermore,
these components can be reused in other environments—e.g. OntoDataClean tool is used as
well to make data preprocessing in Data Mining.

In the next phase of the project, we plan to build a friendly, intuitive end-user interface aiding
users to construct queries for the mediator. This querying interface will be based in web
technologies, and will be made available through the ACGT Portal.

Another important task is improving the performance of the mediation approach. There still
exist issues related to the Local as View approach. The first step towards this goal has
already been taken, with the constraining of the integrated repository schema. What we plan
for future enhancement is to optimize the produced views.

Finally, we have identified that producing the mappings is a bottleneck within database
integration process. We plan to speed up the mapping process by designing and
implementing a tool that aid users in building the mappings.

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

18/04/2008 Page 41

Glossary

Term Meaning

API Application Programming Interface

BFO Basic Formal Ontology

CRF Clinical Report Form

DTD Document Type Definition

EVS Enterprise Vocabulary Service

FMA Foundational Model of Anatomy

GUI Graphical User Interface

KDD Knowledge Discovery in Databases

KR Knowledge Representation

LAV Local as View

NCIT National Cancer Institute Thesaurus

OWL Web Ontology Language

RDF Resource Description Framework

RDFS RDF Schema

SVN Subversion

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

XML eXtensible Markup Language

GWT Google web Toolkit

D7.3 - Demonstration and Report of the Ontology Mediation Services ACGT FP6-026996

Page 42 18/04/2008

References

[1] Prud’hommeaux E, Seaborne A. SPARQL Query Language for RDF. W3C
Candidate Recommendation 2007. Available at: http://www.w3.org/TR/rdf-sparql-
query/

[2] SPARQL Query Results XML Format. Available at: http://www.w3.org/TR/rdf-
sparql-XMLres/

[3] The Java programming language. Available at: http://java.sun.com/

[4] Web Ontology Language (OWL). Available at: http://www.w3.org/2004/OWL/

[5] Antonioletti M, et. Al. The design and implementation of grid database services in
OGSA-DAI. In: Concurrency and Computation: Practice and Experience 2005; 17(2-
4):357-76.

[6] RDF Vocabulary Description Language 1.0: RDF Schema. Available at:
http://www.w3.org/TR/rdf-schema/

 [7] Trail: Creating a GUI with JFC/Swing. Available at:

http://java.sun.com/docs/books/tutorial/uiswing/

[8] Jena – A Semantic Web Framework for Java. Available at:
http://jena.sourceforge.net/

[9] Guarino, N. and Giaretta, P., Ontologies and Knowledge Bases: Towards a
Terminological Clarification. In N. Mars (ed.) Towards Very Large Knowledge Bases:
Knowledge Building and Knowledge Sharing 1995. IOS Press, Amsterdam: 25-32

[10] Guarino, N. and Poli, R., The Role of Formal Ontology in the Information
Technology (editorial). International Journal of Human and Machines Studies (special
issue), 43(5/6): 623-624

[11] Guarino, N., Formal Ontology, Conceptual Analysis and Knowledge
Representation. International Journal of Human and Computer Studies, 43(5/6): 625-
640

[12] Uschold, M. and Gruninger, M., Ontologies: Principles, Methods and
Applications. The Knowledge Engineering Review, 11(2): 93-136

[13] ACGT, “User Requirements for an Ontology Based Clinical Data Management
System and for the Trial Builder,” Project Number: FP6-2005-IST-026996,
Deliverable ID: D 2.2 (draft), 2007

http://www.w3.org/2004/OWL/
http://www.w3.org/TR/rdf-schema/
http://java.sun.com/docs/books/tutorial/uiswing/
http://jena.sourceforge.net/

ACGT FP6-026996 D7.3 - Demonstration and Report of the Ontology Mediation Services

18/04/2008 Page 43

[14] Ontology for Biomedical Investigations. Available at:
http://obi.sourceforge.net/index.php

[15] Grenon, P., Smith, B., Goldberg, L., “Biodynamic Ontology: Applying BFO in the
Biomedical Domain,” in: Ontologies in Medicine, D. M. Pisanelli, Ed., Amsterdam:
IOS Press, 2004, pp. 20-38

[16] Ceusters, W., Smith, B., Kumar, A., Dhaen, C., “Mistakes in Medical Ontologies:
Where Do They Come From and How Can They Be Detected?,” in: Pisanelli DM
(ed.): Ontologies in Medicine: Proceedings of the Workshop on Medical Ontologies,
Rome, October 2003. IOS Press, Amsterdam, 2003

[17] Levy AY, Rajaraman A, Ordille JJ. Querying heterogeneous information sources
using source descriptions. In Proceedings of the Twenty-second Internacional
Conference on Very Large Databases (VLDB’96), Mumbai (Bombai), India,
September 1996; 251-62.

[18] Golbereich, C. et. al., Foundational Model of Anatomy in OWL: experience and
perspectives, Journal of Web Semantics, Web Semantics: Science, Services and
Agents on the World Wide Web, Volume 4, Issue 3, Pages 181-195

[19] Noy, N. et. al, Pushing the envelope: challenges in a frame-based representation
of human anatomy. Data & Knowledge Engineering, Volume 48, Issue 3, pp. 335-
359

[20] M. Uschold, M. Gruninger, “Ontologies: Principles, methods and applications,”
Knowledge Engineering Review , vol 11(2), pp. 93-155, 1996.

[21] G. Klyne, J.J. Carroll, “Resource Description Framework (RDF): Concepts and
Abstract Syntax,” W3C Recommendation, (2004), Available at
http://www.w3.org/TR/rdf- concepts/.

http://obi.sourceforge.net/index.php

	1. Introduction
	1.1. The ACGT Semantic Mediation Layer
	1.2. MO: Short Presentation, Motivation, Challenges and Objectives
	1.3. Structure of this document

	2. Semantic Mediation Tools
	2.1. The ACGT Semantic Mediator
	2.1.1. Services and Interface

	2.2. Mapping Tool
	2.2.1. Mapping Format
	2.2.2. The ACGT Mapping API
	2.2.2.1. Interface and Services
	2.2.3. The ACGT Mapping GUI

	2.3. Ontology Representation Model: OWLBasicModel
	2.3.1. Adopted features from OWL language
	2.3.2. Services and Interface

	2.4. Instance Level Heterogeneities
	2.4.1. OntoDataClean
	2.4.1.1. Transformation Methods
	2.4.2. OntoQueryClean
	2.4.2.1. Transformation Methods

	2.5. The Master Ontology Viewer

	3. The ACGT Master Ontology on Cancer
	3.1. The Mapping Process
	3.1.1. Mapping schema entities
	3.1.2. Identifier construction
	3.1.3. Terminology matching

	3.2. Master Ontology and Global Schema: Query Formulation
	3.2.1. Master Ontology structure, RDFS as query Schema
	3.2.2. Paths vs. Natural Language
	3.2.3. Query Language

	3.3. Master Ontology in the Clinical Trial Building Procedure

	4. Conclusions and Future Work

