
ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 1 of 51

Guidelines and recommendations for
integrating clinical data sources in the

ACGT platform

Project Number: FP6-2005-IST-026996

Deliverable id: D 5.7

Deliverable name: Guidelines and recommendations for integrating clinical data
sources in the ACGT platform

Submission Date: 11/11/2009

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 2 of 51

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: ACGT

Project Full Name: Advancing Clinico-Genomic Clinical Trials on Cancer:
Open Grid Services for improving Medical Knowledge
Discovery

Document id: D 5.7

Document name: Guidelines and recommendations for integrating clinical
data sources in the ACGT platform

Document type (PU, INT,
RE)

PU

Version: 0.40

Submission date: 11/11/2009

Editor:
Organisation:
Email:

Erwin Bonsma
Philips Research
erwin.bonsma@philips.com

Document type PU = public, INT = internal, RE = restricted

ABSTRACT:

This deliverable provides guidelines and recommendations for integrating clinical data
sources into the ACGT platform. It considers two aspects. First it reviews available
Open Source database solutions for storing the different types of clinical trial data after
anonymisation. Next it describes how this data can be made accessible inside the
ACGT platform by way of the data access services. Detailed instructions are provided
for each data access service. The report closes with a discussion of our experiences so
far, which illustrates what is possible but also describes the open issues.

KEYWORD LIST: clinical trials, databases, data integration, data access services

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 3 of 51

MODIFICATION CONTROL

Version Date Status Author

0.10 18/06/2009 Draft E. Bonsma

0.20 25/06/2009 Draft – For internal review E. Bonsma

0.30 10/07/2009 Draft – Updated after review E. Bonsma

0.4 11/11/2009 Final – For review J. van Leeuwen

List of Contributors

− Erwin Bonsma, Philips Research

− Jasper van Leeuwen, Philips Research

− Anca Bucur, Philips Research

− Mattias Ohlson, Lund University

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 4 of 51

Contents

1 INTRODUCTION ... 5
1.1 SCOPE .. 5
1.2 STRUCTURE... 5

2 DATABASES ... 6
2.1 RELATIONAL DATA.. 6

2.1.1 Clinical trial management systems .. 6
2.2 DICOM IMAGE DATA .. 7
2.3 MICROARRAY DATA .. 8

3 DATA ACCESS SERVICES IN ACGT .. 11
3.1 FUNCTIONAL REQUIREMENTS.. 11
3.2 FUNCTIONALITY ... 11
3.3 SUPPORTED DATA SOURCES... 12

4 INTEGRATING NEW DATA SOURCES ... 13
4.1 DATA ACCESS SERVICE FOR RELATIONAL DATABASES .. 14

4.1.1 Functionality... 14
4.1.2 Creating the service... 14

4.2 DATA ACCESS SERVICE FOR DICOM IMAGE DATA .. 22
4.2.1 Functionality... 22
4.2.2 Creating the service... 22

4.3 DATA ACCESS SERVICE FOR MICROARRAY DATA .. 23
4.3.1 Functionality... 24
4.3.2 Creating the service... 24

5 DISCUSSION .. 26
5.1 DATABASES ... 26

5.1.1 Relational databases ... 26
5.1.2 DICOM databases ... 26
5.1.3 BASE database ... 27

5.2 DATA ACCESS SERVICES .. 27
5.2.1 Data access service for relational databases.. 27
5.2.2 Data access service for DICOM image data ... 34
5.2.3 Data access service for microarray data ... 34
5.2.4 Dynamic deployment of data access services .. 34
5.2.5 Open issues... 35

6 REFERENCES .. 37
Appendix 1 - Abbreviations and acronyms.. 40
Appendix 2A – Initial example D2RQ mapping ... 42
Appendix 2B – Final example D2RQ Mapping.. 45
Appendix 3A – SQL query produced for initial Obtima SPARQL query.. 48
Appendix 3B - SQL query produced for refined Obtima SPARQL query...................................... 50

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 5 of 51

1 Introduction

One of the main challenges in carrying out post-genomic research is to efficiently
manage and retrieve all relevant data. Carrying out a post-genomic clinical trial
involves the collection and storage of a wide variety of data, including: clinical data
collected on Case Report Forms (e.g. symptoms, histology, administered treatment,
treatment response), imaging data (e.g. X-Ray, CT, MR, Ultrasound), genomic data
(e.g. microarray data), pathology data and other lab data. Next to that there are many
public biomedical databases that are relevant. These store information about gene
and protein sequences, pathways, genomic variation, microarray experiments,
medical literature, tumour antigens, protein domains, metabolites, etc. Biomedical
researchers currently have to use many different tools and web interfaces to find and
extract the data that is relevant to their clinical research. Providing seamless and
integrated access to clinical, genetic and image databases would therefore greatly
facilitate post-genomic research.

In order to provide seamless data access, syntactic and semantic integration needs
to take place. Syntactic data integration handles differences in the formats and
mechanisms of data access, whereas semantic integration deals with the meaning of
information; it must handle the fact that information can be represented in different
ways, using different terms and identifiers.

1.1 Scope
The focus of this report is, first of all, on data retrieval. It is assumed that clinical trials
are running and that a data entry solution is in place. In order to analyse clinical trial
data using the ACGT tools, the data needs to be integrated into the ACGT platform.
This involves exporting the data from the hospital database, anonymising it, and
storing it in a separate database (typically hosted outside the hospital firewall). This
report examines what (Open Source) database solutions are available for storing the
anonymized clinical trial data.

The scope of this report is further restricted towards resolving syntactic differences,
which is the responsibility of the data access services. Semantic integration in ACGT
is the carried out by the semantic mediator with help of the ACGT Master Ontology,
which are both being developed within WP7. Semantic integration falls outside the
scope of this report. It will only be briefly touched upon where relevant.

1.2 Structure
The remainder of this document is structured as follows. Chapter 2 reviews available
Open Source database management systems that can be used for storing clinical
trial data, and subsequently gives guidelines and recommendations. Chapter 3
introduces the data access services that have been developed within ACGT, which
can be used to integrate databases containing clinical trial data into the ACGT
platform. Chapter 4 describes in detail how new services can be created for each
type of database. Chapter 5 concludes by summarising the current state of data
access in ACGT. It gives an overview of what has been achieved, but also discusses
the open issues.

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 6 of 51

2 Databases

This chapter reviews available Open Source databases for storing different types of
clinical trial data. Section 2.1 discusses database management systems for storing
relational data. Section 2.2 reviews storage solutions for medical image data. Section
2.3 discusses the Open Source systems for storing microarray data.

2.1 Relational data
The integration of relational databases into the ACGT platform is very important for
two reasons. Firstly, important clinical trial data is stored in these databases, for
example data collected using CRF forms. Secondly, relational databases can also be
used to make data available that may not yet be stored in a relational database, but
that can be mapped to the relational data model. This holds for data collected in files
of various formats, such as Excel files, plain text files (in CSV format for example),
XML files, etc.

Suitable Open Source Relational DataBase Management Systems (RDBMS) exist for
hosting relational data. The two main ones are PostgreSQL [20] and mySQL [18],
which both have been successfully used within ACGT. There have not been attempts
to integrate other RDBMS, as there simply has been no need. However, as long as
there is a suitable JDBC database driver available, this should be straightforward.
The choice of RDBMS depends on various factors, including the following:

• Is there a RDBMS installed already that can be used?

• What type of RDBMS (if any) is used to collect the trial-data? This may affect the
ease by which data can be imported. Importing the data is typically easier when
the exported data comes from the same type of RDBMS (see also Section 5.1.1).

• Are there any non-functional requirements that are especially important?
Performance, reliability and scalability are all potential features on which to base
the choice of RDBMS.

• What are the preferences of the system administrator responsible for managing
the database?

The choice of RDBMS therefore needs to be made on a case-by-case basis. It may
require installation of the RDBMS and the steps that subsequently need to be taken
to import the data obviously depend on the RDBMS that is chosen. Instructions on
how to install the RDBMS or how to import data are not documented here, as they
are fully described in the documentation of the RDBMS itself, e.g. [21, 19]. Once the
anonymised data has been successfully imported in a relational database,
subsequent configuration of the data access service is identical for all RDBMS
systems, except for the database driver that will have to be used.

2.1.1 Clinical trial management systems
As mentioned in Section 1.1 the focus of this report is on storing and providing
access to anonymised clinical trial data that has already been collected. Data-entry
falls outside the scope of this report. Nevertheless, given their importance within

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 7 of 51

clinical trials, it is worth briefly discussing clinical data management systems that
store data collected on CRFs.

As reported in D5.1 [1], within the TOP trial Oracle Clinical is used for storing the
clinical data recorded on CRF forms. Oracle Clinical [39] is the most popular
commercial CTMS. In contrast, the SIOP-trial uses a home-grown, trial-specific
CTMS, which uses a Postgres database for storage.

OpenClinica [40] is currently the only generic Open Source CRF system for storing
clinical trial data. It is being developed by Akaza Research, who are providing the
system for free and earning money through additional services, such as installation,
hosting, maintenance and validation. Over the past four years OpenClinica has
gathered a community of 6000 registered users with 16.000 downloads of the
software. At this moment it is used in actual clinical trials at 200 locations worldwide.
This is more than double compared to the year before. We have experimented with
the use of OpenClinica and found installation to be quick and straightforward.
Creation of new CRFs is done using a custom Microsoft Excel template. Learning to
create new CRF takes a bit of time, but the fact that configuration of a CRF is stored
in a single file has the advantage that it can be easily shared and reused. Whether
the performance and functionality is satisfactory when used in practice we have yet
to evaluate, but its wide adoption would suggest this is the case.

Within ACGT work is being carried out on an ontology-based CTMS, called Obtima
[3]. It has an ontology at the core of the data-entry process. All fields on the CRF
forms are annotated with (paths of) terms from the ontology that concisely and
unambigously describe the data in a manner suitable for machine-processing. This
greatly facilitates integration and comparison of data collected across different clinical
trials. However, at the moment Obtima is still less mature than OpenClinica and
commonly used commercially available CTMS systems.

All the different CTMS provide their own front-ends to support entry of clinical trial
data. The schemas they use for storing the data also differ, but what they have in
common is that they all store the data in a relational database. So in order to
integrate the data into the ACGT platform, the data can be exported and, after
anonymisation, subsequently imported into a generic RDBMS. In other words, for
storing clinical trial data for the purpose of retrieval and analysis in ACGT, a standard
relational database is sufficient.

2.2 DICOM image data
Although there are a significant number of Open Source DICOM image viewers, the
number of Open Source DICOM servers is much smaller. Furthermore, compared to
commercial PACS solutions, their capabilities are limited. There are only a few
suitable free PACS systems that we are aware of.

Conquest [12] is a public domain DICOM server. We have been using it within ACGT
to host DICOM images and to test out our data access services. Some of its benefits
are that it is easy to install and use, and that it supports DICOM Query/Retrieve (the
generic mechanism used by DICOM clients to query and retrieve images). It is still
actively being developed (last release April 2009). There is a Windows version and a
Linux version. The Linux version that we are using crashes periodically. Although it
can be used for testing, it does not offer reliable storage and access to image data.
Windows is their main target platform, and we have found the Windows version to be

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 8 of 51

stable. It successfully coped with high load in the performance experiments that we
have carried out [2]. These experiments, however, were designed to test the data
access services, and not the underlying DICOM server. We also have not tested
scalability w.r.t. the number of images stored; the number of images that we have
been hosting using the Conquest DICOM server has been relativelly small. Whether
or not the use of Conquest is appropriate for a particular use case will require further
investigation, and will also need to be decided on a case-by-case basis.

Another free PACS server is the OpenSourcePACS system [15], which is available
under a LGPL licence. We have, however, no experience with using it. The main
reason is that it lacks DICOM Query/Retrieve support. Although the DICOM protocol
is used for storing images, subsequent browsing and viewing of these images is
done by way of a dedicated client, using a proprietary format. Its lack of a standard
interface for accessing images (i.e. by way of DICOM) meant it has been unsuitable
for use within ACGT. Although support for DICOM Query/Retrieve is mentioned on
their roadmap, the last release of the software has been more than two years ago
(April 2007) and there are no signs of active development, so it is questionable
whether it will eventually appear.

The National Biomedical Imaging Archive (NBIA)1 is a DICOM image storage solution
provided by caBIG [17]. It provides web-based access to de-identified DICOM
images, markups, and annotations. Although it stores DICOM images, it does not
use the DICOM protocol for importing, querying or viewing images. Images are
imported using a dedicated FieldCenter tool, which also takes care of anonymisation.
In other words, it cannot directly accept images from imaging modalities or other
DICOM servers. Querying and retrieval of images can only be done through their
web interface. So the NBIA does not provide the image storage and retrieval
functionality that is required within a PACS system. It can only be used alongside
existing PACS systems.

The dcm4che project [14] also offers a DICOM storage archive, named dcm4chee
[13]. We have not used it within the ACGT project, as for purposes of developing and
testing the data access services, the Conquest DICOM server was sufficient and
easier to set-up. However, compared to the Conquest server, dcm4chee offers more
functionality. Furthermore, it is still actively being developed and has an active user
community.

Given the limited choice of free PACS servers, it is also worth mentioning the low-
cost PACSOne solution [16]. It has good DICOM support, and provides an Apache-
based web front-end for administrating the server. It is actively supported, with a
support team that responds rapidly.

2.3 Microarray data
For storing microarray data in ACGT we are using BASE (version 2, hereafter only
called BASE) [24, 25]. BASE is an Open Source microarray database that is being
developed by Lund University, one of the partners in ACGT. It is a web-based
database solution for storing the data generated by microarray analysis. BASE is
released under the GNU General Public License version 3. Some of its features are:

1 It used to be called NCIA: National Clinical Imaging Archive.

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 9 of 51

• It is MIAME compliant

• It is compliant with ArrayExpress, using the Tab2MAGE import/export plug-in

• It uses the concept of projects for managing sharing of data and access control

• It is an array LIMS (Lab Information Management System)

• It is a biomaterial LIMS

• It supports many microarray data formats, including: Affymetrix, Agilent, GenePix,
Illumina and custom formats (through customizable import plug-ins)

• It is extensible by way of an advanced plug-in API

• It provides a Web Service interface for data access

• It provides customization via Annotation Type/Categories mechanism

• It includes analysis tools:

• Lowess Normalization

• Integration with TIGR MEV through Java Web Start

There exist a number of other software solutions for handling and storing microarray
data. The main ones are:

• caArray [41], an open-source management system for storing microarray data. It
allows for programmatic access and web access. No analysis tools are available.

• Mimas 3.0 [42], a web-accessible multiomics information management and
annotation system. It is designed to store manually annotated expression data
from several research facilities that may be organized within a consortium. It can
handle the recent, ultra high-throughput DNA sequencing (UHTS) data.

• Microarray Analysis and Retrieval System (MARS) [43], a MIAME-compliant
software suite for storing, retrieving, and analyzing multi color microarray data.
Not all kinds of platforms are supported (GeneChip and BeadArray).

• Systems Biology Experiment Analysis Management System (SBEAMS) [44], a
framework for collecting, storing, and accessing data produced by microarray,
proteomics, macroarray, and other experiments. Currently limited support for
exporting data in MAGE-ML and MAGE-TAB formats.

The following comparison table is taken from Gattiker et al. [42]. It lists a few more
databases and analysis tools than the ones listed above.

Feature D

at
ab

as
e

M
IM

A
S

 3

B
A

S
E

 2

M
A

R
S

S
B

E
A

M
S

M
iM

iR

m
ax

dl
oa

d2

M
IA

M
E

xp
re

ss

Affymetrix GeneChip ● ● ● ● ● ●

Two-color Microarray ● ● ● ● ● ●

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 10 of 51

Illumina BeadArray ● ●

UHTS ●

MIAME compliant ● ● ● ● ● ● ●

MAGE-TAB export ● ● ●

MAGE-ML export ● ● ● ● ●

MGED Ontology support ● ● ● ● ●

Connectivity to analysis and
visualization tools

● ● ● ● ● ●

User and group management ● ● ● ● ●

Object sharing and permissions
management

● ● ● ● ●

Web application ● ● ● ● ●

User Notifications/Messages ● ● ●

Wizard-based annotation and
experiment creation

● ●

Why BASE?

Some of the advantages of using BASE as the storing and analysis suite for
microarray data are listed below:

• Plugin-enabled: Users can contribute analysis tools using a plug-in API.

• Active development: The BASE software is under active development

• Web-services: Data can be retrieved using web-services.

• Array formats: Many arrays format are supported. Custom formats can be used
using a customizable import plug-in.

• Multi-user environment: BASE is a multi-user environment that supports
cooperation between users while protecting all data against unauthorized access
or modification.

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 11 of 51

3 Data access services in ACGT

This chapter introduces the ACGT data access services. Section 3.1 briefly reviews
the functional requirements. Section 3.2 summarises the functionality offered by the
data access services. Section 3.3 lists the types of data source for which data access
services have so far been developed.

3.1 Functional requirements
As described in D5.2 [2] the data access services need to fulfil the following
functional requirements:

• They should provide a uniform data access interface. This includes uniformity of
transport protocol, message syntax, query language, and data format.

• They should export the structure of the database, using a common data model,
together with possible query limitations of the data source. Clients of the web
service require this information for constructing queries.

• They should enforce the data source access policy, and audit access to data
sources. For post-genomic clinical trial data, there exist strict legal and ethical
requirements that need to be adhered to.

3.2 Functionality
The decisions taken with respect to the design of the data access services are
documented in D5.2. Here, we only summarize the main features of the data access
services. These can be considered as the benefits that are obtained when making
databases accessible by way of the data access services when considered on its
own. The largest benefit of integration of new data sources is of course that the data
is available for analysis and mining using the suite of services and tools included in
the ACGT platform.

The functionality provided by the data access services are:

• Support of a uniform mechanism for querying data. Data can be queried using
SPARQL, thus hiding the different query mechanisms provided by the underlying
databases.

• Export of the schema of data resources. An RDF Schema of a data resource is
available on demand. This schema is, for example, used by the semantic mapping
editor to provide the mapping to the ACGT Master Ontology.

• Retrieval and delivery of files. Large files in standardised formats that do not need
to be processed by the semantic mediator can be retrieved by ID, and delivered to
specified locations, amongst others DMS. Files can optionally be compressed and
combined into a single archive to speed-up delivery.

• Credential-based authentication and authorization. The ACGT data access
services are fully integrated into the ACGT security infrastructure to control
access to the data.

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 12 of 51

• Dynamic deployment of new data resources. To speed-up integration of new data
resources, integration into the ACGT infrastructure can be carried out by the
owner of the database using the ACGT web portal.

3.3 Supported data sources
So far, we have implemented data access services for the following databases:

• Relational databases

• DICOM images

• BASE microarray databases

These have been chosen after careful review of the requirements; they are
considered the most important in the context of post-genomic clinical trials given the
data-mining scenarios that were identified during the requirements-gathering process
[1, 4].

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 13 of 51

4 Integrating new data sources

The main steps needed to integrate new data sources with trial-specific patient data
into the ACGT platform are the same for all data sources, irrespective of the type of
data they store. The steps that need to be taken are:

1. Export the data from the data source that collects the data.

2. Anonymise and pseudonymise the data (using the CAT tool [7]).

3. Determine who should be allowed access, and if need be, create the
appropriate contracts and have these signed by all parties.

4. Set-up a database for hosting the data, and import the anonymised data.

5. Set-up secure access to the database.

6. Create a data access service for the database.

7. Configure the GAS [6] so that authorized users can access the data by way of
the data access services.

8. Optionally create the required semantic mapping so that the database can be
queried using the ACGT Master Ontology.

From this it should be clear that integration of new data sources is not only a
technical task. Successfully making new trial data available also involves clinical
partners and legal partners in ACGT.

This report covers Step 4 to 6, as these are technical steps that fall under the
responsibility of WP5. Step 6 is described in the most detail, as this step is specific to
the ACGT. Step 4 and 5 are more generic, and specific details depend on the type of
database that is used. For example, importing data into a postgreSQL database is
done differently than importing data into a mySQL database, even though they are
both relational databases. The same holds for configuring access. However,
documentation on how this can be done is widely available both online, e.g. [19, 21],
as in printed hardcopy, e.g. [22, 23], so it will not be described here.

It should be clear from the above that WP5 is not the only work package that is
involved when new data sources are being integrated into the ACGT platform. Other
work packages that are important are the following:

• WP7 (for semantic integration),

• WP10 (for arranging contract agreements and other legal issues),

• WP11 (for anonymising the data, and providing secure access), and

• WP12 (for providing the clinical trial data, as well as guidance on how to use and
interpret the data).

The next three sections describe how to integrate each of the different types of
clinical data sources. Section 4.1 describes the data access service for relational
databases, Section 4.2 the DICOM data access service, and Section 4.3 the data
access service for the BASE microarray database.

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 14 of 51

4.1 Data access service for relational databases
The functionality of the data access services for relational databases is briefly
described in Section 4.1.1. Creating a data access service for a new relational
database is relatively complex, as it requires creating a database-specific RDF
mapping on top of the relational schema. Section 4.1.2 provides detailed instructions
about the steps involved in setting up a relational data access service.

4.1.1 Functionality
The data access service for relational databases offers the generic functionality
outlined in Section 3.2. Next to the uniform SPARQL-based query interface, however,
it also offers SQL query support. The reason for also providing this interface is that
SQL provides query functionality not supported by SPARQL, in particular
aggregation. Queries that use aggregation can therefore be executed more efficiently
using the SQL query interface. When the SPARQL query interface is used,
aggregation will have to be carried at the client side, meaning that potentially much
more data needs to be retrieved than when aggregation is carried out by the
database.

4.1.2 Creating the service
Once the data has been anonymised, it needs to be imported in a relational
database. For information on how to do so, please refer to the documentation of your
RDBMS. Access to the database also needs to be set-up. For this it is recommended
to create a dedicated account (and password) with read-only access (i.e. only
SELECT priviliges). Furthermore, depending on the location of the database in
relation to the web services container and the data that is hosted, it may be
necessary to set-up a secure connection between the two, e.g. by way of an ssh
tunnel. Within ACGT we have been using the stunnel tool [26] to securely access
remote databases over the Internet.

Once the relational database has been set up, creation of a data access service
subsequently involves the following steps:

1. Create a default mapping to RDF. This automatically generated mapping is
needed so that the database can be queried using SPARQL, the query
language supported by the data access services.

2. Manually improve the mapping. This optional step can be used to simplify the
mapping, which in turn may simplify the queries that can be used to extract
data.

3. Create the data resource using the mapping.

4. Get the (automatically generated) RDF schema. The RDF schema indirectly
documents the queries that are supported, and is also needed to create the
semantic mapping to the ACGT master ontology.

5. Test the data access service.

These steps may be repeated as needed. The mapping could be improved
iteratively, for example, in order to facilitate the semantic mapping of the schema of
the data source to the Master Ontology.

The above process is supported by the Data Access portlet. The next subsections
describe each step in more detail.

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 15 of 51

Creating the default RDF mapping

You can start the process from the Data Access portlet by clicking the “Add a new
data resource” button. After having done so, you will need to provide the credentials
for accessing the database. This is shown in Figure 1.

Figure 1 Providing database access details

After having done so, a default mapping will be created for the database. The format
of the mapping is according to the D2RQ specification [11].

Improving the RDF mapping

Depending on the schema of the underlying database, the desired RDF schema, and
the type of RDBMS that is used the default mapping may be used “as is” or may
need to be further improved. Below we describe the typical cases where the default
mapping can be improved, show how this can be done, and give examples of the
results.

We use the database schema that is shown in Figure 2 in all examples. This schema
is extremely simple and would normally be part of a larger one; it includes only tables
and columns that are relevant to the examples. The crf_postsurgery table stores
information stored on a “Post Surgery” CRF. The column rdx indicates whether the
patient received radio therapy; the value “1” means “no”, and “0” means “yes”. The
entry table stores for each CRF the patient it refers to, and the date that the form was
filled in. The patient table stores for each patient the date of birth and the sex. The
latter uses the code_sex code table, which stores the values that are allowed. In this
example it contains two possible values: “Vrouw” and “Man”, which are Dutch terms
(for purposes of illustration) respectively meaning “Female” and “Male”.

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 16 of 51

Figure 2 - Simple database schema used for the exam ples. Table names are in bold, followed
by a list of their columns. Between brackets the da ta type is indicated. Primary keys are
denoted by PK, and foreign keys by FK. Arrows indic ate the key that is referred to by each
foreign key.

Given this schema, we want to carry out the following query:

• “Find all female patient that received post-surgery radiotherapy; for each return
the patient identifier, the date of birth, and the date that the post-surgery form was
filled in”. The two dates can be used to infer the age of the patient at time of the
radiotherapy treatment.

The corresponding SPARQL query, when a basic mapping from SQL to RDF is used,
is shown in Figure 3. For a short introduction to SPARQL, please refer to [2]2. The
mapping that is used to translate this SPARQL query to SQL can be found in
Appendix 2A. In the remainder of this section the mapping will be improved step-by-
step. The effect will be illustrated by the corresponding change to the SPARQL
query.

PREFIX vocab: <http://example.philips.com/vocab/>
SELECT ?patient_id ?dob ?entry_date
WHERE {
 ?crf vocab:crf_postsurgery_entry_id ?entry_id ;
 vocab:crf_postsurgery_rdx "1"^^xsd:int .
 ?entry vocab:entry_id ?entry_id ;
 vocab:entry_entry_date ?entry_date ;
 vocab:entry_patient_id ?patient_id .
 ?patient vocab:patient_id ?patient_id ;
 vocab:patient_sex_id ?sex_id ;
 vocab:patient_dob ?dob .
 ?code_sex vocab:codesex_id ?sex_id ;
 vocab:codesex_sex "Vrouw" .
}

2 A slightly longer and more end-user friendly introduction to SPARQL will appear in the ACGT user
manual that is currently being written.

crf_postsurgery

id (integer, PK)
rdx (integer)
entry_id (integer, FK)

entry

id (integer, PK)
entry_date (date)
patient_id (integer, FK)

patient

id (integer, PK)
dob (date)
sex_id (integer, FK)

code_sex

id (integer, PK)
sex (string)

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 17 of 51

Figure 3 Example query, initial version

The vocabulary terms for properties in the default mapping are derived from the table
and column names in the underlying database. This is done as follows:
vocab:{tablename}_{columnname}, where vocab denotes the configurable
namespace prefix URI. This simple scheme will typically suffice, but there can be
various reasons for changing these names. For example, when two databases have
similar schema, renaming RDF properties may help to make the RDF schema more
similar or even identical. This has been the case for the TOP scenario that we have
implemented and demonstrated [8]. There were minor differences in the schema of
the public database (which was used for testing), and the private database (which
contained the actual data). We renamed properties to make both RDF schema
identical. This way, the semantic mapping could be tested on the public database,
yet the resulting mapping would be valid on the private database. Renaming a
property is achieved by simply changing the value for the corresponding
d2rq:property triple in the mapping.

Another simple change is adding information about datatypes. The default mapping
will add a datatype to each property bridge where it can infer this. However, is not
always possible for all properties, depending on the type of the RDBMS and the
schema of this database. In these cases, it may be desirable to improve the mapping
by manually adding the datatype information. This is achieved by adding a
d2rq:datatype triple to the corresponding property bridge.

In our example we can improve the mapping by renaming the term
vocab:crf_postsurgery_rdx to vocab:crf_postsurgery_radiotherapy, in order to be
more descriptive. Also, given that it is a boolean value, we can change the mapping
so that the type changes from xsd:int to xsd:boolean. Figure 4 shows what the query
looks like after these changes have been made to the D2RQ mapping. The part of
the query that is changed is shown in italics.

PREFIX vocab: <http://example.philips.com/vocab/>
SELECT ?patient_id ?dob ?entry_date
WHERE {
 ?crf vocab:crf_postsurgery_entry_id ?entry_id ;
 vocab:crf_postsurgery_radiotherapy "true"^^xsd:boolean .
 ?entry vocab:entry_id ?entry_id ;
 vocab:entry_entry_date ?entry_date ;
 vocab:entry_patient_id ?patient_id .
 ?patient vocab:patient_id ?patient_id ;
 vocab:patient_sex_id ?sex_id ;
 vocab:patient_dob ?dob .
 ?code_sex vocab:codesex_id ?sex_id ;
 vocab:codesex_sex "Vrouw" .
}

Figure 4 Example query, Version 1 – Reflecting chan ge in radiotherapy property

More complex changes, which affect the structure of the RDF schema, can be
achieved as well, for example to hide the use of foreign keys. The default mapping
will hide the use of foreign keys when it can retrieve the foreign key information from
the underlying RDBMS. In this case, all foreign key values in the relational database
will be represented by an IRI in the RDF model that represents the row in the table
that the foreign key refers to. If the RDBMS does not return information about foreign

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 18 of 51

keys, in particular the column and table that it refers to, the mapping will have to be
edited manually to achieve the same effect.

In our example, we can improve the D2RQ mapping to hide the use of the sex_id
foreign key in the patient table. The vocab:patient_sex_id property, which used to
refer to this foreign key, can be replaced by a new vocab:patient_sex property that
directly refers to the RDF node that represents the row in the code_sex table that is
referred to by the foreign key. Figure 5 shows the new query after the mapping has
been changed this way.

PREFIX vocab: <http://example.philips.com/vocab/>
SELECT ?patient_id ?dob ?entry_date
WHERE {
 ?crf vocab:crf_postsurgery_entry_id ?entry_id ;
 vocab:crf_postsurgery_radiotherapy "true"^^x sd:boolean .
 ?entry vocab:entry_id ?entry_id ;
 vocab:entry_entry_date ?entry_date ;
 vocab:entry_patient_id ?patient_id .
 ?patient vocab:patient_id ?patient_id ;
 vocab:patient_sex ?code_sex ;
 vocab:patient_dob ?dob .
 ?code_sex vocab:codesex_sex "Vrouw" .
}

Figure 5 Example query, Version 2 – Not using key f or code_sex table anymore

When simple code tables are used that consist of two columns, a primary key and
the corresponding code value, the mapping can be further simplified to remove
another level of indirection. Foreign keys that refer to a row in such a code table can
be represented in RDF not by the row in this table, but by the corresponding code
value. The latter can be returned as a literal, e.g. “Vrouw”, or as a URI that
represents the code, e.g. http://example.philips.com/codes#Female. Figure 6 shows
the query after the mapping has been updated to translate each literal string value in
the code_sex code tables to a URI. Also, the indirection by way of the code_sex table
has been removed; the value of the patient’s sex is now directly available from the
RDF node that represents the patient.

PREFIX vocab: <http://example.philips.com/vocab/>
PREFIX code: <http://example.philips.com/codes#>
SELECT ?patient_id ?dob ?entry_date
WHERE {
 ?crf vocab:crf_postsurgery_entry_id ?entry_id ;
 vocab:crf_postsurgery_radiotherapy "true"^^x sd:boolean .
 ?entry vocab:entry_id ?entry_id ;
 vocab:entry_entry_date ?entry_date ;
 vocab:entry_patient_id ?patient_id .
 ?patient vocab:patient_id ?patient_id ;
 vocab:patient_sex code:Female ;
 vocab:patient_dob ?dob .
}

Figure 6 Example query, Version 3 – Now using URIs to refer to code table entries

The use of foreign keys and code tables are relational artifacts that can be
successfully hidden from the resulting RDF model. More complex relational artifacts,
such as tables for storing n-to-m relations can be hidden as well. These tables will

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 19 of 51

show up as classes in the default mapping, but can be made to disappear by adding
extra d2rq:join triples to the property bridges corresponding to the tables that are
subject of these n-to-m relations.

In our example, we can for example hide the entry table from the RDF mapping. This
can be done by adding the entry date as a property of the CRF class. Also, the
patient is added as a property of this class. The latter requires two joins, which is
supported by D2RQ. Figure 7 shows what the query looks like after these changes.
The final D2RQ mapping can be found in Appendix 2B. By comparing it to the
original D2RQ mapping you can see how each of these improvements has been
achieved.

PREFIX vocab: <http://example.philips.com/vocab/>
PREFIX code: <http://example.philips.com/codes#>
SELECT ?patient_id ?dob ?entry_date
WHERE {
 ?crf vocab:crf_postsurgery_entry_date ?entry_date ;
 vocab:crf_postsurgery_radiotherapy "true"^^x sd:boolean ;
 vocab:crf_postsurgery_patient ?patient .
 ?patient vocab:patient_id ?patient_id ;
 vocab:patient_sex code:Female ;
 vocab:patient_dob ?dob .
}

Figure 7 Example Query, Version 4 – Not referring t o entry table anymore

Creating the data resource

Once a satisfactory mapping has been obtained, the data resource can be created.
This is achieved from the Data Access service by providing a service name and
supplying the RDF mapping (presuming that you are not using the default one), and
clicking the “Register resource” button. See Figure 8. The service name that you
provide is used as a prefix. Each resource will have a unique but arbitrary identifier
appended at the end. Upon successful creation, the name of the newly created
resource is returned, as shown in Figure 9. When a dynamic data resource is not
needed anymore, it can be removed by the user that created it using the link that is
provided.

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 20 of 51

Figure 8 Providing a name prefix and RDF mapping fo r a new data resource

Figure 9 Succesful creation of a new data resource

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 21 of 51

The functionality to restrict access to dynamically created resources is currently still
being refined. The functionality can therefore be expected to change. Having said
that, the current functionality is as follows: A dynamically created data resource that
is accessible to anyone with valid ACGT credentials. So, although access to the
dynamically created resource is managed by way of the GAS, the GAS does not
have specific access rules for this resource. This means that you should only create
dynamic resources for data that does not require more specific access restrictions.

Getting the RDF schema

Await support in Data Access portlet

Testing the service

Await support in Data Access portlet

Using the service

If all works fine, the data resource is ready for use. This can be done in either of two
ways. The data resource can be queried directly from the workflow enactor, or the
data resource can be queried by way of the semantic mediator. The former is
appropriate for small, ad-hoc databases, that you want to integrate quickly into a
data-mining workflow. It does not require any additional actions. Querying by way of
the semantic mediator is appropriate for databases containing clinical data that falls
inside the scope of the ACGT master ontology. It requires creating a semantic
mapping, and possibly, modifying and extending the ontology. In order to justify the
effort that this requires, this is typically only done for databases that will be queried
by multiple users over a longer period of time. A good example is the clinical trial
databases that store the collected CRF data. Semantic mappings can be created by
ontology experts using the semantic mapping tool. This tool will dynamically retrieve
the RDF schema of the data resource, which the user will then have to map to the
ACGT Master Ontology.

Creating a static data resource

The preceding steps described how to create a dynamic data resource using the
ACGT portal. This process has the advantage that it is convenient and
straightforward. Also, it can be carried out by anyone with a valid ACGT certificate.
Dynamically created data resources are, however, not ideally suited for all use cases.
They have the following drawbacks: Firstly, they are not persistent; they will be gone
when the web services container is restarted. The latter happens fairly rarely, but can
be needed when there is a problem, or when the functionality of the data access
services needs to be upgraded. Secondly, it is currently not possible to change their
default access control rules. Thirdly, their names are slightly verbose, which makes
them more difficult to remember and enter. Fourthly, they will always return the RDF
schema that is automatically generated. This is appropriate for most cases, but it can
sometimes be helpful to extend the schema with further information that cannot be
easily inferred from the D2RQ mapping file, such as class inheritance relations.

When any of these drawbacks is problematic in a particular use case, a static data
resource can be created. A static data resource does not suffer from these
drawbacks; however, it is slightly more cumbersome to create. It requires changing
the configuration of the web service container, which can only be done by an
administrator of the web services container. The data source specific information that

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 22 of 51

is required is: the D2RQ mapping file, and an RDF schema file. These can, however,
conveniently be generated by first creating a dynamic version of the data resource,
which can be carried out by a user that is familiar with the database. Once this is
done, this configuration information can be given to the administrator of the data
access services, who can then quickly create the corresponding static data resource.
Subsequently the GAS can be configured to create dedicated and specific access
rules for the new data resource.

4.2 Data access service for DICOM image data
Section 4.2.1 describes the functionality of the data access service for DICOM
images. Section 4.2.2 subsequently documents how to create the service. For more
details about the DICOM data access service, including a detailed description of its
implementation, please refer to D5.2 [2].

4.2.1 Functionality
The DICOM data access service provides all the generic functionality described in
Section 3.2. The SPARQL query interface can be used to carry out queries about the
images that are stored. Next to that, the service offers additional retrieval
functionality. The (unique) identifiers for one or more images can be specified, and
these images will be retrieved from the DICOM server. After optional further
processing, e.g. compression and archival into a ZIP file, the images can be
delivered to a chosen location. The OGSA-DAI image retrieval activity has been
designed so that it takes the results of a query activity as input. This means that
image query and retrieval can be executed using a single request to the data access
service.

The data access services are not specific to a particular type of PACS. The data
access services for DICOM images use DICOM Query/Retrieve to interact with the
image databases, as this is the widely adopted standard for querying and retrieving
medical images.

4.2.2 Creating the service
Unlike the data access services for relational databases, which can be created
dynamically and statically, the data access services for DICOM can only be created
statically. In other words, it cannot be done by way of the ACGT portal but requires
configuration of the web services container by an administrator. Functionality could
be added to the portal to also support dynamic creation of DICOM data resources.
However, this has not been implemented as there has not been a need yet for this
functionality. See also Section 5.2.2.

The RDF schema for all DICOM image resources is identical, as the classes and
their attributes that can be queried are fully specified by the DICOM protocol. This
means that a single semantic mapping suffices for all DICOM data resources, which
in turn implies that any new image resource, can be queried using the semantic
mediator automatically, without any extra effort. This difference with respect to
relational data resources also means that configuration of data access services for
DICOM image data is much simpler. The following subsection document how a new
DICOM data access service can be configured, and how the new data access
service can subsequently be tested.

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 23 of 51

Configuring the service

The template for the DICOM configuration file can be found in the software archive3.
It contains more than a dozen parameters that need to be set, but as these are
documented in the template configuration file itself, only a high-level overview is
given here.

• The queryRetrieveSCP element is used to specify the name and address of the
database server that stores the images.

• The queryRetrieveSCU element specifies the name and address of the DICOM
Service Class User (SCU) at the web service container that interacts with the
DICOM server to retrieve the image meta-data. Each DICOM data resource will
create its own SCU, so you should ensure that the name and address are unique.
You should also configure the DICOM server so that it allows access to the SCU
that will be created4.

• The storageSCP element specifies the names and addresses of the DICOM
Service Class Providers (SCP) at the web service container that are used to
receive images from the DICOM server. You can create more than one, so that
multiple images can be retrieved in parallel. As was the case for the
Query/Retrieve SCU, you need to make sure that the names and addresses are
unique.

Testing the service

After the data resource has been created and the GAS has been configured to allow
access, the data resource can be tested. The best way of doing so is by way of the
command-line OGSA-DAI client. You can use the one that is provided as part of the
OGSA-DAI WSRF 2.2 distribution, or use the extended OGSA-DAI client that is
available from the ACGT source code repository. Details on how to use the client can
be found on the ACGT wiki5. Example OGSA-DAI perform documents are available
in the ACGT source code repository for both querying what images are available and
for retrieving them. Further details can also be found on the ACGT wiki6.

A DICOM data resource can also be tested by creating an executing a workflow that
queries it and that retrieves images. It has the benefit that it has a more user-friendly
interface (a GUI is used instead of a command line environment). However, a
drawback is that it involves more components, which increases the chance of failure
and may require more effort to troubleshoot any problems.

4.3 Data access service for microarray data
The BASE data access service has been implemented after D5.2 was written, so
unlike the preceding two data access services, it is not described there. However,

3
https://iapetus.ics.forth.gr/svn/ACGT/WrapperServices/trunk/etc/resource/Templates/DICOM/dataRes
ourceConfig.xml
4 In the case of the ConQuest DICOM server, you will have to edit the acrname.map to add the so-
called DICOM Application Entity.
5 http://wiki.healthgrid.org/ACGT:Wrappers_-_Invocation
6 http://wiki.healthgrid.org/ACGT:Wrappers_-_Data_Resources

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 24 of 51

conceptually it is a very simple service, similar to the data access service for DICOM
images. Section 4.3.1 describes the functionality in more detail. It is followed by
Section 4.3.2, which describes how to create new services.

4.3.1 Functionality
The BASE data access service delivers all functionality described in Section 3.2,
except that it lacks a SPARQL-query interface. The data access service offers
retrieval functionality similar to the DICOM data access service: one or more unique
assay identifiers can be specified, and the service will retrieve the corresponding
microarray files. It also offers very basic query functionality: it can return the
identifiers of all assays that can be retrieved. The reason that more advanced query
functionality is not (yet) provided is that there has not been a need. In all the use
cases so far, the metadata about the microarray data has always been stored in a
separate relational database. This relational database stores for each microarray file
all relevant information for the purposes of the clinical trial, including the
pseudonymised identifier of the patient it corresponds to. When there is a specific
need to query the BASE database directly, a SPARQL query interface can be added
to support this. However, as was the case for the DICOM SPARQL query interface,
adding such an interface will require significant effort, so this will need to be justified
by the benefits of doing so.

The current interface of the BASE data access services is generic and applicable to
other microarray storage systems. However, the data access services use a BASE-
specific web-service interface to interact with BASE, so the implementation is specific
to BASE. Given additional effort, however, additional implementations could be
provided should there be a need, so that the same interface can be used to retrieve
microarray files from different microarray storage systems.

4.3.2 Creating the service
BASE data access services can currently only be deployed statically. The
subsections below document how to configure new services at the web service
container and how they can subsequently be tested.

Configuring the service

Configuration of the BASE data access service is very straightforward. It only
requires setting three parameters, which are all self-explanatory: the URL of the
BASE web service interface, the password and the username.

The web service interface of the BASE database, not to be confused with the BASE
data access service, is not integrated into the ACGT security infrastructure. As a
result, communication with this service is not encrypted by default. Unless the data
access service is located on the same server as the BASE database, it is therefore
recommended to use an encrypted connection, e.g. by way of the stunnel tool [26].

Testing the service

Testing a BASE data access service is very similar to testing a DICOM data access
service, as is described at the end of Section 4.2.2. When you use the OGSA-DAI
command-line client, you can first retrieve the list of all available assays, for which

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 25 of 51

you can use the perform document GetAllAssayIDs.xml available in SVN7. You can
subsequently retrieve and deliver some or all assays to DMS. Example perform
documents for doing so can also be found in SVN, for example in the
examples/perform/acgt_assays directory. You will, however, need to modify the
perform documents to include the identifiers of the assays that you want to retrieve,
as well as the desired destination directory on DMS.

7
https://iapetus.ics.forth.gr/svn/ACGT/WrapperServices/trunk/examples/perform/generic/assays/GetAll
AssayIDs.xml

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 26 of 51

5 Discussion

This deliverable closes with a discussion of the current state of data access within
ACGT. More specifically, Section 5.1 relates our experiences with the databases that
store the various types clinical trial data. Section 5.2 discusses the data access
services that provide access to each of these databases in the ACGT platform.

5.1 Databases

5.1.1 Relational databases

There are good free software solutions available for storing relational data. Within the
ACGT project, we have successfully used mySQL and postgreSQL. We experienced
the biggest problems, which were still only minor, when importing data into the
databases. For example:

• We had difficulty importing a dump from a postgreSQL database into the mySQL
database that we had installed already. Although feasible, it would require
substantial effort so we decided to also deploy a postgreSQL database on our
gridnode server, to import the data there instead.

• Subsequently we had some difficulty importing the dumped data into our
postgreSQL database, as it was an older version than the one that generated the
dump. Upgrading the database on our gridnode server was not really feasible,
given the version of the operating system it used. So we created scripts for
stripping non-supported parts from the dump. After running the dump through
these scripts, the import subsequently succeeded.

• We also experienced minor problems preserving special characters in the data
(e.g. umlauts and other German characters). To solve these we needed to ensure
that appropriate text-encodings were used everywhere (i.e. in the database dump
file, the encoding of database, the settings of the client viewing the data, and the
code page settings of the terminal where the client executes). Furthermore,
explicit conversions needed to be carried out where encodings differed. For
example, in order for the scripts to process the dump correctly, the dump was
using the Latin1 encoding, whereas the encoding used in the database is UTF8.

These issues could be solved without much problem. They are documented here
because it is useful to be aware of them. In general though, both mySQL and
postgreSQL met our requirements and have been used without problems so far.

5.1.2 DICOM databases
Within the ACGT project there has so far been little need to share DICOM image
data as there have been few use-cases for mining of image data within ACGT. The
focus within the project with respect to data-mining has been on finding bio-markers
in gene expression data. This is not surprising, given that the latter is more amenable
for data-mining. Extracting bio-markers from image data requires advanced image
processing algorithms to extract potential bio-markers, which is not an expertise
present within the consortium.

For our needs so far within the project the Linux-based Conquest DICOM server has
been sufficient. Should the image storage needs, the required reliability, or query
load increase significantly, we will need to evaluate if it is still appropriate, or whether

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 27 of 51

an alternative solution needs to be found. In that case, the dcm4chee DICOM archive
is the most promising Open Source alternative to consider.

5.1.3 BASE database
For storing microarray files we have used the BASE database hosted by Lund
University. There have been some issues with BASE and the server hosting the
BASE environment:

• Since BASE currently is not supporting “https” access a workaround was chosen
which uses the stunnel SSL wrapper. We have experienced some stability
problems with stunnel running on the BASE server. It sometimes requires a
restart. BASE will eventually support SSL and then there will not be a need
anymore to use stunnel for providing secure access.

• Importing array data to BASE is not always straightforward. We have had some
problems importing array designs into BASE. If the documentation of the array
design is missing or limited then it is problematic to import it into BASE, so good
documentation should always be provided.

5.2 Data access services
Each of the data access services will be discussed separately in the sections below.
Section 5.2.1 discusses the current implementation of the data access services for
relational database. The data access service for DICOM images is subsequently
discussed in Section 5.2.2. Section 5.2.3 briefly discusses the BASE data access
service. Dynamic deployment of data access services is the subject of Section 5.2.4.
Section 5.2.5 concludes with a discussion of the open issues.

5.2.1 Data access service for relational databases

Out of the data access services that have been implemented so far, the one for
relational databases is the most complex with respect to the functionality it provides
and the range of interactions it supports. More specifically, the types of queries that
can be carried out as well as the queries that users would like to carry out vary per
database. The queries depend on database schema, on the data that is stored, as
well as the research question that is being tackled. A good way of finding out how
useful the data access services are in practice is therefore to use them on a range of
databases in different scenarios, which is what we have done over the last two years.
The next subsection uses the most challenging scenario (from the point of view of the
relational data access service) that we have addressed so far to illustrate the
capabilities and limitations of the data access service. It is followed by another
subsection that concludes by describing the current state of the relational data
access services and by providing our suggestions for handling existing limitations.

Capabilities and limitations

The scenario we consider in this subsection is the Wilms tumor analysis scenario that
was demonstrated at the 3rd ACGT review in Saarbrucken [9]. The aim of this
scenario was to reproduce the results published in [28]. This scenario is interesting
from the perspective of data access for several reasons. Firstly, it provided actual
data (with typical problems such as missing and incorrect values). Secondly, the data
came from an actual CRF database, with a schema whose complexity reflected that
of a typical clinical trial. Thirdly, the queries to be carried out were good examples of

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 28 of 51

actual queries that end-users are interested in when carrying out biomedical research
(as opposed to example queries crafted by developers to show off features of the
framework they have developed).

One query that needed to be carried out was to obtain the histological classification
of all tumor samples that had undergone microarray analysis. There were several
complicating factors in extracting the data:

• The microarray analysis was not part of the SIOP trial as it had originally been
defined, which meant that the SIOP CRF database, from which the classification
was to be extracted, does not store any information specific to the microarray
analysis that was carried out. I.e. the samples that were analysed using
microarrays were not marked as such in the database. The subset of patients
whose tumors had undergone microarray analysis were only stored in a separate
database, which still needed to be queried separately. This database is, for sake
of simplicity, excluded from consideration in the remainder of this section.

• Some patients have bilateral tumors, i.e. affecting both kidneys. In this case, two
classifications should be returned, one for each kidney.

• Samples are classified multiple times, with increasing quality of the classification
results. First a local pathologist classified the sample, then a pathologist at the
reference center, and finally a panel of pathologists at the reference center. The
classifications that were available for each tumor varied. The classification by the
reference panel was for example not (yet) available for all samples. Selecting the
most reliable classification therefore had to be done for each tumor independently.

• There were missing values in the database for some fields needed in the query.
E.g. the date of the pathology examination was sometimes missing, as well as the
type of assessment.

• For some patients multiple pathology examinations were carried out. The query
should only return the classification of the first pathology sample taken after main
surgery. However, the “main surgery sample” was not explicitly marked as such. It
had to be inferred by comparing the dates of the samples. The earliest sample
was that taken after main surgery.

Figure 10 shows the resulting query in SQL on the schema used by the original SIOP
database. The query uses aggregation at various places (to select the most reliable
classification of the sample taken after main surgery) so that for each patient only
one classification is returned, or two for bilateral patients.

select distinct
 tmp_wilms_assays.molid as "ID",
 f4.pdate - patient.gebdat as "Histology",
 best_histology.max_pathtyp as "PathType",
 code_pathtyp.name as "PathType_",
 f4_sub.histotyp as "HistoType",
 code_histotyp.histotyp as "HistoType_",
 f4.lokal_prob as "SampleLoc",
 code_lokal_prob.name as "SampleLoc_"
 from patient
 join tmp_wilms_assays using (siopnr)
 join f4 using (pnr)
 join code_lokal_prob on code_lokal_prob.idx = f4. lokal_prob
 join f4_sub on f4.idx = f4_sub.f4idx
 join code_pathtyp on code_pathtyp.idx = f4_sub.pa thtyp

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 29 of 51

 join code_histotyp on code_histotyp.idx = f4_sub. histotyp
 join (select pnr, lokal_prob,
 min(coalesce(pdate, date '2100-01-0 1')) as event_date
 from f4
 group by pnr, lokal_prob
) as first_histology using (pnr, lokal_prob)
 join (select pnr, lokal_prob,
 coalesce(pdate, date '2100-01-01') a s event_date,
 max(pathtyp) as max_pathtyp
 from f4
 join f4_sub on f4.idx = f4_sub.f4idx
 where (f4_sub.stud_ass is null
 or f4_sub.stud_ass in (2, 4))
 group by pnr, lokal_prob, pdate
) as best_histology
 on first_histology.pnr = best_histology.pn r and
 first_histology.lokal_prob = best_histo logy.lokal_prob and
 first_histology.event_date = best_histo logy.event_date
 where (first_histology.event_date =
 coalesce(f4.pdate, date '2100-01-01'))
 and first_histology.lokal_prob = f4.lokal_prob
 and f4_sub.pathtyp = best_histology.max_pathtyp
 order by tmp_wilms_assays.molid;

Figure 10 - The histology query for the Wilms scena rio, in SQL for the original database.

The above query can be carried out using the SQL interface of the relational data
access service. However, if the semantic mediator is to be used, it needs to be
expressible in SPARQL as well. Given that SPARQL does not support aggregation, it
is not possible to create a SPARQL query that returns the same results as the SQL
query in Figure 10. Instead, the SPARQL query will have to return more results, and
aggregation will have to take place client-side. In other words, the SPARQL query will
for each patient return all classifications of all histology samples that have been
taken. It is up to the client to select the relevant one for each patient.

Figure 11 shows what the histology query looks like when it is expressed in SPARQL
on a Wilms database that uses the default D2RQ mapping to support the query. It is
shorter than the SQL query in Figure 10 only because it is lacking aggregation.
Unfortunately, this query is not handled correctly by D2RQ. There are two problems
with it. Firstly, there is a problem handling the second OPTIONAL block. This block
should ensure that results are also returned for samples for which there is no value
for the vocab:f4_sub_stud_ass property. However, there is a bug in D2RQ 0.6, the
version that we are currently using, that stops these results from being returned
anyway [30]. Secondly, the filter condition is also not handled efficiently. For each
result it will send a separate SQL query for the stud_ass field, as opposed to just
filtering the returned results and/or including the filter as part of the SQL statement.
As a result, the query executes unacceptably slowly.

SELECT ?siopnr ?gebdat ?pdate ?lokal_prob_idx
 ?pathtyp_idx ?histotyp_idx ?stud_ass_idx
WHERE {
 ?patient vocab:patient_siopnr ?siopnr ;
 vocab:patient_gebdat ?gebdat .
 ?f4 vocab:f4_pnr ?patient ;
 vocab:f4_lokal_prob ?code_lokal_prob .
 ?f4_sub vocab:f4_sub_f4idx ?f4 ;
 vocab:f4_sub_pathtyp ?code_pathtyp ;

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 30 of 51

 vocab:f4_sub_histotyp ?code_histotyp .
 ?code_lokal_prob vocab:code_lokal_prob_idx ?lokal _prob_idx .
 ?code_pathtyp vocab:code_pathtyp_idx ?pathtyp_idx .
 ?code_histotyp vocab:code_histotyp_idx ?histotyp_ idx .
 OPTIONAL {
 ?patient vocab:f4_pdate ?pdate .
 }
 OPTIONAL {
 ?f4_sub vocab:f4_sub_stud_ass ?code_stud_ass .
 ?code_stud_ass vocab:code_asse_idx ?stud_ass_id x .
 }
 FILTER (
 !BOUND(?stud_ass_idx) || ?stud_ass_idx = 2 || ? stud_ass_idx = 4
)
}

Figure 11 - The histology query in SPARQL, when the default mapping is used for the Wilms
database.

To address these two problems, we changed the D2RQ mapping and the query
slightly. The improved query is shown in Figure 12. We changed the D2RQ mapping
to address the first problem. The use of the stud_ass foreign key in the f4_sub table,
which caused problems because it could be null, was hidden in the original D2RQ
mapping (the property directly linked to an entry in the code_asse code table). We
extended the mapping with a vocab:f4_sub_stud_ass_fix property so that the foreign
key could be retrieved directly and used instead in the OPTIONAL block. The
problem with the inefficient handling of the FILTER condition was handled by simply
removing the filter. All values are returned, and it is up to the client to discard the
results with inappropriate values for the ?stud_ass_idx variable.

SELECT ?siopnr ?gebdat ?pdate ?lokal_prob_idx
 ?pathtyp_idx ?histotyp_idx ?stud_ass_idx
WHERE {
 ?patient vocab:patient_siopnr ?siopnr ;
 vocab:patient_gebdat ?gebdat .
 ?f4 vocab:f4_pnr ?patient ;
 vocab:f4_lokal_prob ?code_lokal_prob .
 ?f4_sub vocab:f4_sub_f4idx ?f4 ;
 vocab:f4_sub_pathtyp ?code_pathtyp ;
 vocab:f4_sub_histotyp ?code_histotyp .
 ?code_lokal_prob vocab:code_lokal_prob_idx ?lokal _prob_idx .
 ?code_pathtyp vocab:code_pathtyp_idx ?pathtyp_idx .
 ?code_histotyp vocab:code_histotyp_idx ?histotyp_ idx .
 OPTIONAL {
 ?patient vocab:f4_pdate ?pdate .
 }
 OPTIONAL {
 ?f4_sub vocab:f4_sub_stud_ass_fix ?stud_ass_idx .
 }
}

Figure 12 - Improved SPARQL query that works around problems of D2RQ.

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 31 of 51

The Wilms data was also imported into the Obtima database. We also tried to extract
the histology data from there, using the SPARQL-interface of the relational data
access service. The schema of the Obtima database is entirely different from the
schema of the Wilms database. The latter closely reflects the CRF forms of the SIOP
trial. There are specific tables corresponding to each (part of) a CRF, and each entry
on a CRF is represented by a specific column in the database. The Obtima schema,
on the other hand, is generic; it can be applied to any clinical trial. It can be thought
of as a meta-schema. There are no tables or columns corresponding to specific CRF
forms, or entries on those forms. Instead, these will be represented by values stored
inside generic tables. As a result, the query looks completely different.

Figure 13 shows the SPARQL query for the Obtima database, as it was initially
created. The query is impossible to understand on its own, due to the generic nature
of the Obtima schema. This, however, is not a problem. SPARQL queries for Obtima
are not intended to be created manually. Instead, data will be retrieved from Obtima
by the semantic mediator using queries expressed in the Master Ontology. These
queries can be understood on their own.

SELECT ?patient ?v ?v1 ?v3 ?v4 ?v5
WHERE {
 ?patient vocab:Patient_CRF ?crf .
 ?crf vocab:CRF_ItemGroup ?itemgroup ;
 vocab:CRF_ItemGroup ?itemgroup2 ;
 vocab:CRF_ItemGroup ?itemgroup3 ;
 vocab:CRF_ItemGroup ?itemgroup4 ;
 vocab:CRF_ItemGroup ?itemgroup5 ;
 vocab:ci_crf_template_fk ?rest0 .

 ?itemgroup vocab:Itemgroup_Item ?item ;
 vocab:ige_itemgroup_template_fk ?rest1 .
 ?item vocab:item_entry_value ?v ;
 vocab:ie_item_template_fk ?rest2 .

 ?itemgroup2 vocab:Itemgroup_Item ?item2 ;
 vocab:ige_itemgroup_template_fk ?rest 4 .
 ?item2 vocab:item_entry_value ?v2 ;
 vocab:ie_item_template_fk ?rest5 .

 ?itemgroup3 vocab:Itemgroup_Item ?item3 ;
 vocab:ige_itemgroup_template_fk ?rest 7 .
 ?item3 vocab:item_entry_value ?v3 ;
 vocab:ie_item_template_fk ?rest8 .

 ?itemgroup4 vocab:Itemgroup_Item ?item4 ;
 vocab:ige_itemgroup_template_fk ?rest 9 .
 ?item4 vocab:item_entry_value ?v4 ;
 vocab:ie_item_template_fk ?rest10 .

 ?itemgroup5 vocab:Itemgroup_Item ?item5 ;
 vocab:ige_itemgroup_template_fk ?rest 11 .
 ?item5 vocab:item_entry_value ?v5 ;
 vocab:ie_item_template_fk ?rest12 .

 FILTER (?rest0 = "512"^^xsd:integer)
 FILTER (?rest1 = "1756"^^xsd:integer)

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 32 of 51

 FILTER (?rest2 = "3432"^^xsd:integer)
 FILTER (?rest4 = "1757"^^xsd:integer)
 FILTER (?rest5 = "3433"^^xsd:integer)
 FILTER (?rest7 = "1758"^^xsd:integer)
 FILTER (?rest8 = "3434"^^xsd:integer)
 FILTER (?rest9 = "1690"^^xsd:integer)
 FILTER (?rest10 = "3366"^^xsd:integer)
 FILTER (?rest11 = "1603"^^xsd:integer)
 FILTER (?rest12 = "3279"^^xsd:integer)
}

Figure 13 - The initial SPARQL query when carried o ut on the Obtima database.

A problem, however, is that this query cannot be executed efficiently by D2RQ. There
is currently a limitation in D2RQ’s query translation engine that introduces too many
unnecessary joins in the SQL query that is produced [31]. These joins are basically
null-operations that do not affect the results. A smart SQL query handling engine at
the RDBMS may realize this and avoid carrying these out. However, when this is not
the case, the SPARQL query is sufficiently complex, and the tables in the underlying
database are sufficiently large, performance can become unacceptable. Queries can
take too long to execute (several minutes or more), or may even crash the database
(e.g. when they require more temporary storage then is available).

In an attempt to work around this problem we extended the D2RQ mapping with
additional properties, one for each item group instance and one for each item
instance. This can simplify the SPARQL queries, and also results in a faster
execution. The SPARQL query that uses the extended D2RQ mapping is shown in
Figure 14.

SELECT ?patient ?v ?v2 ?v3 ?v4
WHERE {
 ?patient vocab:Patient_CRF512 ?crf ;
 vocab:Patient_CRF511 ?crf2 .

 ?crf vocab:CRF_ItemGroup1756 ?itemgroup .
 ?itemgroup vocab:Itemgroup_Item3432 ?item .
 ?item vocab:item_entry_value ?v .

 ?crf vocab:CRF_ItemGroup1757 ?itemgroup2 .
 ?itemgroup2 vocab:Itemgroup_Item3433 ?item2 .
 ?item2 vocab:item_entry_value ?v2 .

 ?crf vocab:CRF_ItemGroup1758 ?itemgroup3 .
 ?itemgroup3 vocab:Itemgroup_Item3434 ?item3 .
 ?item3 vocab:item_entry_value ?v3 .

 ?crf vocab:CRF_ItemGroup1690 ?itemgroup4 .
 ?itemgroup4 vocab:Itemgroup_Item3366 ?item4 .
 ?item4 vocab:item_entry_value ?v4 .

 ?crf2 vocab:CRF_ItemGroup1603 ?itemgroup5 .
 ?itemgroup5 vocab:Itemgroup_Item3279 ?item5 .
 ?item5 vocab:item_entry_value ?v5 .
}

Figure 14 The Obtima query in SPARQL after changing the D2RQ schema.

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 33 of 51

The SQL query produced for the SPARQL query that uses the optimised D2RQ
mapping is smaller, but still more complex than need be. Appendix 3A and 3B show
the SQL queries produced by D2RQ for respectively the SPARQL query in Figure 13
and Figure 14. Unfortunately, the performance problems are not entirely resolved,
but performance seems to have improved. The query occasionally completes within
seconds. However, the query does not always complete successfully; the database
can still spend minutes at 100% CPU usage without completing the query for reasons
that are still unclear. Also, a drawback of the extended D2RQ mapping that leads to
improved performance is that it is specific to a particular trial for which Obtima has
been used. The generic D2RQ mapping can be used for all trials, but each trial will
need its own extended mapping. This is, however, not a serious drawback because
the extended mapping can be generated fully automatically; no human involvement is
required.

Summary

The relational data access services have been running for two years now. They have
successfully been used in various scenarios. Nevertheless, there are still some
issues. One set of problems is due to limitations of the D2RQ library that is used by
the data access services to translate queries from SPARQL to SQL. There are two
important classes of limitations.

First, there are limitations that affect the query results. These problems are the most
serious, as these may lead to incorrect conclusions. The only known problem of this
type is the incorrect handling of some OPTIONAL blocks, which means that fewer
results are returned than should be [30]. This bug, however, has been fixed in the
repository, and the fix will be included in the next release of D2RQ.

A second class of limitations are those that cause poor query execution performance,
e.g. [31]. These prevent the execution of certain complex queries. This problem is
less severe, as it is apparent when it occurs and can be worked around by splitting a
complex query into smaller subqueries. Nevertheless, these limitations are
troublesome and they will hopefully be addressed. However, due to the inherent
complexity associated with translating SPARQL queries into efficient SQL queries
[27], this may take a while.

There are also other, more minor, limitations, for example, ones for which good work
arounds are available, e.g. [33] and [32]. All known problems in third-party libraries
that affect the data access services are listed on the ACGT wiki8, so that we can
easily track the outstanding issues. They have also been filed as bug reports, so that
the developers of these third-party libraries are aware of them and can provide the
corresponding fixes.

A more fundamental limitation of the SPARQL-query interface of the relational data
access service is caused by limitations of the SPARQL query language. In particular,
SPARQL lacks support for aggregation of data. That aggregation can be useful in
practice can be seen in the Wilms microarray scenario. Out of the three queries on
the Wilms CRF database that are needed to extract the required data, two use
aggregation9. This limitation can be worked around by carrying out aggregation

8 http://wiki.healthgrid.org/ACGT:Wrappers_-_Known_problems
9 Next to the tumor histology query discussed in Section 5.2.1, a query is needed for extracting basic
patient info, and another query for extracting survival information obtained during follow-ups. These

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 34 of 51

client-side (e.g. in the R scripts that carry out the data-mining algorithms). However,
this does require additional effort by the bio-informatician that carries out the analysis
and has to create the R scripts.

5.2.2 Data access service for DICOM image data
The current functionality of the DICOM data access services lets users retrieve
images associated with given patients, which is a common need when accessing
imaging data. Furthermore, the SPARQL-query interface provides a uniform interface
for carrying out simple queries within a given trial. The query interface is, however,
not intended for carrying out complex queries across images from many different
trials. If this functionality is needed, an approach similar to that of NCIA, an Open
Source solution provided by caBIG, is needed. Such a system could be extended
and integrated into the ACGT platform, for example to use ACGT’s authorization and
authentication approach for controlling access and to support delivery of images to
DMS.

Implementing the data access services for DICOM data alongside those for relational
data has been a good test-case for the feasibility of providing a uniform query
interface. DICOM query functionality is very basic, and significantly more limited than
both SPARQL and SQL. Resolving the differences in query functionality and query
capabilities of databases is always a big challenge when attempting to provide a
uniform interface over a set of heterogeneous databases. The particular problems
that we have encountered with the DICOM data access service have been
documented and discussed in [2] and [29].

5.2.3 Data access service for microarray data
The functionality offered by the data access services for the BASE databases is
relatively simple, yet sufficient for all the data-mining use cases we have considered
so far. Most importantly, it offers secure access to the microarray data as the data
access services have been fully integrated into the ACGT security infrastructure. The
files can be delivered to DMS, after optional compression and archiving into a single
file for efficiency, where they can subsequently be processed by the data-mining
scripts.

5.2.4 Dynamic deployment of data access services
We have recently provided users with the ability to dynamically deploy new data
sources into the ACGT platform. Users can integrate new data sources from the
ACGT portal and can subsequently query these directly from the workflow enactor.

So far, we have only done so for the relational data access services, as this is the
most useful. Similar functionality could be provided for the other data access
services, but there is less of a need. Dynamic creation of relational data access
services is particularly useful because a lot of different types of data can be made
available this way, including data from Excel spreadsheets and text files in CSV
format. Furthermore, integration of new data sources requires creating a mapping

queries are available in SVN, at respectively
https://iapetus.ics.forth.gr/svn/ACGT/WrapperServices/trunk/examples/perform/wilms/PatientInfo.xml
and
https://iapetus.ics.forth.gr/svn/ACGT/WrapperServices/trunk/examples/perform/wilms/FirstSurvivalEve
nt.xml

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 35 of 51

from SPARQL to SQL, which is best done by someone with good familiarity of the
schema of the database and the data contained in it. In contrast, there is no content-
specific knowledge required to integrate new DICOM and microarray databases.
Furthermore, the data they store is much more specific and new databases appear
less frequently (generation of new data in both cases requires expensive equipment,
is time-consuming and always involves patients or tissue samples), which means that
static deployment of these data access services is in practice sufficient.

Currently the access rules for all dynamically created data resources are the same.
Each resource is accessible by anybody with valid ACGT credentials. We plan to
extend the functionality so that by default newly created data resources are only
accessible to the owner (i.e. the person that created the resource). Subsequently the
owner can change the access rules to also grant access to other persons (either one-
by-one by explicitly naming each person that is allowed access, or in batches by
granting access to anyone that belongs to a particular Virtual Organization). This
improved functionality would have the benefit that dynamic data resources can also
be created for databases that contain data with more restrictions on access.

5.2.5 Open issues
We have implemented OGSA-DAI data access services for three types of data
sources: relational databases, medical image databases and a micro-array database.
The main research question is how to best provide a syntactically homogeneous
interface, and a key question is the query language that is used. We have chosen
SPARQL as the common query language and have demonstrated that it can be
successfully applied to relational databases and DICOM image databases.

For the relational databases, the SPARQL language does not support all features
offered by the query language of the data source, SQL. For instance, it does not
support aggregation of data (averaging, summation, counting, etc). So aggregation
needs to be performed at the client-side, even though the underlying database
supports it directly, which negatively affects performance. The actual use of the
system by the end users will clarify whether this is a problem that needs to be
addressed.

For medical image databases, SPARQL is more expressive than the query support
provided by the DICOM protocol. For this reason, the data access service does not
support all queries. These limitations are currently described as text, but should be
expressed in a more formal manner, so that other services and applications can
interpret these and handle accordingly. In order to select a suitable formal framework
for this, we need to thoroughly review the capabilities and limitations of all relevant
data sources.

A capability-restricted data access architecture has the advantage that it is easier to
develop data access services for data sources; as a consequence, new data sources
can be integrated much more quickly. It may, however, complicate applications and
services that use the data access services. A higher level data access service may
therefore be introduced that hides query restrictions of the underlying services. This
generic service would decompose queries for a specific data access service as
needed, store the intermediate results, and join these to produce the final answer.
This would facilitate implementation of the semantic mediator, while incurring a slight
performance penalty. However, this higher-level data access service may also carry

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 36 of 51

out generic optimizations such as caching of query results, resulting in overall
performance gains.

Another open issue is how to provide text-based query functionality. There are many
public biomedical databases where part of the data is free text. Examples are
descriptions of microarray experiments (e.g. in GEO [34] and ArrayExpress [35]),
descriptions of gene and protein functions (e.g. in UniProt [36] and EntrezGene [37]),
and abstracts and titles of medical publications (e.g. in PubMed [38]). Although most
databases provide keyword-based functionality for querying data, this method of
searching is not directly supported by SPARQL, so it is not immediately obvious how
to extend the current data access services interface to support this functionality. One
approach would be to add a separate text-based query interface for data sources that
support text-based queries. This exposes more details of the underlying data source,
resulting in a less homogeneous interface. This is undesirable but may be
unavoidable in practice. However, there is a more important question that needs to
be answered first: how should querying of text data be handled by the semantic
layer? This is an important question as it determines the query interface that is
available to end-users, but answering it falls outside the scope of this report.

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 37 of 51

6 References

[1] Erwin Bonsma and Anca Bucur (Editors), Deliverable 5.1: “Consolidated
requirements and specifications for data access”, 15 January 2007

[2] Erwin Bonsma (Editor), Deliverable 5.2: “Heterogeneous data access
services”, 19 December 2007

[3] Fatima Schera and Gabriele Weiler (Editors), Deliverable 5.4, “Conceptual
specification and a first prototype for an ontology based Clinical Data Management
System and for the Trial Builder”, 26 February 2008

[4] Manolis Tsiknakis (Editor), Deliverable 2.1: “User requirements and
specification of the ACGT internal clinical trial”, 13 September 2006

[5] Luis Martín (Editor), Deliverable 7.5: “Demonstration of final mediation access
tools and services”, 27 November 2008

[6] Brecht Claerhout and Stefan Castille (Editors), Deliverable 11.1:
“Consolidation of security requirements of ACGT and initial security architecture”, 1
February 2007

[7] Brecht Claerhout and Stefan Castille (Editors), Deliverable 11.2:
“Implementation of the ACGT core security services & initial implementation of the
Pseudonymisation tool”, 17 December 2007

[8] Thierry Sengstag (Editor), Deliverable 13.3: “Specification of scenarios for the
first integrated demonstrator of the ACGT platform”, 15 May 2008

[9] Thierry Sengstag (Editor), Deliverable 13.4: “April 2009 Demonstrator
Specifications”, 14 April 2009

[10] Bizer, C., Seaborne, A.: D2RQ – Treating Non-RDF Databases as Virtual RDF
Graphs. In: Proc. of the 3rd International Semantic Web Conference (ISWC2004),
Hiroshima, Japan, 2004. Poster presentation

[11] Chris Bizer, Richard Cyganiak, Jörg Garbers, Oliver Maresch and Christian
Becker. “The D2RQ Platform v0.6 - Treating Non-RDF Relational Databases as
Virtual RDF Graphs, User Manual and Language Specification”,
http://www4.wiwiss.fu-berlin.de/bizer/D2RQ/spec/

[12] Marcel van Herk, “Conquest DICOM software”,
http://www.xs4all.nl/~ingenium/dicom.html

[13] Max J. Warnock, Christopher Toland, Damien Evans, Bill Wallace and Paul
Nagy. “Benefits of Using the DCM4CHE DICOM Archive”. J Digit Imaging. 2007
November; 20(Suppl 1): 125–129. doi: 10.1007/s10278-007-9064-1.

[14] dcm4che.org, “Open Source Clinical Image and Object Management”,
http://www.dcm4che.org/

[15] UCLA Medical Imaging Informatics, “OpenSourcePACS -An Open Source
PACS Framework”, http://www.mii.ucla.edu/opensourcepacs/

[16] RainbowFish Software, “PacsOne server”, http://www.pacsone.net/

[17] caBIG, “National Biomedical Imaging Archive”,
https://cabig.nci.nih.gov/tools/NCIA

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 38 of 51

[18] Sun Microsystems, MySQL, http://www.mysql.com/

[19] Sun Microsystems, “MySQL Documentation”, http://dev.mysql.com/doc/

[20] PostgreSQL Global Development Group, PostgreSQL,
http://www.postgresql.org/

[21] PostgreSQL Global Development Group, “PostgreSQL Documentation”,
http://www.postgresql.org/docs/

[22] Russell J.T. Dyer, “MySQL in a Nutshell”, O’Reilly, 2nd Edition, April 2008

[23] John C. Worsley, Joshua D. Drake, “Practical PostgreSQL”, O’Reilly, 1st
Edition, January 2002

[24] Saal LH, Troein C, Vallon-Christersson J, et al (2002) BioArray Software
Environment: A Platform for Comprehensive Management and Analysis of Microarray
Data. Genome Biol-ogy 2002 3(8): software0003.1-0003.6

[25] Lund University, “BASE - BioArray Software Environment”
http://base.thep.lu.se/

[26] Brian Hatch, “Stunnel - Universal SSL Wrapper”, http://www.stunnel.org/

[27] Artem Chebotko, Shiyong Lu, Hasan M. Jamil and Farshad Fotouhi,
“Semantics Preserving SPARQL-to-SQL Query Translation for Optional Graph
Patterns”, Technical Report TR-DB-052006-CLJF, May 2006. Revised November
2006.

[28] B. Zirn et al., “Expression profiling of Wilms tumors reveals new candidate
genes for different parameters”, Int. J. Cancer: 118, 1954-1962 (2006)

[29] Erwin Bonsma and Jeroen Vrijnsen, “Homogenising access to heterogeneous
biomedical data sources”, Proc. of the BMIINT AIAI 2009 Workshop, April 2009

[30] D2RQ Bug 2808874, “Queries with OPTIONAL blocks returning too few
results”,
https://sourceforge.net/tracker/?func=detail&aid=2808874&group_id=111002&atid=6
57968

[31] D2RQ Bug 2798308, “Unnecessary self-joins in generated SQL queries”,
https://sourceforge.net/tracker/?func=detail&aid=2798308&group_id=111002&atid=6
57968

[32] D2RQ Bug 1801864: “EOFException on database connection not handled”,
https://sourceforge.net/tracker/index.php?func=detail&aid=1801864&group_id=11100
2&atid=657968

[33] D2RQ Bug 1794042: “Bug in D2RQ for properties that use more than one
join”,
https://sourceforge.net/tracker/index.php?func=detail&aid=1794042&group_id=11100
2&atid=657968

[34] Gene Expression Omnibus (GEO), http://www.ncbi.nlm.nih.gov/geo/

[35] ArrayExpress, http://www.ebi.ac.uk/microarray-as/ae/

[36] Uniprot, http://www.uniprot.org/

[37] Entrez Gene, http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene.

[38] PubMed, http://www.ncbi.nlm.nih.gov/pubmed/.

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 39 of 51

[39] Oracle Clinical, http://www.oracle.com/industries/life_sciences/oracle-
clinical.html

[40] OpenClinica, “Open Source for Clinical Research”, http://www.openclinica.org/

[41] caArray, http://caarray.nci.nih.gov/caARRAY

[42] Gattiker et al, “MIMAS 3.0 is a Multiomics Information Management and
Annotation System”, BMC Bioinformatics 2009, 10:151, doi:10.1186/1471-2105-10-
151

[43] Maurer et al, “MARS: Microarray analysis, retrieval, and storage system”, BMC
Bioinformatics 2005, 6:101 doi:10.1186/1471-2105-6-101

[44] Institute for Systems Biology, Systems Biology Experiment Analysis
Management System (SBEAMS), http://www.sbeams.org/

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 40 of 51

Appendix 1 - Abbreviations and acronyms
This glossary lists various acronyms that are used throughout the deliverable. It
does, however, not include all acronyms that are used. Acronyms that are only
introduced and used in a particular section, and not referred to subsequently, are
typically excluded.

API Application Programming Interface. The public interface provided
by libraries and services.

BASE BioArray Software Environment. The database for storing
microarray data that is used within ACGT.

CAT Custodix Anonymisation Tool. The tool used within ACGT to
anonymise and pseudonymise clinical-trial data.

CTMS Clinical Trial Management System.

CRF Case Report Form.

CSV Comma Separated Values. A simple textfile format for structured,
tabular data.

D2RQ A platform for accessing non-RDF, relational databases as virtual,
read-only RDF graphs

DICOM Digital Imaging and Communications in Medicine. A standard for
exchanging medical data.

DMS Data Management System. The grid-based file storage system that
is used in ACGT.

GAS Grid Authentication Server. The authentication server that is used
within ACGT

JDBC Java Database Connection. A Java API for database access

LIMS Laboratory Information Management System.

OGSA Open Grid Services Architecture

OGSA-DAI OGSA standard for Data Access and Integration. A middleware
product that supports the exposure of data sources onto the grid.

PACS Picture Archiving and Communication System. Generic term for
medical imaging databases.

RDBMS Relational Database Management System.

RDF Resource Description Framework. A language for representing
information about resources.

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 41 of 51

SCU Service Class User. DICOM term for the client of a service

SCP Service Class Provider. DICOM term for the provider of a service.

SPARQL A query language for RDF.

SQL Standard Query Language. The most popular query language for
relational databases.

SVN Subversion, the version control system used within ACGT.

URI Uniform Resource Identifier. A string of characters that identifies or
names an object on the Internet. It is a generalisation of URL.

URL Uniform Resource Locator. A type of URI that specifies where a
resource is available, and the mechanism for retrieving it.

XML Extensible Markup Language. The format that is used by web
services to exchange data.

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 42 of 51

Appendix 2A – Initial example D2RQ mapping
The initial D2RQ mapping from RDF to SQL for the example used in Section 4.1.2.

@prefix map: <file:/C:/d2rq/d2rq-0.6/d2rq_example.n 3#> .
@prefix db: <> .
@prefix vocab: <http://example.philips.com/vocab/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-synt ax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema #> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix d2rq: <http://www.wiwiss.fu-berlin.de/suhl/ bizer/D2RQ/0.1#>
.
@prefix jdbc: <http://d2rq.org/terms/jdbc/> .

map:database a d2rq:Database;
 d2rq:jdbcDriver "com.mysql.jdbc.Driver";
 d2rq:jdbcDSN "jdbc:mysql://localhost/d2rq_example" ;
 d2rq:username "readonly";
 d2rq:password "readonly";
 jdbc:autoReconnect "true";
 jdbc:zeroDateTimeBehavior "convertToNull";
 .

Table codesex
map:codesex a d2rq:ClassMap;
 d2rq:dataStorage map:database;
 d2rq:uriPattern "codesex/@@codesex.id@@";
 d2rq:class vocab:codesex;
 d2rq:classDefinitionLabel "codesex";
 .
map:codesex__label a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:codesex;
 d2rq:property rdfs:label;
 d2rq:pattern "codesex #@@codesex.id@@";
 .
map:codesex_id a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:codesex;
 d2rq:property vocab:codesex_id;
 d2rq:propertyDefinitionLabel "codesex id";
 d2rq:column "codesex.id";
 d2rq:datatype xsd:int;
 .
map:codesex_sex a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:codesex;
 d2rq:property vocab:codesex_sex;
 d2rq:propertyDefinitionLabel "codesex sex";
 d2rq:column "codesex.sex";
 .

Table crf_postsurgery
map:crf_postsurgery a d2rq:ClassMap;
 d2rq:dataStorage map:database;
 d2rq:uriPattern "crf_postsurgery/@@crf_postsurgery .id@@";
 d2rq:class vocab:crf_postsurgery;
 d2rq:classDefinitionLabel "crf_postsurgery";
 .

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 43 of 51

map:crf_postsurgery__label a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:crf_postsurgery;
 d2rq:property rdfs:label;
 d2rq:pattern "crf_postsurgery #@@crf_postsurgery.i d@@";
 .
map:crf_postsurgery_id a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:crf_postsurgery;
 d2rq:property vocab:crf_postsurgery_id;
 d2rq:propertyDefinitionLabel "crf_postsurgery id";
 d2rq:column "crf_postsurgery.id";
 d2rq:datatype xsd:int;
 .
map:crf_postsurgery_entry_id a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:crf_postsurgery;
 d2rq:property vocab:crf_postsurgery_entry_id;
 d2rq:propertyDefinitionLabel "crf_postsurgery entr y_id";
 d2rq:column "crf_postsurgery.entry_id";
 d2rq:datatype xsd:int;
 .
map:crf_postsurgery_rdx a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:crf_postsurgery;
 d2rq:property vocab:crf_postsurgery_rdx;
 d2rq:propertyDefinitionLabel "crf_postsurgery rdx" ;
 d2rq:column "crf_postsurgery.rdx";
 d2rq:datatype xsd:int;
 .

Table entry
map:entry a d2rq:ClassMap;
 d2rq:dataStorage map:database;
 d2rq:uriPattern "entry/@@entry.id@@";
 d2rq:class vocab:entry;
 d2rq:classDefinitionLabel "entry";
 .
map:entry__label a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:entry;
 d2rq:property rdfs:label;
 d2rq:pattern "entry #@@entry.id@@";
 .
map:entry_id a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:entry;
 d2rq:property vocab:entry_id;
 d2rq:propertyDefinitionLabel "entry id";
 d2rq:column "entry.id";
 d2rq:datatype xsd:int;
 .
map:entry_patient_id a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:entry;
 d2rq:property vocab:entry_patient_id;
 d2rq:propertyDefinitionLabel "entry patient_id";
 d2rq:column "entry.patient_id";
 d2rq:datatype xsd:int;
 .
map:entry_entry_date a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:entry;
 d2rq:property vocab:entry_entry_date;

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 44 of 51

 d2rq:propertyDefinitionLabel "entry entry_date";
 d2rq:column "entry.entry_date";
 d2rq:datatype xsd:date;
 .

Table patient
map:patient a d2rq:ClassMap;
 d2rq:dataStorage map:database;
 d2rq:uriPattern "patient/@@patient.id@@";
 d2rq:class vocab:patient;
 d2rq:classDefinitionLabel "patient";
 .
map:patient__label a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:patient;
 d2rq:property rdfs:label;
 d2rq:pattern "patient #@@patient.id@@";
 .
map:patient_id a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:patient;
 d2rq:property vocab:patient_id;
 d2rq:propertyDefinitionLabel "patient id";
 d2rq:column "patient.id";
 d2rq:datatype xsd:int;
 .
map:patient_sex_id a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:patient;
 d2rq:property vocab:patient_sex_id;
 d2rq:propertyDefinitionLabel "patient sex_id";
 d2rq:column "patient.sex_id";
 d2rq:datatype xsd:int;
 .
map:patient_dob a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:patient;
 d2rq:property vocab:patient_dob;
 d2rq:propertyDefinitionLabel "patient dob";
 d2rq:column "patient.dob";
 d2rq:datatype xsd:date;
 .

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 45 of 51

Appendix 2B – Final example D2RQ Mapping
The final D2RQ mapping from RDF to SQL after applying all changes described in
Section 4.1.2.

@prefix map: <file:/C:/d2rq/d2rq-0.6/d2rq_example.n 3#> .
@prefix db: <> .
@prefix vocab: <http://example.philips.com/vocab/> .
@prefix code: <http://example.philips.com/codes#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-synt ax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema #> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix d2rq: <http://www.wiwiss.fu-berlin.de/suhl/ bizer/D2RQ/0.1#>
.
@prefix jdbc: <http://d2rq.org/terms/jdbc/> .

map:database a d2rq:Database;
 d2rq:jdbcDriver "com.mysql.jdbc.Driver";
 d2rq:jdbcDSN "jdbc:mysql://localhost/d2rq_example" ;
 d2rq:username "readonly";
 d2rq:password "readonly";
 jdbc:autoReconnect "true";
 jdbc:zeroDateTimeBehavior "convertToNull";
 .

Table codesex
code:Female a vocab:code_sex .
code:Male a vocab:code_sex .

map:SexCodes a d2rq:TranslationTable;
 d2rq:translation [d2rq:databaseValue "Vrouw";
 d2rq:rdfValue code:Female;];
 d2rq:translation [d2rq:databaseValue "Man";
 d2rq:rdfValue code:Male;];
 .

map:code_sex a d2rq:ClassMap;
 d2rq:dataStorage map:database;
 d2rq:uriColumn "codesex.sex";
 d2rq:translateWith map:SexCodes;
 d2rq:class vocab:code_sex;
 .

Table crf_postsurgery
map:crf_postsurgery a d2rq:ClassMap;
 d2rq:dataStorage map:database;
 d2rq:uriPattern "crf_postsurgery/@@crf_postsurgery .id@@";
 d2rq:class vocab:crf_postsurgery;
 d2rq:classDefinitionLabel "crf_postsurgery";
 .
map:crf_postsurgery__label a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:crf_postsurgery;
 d2rq:property rdfs:label;
 d2rq:pattern "crf_postsurgery #@@crf_postsurgery.i d@@";
 .
map:crf_postsurgery_id a d2rq:PropertyBridge;

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 46 of 51

 d2rq:belongsToClassMap map:crf_postsurgery;
 d2rq:property vocab:crf_postsurgery_id;
 d2rq:propertyDefinitionLabel "crf_postsurgery id";
 d2rq:column "crf_postsurgery.id";
 d2rq:datatype xsd:int;
 .
map:crf_postsurgery_entry_date a d2rq:PropertyBridg e;
 d2rq:belongsToClassMap map:crf_postsurgery;
 d2rq:property vocab:crf_postsurgery_entry_date;
 d2rq:propertyDefinitionLabel "crf_postsurgery entr y_date";
 d2rq:column "entry.entry_date";
 d2rq:join "crf_postsurgery.entry_id = entry.id";
 d2rq:datatype xsd:date;
 .
map:crf_postsurgery_patient a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:crf_postsurgery;
 d2rq:property vocab:crf_postsurgery_patient;
 d2rq:propertyDefinitionLabel "crf_postsurgery pati ent";
 d2rq:refersToClassMap map:patient;
 d2rq:join "crf_postsurgery.entry_id = entry.id";
 d2rq:join "entry.patient_id = patient.id";
 .
map:crf_postsurgery_rdx a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:crf_postsurgery;
 d2rq:property vocab:crf_postsurgery_radiotherapy;
 d2rq:propertyDefinitionLabel "crf_postsurgery rdx" ;
 d2rq:column "crf_postsurgery.rdx";
 d2rq:datatype xsd:boolean;
 .

Table patient
map:patient a d2rq:ClassMap;
 d2rq:dataStorage map:database;
 d2rq:uriPattern "patient/@@patient.id@@";
 d2rq:class vocab:patient;
 d2rq:classDefinitionLabel "patient";
 .
map:patient__label a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:patient;
 d2rq:property rdfs:label;
 d2rq:pattern "patient #@@patient.id@@";
 .
map:patient_id a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:patient;
 d2rq:property vocab:patient_id;
 d2rq:propertyDefinitionLabel "patient id";
 d2rq:column "patient.id";
 d2rq:datatype xsd:int;
 .
map:patient_sex a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:patient;
 d2rq:property vocab:patient_sex;
 d2rq:propertyDefinitionLabel "patient sex";
 d2rq:refersToClassMap map:code_sex;
 d2rq:join "patient.sex_id = codesex.id";
 .

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 47 of 51

map:patient_dob a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:patient;
 d2rq:property vocab:patient_dob;
 d2rq:propertyDefinitionLabel "patient dob";
 d2rq:column "patient.dob";
 d2rq:datatype xsd:date;
 .

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 48 of 51

Appendix 3A – SQL query produced for initial Obtima SPARQL query
Below is the SQL query that is produced by D2RQ for the SPARQL query in Figure
13

SELECT DISTINCT "T4_itemgroup_entry"."itemgroupentr y_id",
"T18_item_entry"."value", "T21_itemgroup_entry"."it emgrouptemplate_fk",
"T10_item_entry"."value", "T1_patient"."patient_id" ,
"T26_item_entry"."value", "T2_itemgroup_entry"."ite mgroupentry_id",
"T9_itemgroup_entry"."itemgrouptemplate_fk",
"T6_itemgroup_entry"."itemgroupentry_id",
"T25_itemgroup_entry"."itemgrouptemplate_fk",
"T27_item_entry"."item_template_fk", "T14_item_entr y"."value",
"T20_item_entry"."itementry_id",
"T17_itemgroup_entry"."itemgrouptemplate_fk",
"T23_item_entry"."item_template_fk",
"T13_itemgroup_entry"."itemgrouptemplate_fk",
"T15_item_entry"."item_template_fk", "T22_item_entr y"."value",
"T5_itemgroup_entry"."itemgroupentry_id",
"T7_crf_instance"."crf_template_fk", "T11_item_entr y"."item_template_fk",
"T1_crf_instance"."crfinstance_id", "T8_item_entry" ."itementry_id",
"T24_item_entry"."itementry_id", "T19_item_entry"." item_template_fk",
"T16_item_entry"."itementry_id", "T3_itemgroup_entr y"."itemgroupentry_id",
"T12_item_entry"."itementry_id" FROM "itemgroup_ent ry" AS
"T21_itemgroup_entry", "patient" AS "T1_patient", " itemgroup_entry" AS
"T3_itemgroup_entry", "crf_instance" AS "T7_crf_ins tance", "crf_instance"
AS "T5_crf_instance", "crf_instance" AS "T4_crf_ins tance",
"itemgroup_entry" AS "T25_itemgroup_entry", "itemgr oup_entry" AS
"T24_itemgroup_entry", "item_entry" AS "T22_item_en try", "item_entry" AS
"T16_item_entry", "itemgroup_entry" AS "T5_itemgrou p_entry",
"itemgroup_entry" AS "T17_itemgroup_entry", "item_e ntry" AS
"T12_item_entry", "item_entry" AS "T11_item_entry", "itemgroup_entry" AS
"T20_itemgroup_entry", "item_entry" AS "T23_item_en try", "crf_instance" AS
"T3_crf_instance", "item_entry" AS "T8_item_entry", "itemgroup_entry" AS
"T2_itemgroup_entry", "itemgroup_entry" AS "T13_ite mgroup_entry",
"itemgroup_entry" AS "T16_itemgroup_entry", "item_e ntry" AS
"T15_item_entry", "itemgroup_entry" AS "T6_itemgrou p_entry", "item_entry"
AS "T18_item_entry", "itemgroup_entry" AS "T8_itemg roup_entry",
"item_entry" AS "T14_item_entry", "item_entry" AS " T27_item_entry",
"item_entry" AS "T26_item_entry", "item_entry" AS " T19_item_entry",
"crf_instance" AS "T1_crf_instance", "itemgroup_ent ry" AS
"T4_itemgroup_entry", "itemgroup_entry" AS "T9_item group_entry",
"itemgroup_entry" AS "T12_itemgroup_entry", "item_e ntry" AS
"T10_item_entry", "item_entry" AS "T24_item_entry", "crf_instance" AS
"T2_crf_instance", "crf_instance" AS "T6_crf_instan ce", "item_entry" AS
"T20_item_entry" WHERE ("T10_item_entry"."itementry _id" =
"T11_item_entry"."itementry_id" AND "T11_item_entry "."itementry_id" =
"T8_item_entry"."itementry_id" AND "T12_item_entry" ."itementry_id" =
"T15_item_entry"."itementry_id" AND "T12_item_entry "."itemgroupentry_fk" =
"T12_itemgroup_entry"."itemgroupentry_id" AND
"T12_itemgroup_entry"."itemgroupentry_id" =
"T13_itemgroup_entry"."itemgroupentry_id" AND
"T13_itemgroup_entry"."itemgroupentry_id" =
"T3_itemgroup_entry"."itemgroupentry_id" AND
"T14_item_entry"."itementry_id" ="T15_item_entry"." itementry_id" AND
"T16_item_entry"."itementry_id" = "T18_item_entry". "itementry_id" AND
"T16_item_entry"."itementry_id" = "T19_item_entry". "itementry_id" AND
"T16_item_entry"."itemgroupentry_fk" =
"T16_itemgroup_entry"."itemgroupentry_id" AND
"T16_itemgroup_entry"."itemgroupentry_id" =
"T17_itemgroup_entry"."itemgroupentry_id" AND

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 49 of 51

"T16_itemgroup_entry"."itemgroupentry_id" =
"T4_itemgroup_entry"."itemgroupentry_id" AND
"T1_crf_instance"."crfinstance_id" = "T3_crf_instan ce"."crfinstance_id" AND
"T1_crf_instance"."patient_fk" = "T1_patient"."pati ent_id" AND
"T20_item_entry"."itementry_id" = "T22_item_entry". "itementry_id" AND
"T20_item_entry"."itementry_id" = "T23_item_entry". "itementry_id" AND
"T20_item_entry"."itemgroupentry_fk" =
"T20_itemgroup_entry"."itemgroupentry_id"AND
"T20_itemgroup_entry"."itemgroupentry_id" =
"T21_itemgroup_entry"."itemgroupentry_id" AND
"T20_itemgroup_entry"."itemgroupentry_id" =
"T5_itemgroup_entry"."itemgroupentry_id" AND
"T24_item_entry"."itementry_id" = "T27_item_entry". "itementry_id" AND
"T24_item_entry"."itemgroupentry_fk" =
"T24_itemgroup_entry"."itemgroupentry_id" AND
"T24_itemgroup_entry"."itemgroupentry_id" =
"T25_itemgroup_entry"."itemgroupentry_id" AND
"T25_itemgroup_entry"."itemgroupentry_id" =
"T6_itemgroup_entry"."itemgroupentry_id" AND
"T26_item_entry"."itementry_id" = "T27_item_entry". "itementry_id" AND
"T2_crf_instance"."crfinstance_id" = "T2_itemgroup_ entry"."crf_instance_fk"
AND "T2_crf_instance"."crfinstance_id" = "T3_crf_in stance"."crfinstance_id"
AND "T2_itemgroup_entry"."itemgroupentry_id" =
"T9_itemgroup_entry"."itemgroupentry_id" AND
"T3_crf_instance"."crfinstance_id" = "T3_itemgroup_ entry"."crf_instance_fk"
AND "T3_crf_instance"."crfinstance_id" = "T4_crf_in stance"."crfinstance_id"
AND "T3_crf_instance"."crfinstance_id" = "T5_crf_in stance"."crfinstance_id"
AND "T3_crf_instance"."crfinstance_id" = "T6_crf_in stance"."crfinstance_id"
AND "T3_crf_instance"."crfinstance_id" = "T7_crf_in stance"."crfinstance_id"
AND "T4_crf_instance"."crfinstance_id" =
"T4_itemgroup_entry"."crf_instance_fk" AND
"T5_crf_instance"."crfinstance_id" = "T5_itemgroup_ entry"."crf_instance_fk"
AND "T6_crf_instance"."crfinstance_id" =
"T6_itemgroup_entry"."crf_instance_fk" AND
"T8_item_entry"."itemgroupentry_fk" =
"T8_itemgroup_entry"."itemgroupentry_id" AND
"T8_itemgroup_entry"."itemgroupentry_id" =
"T9_itemgroup_entry"."itemgroupentry_id" AND
("T11_item_entry"."item_template_fk" = 3432) AND
("T13_itemgroup_entry"."itemgrouptemplate_fk" = 175 7) AND
("T15_item_entry"."item_template_fk" = 3433) AND
("T17_itemgroup_entry"."itemgrouptemplate_fk" = 175 8)
AND("T19_item_entry"."item_template_fk" = 3434) AND
("T21_itemgroup_entry"."itemgrouptemplate_fk" = 169 0) AND
("T23_item_entry"."item_template_fk" = 3366) AND
("T25_itemgroup_entry"."itemgrouptemplate_fk" = 160 3) AND
("T27_item_entry"."item_template_fk" = 3279) AND
("T7_crf_instance"."crf_template_fk" = 512) AND
("T9_itemgroup_entry"."itemgrouptemplate_fk" = 1756))

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 50 of 51

Appendix 3B - SQL query produced for refined Obtima SPARQL query
Below is the SQL query that is produced by D2RQ for the SPARQL query in Figure
14

SELECT DISTINCT "T9_itemgroup_entry"."itemgroupentr y_id",
"T14_item_entry"."value", "T13_item_entry"."itement ry_id",
"T17_item_entry"."value", "T4_item_entry"."itementr y_id",
"T2_crf_instance"."crfinstance_id", "T1_patient"."p atient_id",
"T11_item_entry"."value", "T1_crf_instance"."crfins tance_id",
"T10_item_entry"."itementry_id", "T15_itemgroup_ent ry"."itemgroupentry_id",
"T8_item_entry"."value", "T6_itemgroup_entry"."item groupentry_id",
"T5_item_entry"."value", "T7_item_entry"."itementry _id",
"T3_itemgroup_entry"."itemgroupentry_id", "T16_item _entry"."itementry_id",
"T12_itemgroup_entry"."itemgroupentry_id" FROM "ite mgroup_entry" AS
"T7_itemgroup_entry", "patient" AS "T1_patient", "p atient" AS "T2_patient",
"item_entry" AS "T7_item_entry", "itemgroup_entry" AS "T3_itemgroup_entry",
"item_entry" AS "T5_item_entry", "item_entry" AS "T 16_item_entry",
"item_entry" AS "T11_item_entry", "crf_instance" AS "T3_crf_instance",
"item_entry" AS "T8_item_entry", "itemgroup_entry" AS
"T13_itemgroup_entry", "itemgroup_entry" AS "T16_it emgroup_entry",
"itemgroup_entry" AS "T6_itemgroup_entry", "item_en try" AS
"T13_item_entry", "item_entry" AS "T14_item_entry", "item_entry" AS
"T17_item_entry", "crf_instance" AS "T1_crf_instanc e", "itemgroup_entry" AS
"T4_itemgroup_entry", "item_entry" AS "T4_item_entr y", "itemgroup_entry" AS
"T9_itemgroup_entry", "crf_instance" AS "T15_crf_in stance",
"itemgroup_entry" AS "T15_itemgroup_entry", "itemgr oup_entry" AS
"T12_itemgroup_entry", "item_entry" AS "T10_item_en try", "crf_instance" AS
"T2_crf_instance", "itemgroup_entry" AS "T10_itemgr oup_entry",
"crf_instance" AS "T6_crf_instance", "crf_instance" AS "T9_crf_instance",
"crf_instance" AS "T12_crf_instance" WHERE ("T10_it em_entry"."itementry_id"
= "T11_item_entry"."itementry_id" AND "T10_item_ent ry"."itemgroupentry_fk"
= "T10_itemgroup_entry"."itemgroupentry_id" AND
"T10_itemgroup_entry"."itemgroupentry_id" =
"T9_itemgroup_entry"."itemgroupentry_id" AND
"T12_crf_instance"."crfinstance_id" =
"T12_itemgroup_entry"."crf_instance_fk" AND
"T12_crf_instance"."crfinstance_id" = "T3_crf_insta nce"."crfinstance_id"
AND "T12_itemgroup_entry"."itemgroupentry_id" =
"T13_itemgroup_entry"."itemgroupentry_id" AND
"T13_item_entry"."itementry_id" = "T14_item_entry". "itementry_id" AND
"T13_item_entry"."itemgroupentry_fk" =
"T13_itemgroup_entry"."itemgroupentry_id" AND
"T15_crf_instance"."crfinstance_id" =
"T15_itemgroup_entry"."crf_instance_fk" AND
"T15_crf_instance"."crfinstance_id" = "T2_crf_insta nce"."crfinstance_id"
AND "T15_itemgroup_entry"."itemgroupentry_id" =
"T16_itemgroup_entry"."itemgroupentry_id" AND
"T16_item_entry"."itementry_id" = "T17_item_entry". "itementry_id" AND
"T16_item_entry"."itemgroupentry_fk" =
"T16_itemgroup_entry"."itemgroupentry_id" AND
"T1_crf_instance"."crfinstance_id" = "T3_crf_instan ce"."crfinstance_id" AND
"T1_crf_instance"."patient_fk" = "T1_patient"."pati ent_id" AND
"T1_patient"."patient_id" = "T2_patient"."patient_i d" AND
"T2_crf_instance"."patient_fk" = "T2_patient"."pati ent_id" AND
"T3_crf_instance"."crfinstance_id" = "T3_itemgroup_ entry"."crf_instance_fk"
AND "T3_crf_instance"."crfinstance_id" = "T6_crf_in stance"."crfinstance_id"
AND "T3_crf_instance"."crfinstance_id" = "T9_crf_in stance"."crfinstance_id"
AND "T3_itemgroup_entry"."itemgroupentry_id" =
"T4_itemgroup_entry"."itemgroupentry_id" AND "T4_it em_entry"."itementry_id"
= "T5_item_entry"."itementry_id" AND "T4_item_entry "."itemgroupentry_fk" =

ACGT FP6-026996 D5.7 - Integrating clinical data sources in the ACGT platform

23/11/2009 Page 51 of 51

"T4_itemgroup_entry"."itemgroupentry_id" AND
"T6_crf_instance"."crfinstance_id" = "T6_itemgroup_ entry"."crf_instance_fk"
AND "T6_itemgroup_entry"."itemgroupentry_id" =
"T7_itemgroup_entry"."itemgroupentry_id" AND "T7_it em_entry"."itementry_id"
= "T8_item_entry"."itementry_id" AND "T7_item_entry "."itemgroupentry_fk" =
"T7_itemgroup_entry"."itemgroupentry_id" AND
"T9_crf_instance"."crfinstance_id" = "T9_itemgroup_ entry"."crf_instance_fk"
AND ("T10_item_entry"."item_template_fk" = 3434) AN D
("T12_itemgroup_entry"."itemgrouptemplate_fk" = 169 0) AND
("T13_item_entry"."item_template_fk" = 3366) AND
("T15_itemgroup_entry"."itemgrouptemplate_fk" = 160 3) AND
("T16_item_entry"."item_template_fk" = 3279) AND
("T1_crf_instance"."crf_template_fk" = 512) AND
("T2_crf_instance"."crf_template_fk" = 511) AND
("T3_itemgroup_entry"."itemgrouptemplate_fk" = 1756) AND
("T4_item_entry"."item_template_fk" = 3432) AND
("T6_itemgroup_entry"."itemgrouptemplate_fk" = 1757) AND
("T7_item_entry"."item_template_fk" = 3433) AND
("T9_itemgroup_entry"."itemgrouptemplate_fk" = 1758))

