D5.2 – Heterogeneous data access services

ACGT FP6-026996

[image: image13.emf](T1)

Retrieve Activity

(T1)

Image Retriever

(T1)

Query Retrieve

Service Class

(T2)

Storage

Service Class

getImages(uid)

move(uid)

C-MOVE-RQ

(external)

DICOM

Server

getNextImage()

hasNextImage()

getNrOfRemainingImages ()

doCStore()

C-STORE-RQ

[p := new PipedOutputStream()]

[new PipedInputStream(p)]

setOutputStream(p)

[await (streamAttached)]

[streamAttached.signal()]

C-STORE-RSP

[ImagesRemaining]

setNrOfRemainingImages ()

C-MOVE-RSP

[Receiving blocks of image data via PipedStream]

Heterogeneous data access services
Project Number:
FP6-2005-IST-026996

Deliverable id:
D5.2
[image: image1.jpg]Deliverable name:
Heterogeneous data access services
Submission Date:
19/12/2007
	COVER AND CONTROL PAGE OF DOCUMENT

	Project Acronym:
	ACGT

	Project Full Name:
	Advancing Clinico-Genomic Clinical Trials on Cancer: Open Grid Services for improving Medical Knowledge Discovery

	Document id:
	D5.2

	Document name:
	Heterogeneous data access services

	Document type (PU, INT, RE)
	RE

	Version:
	1.00

	Submission date:
	19/12/2007

	Editor:
Organisation:
Email:
	Erwin Bonsma
Philips Research
erwin.bonsma@philips.com

Document type PU = public, INT = internal, RE = restricted

	ABSTRACT:

This deliverable describes the design and initial realisation of the data access services that have been developed as part of the ACGT project. The objectives of this report are three-fold: to document the design decisions that were made, together with their rationale, to provide a basic understanding of the implementation of the data access services, and to illustrate the possibilities and limitations of providing homogeneous access to heterogeneous data sources.
The main goal of the data access services is to provide a uniform data access interface to heterogeneous data sources. Web Services have been used as the common interface technology, and SPARQL has been chosen as a common query language. Data access services have been implemented for two data sources: relational databases and medical image databases. We outline their implementation, and give examples of their functionality and limitations.

	KEYWORD LIST: clinical trials, relational databases, web services, DICOM

	MODIFICATION CONTROL

	Version
	Date
	Status
	Author

	0.90
	21/11/2007
	Ready for internal review
	E. Bonsma

	0.91
	22/11/2007
	Minor changes
	E. Bonsma

	1.00
	19/12/2007
	Updated based on review comments
	E. Bonsma

List of contributors:

· Erwin Bonsma, Philips Research

· Jeroen Vrijnsen, Philips Research

· Anca Bucur, Philips Research

List of reviewers:

· Luis Martín, UPM

· Alberto Anguito, UPM

· Stefan Rüping, Fraunhofer IAIS
· Giorgos Zacharioudakis, FORTH

· Rob van Ommering, Philips Research

· Joost Reuzel, Philips Research

Contents

11.
Introduction

11.1.
Context

11.1.1.
ACGT Integration Architecture

21.1.2.
Relevant data sources

21.1.3.
Requirements for the data access services

31.2.
Objective

31.3.
Structure of this deliverable

42.
High-level implementation decisions

42.1.
Scope-limiting decisions

52.2.
Design decisions

62.3.
Technology choices

62.3.1.
Common query language

83.
Technologies used

83.1.
OGSA-DAI

83.1.1.
Concepts

93.1.2.
An example

113.2.
SPARQL

144.
Relational data access services

144.1.
Implementation

144.1.1.
Use of SPARQL

164.1.2.
Query limitations

184.2.
Exporting Schema

184.3.
Testing

205.
Medical image data access services

205.1.
DICOM

205.1.1.
Terminology

215.1.2.
Unique identifiers

225.1.3.
Querying

245.1.4.
Image retrieval

255.2.
Implementation

255.2.1.
Query handling

375.2.2.
Image retrieval

415.3.
Testing

426.
Validation and performance tests

426.1.
Experimental setup

426.1.1.
The testing framework

436.1.2.
Load-testing client

446.1.3.
Queries

456.1.4.
Network configurations

466.2.
Results

466.2.1.
Experiment 1: Quering the relational database

486.2.2.
Experiment 2: Quering the DICOM database

496.2.3.
Experiment 3: DICOM image retrieval

517.
Conclusion

517.1.
Achievements

517.2.
Open issues

517.2.1.
Query limitations of the common query language

527.2.2.
Query limitations of the underlying data sources

527.2.3.
Bulk queries

537.2.4.
Mapping to RDF

547.2.5.
Other types of data source

547.2.6.
Security

55References

58A
How to use the data access services

58A.1
ClassicModelsResource

58A.2
acgt_farmer

59A.3
TestImageResource

60B
How to deploy the data access services

60B.1
Prerequisites

61B.2
Setting up the databases

63B.3
Installing the data access services

65B.4
Testing the local installation

1. Introduction

The subject of this deliverable is the design and realisation of the data access services that have been developed as part of the ACGT project. The next section gives more details about the context in which the work was carried out. It is followed by three sections that explain the objective of this deliverable, the intended audience, and how the remainder of the report is structured.

1.1. Context

The requirements analysis that was performed preceding the realisation of the data access services is described in [1]. In order to make this document self contained, the following subsections provide the minimal background information that is needed to understand the subsequent chapters.

1.1.1. ACGT Integration Architecture

Figure 1 shows the ACGT information architecture as proposed at the outset of the project. It illustrates the envisaged role of the data access services, referred to in the figure as Wrapper services. The main user of the data access services is the Mediator service
. It in turn is used by various applications, tools and services. The mediator provides a virtual view on all data. Clients of the mediator do not have to know about location, schemas, or access methods of the underlying data sources. The mediator accepts queries expressed in a single ontology (the master ontology). It translates the query and decomposes it into one or more sub-queries that it issues to the data access services. These queries are expressed in the ontology of the underlying data sources, i.e. their local ontology. Thus, the mediator resolves semantic heterogeneities.

The data access services receive the queries from the mediator, transform these to the format of the underlying data source, and translate the results back to the local ontology schema. Thus, the role of the data access services is to provide homogeneous access to heterogeneous data sources, from the syntactic point of view. They should hide differences in the access interface, the query language, the data format, etc.

[image: image2.wmf]

Figure 1 The ACGT information integration architecture.

1.1.2. Relevant data sources

For bio-medical clinical trials the following types of data sources are most important:

· Relational databases. These, amongst others, typically store the data gathered using the Clinical Report Forms.

· Medical image databases. Virtually every hospital nowadays uses a Picture Archiving Communication System (PACS) for digitally storing medical images.

· Public web databases. The most important public genome and protein sequence databases are freely available through a web interface.

· Files in various formats. The principal investigator of a trial may, for example, collect and maintain laboratory results in a simple spreadsheet document.

1.1.3. Requirements for the data access services

The data access services need to provide several functions:

· Provide a uniform data access interface. This includes uniformity of transport protocol, message syntax, query language and data format.

· Export the data model of data sources. Clients of the web service need this to construct queries.

· Enforce the data source access policy, and audit access to data sources. For clinical data there are strict legal and ethical requirements that need to be adhered to.

1.2. Objective

This deliverable describes the data access services that have so far been implemented in the context of the ACGT project. More specifically, this report has the following objectives:

· To document the design decisions that were made, together with their rationale.

· To provide a basic understanding of the implementation of the data access services.

· To illustrate the possibilities and limitations of providing homogeneous access to heterogeneous data sources.

1.3. Structure of this deliverable
The remainder of this deliverable is structured as follows. Chapter 2 documents the high-level decisions that were made with respect to the scope of our work, and the design and implementation of the data access services. Chapter 3 describes the technologies that we have chosen for the realisation of the data access services in more detail. It provides the required background information for Chapter 4 and 5, which describe the implementation of the data access services for respectively relational databases and medical image databases. Chapter 6 describes the validation and performance tests that were carried out on the data access services. Chapter 7 concludes by summarising the achievements and discussing outstanding issues.

The deliverable also contains two appendices. Appendix A describes in detail how the data access services can be used. Appendix B documents how to locally deploy the data access services. This is, however, not required in order to use the services.

2. High-level implementation decisions

Before implementation of the data access services can start, a few decisions need to be made. Firstly, the scope of the problem needs to be limited in order to effectively use our effort. Section 2.1 documents the decisions that we have made. Section 2.2 subsequently describes the conceptual design decisions that have been taken. It is complemented by Section 2.3, which describes the technology choices that have been made to realise the data access services.

2.1. Scope-limiting decisions

We have implemented data access services for two of the data sources listed in Section 1.1.2, namely relational databases and medical image databases. The reason for initially choosing these are three-fold. Firstly, both types of databases are highly relevant in clinical trials. Secondly, for both there are established standards for accessing the data, namely SQL/JDBC for relational databases, and DICOM for medical image databases. By using these standards, the data access services can be used to access many different data sources from different vendors, resulting in a high pay-off given the invested development effort. Thirdly, the expressiveness of the queries that both data sources support is very different. This makes it a challenge to provide a uniform data access interface for both data sources, which is one of the goals of the data access services.
Although within ACGT there is the need to access other types of data source, such as public databases, we feel it is best to validate the technical design decisions through actual use on a limited set of data access services, and if necessary adapt the design accordingly, before covering more types of data source. Especially for public web databases, where the development of data access services requires more custom development effort due to the variability in their interfaces, it is worthwhile to have a settled interface for the data access services before starting implementation. We will revisit this decison in Chapter 6, when we discuss the capabilities and limitations of the current data access services.
Section 1.1.3 described the three functions that the data access services need to provide. For the implementation of the data access services, we have focussed our effort on the first one, the provision of a uniform interface, as it is the most important. The other two required functions are not immediately needed in the ACGT prototype platform. Although the data access services should eventually expose the schema of their underlying data sources, they can be used without this functionality; the schema simply needs to be communicated by other means to the developers of client services and applications. Similarly, there is initially no need to provide highly secure, policy-based access to the data sources and audit their use. Dummy data can be used to perform initial integration with services and applications developed by other ACGT partners, and in this case it is sufficient to provide basic access control using firewalls. Furthermore, within the ACGT project, the provision of a sufficient trust and security infrastructure is the responsibility of WP11. These efforts are currently ongoing. Once the initial security infrastructure is in place, we will extend our data access services with the required authentication and authorisation functionality.
It is generally recognized that writing wrappers takes significant effort, and therefore there has been research into automating parts of this, see e.g. [2, 3]. In general, automation is focused on a subset of the different data sources, e.g. sources with a web interface [4]. We have not attempted to automate development of the initial data access services. We wanted to quickly make some data access services available so that integration with the semantic mediator could start early. Furthermore, the availability of suitable third-party code also made automated development of these first data access services less relevant.

2.2. Design decisions

Two different approaches exist for providing uniform access to heterogeneous data sources: data transformation and query translation. Using data transformation, data is taken from the original data sources, and converted and stored in a database specific to the data access service. This may involve mapping the data to a unified and normalised schema. Furthermore, all data can be stored in the same type of database, e.g. a relational database, irrespective of the type of data source that the data is coming from. In contrast, in the query translation approach the data remains in the original databases. Here, queries are translated instead. Both approaches have their advantages and drawbacks, which are summarised in Table 1. For the query translation approach, it is assumed that the data access services need to support all syntactically valid queries, irrespective of the query limitations of the underlying data source.

	Data Transformation
	Query Translation

	−
Large storage requirements at the data access service. Data from the original data sources is duplicated.
	+
Minimal storage requirements at the data access service. For handling certain queries, it may be necessary to temporarily store data, but this is a subset of the data, and only has to be stored for the duration of the query

	−
It is difficult to keep the data synchronised. If the original data source cannot provide notifications when data has changed, the entire contents of the data need to be periodically converted, which is an expensive operation, and data will be outdated.
	+
Retrieved data is always up to date.

	+
Queries can be handled efficiently and easily.
	−
Translating queries can be a complex and expensive operation. If data sources have limited query capabilities, certain queries cannot be handled efficiently. Clients may experience a high latency, and the underlying data source and their network connection may experience a high load.

Table 1 A comparison of the Data Translation and Query Translation approach.

Based on the strengths and weaknesses given in Table 1, we have chosen to adopt a query translation approach for the data access services. The reason is that there is a large number of public bio-molecular databases that are relevant to users of the ACGT platform [1]. The storage requirements to mirror these would be very large. Furthermore, as these database are outside our control, mirroring is often not practical, if it is allowed in the first place. Although handling queries can be difficult in the query translation approach, we consider the problem to be of similar complexity as that of data synchronisation and associated data conversion in the data transformation approach.

2.3. Technology choices

Web Services have been chosen as the common interface technology within the ACGT platform from the outset of the project, as they fit the distributed nature of the ACGT project. The data and computing resources are distributed across Europe, and so are the development teams that build the various services and applications comprising the platform.

More specifically, the data access services are implemented as OGSA-DAI services. OGSA-DAI is a web services framework for providing data access [5]. Its activity framework enables efficient and flexible service invocation. Though it is still evolving, like many web service technologies, the platform is mature and has an active and large user community. The choice to use OGSA-DAI has been a rather pragmatic one. The framework is intended for the development of data access services, and there are currently no other web services frameworks available specifically for this purpose. So it makes sense to simply try it out, and evaluate its capabilities and possible limitations this way.

Java has been chosen as the programming language in which to implement the data access services. This mainly follows from the intention to make the ACGT platform available as Open Source, which implies that third-party software that we use should also be available as Open Source. This software is typically developed using Java. This holds for example for OGSA-DAI [5, 6], Jena [7, 8], and D2RQ [9, 10]. These are some of the third-party software that we are using to implement the data access services. Each is the most popular, and arguably best, Open Source implementation providing the functionality that is required to implement the data access services.

2.3.1. Common query language

In order for the data access services to provide a homogeneous interface, they need to use a common query language. The following main requirements were identified for the common query language:

· It must be sufficiently expressive. It should support the types of queries that clinicians and clinical researchers want to carry out.

· It must be attainable, with acceptable effort, to map the query language to those used by the various data sources that need to be accessed.

· It must be convenient to use the query language for semantic mediation, as this is the next step that needs to be carried out to integrate data from heterogeneous data sources.

· It should be a community accepted standard. This ensures that there are sufficient support tools available (such as parsing and query engines). Furthermore, it increases the chance that the approach taken within the ACGT project will in due time be taken up outside the ACGT project.

Note, the ability for the query language to support updates and additions to the data is not a requirement. There is no possibility to directly update the data in public databases anyway. Furthermore, there is also no need to update trial-specific data through the data access services. The data sources that are queried will contain derived, anonymised data. Updates are only made to the original data by the small group of users that is authorized to do so, using the tools that they are already using for that purpose, such as Clinical Database Management Systems.

There is a large number of query languages. Fortunately, most query languages can be quickly discarded, given the requirements above. Only the following query languages were seriously considered:

· SQL, as the most commonly used query language. It is the de facto standard for querying relational databases, which is currently the most popular database storage technology.

· XQuery [11], as the upcoming standard query language for XML data sources. XML is used as the message syntax for Web Services, so XQuery should be considered for this reason alone.

· SPARQL [12], as a query language for RDF data. RDF is the data model that is most frequently used for semantic mediation. Out of the many RDF query languages
, SPARQL was chosen because it is in the process of becoming a standard, and more expressive than its predecessor RDQL [13]. In particular, the addition of OPTIONAL blocks to SPARQL is very useful in practise (see Section 5.2.1 for concrete examples).

Out of these, SPARQL meets our requirements best. One of the main reasons is that it is based on the RDF data model [14], which is a general graph-based model. It can be applied to data that is stored as an RDF graph, but also to data that is stored and represented using other data models such as relational or hierarchical ones. In contrast, both SQL and XQuery are very specific to their underlying logical data models, respectively relational and XML, and cannot easily be applied to others. As we are not using the data translation approach, this makes SQL and XQuery already less suited as query languages for the data access services. Furthermore, SQL and XQuery are both substantially more complex than SPARQL. This means that query translation can be achieved much more easily for SPARQL, than it can be for SQL and XQuery.

SPARQL has an intermediate level of expressiveness. It is less expressive than either SQL or XQuery. Most notably, SPARQL does not support any form of aggregation. It can only return the values that are in the underlying database, not any derived values obtained through counting, averaging, summation, etc. This is a drawback because it means that end-user queries that use aggregation are not directly supported. They can still be carried out, but aggregation will have to be performed client-side which can be significantly less efficient. It also means that users cannot ask how many “hits” their query has before deciding whether or not to retreive these all. However, SPARQL does support the LIMIT keyword in order to limit the number of results that are to be returned. Furthermore, certain data sources do not support aggregation either, and may provide query functionality that is significantly more basic than the functionality provided by SPARQL. An example are medical image databases, as will be described in Chapter 5. For this reason, the level of expressiveness of SPARQL is deemed appropriate for use as a common query language.

3. Technologies used

Section 2.3 described which technologies we have chosen to implement the data access services. This chapter now describes these technologies in more detail to provide the technical background information that is required to understand the subsequent chapters. First, Section 3.1 describes the OGSA-DAI interface together with concepts that are used. Next, Section 3.2 describes the basics of the SPARQL query language; more details will be introduced as needed throughout the report.

3.1. OGSA-DAI

OGSA-DAI [5, 6] is a specification for web service data access and integration. The aim of the OGSAI-DAI project is to develop middleware to assist with access and integration of data from disparate sources via the grid. The OGSA-DAI specification revolves around a number of concepts, which are introduced below
.

3.1.1. Concepts

A data service is a point of contact for clients who wish to access, query or update data resources, and as such offers a document-oriented interface which accepts OGSA-DAI perform documents and returns response documents.

A data service exposes zero or more data service resources. Each data service resource represents a specific data resource, for example a DICOM database. A data service resource accepts perform documents from data services, parses and validates them, executes the data-related activities specified within them, and constructs response documents.

A perform document describes the actions that a data service resource should to take on behalf of the client, whereas a response document describes the status of execution of a perform document and may contain result data, such as the results from a database query. Each action in a perform document is known as an activity, and can have (named) input- and output streams.

In the perform document activities can be linked together so that data from one activity flows into another activity, thus forming an activity pipeline. The pipes between the activities simply stream object references known as blocks. As such, the OGSA-DAI framework executes the activities block-wise, until no more blocks of data exist in the activity pipeline. The pipelining mechanism allows multiple interactions with a service to be encapsulated in a single client-server interaction.

An output stream of an activity that is not used as an input stream for another activity is known as an end-point. Data produced by end-points is included in the response document that is returned to the client. This means that the response document will not return before the activities corresponding to the end-points finished processing. However, if a perform document contains no end-points, the response document can be returned immediately and the perform document can be processed asynchronously.

Activities interact with a data resource by way of their data resource accessor. Data resource accessors control access to an underlying data resource. More generally data resource accessors hold state and provide methods that can be accessed by multiple activities and multiple instances of those activities.

3.1.2. An example

The following example, taken from the documentation at the OGSA-DAI website [6], shows how a simple SQL query can be carried out on a relational database using OGSA-DAI, as shown in Figure 2. The database could be hosted on the server that also hosts the OGSA-DAI web service, but this does not need to be the case.

[image: image3.wmf]Client

Data

base

Perform

doc.

Web service host

OGSA

-

DAI

Data

service

Data

service

resource

Perform

doc.

Response

doc.

SQL

query

Result

set

Response

doc.

Client

Data

base

Perform

doc.

Web service host

OGSA

-

DAI

Data

service

Data

service

resource

Perform

doc.

Response

doc.

SQL

query

Result

set

Response

doc.

Figure 2 Example use of OGSA-DAI to query a relational database.

Figure 3 shows a perform document that may be used. It describes a query whose results will be transformed into WebRowSet XML. There is one end-point so this perform document will be processed synchronously and the query results will be delivered within the response document.

An activity pipeline is formed connecting the sqlQueryStatement and sqlResultsToXML activities. The query results are then transformed into WebRowSet XML and delivered back to the client in the response document. A possible response is shown in Figure 4. The <result> element with name “webRowSetOutput” corresponds with the end-point (or unconnected output stream) in the perform document. The query results are inserted into a CDATA child node of the <result> element. Also note that there is a <result> element for each activity, which simply reports the status of the activity.

<?xml version="1.0" encoding="UTF-8"?>

<perform xmlns="http://ogsadai.org.uk/namespaces/2005/10/types">

 <documentation>

 Perform a simple SELECT statement and transform the

 results into WebRowSet XML.

 </documentation>

 <sqlQueryStatement name="myQuery"/>

 <expression>select * from littleblackbook where id=10</expression>

 <resultStream name="statementOutput"/>

 </sqlQueryStatement>

 <sqlResultsToXML name="webRowSet">

 <resultSet from="statementOutput"/>

 <webRowSet name="webRowSetOutput"/>

 </sqlResultsToXML>

</perform>

Figure 3 Example perform document for querying a relational database.

<?xml version="1.0" encoding="UTF-8"?>

<ns1:response xmlns:ns1="http://ogsadai.org.uk/namespaces/2005/10/types">

 <ns1:session id="session-ogsadai-106efa15ca3"/>

 <ns1:request status="PROCESSING"/>

 <ns1:result name="myQuery" status="COMPLETED"/>

 <ns1:result name="webRowSet" status="COMPLETED"/>

 <ns1:result name="webRowSetOutput" status="COMPLETED"/>

 <![CDATA[<?xml version="1.0" encoding="UTF-8"?>

 <webRowSet schemaLocation="http://java.sun.com/xml/ns/jdbc

 http://java.sun.com/xml/ns/jdbc/webrowset.xsd">

 ...

 <currentRow>

 <columnValue>10</columnValue>

 <columnValue>John Smith</columnValue>

 <columnValue>123 Some Lane, AnyTown</columnValue>

 <columnValue>0131-555-1234</columnValue>

 </currentRow>

 ...

]]>

 </ns1:result>

</ns1:response>

Figure 4 An example response document containing the results of an SQL query.

3.2. SPARQL

SPARQL is a query language for RDF. RDF is a directed, labelled graph data format intended for representing information on the Web.

Figure 5 shows an example query that illustrates the basic capabilities of SPARQL. A query may start with one or more prefix definitions. These shorthand prefixes can subsequently be used in the query, instead of the URIs that they represent.

A query can use multiple forms. The example query uses the SELECT form, which is the only form that is used in this report. The response to this query is a set of tuples. One tuple for each query hit. Each tuple includes the values of all variables that are bound in the query match. Variables in SPARQL are denoted by a question mark as their first character.

PREFIX books: <http://www.example.com/books/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?title ?pubdate ?publisher
WHERE {

 ?book books:title ?title .

 ?book books:creator "Shakespeare" .

 ?book books:publication_date ?pubdate .

 OPTIONAL {

 ?book books:publisher ?publisher .

 }

 FILTER {

 ?pubdate < "1601-01-01"^^xsd:date

 }

}

Figure 5 An example SPARQL query.

The main part of the query is the graph pattern in the WHERE section. Graph patterns may contain one or more triples, which should match parts of the target RDF graph in order to return results. Each triple consists of a list of three items: subject, predicate and object. The subject should match to a node in the RDF graph, the predicate to one of the properties associated with that node, and the object to the value of that property. Variables and URIs can be used in triples as subjects, predicates, and objects. Literal values, e.g. strings or numbers, can appear as an object in a triple.

Queries can also contain one or more OPTIONAL blocks. These may contribute bindings to the query results. In this case, the value for the publisher will be returned if it is known. However, failure of the graph pattern in an optional block to match will never cause the query to fail. If this happens, the ?publisher variable will simply not have a value.

Queries can also contain one or more filters. These can contain Boolean expressions that constrain query variables in ways that cannot be expressed in the graph patterns. For example, as shown, filters can be used to add a date range constraint.

As it is common for multiple triples to share the same subject, there is a special shorthand notation to support this which uses the semi-colon. For example, the first three triples in the example query can also be specified as:

 ?book books:title ?title ;

 books:creator "Shakespeare" ;

 books:publication_date ?pubdate .

There are various formats in which SPARQL query results can be returned, but for use in Web Services, the SPARQL Query Results XML Format [15] is the most appropriate. An example is shown in Figure 6. Where known, the datatype of each literal value is included. In the example in the figure, mostly for illustratory purposes, the datatype is only specified for dates (the other values could, however, have the datatype xsd:date associated with them). Also note that the datetype is not included in the head, but individually specified for each literal value. The reason is that in RDF, different results can have literals of different datatypes bound to the same variable. Whether or not this will actually happen depends on the schema of the database that is queried.
<sparql xmlns="http://www.w3.org/2005/sparql-results#">

 <head>

 <variable name="title"/>

 <variable name="pubdate"/>

 <variable name="publisher"/>

 </head>

 <results ordered="false" distinct="false">

 <result>

 <binding name="title"><literal>Romeo and Juliet</literal></binding>

 <binding name="pubdate"><literal datatype="http://www.w3.org/2001/XMLSchema#date">1597-01-01</literal></binding>

 </result>

 <binding name="title"><literal>A Midsummer Night's Dream</literal></binding>

 <binding name="pubdate"><literal datatype="http://www.w3.org/2001/XMLSchema#date">1600-01-01</literal></binding>

 <binding name="publisher"><literal>Thomas Fisher</literal></binding>

 </result>

 ...

 </results>

</sparql>
Figure 6 Example query results using the SPARQL Query Results XML Format.
4. Relational data access services

4.1. Implementation

For the implementation of the relational data access service, we can conveniently use D2RQ [9, 10]. D2RQ is available as Open Source, and can transform SPARQL queries to SQL. All that is needed, therefore, is integration into OGSA-DAI. This can be done without much effort; it mainly involves writing a query activity and a data resource accessor. Also, we must provide an activity that converts SPARQL query results to XML, using the SPARQL Query Results XML format [15]. The latter is a generic activity not specific to a particular type of data source and therefore, unlike the query activity, only needs to be developed once for all data access services.

4.1.1. Use of SPARQL

Here we present an example of how a query can be expressed in SPARQL, to illustrate how the data access service can be used to query relational databases. For this, we take a query from the requirements document [1], which is carried out in practice by end users on the database for the SIOP trial [16], one of the clinical trials of the ACGT project. Figure 7 shows the SQL query as it is carried out on (an idealised version of) the SIOP database
. It retrieves a list of patients with Clear Cell Sarcoma of the kidney who died. The query refers to the following tables:

· patient: Contains details about each patient, including the data of birth.

· f9: Stores data from Clinical Report Form “F9 – Follow up”, which is amongst other things used to record a patient’s death.

· f4: Stores data from Clinical Report Form “F4 - Pathology”, which contains pathology information about the tumour after it has been surgically removed.

· f4_sub: A single pathology report may describe on multiple tumour samples, each represented by a row in this table.

· code_histology_type: To classify the histology of the tumour, CRF F4 contains a list of allowed options. Each is represented by a row in this code table.

Figure 8 shows the corresponding query in SPARQL on a database where a direct mapping is used from its relational schema to the RDF representation. This mapping can be automatically generated from the relational database by D2RQ. A disadvantage of such a direct mapping is that it unnecessarily exposes details of the underlying relational schema, such as the use of foreign keys and code tables (as a result the query resembles the SQL query quite closely). The default mapping can, however, be customised to hide such details.
SELECT patient.id, patient.date_of_birth, f9.date_of_death

 FROM patient

 JOIN f9 ON patient.id = f9.patient_id

 JOIN f4 ON patient.id = f4.patient_id

 JOIN f4_sub ON f4.id = f4_sub.f4_id

 JOIN code_histology_type

 ON f4_sub.histology_type = code_histology_type.id

 WHERE f9.date_of_death IS NOT NULL AND

 code_histology_type.name =

 "Clear Cell Sarcoma of the kidney";

Figure 7 Example SQL query on data from the SIOP trial: Patients with Clear Cell Sarcoma of the kidney that died.

PREFIX siop: <http://example.philips.com/siop-0.9#>

SELECT ?patient_id ?date_of_birth ?date_of_death

WHERE {

 ?patient siop:patient__id ?patient_id ;

 siop:patient__date_of_birth ?date_of_birth .

 ?f9 siop:f9__patient_id ?patient_id ;

 siop:f9__date_of_death ?date_of_death .

 ?f4 siop:f4__patient_id ?patient_id ;

 siop:f4__id ?f4_id .

 ?f4_sub siop:f4_sub__f4_id ?f4_id ;

 siop:f4_sub__histology_type ?hist_type .

 ?code_histology_type siop:code_histology_type__id ?hist_type ;

 siop:code_histology_type__name

 "Clear Cell Sarcoma of the kidney" .

}

Figure 8 SPARQL query corresponding to the SQL query in Figure 7, when a direct mapping is used from the relational schema to an RDF representation.

Figure 9 shows what the example query looks like, when a mapping is used that hides as much as possible details of the underlying relational schema from the RDF representation of the data. First of all, foreign keys are not visible anymore. The ?f4 and ?f9 nodes can directly refer to the ?patient node, instead of by way of the ?patient_id variable (i.e. the foreign key). Secondly, the use of code tables is also made (more) transparent; there is no need anymore to use an RDF node that represents (an entry in) the code table (i.e. ?code_histology_type in Figure 8), and there is also no need anymore to refer to the literal string representation that is used in the code table (which in the case of the actual SIOP database, would be in German).
PREFIX siop: <http://example.philips.com/siop-1.0/vocab#>

PREFIX siopcode: <http://example.philips.com/siop-1.0/codes#>

SELECT ?patient_id ?date_of_birth ?date_of_death

WHERE {

 ?patient siop:patient__id ?patient_id ;

 siop:patient__date_of_birth ?date_of_birth .

 ?f9 siop:patient ?patient ;

 siop:f9__date_of_death ?date_of_death .

 ?f4 siop:patient ?patient .

 ?f4_sub siop:f4_sub__f4 ?f4 ;

 siop:f4_sub__histology_type siopcode:ClearCellCarcoma .

}

Figure 9 SPARQL query corresponding to the SQL query in Figure 6, when a mapping is used that hides details of the underlying relational schema from the RDF representation of the data.
4.1.2. Query limitations

All SPARQL queries, when applied to data stored using a relational data model, can be expressed using SQL
. Unfortunately, not all SQL queries can be expressed in SPARQL. The feature that is most notably lacking from SPARQL is aggregation of data (e.g. averaging, summation and counting). This means that the simple SQL query shown in Figure 10 cannot be expressed in SPARQL. To establish the number of patients enrolled in the trial using SPARQL, one can retrieve (the unique identifiers of) all patients, and count the results at the client but this obviously leads to a relatively high load given that only one value needs to be returned to the user.

SELECT COUNT(*) from PATIENT

Figure 10 Example SQL query on data for the SIOP trial: Return the number of patients enrolled in the trial.

Figure 11 shows another query that can be carried out on data from the SIOP trial. It is based on another query from the requirements document and it demonstrates a more advanced use of aggregation in SQL. It returns a summary of the pre-operative chemotherapy treatments for all patients by aggregating the treatments details corresponding to the same patient. Using SPARQL, the same results can only be obtained by retrieving all pre-operative chemotherapy treatments for all patients, and carrying out the summation and filtering client-side.

SELECT chemo2.patient_id,

 MIN(chemo2.date) as from, MAX(chemo2.date) as to,

 COUNT(*) as times, SUM(chemo2.ACT_dose) as ACT_total

 FROM chemo2

GROUP BY chemo2.patient_id

HAVING ACT_total > 50.0;

Figure 11 Example SQL query on data from the SIOP trial: Return a summary of the pre-operative treatment details for all patients who received more than 50 mg ACT.

There is a relatively simple way to support a limited amount of aggregation using SPARQL. It can be done by defining views in the database. For example, one can define a “chemo2_agg” view that contains the data that is returned by the query in Figure 11, without the HAVING condition. Given this view, the SPARQL query in Figure 12 can be issued. This way, the only data that is sent from the server to the data access service, as well as from the data access service to the client, is the data that the client is interested it. It does, however, require control over the database, in order to define the required view.

If it is not possible to add views to the database, the query can still be handled, as long as the data access service supports a means to define views. One of the possible ways in which views can be implemented by a RDBMS, is to expand the query by replacing any references to views by the relevant parts of the queries that were used to define these views. A similar operation could take place at the data access service, before it sends the query to the underlying relational database. Such functionality is, however, not that easy to implement, and also not yet provided by D2RQ. Furthermore, it would still be of limited use. The only aggregation that can be carried out, is that which is supported by a particular view, which means that users of the data access service cannot use aggregation freely in queries. To allow this, the query language that is used by the data access service simply needs to support aggregation.

PREFIX siop: <http://example.philips.com/siop#>

SELECT ?patient_id ?from ?to ?times ?ACT_total

WHERE {

 ?chemo2_agg siop:chemo2_agg__patient_id ?patient_id ;

 siop:chemo2_agg__from ?from ;

 siop:chemo2_agg__to ?to ;

 siop:chemo2_agg__times ?times ;

 siop:chemo2_agg__ACT_total ?ACT_total .

 FILTER {

 ?ACT_total > 50.0

 }

}

Figure 12 The SPARQL query corresponding to the SQL query in Figure 11. It relies on the definition of an extra “chemo2_agg” view in the database.

4.2. Exporting Schema

The schema of data source needs to be known in order to pose valid and meaningful queries. For RDF data sources, RDF Schema [17] is the standard way of doing so, and this is also the format that is used by the mapping tool developed by UPM that is responsible for creating the mappings from local schema to the ACGT Master Ontology. Therefore, for each data source that is made accessible by a data access service, there should be a corresponding RDF Schema. Such a schema can be generated manually, but this is a cumbersome and error prone process. Therefore, we have developed a utility that automatically generates RDF Schema for the databases that are made available using the relational data access service. The utility takes as input the D2RQ mapping file that describes how a specific relational database can be mapped to RDF. From this, the utility can extract the classes and the properties that comprise the RDF Schema. Currently, the utility can handle all the mapping contructs that are used in the mapping files that are automatically generated by D2RQ. We are working on extending the utility so that it can also handle more complicated constructs, such as those that are used to hide the use of code tables in the underlying database.
4.3. Testing

The implementation of the data access services consists mainly of the integration of various third-party software components. Running unit tests on these third-party components is the responsibility of the respective developers. Therefore we have not carried out extensive tests on the query translation code itself.

We have, however, carried out integration tests. For this, we used different types of queries, including simple queries that can be handled in quick succession, bulk queries that return a large amount of data, and complex queries that put a computational load on the underlying database. These queries have been used to test the performance and stability of the data access service (see Chapter 6 for details). Using this approach we identified various bugs in the various third-party software packages that are used. We have provided detailed bug reports [18, 19, 20], and each of these bugs has been fixed now.
Next to dedicated integration tests, the data access service has also been tested by using it. This has been done in two ways. Firstly, the data access service has been deployed on the Philips gridnode server (see Appendix A) so that it can be used by other services and applications in the ACGT project, most notably, the semantic mediator. The data access service has indeed been successfully used, but it did reveal another bug in D2RQ which has also been reported [21]. This bug can occur after the data access service has been running for a sufficiently long time (eight hours by default). Although the bug has not yet been fixed, a workaround is available.

The data access service has also been tested by applying it to clinical data from the TOP trial. Institut Jules Bordet has provided anonymised data for ten patients that has been collected using Oracle Clinical. This data has been loaded into a local database and normalised (this is necessary, as it was exported by Oracle Clinical using “flat” views). From this a D2RQ mapping file was created by automatically generating a default mapping, and manually improving this to abstract from low-level storage details. The latter involved a mapping construct that was not correctly handled by D2RQ, which has also been reported [22]. Although it has not yet been fixed, a fix is being worked on, and a workaround has been provided by the developers of D2RQ. After having applied the workaround, we have successfully exposed the data using our data access service
.
Having undergone all these tests, we believe that the data access service is ready to be used intensively by services and applications that other partners in the ACGT project are developing.
5. Medical image data access services

This chapter describes the data access service that provides access to medical image data. Hospitals use PACS systems for storing and viewing medical images. There are many different PACS vendors, but fortunately, they all support the DICOM standard. Therefore, the data access service can use DICOM to provide access to medical images stored on databases provided by any vendor.

Section 5.1 gives an overview of the parts of the DICOM standard that are used by the data access service. The data access service provides two main functions: the ability to query the image metadata, and the ability to subsequently retrieve specific images. Section 5.2 describes how these two functions have been implemented. Next, Section 5.3 briefly describes how the implementation has been tested.

5.1. DICOM

The Digital Imaging and Communications in Medicine (DICOM) standard was created by the National Electrical Manufacturers Association (NEMA) to aid the distribution and viewing of medical images, such as CT scans, MRIs, and ultrasound [23, 24]. Amongst others, the standard defines how images can be stored, transferred, viewed and printed. The standard is specifically designed for the medical domain and closely reflects how images are used within hospitals.

The DICOM standard uses its own terminology. Section 5.1.1 summarises the main concepts that are needed to understand the remainder of this section. Section 5.1.2 describes the unique identifier scheme that is used to refer to images. DICOM provides query functionality for retrieving the unique identifiers for images that are of interest. The capabilities, limitations and peculiarities of this query functionality are the subject of Section 5.1.3. Finally, Section 5.1.4 describes how images can be retrieved, given their unique identifiers.

5.1.1. Terminology

DICOM uses Service Classes to describe interactions between a pair of devices. Two roles are distinguished: Service Class User (SCU) and Service Class Provider (SCP). A large part of the Service Class is the description of information and related operations. These are defined by Service Object Pair (SOP) Classes. In each SOP Class definition a single Information Object Definition (IOD) is combined with a Service Group, containing one or more services.

Information Object Descriptions standardise the format and content of information that is being exchanged. An Information Object Description is an abstract description of a class of similar Real-World Objects. There are, for example, IODs for patients, MR images, and structured reports. For each IOD, the standard defines required and optional attributes relevant to the Real-World Object it represents. A distinction is made between normalised IODs and composite IODs. A normalised IOD represents a single entity in the DICOM model of the real world. It contains only attributes inherent in the entity it represents. A composite IOD, on the other hand, represents parts of several entities in the DICOM application model. For example, the Computed Tomography IOD contains both attributes which are inherent in the image (e.g. image date) and attributes which are related to but not inherent in the image (e.g. patient name). It is therefore a composite IOD.

A Service Group combines related services. DICOM Message Service Element (DIMSE) Services are the actions that can act upon information objects. DIMSE services are classified as either DIMSE-N or DIMSE-C, depending on whether they are applicable to, respectively, normalised or composite IODs. For example, C-STORE is a DIMSE-C service that can be used to store images.

Figure 13 summarises how these main concepts relate.

[image: image4.wmf]

Service Class

specification

specifies

related

SOP Class(es)

defined as

Information

Object Definition

Service Group

DIMSE Services

Attributes

applied to

an

is a group

of

contains

1

1

1

1

1

1

n

n

n

1

1

Figure 13 Major concepts used in the specification of the DICOM standard.

5.1.2. Unique identifiers

Each DICOM image is assigned a unique identifier (UID), which is globally unique. A UID is a string of numeric characters and dots, with a maximum length of 64. The dots are used to hierarchically structure the UID space. For example, each DICOM vendor is assigned its own UID. From this, each vendor can generate derived UIDs, according to its own scheme, by appending additional numbers and dots to its vendor-specific root identifier. UIDs are used for various purposes. For example, each modality has its own UID, which it can subsequently use to generate a UID for each image that it produces. Furthermore, UIDs are used to unambiguously state which part of the DICOM standard specific client and server applications support.

5.1.3. Querying

DICOM’s query support is defined in the DICOM Query/Retrieve (Q/R) Service Class [25]. The types of queries that are allowed are not complex, as DICOM does not intend to provide a generalized database query mechanism.

Information model

Figure 14 shows the information model that underlies the DICOM querying functionality. It has the Patient IOD at the root. It contains one or more studies, which correspond to medical examinations that the patient has undergone. It may involve studies at different modalities. A study contains one or more series. A series is a collection of related images coming from a single modality. The way the images are grouped depends on the clinical usage. A series can consists of a single image, or a series of images. For example, CT scans produce series of images where each image represents a “slice” of the body
.

[image: image5.wmf]

Figure 14 The DICOM information model for examinations and its mapping to the real world.

There are three information models that can be used for querying: Patient Root, Study Root, Patient/Study Only. Each is based on the information model shown at the right in Figure 14. The Patient Root Q/R information model is exactly the same, so it contains four levels: Patient, Study, Series and Image. The Study Root Q/R information model is similar, except that the top level is the Study level. Attributes of patients are considered to be attributes of studies. The Patient/Study Only Q/R information model is also similar to the Patient Root model, except that it only supports the upper two levels. The models determine the type of queries that can be issued, but do not directly restrict what can be returned. For example, even though the Patient/Study Only model does not include images, images can still be retrieved by retrieving all images for a specific patient.

For each of the three Q/R models, and for each level in each model, the standard defines the attributes that can be searched for in the query. A DICOM server does not have to support all attributes. For each attribute it is stated whether they are required or optional. Most attributes are optional. For example, in the Patient Root model, the only two attributes that are required are Patient’s Name and Patient ID. All other attributes at the patient level, such as Patient’s Birth Date and Patient’s Sex, are optional.

Attribute matching

DICOM queries consist of a list of attributes, together with a required match. Different types of matching are supported, partly depending on the type of each attribute. The following matching types are supported:

· Single Value Matching: Exact matching of the values. For most attributes the matching is case-sensitive, but for those with a PN value representation, such as Patient Name, the application may perform case-insensitive matching, in an application specific way to be specified in the conformance statement.

· List of UID Matching: A list of UIDs is provided, each of which may generate a match.

· Universal Matching: All entities match the given attribute.

· Wild Card Matching: For plain-text string values, the “*” and “?” wildcard characters can be specified in the query, where “*” matches any number of characters, and “?” matches any single character.

· Range Matching: For date, time, and datetime values, a range can be specified.

· Sequence Matching: When the attribute type is a sequence of items, one or more items may be specified in the query, each of which should match.

Baseline querying v.s. Relational Querying

Baseline query support in DICOM is very basic. Each query must specify a so-called Query/Retrieve level. The query may contain one or more matches for attributes at this level in the DICOM information model. However, for all levels above it, a single value needs to be specified for the corresponding Unique Key Attribute. This means that a simple query such as “return (the unique identifiers of) all MR series” is invalid
. The only way to obtain this information from a DICOM server that only provides the baseline query behaviour is as follows. First, retrieve the unique identifiers of all studies
. Next, for each study, issue a query to obtain all MR series that it contains.

Fortunately, the DICOM standard also defines Relational Query support, albeit as an optional extension of the baseline behaviour. Relational Queries allows any combination of keys at any level in the hierarchy. It removes the baseline restriction that a Unique Key should be provided for all levels above the Query/Retrieve level specified in the query.

DICOM relational queries should not be confused with queries that can be carried out on relational databases, e.g. using SQL as a query language. DICOM relational queries are much more limited. For example, queries cannot contain any numerical or Boolean expressions. Furthermore, at each level of the DICOM information model, a query can refer to one entity at most, where entity in this context refers to an instance of an IOD. This, for example, means that queries such as “return (the unique identifiers of) all studies that contain a CT series and an MR series” are not supported, because it refers to two different Series entities. DICOM queries also only support a limited form of aggregation. At each level of the information model, there are (optional) attributes that contain the number of entities at the levels below. For example, at the Study level there is the “Number of Study Related Series” and “Number of Study Related Instances” attributes. Besides those attributes, aggregation is not supported. Furthermore, as numerical comparison is not provided as a matching criterion, it is still not possible, for example, to retrieve all studies that contain three or more series.

It is difficult to establish exactly what proportion of DICOM servers provides Relational Querying. A quick survey of DICOM Conformance Statements by the main vendors (Philips, GE, and Siemens) gives the impression that relational queries are hardly ever implemented. However, a message in the DICOM newsgroup suggests that many SCPs provide relational logic in what are supposed to be only hierarchical queries [26]. I.e., server implementations implicitly provide relational query support without formally acknowledging it (and are thus in fact violating the standard). For the freely available DICOM servers that we tried (ConQuest and DCM4CHEE), this was indeed the case.

5.1.4. Image retrieval

Next to the C-FIND service for querying DICOM servers, the Query/Retrieve Service Class uses the C-MOVE and C-GET services. These services allow a client to transfer images between DICOM servers, or Application Entities in DICOM terminology. The C-GET service can be used to retrieve a set of images, where the issuer of the request is the destination. The C-MOVE service, on the other hand, allows third parties to initiate the transfer of images between two locations.

Figure 15 explains the working of image retrieval based on a C-MOVE request; the C-GET request is equivalent, except that AE1 and AE3 are the same. The Query-Retrieve SCU (QR-SCU) issues a C-MOVE request (C-MOVE-RQ) to the QR-SCP; this SCP is the DICOM server that contains the images to be retrieved. The request must contain one unique key if the level of retrieve is Patient, and one UID, or a list of UIDs if a retrieval of several items is desired, if the retrieve level is Study (StudyInstanceUID), Series (SeriesInstanceUID) or Image (SOPInstanceUID). The request must also contain the name of the application entity to send the images to, and this application entity must be known by the DICOM server.

Upon receiving the C-MOVE-RQ, the QR-SCP initiates C-STORE sub-operations for the image instances that fulfil the request. For these C-STORE sub-operations, a new association to the move destination, which can be different from the application entity that initiated the retrieval, will be opened. For the actual storage of the images, the QR-SCP serves as a SCU of the Storage Service Class, whereas the move destination serves as the Storage Service Class Provider. Thus, the application entity containing the images takes on two roles simultaneously.

As a concrete example, consider the application entity AE1 issuing a C-MOVE-RQ to AE2. It is requesting all images for a specific patient, and the images have to be sent to AE3. AE2 will open an association to AE3, and issue a C-STORE-RQ for each of the images of the corresponding patient. The status of image retrieval is signalled in the C-STORE-RSP that AE3 sends back to AE2 for each image. When all images are retrieved, AE2 sends a C-MOVE-RSP to AE1 indicating the number of successfully stored images, as well as the number of storage failures.

[image: image6.wmf]AE1

AE2

AE3

QR

SCU

QR

SCP

S

SCU

S

SCP

1: C

-

MOVE

-

RQ

4: C

-

MOVE

-

RSP

2: C

-

STORE

-

RQ

3: C

-

STORE

-

RSP

AE1

AE2

AE3

QR

SCU

QR

SCP

QR

SCP

S

SCU

S

SCU

S

SCP

S

SCP

1: C

-

MOVE

-

RQ

4: C

-

MOVE

-

RSP

2: C

-

STORE

-

RQ

3: C

-

STORE

-

RSP

Figure 15 Image retrieval based on a C-MOVE request.

5.2. Implementation

The data access service has to provide two functions: querying and retrieval. Section 5.2.1 describes the implementation of the query functionality. Queries can be phrased using SPARQL, and the web service returns the requested image metadata in response. The latter may include the unique identifiers for images of interest. These unique identifiers can be used to retrieve images. Section 5.2.2 describes how image retrieval is provided using OGSA-DAI.

5.2.1. Query handling

This section describes the query handling capabilities of the data access service. First, it explains how SPARQL is used to query the DICOM image server. Subsequently, the query handling algorithm is explained, together with its capabilities and limitations. This is done in sufficient detail to explain what the various issues are when a data source is queried whose query capabilities are more limited than the language that is used to express the query.

Use of SPARQL

There is a natural mapping from DICOM to SPARQL, which uses the information model shown in Figure 14. The fact that there are three different Q/R information models does not have to be exposed. When forwarding the (appropriately converted) query to the DICOM server, the data access service can choose the Q/R model that is most suitable.

Figure 16 illustrates the basic principle behind the use of SPARQL to express DICOM queries. The query retrieves a list of CT series associated with a specific patient. The (locally unique) identifier for the patient is included in the query. For each series created on a CT modality the series number is retrieved. The study that this series is part of is used to obtain the date that the examination took place.

The query spans multiple levels in the DICOM information model, i.e. the Patient, Study and Series level. For each level there is a separate subject, in this case the ?patient, ?study and ?series variables. Four predicates in the query directly correspond to attributes defined by the DICOM protocol: Patient ID, Study Date, Series Number, and Modality. The other two predicates, dicom:Patient and dicom:Study, are level linking predicates that need to be provided by the data access service as a means to link the various levels. This is done implicitly in the queries supported by DICOM; a query can only refer to at most one entity at each level of the information model and a composite relationship is implied between the entities at different levels. However, in SPARQL the subjects for the entities at different levels of the DICOM information model need to be linked. Without the two triples containing the level linking predicates, the query would consist of three independent sub-queries, and the result would be a cross product of the results of these independent queries.

PREFIX dicom: <http://example.philips.com/dicom#>

SELECT ?studyDate ?seriesNum

WHERE {

 ?patient dicom:PatientID "12345" .

 ?study dicom:Patient ?patient ;

 dicom:StudyDate ?studyDate .

 ?series dicom:Study ?study ;

 dicom:SeriesNumber ?seriesNum ;

 dicom:Modality "CT".

}

Figure 16 A simple DICOM query expressed in SPARQL.

As most DICOM attributes are optional, and not guaranteed to be supported by a specific DICOM server, the data access service should also support the use of optional blocks in the SPARQL query. These can be used to retrieve the values of specific attributes if they are present, but will not cause the query to fail otherwise. Figure 17 shows an example. It returns for each patient the unique identifier, and the ethnicity only when it is known. A query can contain multiple independent optional blocks, as well as nested optional blocks. The data access service supports the former because it is very useful in practise. Some optional attributes may be supported by a DICOM server, others not, so it is best to use separate optional blocks. Nested optional blocks are less useful in practise, but the data access service supports it nonetheless, as it provides good test cases for the query handling algorithm, and forces the implementation to be more generic.

PREFIX dicom: <http://example.philips.com/dicom#>

SELECT ?patientId ?ethnicity

WHERE {

 ?patient dicom:PatientID ?patientId .

 OPTIONAL {

 ?patient dicom:EthnicGroup ?ethnicity .

 }

}

Figure 17 An example of the use of OPTIONAL blocks.

The data access service must also support SPARQL filters. These are necessary to support wild card matching on string values, and range matching for date values. An example is given in Figure 18. Here the names and dates of birth of patients are returned whose name includes “Smith” and whose date of birth falls within the given range.

PREFIX dicom: <http://example.philips.com/dicom#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?name ?dob

WHERE {

 ?patient dicom:PatientsName ?name ;

 dicom:PatientsBirthDate ?dob ;

 FILTER (REGEX(?name, "Smith") &&

 ?dob >= "1970-01-01"^^xsd:date &&

 ?dob < "1980-01-01"^^xsd:date)

}

Figure 18 An example of the use of a filter.

The query in Figure 18 also demonstrates another feature that the data access service must implement: conversion of data value formats. DICOM uses its own format for date values. This should be hidden from clients of the web service by using the standard xsd:date representation, together with SPARQL’s support for typed literals. Conversion has to work in both directions: for dates that are included in the query, as well as for dates that are returned in response to the query.

Finally, the data access service should support the use of URIs in queries as well as in the results. This is necessary so that the query in Figure 19 can be handled. Here, for the patient with the given (locally unique) identifier, a globally unique URI should be returned that represents the patient in the database that is queried. Such a URIs can subsequently be used in other queries, as shown in Figure 20.

PREFIX dicom: <http://example.philips.com/dicom/>

SELECT ?patient

WHERE {

 ?patient dicom:PatientID "12345" .

}

Figure 19 An example of a query that returns a URI.

PREFIX dicom: <http://example.philips.com/dicom/>

SELECT ?name

WHERE {

 <http://database.philips.com/ImageResource/patient/12345>

 dicom:PatientsName ?name .

}

Figure 20 An example of a query that includes a URI.

Our initial implementation of the data access service has one limitation. It supports only SPARQL queries that can either be directly converted to a DICOM query, or which can be handled using a single DICOM query together with filters at the data access service that do not require temporary storage of query results. I.e. any query match that is returned by a DICOM server is either immediately discarded, or after optional conversion, immediately returned to the client. This means that the data access service cannot handle all queries. The “Query limitations” subsection gives examples of unsupported queries, which will be rejected by the data access service. The decision to keep the initial implementation of the data access service lightweight as described has several benefits: the implementation of the data access service is less complex, the CPU and memory requirements of the data access service are minimal, and query latency is low and does not vary widely for different queries. Obviously, the initial data access service can always be extended at a later date to handle a larger set of queries when this is deemed useful.

Query handling algorithm

Figure 21 shows the main steps that are taken by the data access service to handle a SPARQL query. First, the query is converted to a custom tree representation to facilitate further handling of the query. In doing this, the query may be found to be invalid, in which case the processing is aborted, and an error message will be returned to the client. Constraints that are not naturally checked during construction of the tree are checked after the tree has been created. If the query is valid, the tree representation is converted to a DICOM query. The query is sent to the DICOM server, and the results that are returned are processed by the data access service, before they are returned to the web service client.

[image: image7.wmf]

Build DICOM

query tree

Validate query

Construct

DICOM query

Process

query

results

Send error

message to client

DICOM

query tree

Send query to

server

Receive query

results from server

Send query results

to client

OK

fail

fail

OK

Receive SPARQL

query from client

null result

Figure 21 Main query handling steps executed by the data access service.

In the next sections, the main steps in the query handling algorithm (indicated in bold) are described in more detail.

Note: For the implementation of the data access service, we assume that DICOM server supports Relational Queries. This is done for two reasons. Firstly, it is simply undoable to implement a sufficiently powerful data access service with acceptable performance if Relational-Querying cannot be used. Secondly, the freely available DICOM servers that we tried support Relational Querying, and we are under the impression that many commercial DICOM servers do as well (see Section 5.1.3).

Conversion from SPARQL query to DICOM query tree

For interpreting the SPARQL query, we use the Jena toolkit [7, 8]. Jena is a Java framework for building Semantic Web applications. It provides a programmatic environment for RDF, RDFS, OWL, and SPARQL and includes a rule-based inference engine [8]. We use Jena to parse the SPARQL query string and convert it into a tree representation. The resulting SPARQL query tree is a recursive structure of element objects. Elements can be instances of different classes, representing, amongst others: filters, optional blocks and basic graph patterns. The latter contain one or more RDF triples, which each consist of an object node, a predicate and a subject node.

The SPARQL query tree is converted to a custom DICOM query tree, geared towards handling the query using DICOM. The elements in the custom DICOM tree each represent a block in the query (either the main block, or an optional block). All are of the same class. The most important data members are: children (other elements one level below, each corresponding to an optional block), and filters (filters applied in this block).

Figure 22 outlines the algorithm that is used to convert the SPARQL query tree into the custom DICOM tree. It uses pseudo-code whose syntax closely resembles that of Python [27]. The figure includes the functions that form the core of the transformation functionality, and their names are indicated in bold. For the other functions the name should be sufficiently self-explanatory for understanding the core algorithm.

The function buildDicomTree recursively visits the SPARQL query tree. Filters in the SPARQL query are simply added to the tree element. These are used later when the DICOM query is created, and when the results are processed. Optional blocks are handled by creating a corresponding tree element and adding it to the tree. Finally, RDF triples that occur in the query are handled one by one using the processTriple function.

The processTriple function gets the triple’s predicate and parses it using the parseDicomAttribute function. The latter expects a URI. Variables are not supported as a predicate. The reason is that such queries cannot be efficiently mapped to a DICOM query, are therefore difficult to handle, and are expected to be of limited use as long as the schema of the data source is known. The URI is parsed to see if it matches a DICOM attribute, or a level-linking attribute. If it matches neither, the query is not necessarily invalid. The predicate is simply unrecognised, and will never match. So a flag is set to mark that this block will not contribute any matches. If the block is an optional block, the query may still return one or more results.

If the predicate is recognized the triple’s subject is associated with the level that the attribute corresponds to. Furthermore, if the object is a variable it is associated with the attribute. This way, it can be bound to the right value when the query results are returned.

FUNCTION buildDicomTree(q, d):

 “““ Recursively constructs a DICOM query tree from a SPARQL query tree.

 q : The currently visited element of the SPARQL query tree

 d : The corresponding element of the DICOM query tree

 ”””

 FOR q_child IN q.getChildren():

 IF q_child isInstanceOf SparqlFilterElement:

 d.addFilter(q_child)

 ELSE IF q_child isInstanceOf SparqlOptionalBlockElement:

 d_child = new DicomQueryTreeElement()

 d.addChild(d_child)

 q_child.buildDicomTree(d_child)

 ELSE IF q_child isInstanceOf SparqlBasicGraphPatternElement:

 FOR triple in q_child.getTriples():

 d.processTriple(triple)

FUNCTION processTriple(d, triple)

 “““ Extends the DICOM query (represented by the DICOM query tree)

 to take into account the RDF triple.

 d : Element of the DICOM query tree

 triple : Triple occurring at this level of the tree

 ”””

 attrib = parseDicomAttribute(triple.getPredicate())

 IF attrib == NULL: # The attribute is unrecognised

 d.setNullResult()

 ELSE:

 l = attrib.getDicomLevel()

 d.addNodeLevelAssociation(triple.getSubject(), l)

 IF triple.getObject() isInstanceOf VariableNode:

 d.bindVariableToAttribute (triple.getObject(), attrib)

 IF attrib isInstanceOf DicomAttribute:

 IF triple.getObject() isInstanceOf LiteralNode:

 d.addMatch(attrib, triple.getObject())

 ELSE IF attrib isInstanceOf LevelLinkingAttribute:

 l2 = levelAbove(l)

 d.addNodeLevelAssociation(triple.getObject(), l2)

FUNCTION addNodeLevelAssocation(d, node, l):

 “““ Adds an association between a subject or object node in a triple in

 the SPARQL query to a specific level of the DICOM information model.

 d : Element of the DICOM query tree

 node : A subject or object node in an RDF triple

 l : The DICOM level that the subject should be bound to

 ”””

 node2 = d.getNodeForLevel(l)

 IF node2 != node:

 IF node2 != NULL:

 abort(“Multiple nodes associated with level ” + l)

 ELSE:

 d.addNodeForLevel(l, node)

 IF node isInstanceOf UriNode:

 uid = extractUidFromUri(l, node)

 IF uid != NULL:

 attrib = getUniqueDicomAttributeAtLevel(l)

 d.addMatch(attrib, uid)

 ELSE: # The URI did not match the encoding scheme for this level

 d.setNullResult()

Figure 22 The algorithm, in pseudo code, for converting a SPARQL query tree to a custom DICOM query tree.

When the attribute corresponds to a DICOM attribute, it is checked if the triple’s object is a literal. If so, it imposes a constraint on the attribute value, and a corresponding Single Value Match is added
. For level-linking attributes an association is also added for the triple’s object to the level that is one higher than that of the subject.

The function addNodeLevelAssocation creates an association between an RDF node that is used as a subject or object in a triple, and a level in the DICOM information model. It first checks if there is already a node associated with the given level. If this is the case, and it is different from the current node, the query is deemed invalid and the conversion is aborted. The reason that the query is considered invalid is that it cannot be expressed as a single DICOM query; the latter can only refer to one entity at each level of the DICOM information model.

If, however, there was not yet a node associated with this level, the association is made. Furthermore, it is checked if the node is a URI. If this is the case, it is parsed according to the URI scheme for this level. If parsing succeeds a Unique Identifier is extracted, which is added as a match for the DICOM attribute that is the Unique Key Attribute at this level. If, however, the parsing does not succeed it means that this part of the query will never result in any matches, and the result is set to null.

When the DICOM query tree is constructed, a few constraints are checked. These are basically constraints that have to hold to in order to represent the query as a tree given the structure of the tree elements (the tree elements are designed such that they can correctly represent all valid queries, but not necessarily all invalid ones). More specifically, the following constraints are checked during tree construction:

· Within each block of the query (represented by a tree element), there should be at most one node associated with each level in the DICOM information model.

· Within each block of the query, a variable should be bound only once (either to a DICOM attribute, or an entity at a specific level).

Other constraints, that need to hold to carry out the query correctly and efficiently are checked in the next step of the query handling algorithm.

Validation of the query using the DICOM query tree

Once the DICOM query tree is constructed, constraints that must hold but which have not been checked during tree construction are tested. The following constraints are tested:

· Within the entire query, there should be at most one node associated with each level in the DICOM information model.

· Within the entire query, a variable should be bound only once (either to a DICOM attribute, or to an entity at a specific level). The reason is as follows. When a variable is bound to different attributes, it means that these attributes need to have the same value. This cannot be expressed in DICOM query and is therefore not supported. These queries could be handled by applying filtering at the data access service, at the risk of retrieving far more query results from the DICOM server than are returned to the web service client, but is not done in the initial implementation.

· Optional blocks should not include levels of the DICOM information model that are not used in the main block. The reason is that such a query cannot be expressed as a DICOM query. If the DICOM query contains more levels than are present in the main block of the SPARQL query, it will not return matches that do not span these optional levels. It should, however, because the optional blocks cannot constrain which matches are returned. On the other hand, if the DICOM query only contains those levels that are present in the main block, the data access service does not retrieve sufficient information to carry out all parts of the SPARQL query.

· There should be links between all levels that are included in the query. This checks that the level-linking attributes are present when needed. This ensures that the SPARQL query does not consist of several independent sub-queries, as explained earlier.

If any of these checks fails, the query handling algorithm is aborted, and an error message is sent to the client.

One other check is carried out. It is also checked if the same RDF node is not associated with multiple levels in the DICOM information. If this is the case, the query is valid, but known never to return any results. Therefore, a reply message can be immediately sent to the client, without any results.

Construction of the DICOM query

If the query passed all validation tests, it can be converted into a DICOM query. Even with the above constraints in force, there are still many SPARQL queries that cannot be expressed as a DICOM query. In this case, a more general DICOM query is used. This query will return at least all results that match the SPARQL query, but possibly more which will then need to be discarded.

The following steps are taken to construct the DICOM query:

· All matches in the main block of the query (i.e. the root element of the DICOM query tree) are included as matches in the DICOM query. When a DICOM attribute is bound to a variable in the SPARQL query, a Universal Match is used. Otherwise, a Single Value Match is used.

· All matches in the optional blocks of the query are added as Universal Matches (unless another match already exist for the attribute). This way, the optional blocks do not add any constraints to the query, yet the values that are needed to evaluate all optional blocks when query results are returned are included in these results.

· Filters in the main block are analysed to see if they include constraints that can be expressed as a DICOM match. More specifically, constraints imposed on date values are translated into Range Matches where this is possible. For this, the condition that includes the date comparison cannot fail for the filter condition to be true. I.e., the condition cannot be part of a (non-negated) disjunction. The algorithm that extracts date range criteria takes into account Boolean negation, conjunction and disjunction. Figure 23 shows a SPARQL query whose (admittedly somewhat contrived) filter condition can be successfully converted into the following Range Match: 01-01-1970 ≤ PatientsBirthDate ≤ 31-12-1979.

A subset of regular expression conditions that can appear in filters can, in theory, be converted in to a DICOM Wild Card Match. This is however difficult to implement in practise, because deciding if a regular expression is DICOM compatible requires the use of and access to the internals of a SPARQL-compatible regular expression parsing engine to ascertain that the regular expression does not include regular expression features not supported by DICOM. The initial data access service, therefore, does not attempt to extract Wild Card Matches from filter conditions.

SELECT ?id ?dob

WHERE {

 ?patient dicom:PatientID ?id ;

 dicom:PatientsBirthDate ?dob ;

 FILTER (! (?dob < "1970-01-01"^^xsd:date ||

 ?dob >= "1980-01-01"^^xsd:date))

}

Figure 23 An example of a query whose filter condition can be successfully converted to a DICOM Range Match.

Processing of the returned query results

When query results are received from the DICOM server, these are processed before being returned to the client. The following actions are carried out on each result that is returned:

· All filters appearing in the main block are applied to the result. If any fails, the result is discarded.

· The optional blocks in the SPARQL query are recursively visited. For each block, it is checked if the Single Value Matches that it imposes match the result. If not, the optional block (and the optional blocks contained in it) are ignored for this result. The same holds if one or more filters in the optional block fail.

· For all blocks that match the result, SPARQL variables are assigned their value based on the DICOM attributes that they are bound to. For variables that are bound to an entity in the DICOM information model, e.g. those that appear as a subject in a triple, the URI is constructed using the URI encoding scheme and value of the Unique Key Attribute for the entity’s level.

· The format of values is changed where need be. E.g. dates are converted from the DICOM date representation to the xsd:date representation.

Query limitations

Not all SPARQL queries can be efficiently handled using a single DICOM query. An example is given in Figure 24. The query asks for the unique identifiers of all studies that contain at least one CT series, and at least one MR studies. This cannot be expressed in a DICOM query, because each query can only refer to one specific entity instance at each level of the DICOM information model.

A way to handle this query anyway would be to send two separate queries to the DICOM server. The first retrieves the study IDs for all studies that contain a CT series. Similarly, the second retrieves the study IDs for all studies that contain an MR series. The data access service then has to “join” these two results on the study ID, and return the results to the client. This would require storage of the intermediate results to disk, as it can not be assumed that these will always fit in memory.

PREFIX dicom: <http://example.philips.com/dicom#>

SELECT ?studyID

WHERE {

 ?study dicom:StudyID ?studyID .

 ?series1 dicom:Study ?study ;

 dicom:Modality "CT"

 ?series2 dicom:Study ?study ;

 dicom:Modality "MR" .

}

Figure 24 A SPARQL query that cannot be expressed as a single DICOM query.

Figure 25 shows a query that is also not supported by the current implementation of the data access service. The reason is that it cannot be expressed in DICOM. The only way to carry it out would be to retrieve information about all studies, and let the data access service select the studies where the referring physician is the same as the reading physician. This, however, would incur a much heavier load on the DICOM service and the data access service than the SPARQL query would suggest.

PREFIX dicom: <http://example.philips.com/dicom#>

SELECT ?studyId

WHERE {

 ?study dicom:StudyID ?studyId ;

 dicom:ReferringPhysiciansName ?physician ;

 dicom:NameOfPhysiciansReadingStudy ?physician .

}

Figure 25 A SPARQL query where a variable is used as an object twice, which cannot be expressed as a DICOM query.

Figure 26 shows how the previous query can be rephrased so that it can be handled by the data access service. It uses a FILTER to express the condition that the referring physician should be the same as the physician that is reading the study. It does not change the fact that this query cannot be efficiently handled by the DICOM server. To handle this query, the data access service still needs to retrieve details of all studies from the DICOM server. The data access service could be extended so that it also accepts the query in Figure 25. When a variable is used more than once as an object, it can interpret and handle it as if a FILTER condition was used.

PREFIX dicom: <http://example.philips.com/dicom#>

SELECT ?studyId

WHERE {

 ?study dicom:StudyID ?studyId ;

 dicom:ReferringPhysiciansName ?physician1 ;

 dicom:NameOfPhysiciansReadingStudy ?physician2 .

 FILTER { ?physician1 = ?physician2 }

}

Figure 26 A different way to express the query in Figure 25, which can be handled using the current implementation of the data access service.

Figure 27 shows another query that cannot be handled by the current implementation of the data access service because the query cannot be expressed as a single DICOM query. The reason is that the DICOM query would need to include the study level. This means that it would not return patients that do not have any studies associated with them, which means that it would not necessarily return all information needed to answer the SPARQL query. The data access service could be extended to handle this query, by issuing multiple queries, temporarily storing the query results, and joining these to produce the results that can be returned to the web service client.

PREFIX dicom: <http://example.philips.com/dicom#>

SELECT ?patient ?age

WHERE {

 ?patient dicom:PatientName "Smith" .

 OPTIONAL {

 ?study dicom:Patient ?patient ;

 dicom:PatientsAge ?age .

 }

}

Figure 27 An OPTIONAL block introduces an extra level, which cannot be expressed using a single DICOM query.

To summarise, the current implementation of the data access service imposes the following restrictions on the SPARQL queries it accepts, due to the limitations of the DICOM query functionality together with the decision to keep the initial implementation simple:

· A variable cannot be used as an object in more than one triple.

· A predicate in a triple must be a URI. I.e. it cannot be a variable.

· Optional blocks can only use predicates for a given level in the DICOM information model if a triple in the main block uses a predicate for that level.

· All triples with predicates corresponding to the same level of the DICOM information model must share the same subject.

· At every block in the query, all triples in scope must form a single connected graph.

· Queries cannot use SPARQL’s “ORDER BY” or “DISTINCT” modifiers in the SELECT statement.

· Queries cannot use the UNION construct.

5.2.2. Image retrieval

Use of OGSA-DAI

Figure 28 lists a perform document that can be issued to our DICOM data service resource. Based on this single perform document, the service will:

1. query the DICOM server,

2. extract from the query results the unique identifiers needed for image retrieval,

3. forward the query results to the client,

4. retrieve the images belonging to the unique identifiers, and

5. deliver the retrieved images to the client’s location of choice (FTP site)

This activity pipeline has one end-point, the sparqlXML stream. As such, the image retrieval and forwarding of results to the client are processed in parallel, meaning that the client can already browse the query results while the images are still being sent to the FTP site. More information on OGSA-DAI’s activity framework can be found in [28].

<perform>

 <executeSparqlQuery name="queryDICOM">

 <query>

 PREFIX dicom: <http://example.philips.com/dicom#>

 SELECT ?patientId

 WHERE { ?patient dicom:PatientID ?patientId ;

 dicom:PatientsName "Doe, John" . }

[image: image10.jpg] </query>

 <resultStream name="sparqlResultsRS"/>

[image: image11.emf]AwaitingUIDAwaitingUID

AwaitingImagesAwaitingImages

ReceivingImage

do/

receiveImageBlock()

ReceivingImage

do/

receiveImageBlock()

[mInput.hasNext()]

/ ir.getImages(uid)

[ir.hasNextImage()]

/ getNextImage()

[mImageStream.isClosed ()]

Legend:

[condition] / action on condition

initial state

final state

[image: image12.emf]Web service

host

DICOM

server

2. Query request

3. Query results

5. Retrieve request

6. Image transfer

Query

Activity

Delivery

Activity

Client

1. Perform document

4. Response

document

7. Images

Retrieve

Activity

Image

Repository

Storage

Service

Class

OGSA-DAI Data Service

OGSA-DAI data

service resource

Image

Retriever

Query-

Retrieve

Service

Class

 </executeSparqlQuery>

 <extractUIDs name="UIDExtraction">

 <queryResults from="sparqlResultsRS"/>

 <UIDsPresentInVar>patientId</UIDsPresentInVar>

 <resultStream name="uidRS"/>

 <resultStream name="forwardedResultsRS"/>

 </extractUIDs>

 <convertSparqlResultsToXML name="queryResultsToXML">

 <resultSet from="forwardedResultsRS"/>

 <webRowSet name="sparqlXML"/>

 </convertSparqlResultsToXML>

 <retrieveImages level="patient" name="retrieveDICOMImages">

 <queryResults from="uidRS"/>

 <blockSize value="2048"/>

 <resultStream name="retrieveRS"/>

 </retrieveImages>

 <deliverToURL name="deliverResultsToFTPServer">

 <fromLocal from="retrieveRS"/>

 <toURL>ftp://somepc.domainname.com/</toURL>

 </deliverToURL>

</perform>

Figure 28 Perform document for a DICOM Query/Retrieve action.

The basic structure and data flow of the implemented DICOM data access service is illustrated in Figure 29. A remote client issues a perform document to the data service residing on a web service host. The OGSA-DAI data service instantiates and processes the required activity pipeline. The actual communication with the DICOM server is done via the Query-Retrieve and Storage Service Classes.

Figure 29 DICOM image query and retrieval using OGSA-DAI.

The following sections provide more information on the implementation of the query and retrieval functionality of the data access services.

Image retrieval activity implementation

The OGSA-DAI activity framework executes activities in a block-wise manner, until no more data is present in the activity pipeline. This typically means that an activity takes one block of data from its input, processes this block, and produces one block of data on its output. In case of the image retrieval activity, this would mean that the activity has to issue a C-MOVE-RQ for a particular unique identifier and produce all images that are retrieved for this identifier on the activity’s output once they arrived. Obviously, this is not a good idea, since then all images, possibly several hundreds of megabytes, have to be stored somewhere on the web service host, before they can be streamed to the client. For that reason, we decided to let the retrieve activity produce one block of image data every time the activity is executed, where an image block contains only some number of bytes of one image. In that way, we adhere to the streaming concept of OGSA-DAI and minimize the storage capacity required at the host.

Figure 30 illustrates the various states the retrieval activity may be in, as well as the transitions between those states. Initially, the activity is waiting for a unique identifier (UID), which it receives for example from the ExtractUIDs activity (see Figure 28). When an identifier is present on the activity’s input, the activity sends a C-MOVE-RQ to the DICOM server, containing the requested UID, and the state changes to AwaitingImages. In this state the activity starts waiting for images that are sent from the DICOM server. When an image is received, the state changes to ReceivingImage, and the image is retrieved and written block-wise to the activity’s output. When the image is completely forwarded to the next activity, the retrieve activity starts waiting for more images to be received, unless it is signalled that no more images are to be expected. The stated then changes back to AwaitingUID, and a new C-MOVE-RQ can be generated. The activity is finished when no more UIDs are found on its input.

Figure 30 State chart of DICOM retrieve activity.

Recall from Section 5.1.4 that the DICOM protocol only allows images to be sent to a known application entity. As such, the images retrieved from the DICOM server cannot be forwarded directly to a specific activity, but have to be sent to a storage service class provider. This storage SCP has to be running in a separate thread, listening to its port for images to appear.

The actual processing steps that take place during activity execution are illustrated in Figure 31 (compare to Figure 29; T1 and T2 indicate the threads in which each component is running). The UID that is taken from the activity’s input results in a C-MOVE-RQ to be issued to the DICOM server. Based on this C-MOVE-RQ, the server will issue one or more C-STORE-RQs on the storage SCP. After retrieval of the images, the storage SCP sends a C-STORE-RSP back to the server, which in turn sends a C-MOVE-RSP to the Query-Retrieve Service Class, indicating the number of remaining images to be retrieved for the current move request.

Figure 31 Sequence diagram for the retrieval of images belonging to “uid”.

A stream is opened between the storage service class provider and the retrieve activity, in order to be able to forward the retrieved image to the activity. When this stream is opened, the actual image retrieval takes place, and the storage SCP forwards the image immediately to the activity. For every C-STORE-RQ to the storage service class a new stream has to be opened with the activity requesting the corresponding image.

For the implementation of the DICOM service classes we use the dcm4che2 DICOM Toolkit, an Open-Source, frequently-updated, Java-based implementation of the DICOM protocol [29].

5.3. Testing

Unit tests have been used extensively to test the query translation code; 77 different tests spanning nearly three thousand lines of code. Additionally, the same integration test approach has been applied as was used to test the data access services for relational databases, see Chapter 6 for details. This also revealed a bug in the third party code that we used, which fortunately already had been fixed in the latest release. After having tested the data access service thoroughly, it is deemed ready for extensive use within the ACGT consortium.

6. Validation and performance tests

This chapter describes the performance and validation tests that we have carried out on our data access services. The goals of these tests were two-fold. Firstly, validate that the data access services behave correctly and that they are stable, even under high load. Secondly, measure the performance impact of the use of the data access services, compared to querying the databases directly. Section 6.1 describes the experimental setup. Section 6.2 subsequently presents the results.
6.1. Experimental setup

In this section we describe the experimental setup that we have used to perform validation and performance tests. In Section 6.1.1, we provide an overview of the testing framework that we have set up. We explain the working of our load-testing client in Section 6.1.2, the queries that we have used to test the data access services in Section 6.1.3, and the network configurations that were used in Section 6.1.4.
6.1.1. The testing framework

We use the testing framework depicted in Figure 32 to carry out the performance measurements. The framework is fully scripted, such that it enables automated running of experiments as well as recording of the results in a database.

[image: image8.wmf]
Figure 32 Experimental framework used for the performance measurements

The System under Test consists of two (sample) data sources. These can be queried either directly or by using the OGSA-DAI-based [6] data access services, which are hosted within the Globus Web Service Resource Framework [30].

The core of the Test System is a custom Java load-testing client. It repeatedly carries out a given task, and measures throughput and latency. The test system includes a task for each type of query interface, which, when executed, carries out a query using that interface. Usage of the load-testing client is scripted using an Ant build file [31], client.xml in Figure Figure 32. This script file is used to configure the client and the task to run (using task-specific parameters). Another script file, sampleload.xml, invokes the client script file; as a result, a specific experimental setting is executed and the results are stored in a dedicated database. The main role of the sampleload script is to map each experimental configuration, e.g. the type of query and the interface to use, to the appropriate invocation of the underlying client script, e.g. the correct query syntax for the given interface and the OGSA-DAI data access service to use.

The Experimental execution front-end can be used to carry out experiments. In an experiment, many parameters are varied; each combination of parameters corresponds to a specific invocation of the sampleload script. All invocations that comprise an experiment can be executed using a single script file, either a Windows batch file or a Unix shell script, depending on the Operating System of the client.

For the Result analysis, scripts can be used as well. Results can be extracted from the experimental results database using a MySQL client, after which a tool like gnuplot can subsequently process these to visualize the results in tables or plots.

6.1.2. Load-testing client
The time required to handle queries is measured by letting the load-testing client repeatedly execute query tasks. It measures query throughput (the number of queries that can be carried out per second) and latency (the time it takes to receive all results of a query). Note that this way of defining latency means that it is dependent on the throughput. This is a limitation of the load-testing client, but there are some justifications for using this measure. First of all, for the queries that are carried out using the Web Service interface, the first query results are not available to the client application until the entire query response document has been received. Secondly, a good estimate of the “real'' response latency (the time needed to receive the first result of a query) can still be obtained; it is given by the time it takes to receive the complete response of a simple query that only returns a single result.

The accuracy of the throughput- and latency measurements depends on the number of queries that are executed, and the total time this takes. As such, two parameters control the accuracy: the minimum number of queries to carry out and the minimum time that queries should be carried out
.

The number of parallel execution threads that the load-testing client uses to carry out the query tasks can be specified. Increasing the number of queries executed in parallel can improve the throughput, but may lead to a increased latency.

The client supports an optional warm-up period, in which it executes several queries before it starts measuring the performance. This can help to improve the accuracy, as it may take longer to carry out the initial queries, due to just-in-time optimizations being carried out by the Java runtime environment, the need to initially read resources from disk (i.e. Java class files, configuration files, etc.), or the bootstrapping of various caches.

Optionally, the query tasks can carry out validation of the results they receive by calculating a checksum. The checksum calculation is such that the same query carried out by different interfaces should result in the same checksum. This, therefore, provides a useful check on the correctness of each interface. In the experiments that follow, validation is enabled, unless specified differently.

6.1.3. Queries
The system under test contains two types of database: a relational (SQL) and a DICOM database. Each database has different query interfaces, and different queries are used to measure the performance, as described in the next two sections.

Relational database
The relational database can be queried using three different interfaces:

· JDBC/SQL: The client uses JDBC to connect directly to the database. Queries are expressed in SQL. Data is returned using Java’s ResultSet interface.
· WS/SQL: The client queries the database by way of a Web Service that uses the relational query functionality provided by OGSA-DAI. The queries are expressed in SQL in an OGSA-DAI perform document. Data is returned as XML in an OGSA-DAI response document using Java’s WebRowSet [32], which adheres to the XML/SQL standard [33].
· WS/SPARQL. The client queries the database by way of our data access service, which provide a uniform query interface for different types of data source. Queries are expressed using SPARQL inside an OGSA-DAI perform document. Data is returned as XML, using the SPARQL Query Results XML format [15].

Using the JDBC/SQL interface, the client has the option to open a connection once and use that for multiple consecutive queries, or to create a new connection for each query. This different use of the interface is respectively denoted as “JDBC/SQL” and “JDBC/SQL (R)”, where the R stands for Reconnect.

The above query interfaces are tested with the following characteristic queries: Simple, Complex, and Bulk. The Simple Query retrieves a single field value, given a unique identifier. The Complex Query requires a join of three tables in the database; as such, its execution is relatively computationally-intensive. The Bulk Query retrieves all values present in a given table. This query is straightforward to carry out, but returns relatively many results.

DICOM database
The DICOM database can be queried using two different interfaces:

· DICOM: The client uses DICOM to connect directly to the database. Queries are expressed in a string as attribute-value pairs, e.g., PatientsName=”John Doe”. Results are returned according to the DICOM standard, each query result comprising multiple attribute-value pairs.
· WS/SPARQL: The client queries the database using our data access service, with the queries expressed in SPARQL inside an OGSA-DAI perform document. Data is returned as XML, using the SPARQL Query Results XML format [15]. In other words, this interface is exactly the same as the last one for the relational database.
Using the DICOM interface, the client again has the option to open a connection once and use that for multiple consecutive queries, or to create a new connection for each query. This different use of the interface is respectively denoted as “DICOM” and “DICOM (R)”.

The following queries are used in the performance and validation tests. The Simple Query retrieves a single field value, given a unique identifier. The Complex Query is a query with attributes on multiple levels of the DICOM information model (see Section 5.1.3), which is the most complex kind of query to ask a DICOM database. The Bulk Query retrieves the meta-data of all images belonging to a particular patient. This query is straightforward to carry out, but returns relatively many results. The Range Query is a special query. It consists of a date-range matching that cannot be expressed directly in DICOM. As a result, the data access service queries the DICOM database for the birth dates of all patients in the database and returns these results to the client. It is up to the client to filter out the relevant results. The Range Query with Filtering is the exact same DICOM query, but the data access service filters the relevant results before sending them to the client. Comparing this query to the range query gives insight into the overhead/gain of filtering performed by the data access service.

6.1.4. Network configurations

Four different network configurations have been used in the experiments. In one extreme case, the database, the Web Service container, and the client all reside on the same machine. At the other extreme, they all reside on different machines. Figure 33 shows each network configuration. The All local configuration is used to see the impact of the network.

[image: image9.wmf]
Figure 33 The network configurations used in the experiments (DB = Database, WS = Web Service, C = Client)
6.2. Results

In this section we present the results of the validation and performance tests, using three experiments. Experiment 1 (discussed in Section 6.2.1) tests and measures the query functionality for the relational database. Similarly, Experiment 2 (discussed in Section 6.2.2) queries the DICOM database. Finally, Experiment 3 (described in Section 6.2.3) investigates the performance of the image retrieval functionality.
6.2.1. Experiment 1: Quering the relational database

The goals of this experiment are two-fold. Firstly, it aims to give some insight into the differences in performance for the various interfaces that can be used to query the relational database. Secondly, it aims to validate the implementation of the data access service that we have implemented.

Experiment 1 uses the Remote Client network configuration, i.e. the database and the Web Service reside on one PC, and the client on another. The number of queries that the client executes in parallel is varied (logarithmically) from 1 to 64. The query results are not validated, for reasons explained below. For each configuration, the minimum run duration is set to ten seconds, and the minimum number of queries to execute is 100. A minimum of five runs is executed for each experimental configuration.

Using the above settings, the load-testing client cannot execute the Bulk Query using the JDBC/SQL interface when the connection to the database is reused for multiple queries. In this configuration, the client runs out of memory. The reason is, presumably, that data that is received over the connection is not released from memory until the connection to the database is closed. Therefore, we have put an upper bound on the number of queries that are executed for this configuration:we have not specified a minimum run duration, but have set the number of queries to execute to 200. It was determined empirically that the client could successfully handle this number of queries.

It was also impossible to carry out the Bulk Query using the WS/SPARQL interface with more than four parallel requests. The reason is that the Web Service container runs out of memory. The amount of memory needed to handle a Bulk Query using the WS/SPARQL Web Service is apparently so large that it is not possible to handle eight queries concurrently. Reducing the number of queries does not help in this case. We have found two factors that contribute to the high memory usage. First of all, OGSA-DAI constructs the entire XML contents of a response document before it starts sending the message, which means that the entire response has to be kept in memory. If streaming would be used to return the results –the Web Service would start returning query results while it is still receiving additional results from the database– the memory usage would be lower and would not (necessarily) depend on the size of the query results. Secondly, the conversion of the query from SPARQL to SQL and the corresponding inverse conversion of the results may also require significant amounts of memory.

For this experiment the query results are not validated. Initially, validation was turned on, to check that every query produced the same results, using all interfaces and for each invocation. However, it turned out that for the JDBC/SQL interface the query results sometimes varied, specifically for the Bulk Query with a relatively large number of client threads. We determined that this was due to a concurrency bug in OGSA-DAI [18], which could corrupt one or more values in the returned results. When validation of the results is enabled and one or more queries return incorrect results, the run is declared invalid and no performance measurements are recorded. So, in order to obtain performance measures, validation was turned off. This could be done because the bug does not affect performance, i.e. the work done to handle the query and the amount of data that is returned is not affected. Please note that the fact that the Web Services can successfully cope with multiple concurrent client requests does not imply that the Web Services actually handles these requests all at the same time. It might very well be the case that pending requests are queued due to resource constraints (e.g. the maximum number of concurrent connections to the database), but all get executed eventually.

This experiment also revealed a concurrency bug [20] in the D2RQ toolkit. This bug, however, could be avoided easily: it does not occur as long as the first query submitted to the WS/SPARQL interface (after the Web Service container has started up) is allowed to complete before more queries are issued.

Table 2 shows the maximum throughput and minimum latency for each query and for each of the interfaces. Next to the absolute values, relative values are shown to facilitate comparison. Here, the value 1 represents the best performance for a specific query. It can be seen that the performance penalty of using the Web Service interfaces is considerable. The relative difference depends on the type of query, but even in the best case (the Complex Query) there is still a factor of five difference in the throughput that can be achieved. When examining the latency values, it is important to realize that the latency measures the time that it takes to get all results of the query. Therefore, it partially depends on the throughput that can be achieved, in particular for the Bulk Query.

	Query
	Interface
	Throughput
	Latency

	
	
	[Hz]
	(Rel.)
	[s]
	(Rel.)

	Simple
	JDBC/SQL
	6763.3
	1
	0.000519
	 1

	
	JDBC/SQL (R)
	 110
	0.016
	0.0129
	 24.9

	
	WS/SQL
	 17.5
	0.0026
	0.101
	194

	
	WS/SPARQL
	 32.4
	0.0048
	0.0648
	125

	Complex
	JDBC/SQL
	 86
	1
	0.0116
	 1

	
	JDBC/SQL (R)
	 61
	0.71
	0.0254
	 2.18

	
	WS/SQL
	 14.8
	0.17
	0.116
	 9.94

	
	WS/SPARQL
	 11.2
	0.13
	0.125
	 10.7

	Bulk
	JDBC/SQL
	 57.4
	1
	0.0309
	 1

	
	JDBC/SQL (R)
	 43.4
	0.757
	0.0355
	 1.15

	
	WS/SQL
	 1.94
	0.034
	0.881
	 28.5

	
	WS/SPARQL
	 0.66
	0.011
	2.35
	 76.2

Table 2 Throughput and latency compared for Experiment 1, for all query-interface combinations.

6.2.2. Experiment 2: Quering the DICOM database

This experiment is similar to the previous, except that a DICOM database is queried. The Remote Client network configuration is again used. The client executes a number of queries in parallel, varying with powers of two from 1 to 16. The query results are validated to ensure that all query invocations produce the same results. We have chosen to execute each test run with a minimum run duration of thirty seconds and a minimum of 500 queries. Each of the runs is executed at least five times.

Using the above settings, the load-testing client cannot execute the Bulk Query using the WS/SPARQL interface when more than two queries are executed in parallel, because the Web Service container runs out of memory. As was the case for Experiment 1, this is partly due to limitations of OGSA-DAI. However, also the Jena and dcm4che toolkits are not optimized for multi-threaded streaming of large amounts of data, which also contributes to the problem
.

Direct querying of the DICOM database turns out not to be possible for more than eight parallel queries, when for every single query a new connection is set up: the DICOM database starts to refuse connections. This is a limitation of the free Conquest DICOM server [34] that we are using.
Table 3 summarizes the experimental results for querying a DICOM database using different interfaces and the above-mentioned experimental settings. It shows for each interface and for each query the minimum latency and maximum throughput that are measured over all test runs.

	Query
	Interface
	Throughput
	Latency

	
	
	[Hz]
	(Rel.)
	[s]
	(Rel.)

	Simple
	DICOM
	 70.4
	1
	0.219
	2.9

	
	DICOM (R)
	 15.4
	0.219
	0.438
	5.8

	
	WS/SPARQL
	 19.8
	0.282
	0.0754
	1

	Range
	DICOM
	123.0
	1
	0.0587
	1

	
	DICOM (R)
	 26.7
	0.217
	0.311
	5.29

	
	WS/SPARQL
	 16.3
	0.132
	0.11
	1.88

	RangeWithFiltering
	WS/SPARQL
	 16.3
	0.132
	0.1
	1.70

	Complex
	DICOM
	 22.9
	1
	0.0632
	1

	
	DICOM (R)
	 14.5
	0.634
	0.231
	3.65

	
	WS/SPARQL
	 4.7
	0.207
	0.414
	6.56

	Bulk
	DICOM
	 3.1
	1
	0.473
	1

	
	DICOM (R)
	 1.4
	0.431
	1.17
	2.47

	
	WS/SPARQL
	 0.25
	0.0807
	4.43
	9.38

Table 3 Throughput and latency compared for Experiment 2, for all query-interface combinations.
One of the interesting results in this table is for the Simple Query: the WS/SPARQL interface reaches a higher maximum throughput than the DICOM(R) interface, even though the response sent back to the client is three times larger (due to the different formatting of the results). The explanation for this behavior is found in the latency: the WS/SPARQL interface reaches a much lower latency than the two DICOM interfaces. The reason for this is that the DICOM protocol is quite a “chatty” protocol, and that in this network configuration (Remote Client) all DICOM communication has to go via the network, whereas for the WS/SPARQL interface this communication is all local (because the Web Service and database reside on the same PC).

6.2.3. Experiment 3: DICOM image retrieval

One of the main features of the DICOM protocol is the transport of images from one database to another. As described earlier, our DICOM data access service supports image retrieval. We have manually tested the throughput of the image retrieval. The testing framework described in Section 6.1.1 could not be used because the retrieved images are sent via FTP to the client when the WS/SPARQL interface is used. This makes it impossible for the framework to determine when all images have arrived. To manually calculate an accurate throughput, we used an image set of 1734 magnetic resonance (MR) images, each with a size of 136 kilobytes (lossy compression). The delivery timestamps of the first and last image at the client-side are used to determine the total image-retrieval time.

Table 4 summarizes the results for the DICOM and Web Service interfaces, and for different network configurations. Note, that the DICOM reconnecting interface is not taken into account for this experiment, since we have not considered multiple (concurrent) image-retrieval requests─it is impossible to determine which image (sent via FTP) belongs to which client request.

	Interface
	Max. throughput [kpbs]
	Network config

	
	
	All local
	Remote C
	Remote C & WS

	
	
	
	
	(co-loc.)
	(sepa.)

	DICOM
	1473.9
	1.00
	0.211
	-
	-

	WS-SPARQL
	1215.6
	1.00
	0.459
	0.255
	0.0052

Table 4 Image-retrieval throughput using different configurations for different interfaces

For the Remote Client configuration, the WS/SPARQL interface reaches a higher throughput. This can be explained by looking at the DICOM protocol: for each image to be sent, the DICOM server has to issue a request to send it, and the client has to approve this request before the transfer of one image can proceed. This handshake takes place for each image. To make things worse from a performance point-of-view, for each image that the client receives, it sends a message to the DICOM server that it has received the image. In other words, the protocol introduces significant overhead, because the handshake procedure has to go via the network in case of the DICOM interface, Remote Client configuration, whereas for the WS/SPARQL interface the DICOM client resides in the Web Service (available on the same machine).

When we look at the Remote C & WS configurations, we see a big impact of the network for the WS/SPARQL interface as well. The images are sent from the DICOM server to the Web Service using the DICOM protocol, and from there to the client using FTP. Note, that the throughput of the Remote C & WS (co-located) configuration is similar to the throughput of the DICOM Remote Client configuration: 310 kpbs versus 311 kbps. In both cases, the DICOM communication has to cross a network, and the Web Service communication to the client does not introduce additional overhead. For the WS/SPARQL Remote Client configuration, the DICOM communication is local, which explains its higher throughput. We have not been able to find an explanation for thesudden drop in performance for the WS/SPARQL configuration with the client, database, and Web Service each on a separate machine.
7. Conclusion
We conclude this deliverable by summarising what has been achieved and by discussing remaining open issues. This is done in respectively Section 7.1 and 7.2.
7.1. Achievements

We started the design of the data access services based on consolidated requirements [1]. We first decided where to focus our effort, then decided on the overall design and the technologies to use, as described in Chapter 2.

A common query language is used to increase syntactic homogeneity of the interfaces. The most significant technology choices are the use of Web Services, more specifically the OGSA-DAI framework, and the use of SPARQL as a common query language.
We have implemented OGSA-DAI-based data access services for two types of data source: relational databases and medical image databases. In doing so, we have demonstrated that SPARQL can be successfully applied to different types of data source that have differing querying capabilties.
The data access service for DICOM databases has demonstrated the capabilities of OGSA-DAI's activity framework. A single request message can be used to query the image metadata and asynchronously retrieve the corresponding images. The implementation successfully shields the web service client from the intricacies of DICOM image retrieval.

The data access services have also been thoroughly tested. In doing so, several bugs in third-party Open Source software were encountered, analysed, and reported. This not only demonstrates the thoroughness of the tests, but has also helped to improve the quality of these software packages.
The data access services are being used by the semantic mediator, demonstrating successful integration at a syntactic level. Furthermore, we have provided RDF Schema for the data sources that are wrapped by our data access services. These schemas are being used in WP7 to achieve the semantic mapping to the ACGT Master Ontology.
7.2. Open issues

Although the current data access services provide most of the functionality that is required, there are still some open issues that could be addressed to further improve the functionality of the data access services. These are discussed below.
7.2.1. Query limitations of the common query language
A drawback of using a common query language is that not all queries supported by the underlying data sources can be expressed in it. This means that when the data access services are used, certain queries cannot be carried out as efficiently as would be possible by querying the underlying data sources directly. In the case of SPARQL, the lack of support for aggregation (averaging, summation, counting, etc) is most likely to become an issue in practise. We already established in the requirements document that users occasionally want to carry out queries that use aggregation (see e.g. Section 4.1.2 of D5.1 [1]). This on its own does not imply that aggregation needs to be supported by the data access services, as aggregation can be performed client-side. However, this approach has a performance penalty associated with it. Furthermore, aggregation over large data sets may still be impossible given the current problems with handling bulk queries (see Section 6.2). So, to establish whether or not the data access services should support aggregation, we need to take stock of the types of queries requiring aggregation that users would like to carry out, the frequency that they would be carried out, and the amount of extra load that client-side aggregation would impose for these queries.
7.2.2. Query limitations of the underlying data sources
The opposite problem of using a common query language is that not all data sources may support all queries that can be expressed in it. This is the case for medical image databases. SPARQL is more expressive than the query support provided by DICOM. These limitations could be fully hidden by the data access service, but not without cost. It increases the complexity of the query translation, may introduce extra latency, may require temporary storage at the data access service, may introduce high loads on the underlying data source (unbeknownst to the client of the data access service), etc..
Instead of letting each data access service deal with query limitations of its data source, a more scalable approach is to let data access services expose these limitations. The benefit of this approach is that it is easier to develop data access services, so that new data sources can be integrated much quicker. When data access services can express their query limitations in a formal manner, other services and applications can interpret these and handle accordingly. To carry out a query that is not supported by a source, it often needs to be decomposed into several sub-queries. The semantic mediator has to perform query decomposition and answer composition anyway (to carry out its mediation functionality), so letting it handle the query limitations of the data sources prevents duplication of effort and can lead to more optimal query handling. A drawback, however, is that it further increases the complexity of the mediator. An alternative solution would be to introduce a higher level data access service that hides query restrictions of the underlying services. This generic service would decompose queries for a specific data access service as need be, store the intermediate results, and aggregate these to produce the final answer. It incurs a performance penalty but would facilitate implementation of the semantic mediator and other applications that want to query one or more data sources.
When it is decided to expose query limitations, there is the question of how to formally express the query limitations, or alternatively query capabilities, of data sources. There are various ways in which this can be done [35, 36, 37]. In order to select a suitable approach, we need to thoroughly review the capabilities and limitations of all relevant data sources. The query functionality provided by DICOM is already an interesting test case, as its limitations are sufficiently complex (see Section 5.2.1, page 35) that they require a fairly powerful formal system to be expressed accurately and concisely.
7.2.3. Bulk queries

The performance experiments revealed that there is an issue with carrying out bulk queries, i.e. queries that return a large number of results. The data access service constructs the entire query response document in memory before returning it. This has two drawbacks. Firstly, it has a negative impact on the latency because the Web Service client does not receive any query results as long as the Web Service has not yet received all results from the database. Secondly, the amount of memory needed by the data access service to handle a query is proportional to the size of the query results. This can cause the Web Service container to run out of memory, leading to failed requests
.
A better approach would therefore be to stream the query results, i.e. let the data access service return results to the client as soon as these are received from the database. This, however, is not straightforward. First of all, for certain complex queries, which are not directly supported by the database, streaming is not possible. When a query is split in multiple subqueries whose results need to be aggregated before they can be returned, the data access service cannot avoid temporarily storing intermediate query results. Secondly, all the frameworks that are used to handle queries must support streaming to implement it across the entire data pipeline from the database to the client. One of the main challenge will be to efficiently support streaming using Web Services technology, which is message-based. Although XML messages could in principle be streamed, the platform APIs typically do not support this. This is for example the case for OGSA-DAI, where the response document is not sent before it has been completed
.
To better handle bulk queries, we should first investigate the feasibility of extending OGSA-DAI so that it can handle bulk data gracefully. However, a cursory examination suggests that this will not be easy. Therefore, switching to a Web Service technology that can already handle bulk data should also be considered. Alternatively, the issue can be solved at the application level, i.e. by limiting the amount of results that a query can return. We will evaluate each of these options given the end user requirements, using the use cases that have already been defined.

7.2.4. Mapping to RDF

The data services expose the data uniformly by mapping it to an RDF representation. For the DICOM database, this mapping follows naturally from the information model defined by the DICOM protocol, and the same RDF Schema can be used for all DICOM databases
. This is not the case for relational databases. The RDF Schema for a data access service for a specific relational database depends on the schema of this database. Furthermore, as was illustrated in Section 4.1.1, there are different ways in which a given database can be mapped to an RDF representation. Although a mapping can be generated automatically, this (typically) reveals too much of the underlying relational schema, such as the use of foreign keys and code tables. Alternative mappings can be used to hide these details. The way the relational schema is mapped affects the effort needed to wrap new databases, the ease with which semantic mappings can be created, the effort needed to carry out queries, etc. Jointly with WP7, we have started experimenting with different mappings for the relational databases at the data access layer to discover what the impact is on the semantic mediation process. This way we can optimise the way the data is exposed by the data access services. The experience we obtain from this can be used to develop data access services for other types of data source.
7.2.5. Other types of data source

We have currently implemented data sources for two types of data source, for the reasons outlined in Section 2.1. There are other types of data sources that are relevant within ACGT, for example public web databases. There is, however, a large variation in the interfaces for these databases. This heterogeneity makes it more difficult to develop generic data access services. Partially automated development could be considered, but it typically takes significant time and effort to develop such a framework. Web databases typically offer limited query functionality. So a first step could be to set up a framework for formalling expressing query capabilities.
Despite the stated challenges, we have been investigating which public web database would be suitable to integrate first into the ACGT data access platform. Most importantly, it should provide data that end users are keen to access in the context of the ACGT trials. Preferably, there should also be a machine interface for accessing the database. This avoids the need to “scrape HTML” and would greatly facilitate development of a database access service. This ensures that most effort can be focussed on questions of how to translate queries and how to expose the data. The Gene Expression Omnibus (GEO) is a database that fits these requirements. It stores the results of microarray experiments for other trials, and usefully complements the data that is collected within the ACGT trials. It should be noted, however, that the ACGT Master Ontology would have to be extended to cover microarrays and related genomic concepts, before such a database can be queried through the semantic mediator.
7.2.6. Security

Currently, two basic measures are taken with respect to security. Firstly, IP-based access is enfored by configuring the firewall of our gridnode server that hosts the services. The services can only be accessed ACGT partners that requested access. Secondly, no trial-specific data is made available from the data access services that are hosted on the gridnode server. They only host data that is already in the public domain for which no access restrictions apply. In order to make ACGT trial-specific data available using the data access services, a more powerful security infrastructure is required, that allows more fine-grain and easier-to-configure access control. These requirements are met by the ACGT security architecture [39]. However, as the implementation of this architecture is still being finalised, the data access services are not yet integrated into it. More specifically, the data access services require an OGSA-DAI compliant authorisation plug-in, which is still being developed. We, however, soon hope to be able to integrate our data access services into the ACGT-wide security infrastructure.
References

[1]
Erwin Bonsma and Anca Bucur (Editors), Deliverable 5.1: “Consolidated requirements and specifications for data access”, 15 January 2007

[2]
Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. Ullman, “A query translation scheme for rapid implementation of wrappers”, 4th Intl. Conf. on Deductive and Object-Oriented Databases; LNCS 1013, (1995), 319-344

[3]
P. Thiran, J.L. Hainaut, and G.J. Houben, “Database Wrappers Development: Towards Automatic Generation”, In: Proc of the Ninth European Conference on Software Maintenance and Reengineering (CSMR'05), (2005), 207-216

[4]
L. Liu, J. Zhang, W. Han, C. Pu, J. Caverlee, S. Park, T. Critchlow, M. Coleman, and D. Buttler, :XWRAPComposer: A Multi-page data extraction service for bio-computing applications”, Proc. of the 2005 IEEE International Conference on Services Computing, (2005) 271-278

[5]
Antonioletti, M., et al: The Design and Implementation of Grid Database Services in OGSA-DAI. In: Concurrency and Computation: Practice and Experience, Volume 17, Issue 2-4, pp. 357-376, February 2005

[6]
The OGSA-DAI Project, http://www.ogsadai.org.uk/

[7]
J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson. “Jena: Implementing the semantic web recommendations”. Technical Report HPL-2003

[8]
Jena Semantic Web Framework, http://jena.sourceforge.net/

[9]
Bizer, C., Seaborne, A.: D2RQ – Treating Non-RDF Databases as Virtual RDF Graphs. In: Proc. of the 3rd International Semantic Web Conference (ISWC2004), Hiroshima, Japan, 2004. Poster presentation

[10]
D2RQ - Treating Non-RDF Databases as Virtual RDF Graphs, http://sites.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/
[11]
Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan Robie, and Jérôme Siméon (Editors), “XQuery 1.0: An XML Query Language”, W3C Recommendation 23 January 2007, http://www.w3.org/TR/2007/REC-xquery-20070123/

[12]
Prud’hommeaux, E., Seaborne A.: SPARQL Query Language for RDF, W3C Candidate Recommendation 14 June 2007, http://www.w3.org/TR/2007/CR-rdf-sparql-query-20070614/
[13]
Andy Seaborne, “RDQL - A Query Language for RDF”, W3C Member Submission 9 January 2004, http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/

[14]
Resource Description Framework (RDF), http://www.w3.org/RDF/

[15]
 Dave Beckett, and Jeen Broekstra (Editors), “SPARQL Query Results XML Format”, W3C Working Draft 14 June 2007, http://www.w3.org/TR/2007/WD-rdf-sparql-XMLres-20070614/
[16]
P. Szavay, T. Luithle, N. Graf, R. Furtwängler, and J. Fuchs, “Primary hepatic metastases in Nephroblastoma--a report of the SIOP/GPOH Study”, Journal of Pediatric Surgery, Vol. 41, No. 1, pp. 168-72, January 2006

[17]
 Dan Brickley and R.V. Guha (Editors): RDF Vocabulary Description Language 1.0: RDF Schema, W3C Recommendation 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
[18]
“Bug in SQLResultsToXMLActivity (more specifically TextColumnStrategy)”, http://bugs.ogsadai.org.uk/show_bug.cgi?id=344

[19]
“Bug in com.hp.hpl.jena.query.util.Context?”, http://tech.groups.yahoo.com/group/jena-dev/message/29566

[20]
“Concurrency problem in de.fuberlin.wiwiss.d2rq.map.Mapping”, Tracker ID 1806782, http://sourceforge.net/tracker/index.php?func=detail&aid=1806782&group_id=111002&atid=657968

[21]
“EOFException on database connection not handled”, Tracker ID 1801864, http://sourceforge.net/tracker/index.php?func=detail&aid=1801864&group_id=111002&atid=657968
[22]
“Bug in D2RQ for properties that use more than one join”, Tracker ID 1794042, http://sourceforge.net/tracker/index.php?func=detail&aid=1794042&group_id=111002&atid=657968
[23]
National Electrical Manufacturers Association: “Digital Imaging and Communications in Medicine (DICOM)”, 2004

[24]
W. Dean Bidgood Jr., Steven C. Horii, Fred W. Prior, Donald E. van Syckle, “Understanding and Using DICOM, the Data Interchange Standard for Biomedical Imaging”, Journal of the American Medical Informatics Association, Volume 4, Number 3, May/June 1997

[25]
“Part 4: Service Class Specifications, Annex C: Query/Retrieve Service Class”, In: [23], pp. 27-74

[26]
Eric G.
, “Q/R Relational Queries”, Message in comp.protocol.dicom newsgroup, 28 Jun 2005, http://groups.google.com/group/comp.protocols.dicom/browse_thread/thread/6d8ab1cf7d4e637c/c987fda0c86f673e
[27]
Python Programming Language - Official Website, http://www.python.org/

[28]
Tom Sugden, “The Activity Framework Design Document”, available from http://www.ogsadai.org.uk/documentation/Design_documents/

[29]
Open Source Clinical Image and Object Management, http://www.dcm4che.org/

[30]
The Globus Toolkit, http://www.globus.org/toolkit/

[31]
The Apache Ant Project, http://ant.apache.org/

[32]
Java WebRowSet API. Available on: http://java.sun.com/javase/6/docs/api/javax/sql/rowset/WebRowSet.html

[33]
JTC 1/SC 32 Committee. Information technology – database languages – SQL – part 14: XML-related specifications (SQL/XML), 2006. ISO/IEC 9075-14:2006

[34]
Conquest DICOM software, http://www.xs4all.nl/~ingenium/dicom.html

[35]
Y. Papakonstantinou, A. Gupta, and L. Haas, “Capabilities-based query rewriting in mediator systems”, Distributed and Parallel Databases, 6 (1998), 73-110

[36]
L.M. Haas, P.M. Schwarz, P. Kodali, E. Kotlar, J.E. Rice, and W.C. Scope, “DiscoveryLink: A system for integrated access to life sciences data sources”, IBM Systems Journal, 20(2) (2001), 489-511

[37]
W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmér, T. Risch. “EDUTELLA: A P2P networking infrastructure based on RDF”. In: Proc. of the 11th International World Wide Web Conference (WWW2002), (2002).

[38]
BIRT project, ClassicModels sample database, http://www.eclipse.org/birt/phoenix/db/

[39]
B. Claerhout and S. Castille (Editors), Deliverable 11.1: “Consolidation of security requirements of ACGT and initial security architecture”, 1 February 2007.

[40]
Internal ACGT wiki, http://wiki.healthgrid.org/index.php/ACGT:Index

Note: All URLs given above were valid on 7 August 2007

A How to use the data access services

The data access services are hosted on the Philips gridnode server (gridnode.ehv.campus.philips.com). They are running within a single OGSA-DAI data service, using Globus as the web services container. Access to the service is currently restricted by the server's firewall (for increased security of the server). Contact Erwin Bonsma to request access to the data service.

To use the data service, you need to install OGSA-DAI WSRF 2.2. Given the choice, select the version that is compatible with Globus Toolkit 4.0.3. Do not use OGSA-DAI 3.0. It is incompatible with earlier releases, and we do not yet support it.
The following resources are currently available.

A.1 ClassicModelsResource
The ClassicModelsResource is an instantiation of the relational data access service. It provides access to a local installation of the to the ClassicModels relational database [38]. This database is available under an Open Source license and has been used for testing and development, as the schema and contents are sufficiently complex so that interesting queries can be carried out on the data.

To carry out an example query, use the dataServiceClient that is provided as part of the OGSA-DAI platform. You can provide the perform document that contains the SPARQL query as an argument. Example queries for this resource are available in the ACGT Subversion repository (https://iapetus.ics.forth.gr/svn/ACGT) within the following directory: /WrapperServices/trunk/test/perform/ClassicModelsResource
An example invocation is the following:
ant dataServiceClient
 -Ddai.url=http://gridnode.ehv.campus.philips.com:8080
 /wsrf/services/ogsadai/DataService
 -Ddai.resource.id=ClassicModelsResource
 -Ddai.action=PlanesCustomerQuery.xml

Remarks:
· Execute this command in the root directory of your OGSA-DAI installation.

· The text above was broken up for readability but the invocation should be on a single line. In particular, the dai.url property should not contain any spaces.
· The result is a dump to console of the XML response document that is returned by the service. In it are the query results in SPARQL XML format.
A.2 acgt_farmer
The acgt_famer resource is another instantiation of the relational data access service. It provides SPARQL query access to the Farmer database that is hosted on FORTH iapetus server (iapetus.ics.forth.gr). The ACGT Subversion repository contains example perform documents with SPARQL queries for this resource in the following directory: /WrapperServices/trunk/test/perform/acgt_farmer
An example invocation is the following:

ant dataServiceClient
 -Ddai.url=http://gridnode.ehv.campus.philips.com:8080
 /wsrf/services/ogsadai/DataService
 -Ddai.resource.id=acgt_farmer
 -Ddai.action=BasalArrays.xml

A.3 TestImageResource
The TestImageResource is an instantiation of the DICOM data access service. It provides access to a Conquest DICOM server that is deployed on the gridnode server. The server hosts a set of anonimised example DICOM images provided by Philips Medical Systems. The ACGT Subversion repository contains example perform documents for this resource in the following directory: /WrapperServices/trunk/test/perform/acgt_farmer
An example invocation of a simple query is the following:

ant dataServiceClient
 -Ddai.url=http://gridnode.ehv.campus.philips.com:8080
 /wsrf/services/ogsadai/DataService
 -Ddai.resource.id=TestImageResource
 -Ddai.action=LevelQuery.xml
It is also possible to retrieve images using the data access service. For this you need to host an FTP server that is able to receive the images. You then need to edit the example image retrieval perform documents to provide the access details of the FTP server. Once you have done so, you can invoke the service as was done above (specifying the perform document using the dai.action property).
B How to deploy the data access services

The data access services are deployed by Philips on the Philips “gridnode” server. These services can be invoked by applications or services developed by others (in the ACGT project). So typically it is not necessary to install the data access service in order to use them. However, in certain cases it can be useful to locally install instances of the data access services. This can for example be the case when another ACGT partner wants to experiment with adding additional functionality, or wants to be responsible for wrapping their own data sources. For this reason, we have provided instructions on how to install the data access services on the ACGT wiki [40]. These instructions are extended and modified as needed. The instructions as they apply to the version of the services associated with this deliverable can be found below.
B.1 Prerequisites

The data access services rely on various software packages. The software that needs to be installed first is listed below.

A small note upfront: the OGSA-DAI installation documentation strongly recommends to put Java, Ant, Tomcat (if you are using it) and the Globus Toolkit into directories without a space in the path. So C:\jdk1.5.0.0_7 instead of C:\Program Files\Java\jdk1.5.0.0_07.

· Java SE, JDK 5.0 Update 7 or newer

· Download from: http://java.sun.com/javase/downloads/index_jdk5.jsp
· Install and set JAVA_HOME environment variable

· Globus (Java WS Core Binary Installer, Version 4.0.3)

· Download from: http://www.globus.org/toolkit/downloads/4.0.3/#wscore_bin
· Set GLOBUS_LOCATION environment variable

· OGSA-DAI WSRF 2.2, compatible with Globus Toolkit 4.0.3

· Download from: http://www.ogsa-dai.org.uk/downloads/ogsa-dai_wsrf_2.2/

· Do not use OGSA-DAI 3.0. It is incompatible with earlier releases, and we do not yet support it.

· Ant 1.6.5

· Download from: http://ant.apache.org/

· Set ANT_HOME environment variable

· Add bin directory to path

· MySQL 5.0.22

· Download from: http://dev.mysql.com/downloads/

· Note: You should be able to use a different Relational Database Management System (RDBMS). We are using MySQL, and it is therefore easiest to stick with that. The driver that is currently used by the relational data access service is for MySQL. If you use a different RDBMS, you may need to change the driver that is used.

You subsequently need to deploy OGSA-DAI as a service within the Globus web container. See the OGSA-DAI documentation for help (note: use of Tomcat is not necessary). If you have successfully done so, you should see the /wsrf/services/ogsadai/DataService resource when you restart the Globus web container.

B.2 Setting up the databases
Below you can find instructions for setting up a relational database and a DICOM database that can be accessed using the data access services. The data access services can wrap other datasets as well. However, using the datasets below has the advantage that the appropriate configuration files have been created, and that example query files exist already.
ClassicModels relational database

For the example queries, we use data that is available from the BIRT project. Use the "scripts to load a MySQL database" on the BIRT project page to create a "ClassicModels" database in the RDBMS from the download data.
Make sure that the user "readonly" with password "readonly" has read-only access rights to this database. You can use the following SQL statement as root-user to accomplish this:

GRANT SELECT ON ClassicModels.*
 TO 'readonly'@'localhost' IDENTIFIED BY 'readonly';

Next, add the following view to the ClassicModels database (it is used by the TopTenOrders query and occurs in the D2RQ map for the database, and as a result the view, apparently, also needs to exist to carry out other queries):

CREATE VIEW OrderCost AS
 SELECT orderNumber, SUM(quantityOrdered*priceEach) AS cost
 FROM Orders
 JOIN OrderDetails USING (orderNumber)
 GROUP BY orderNumber;

Add the following entry (it is used by the EscapedOutput query):

INSERT INTO Products
 SET productCode = 'XYZ_9999',
 productName = 'Escape pod',
 productLine = 'Planes',
 productScale = '1:1',
 productVendor = 'FooBar',
 productDescription
 = 'Features < and > buttons for steering & much more.',
 quantityInStock = 0,
 buyPrice = 9000,
 MSRP = 10000;

Conquest DICOM server

The CONQUEST DICOM server is available from the ConQuest homepage (http://www.xs4all.nl/~ingenium/dicom.html).
· Download dicomserverxxxx.zip for Windows: complete DICOM server + documentation + sample data

· Download jpegsubxxxx.zip for Windows: library required for JPEG support

· Unzip both to the same directory, e.g. C:\conquest. The server will be present in this folder, the (sample) image data will be present in the /data subfolder (e.g. C:\conquest\data).

· Start the server by executing ConquestDICOMServer.exe

· If everything went correctly, the server should display a message that this is a first time installation, and it will ask for a database type to use. Choose DBASEIII without ODBC (default option, advised for small archives up to 100.000 images). After pushing OK , the server window should open.

· There is no need to change any of the default server settings; refer to the ConquestPACS.pdf in the installation directory to see how the server can be configured differently if required.

Next, test data should be added to the local image database. Test images can be retrieved from the DICOM database that is hosted on the gridnode server.

· Set up a local FTP server:

· The FTP server must be available from the gridnode server that is hosting the DICOM Web Service. So you must make sure that no firewall (or other security mechanism, like address translation when you are behind a gateway) is blocking the connection from the Philips gridnode server to your FTP server!

· Go to the build/wrapperServices/bin folder, and edit the use-wrappers.bat file:
· The OGSA-DAI variable should be set to the full path of your OGSA-DAI installation, E.g. C:/ogsadai-wsrf-2.2
· The WEB_SERVICE variable should be set to
http://gridnode.ehv.campus.philips.com:8080/wsrf/services/ogsadai/DataService

· Retrieve all images to your local FTP server:

· Go the build/WrapperServices/perform/TestImageResource directory. Edit the file RetrieveExampleImageSet.xml, and fill in the URL of your FTP server.

· Run the following command line to start the retrieval:

use-wrappers TestImageResource RetrieveExampleImageSet.xml
· The images should arrive in your FTP folder, e.g. C:\Inetpub\ftproot. Wait until no more images are coming in.

· Open your ConQuest server; drag-and-drop all download images onto the ConQuest window; this will add all images to the database (might take some time).

B.3 Installing the data access services
Next, you need to deploy the data access services (data resources in OGSA-DAI terminology) within the OGSA-DAI web service. For this, you need to carry out the following steps:
· Retrieve the WrapperServices source code from the ACGT Subversion repository.
· In the folder where you want to have the repository, invoke: svn checkout https://iapetus.ics.forth.gr/svn/ACGT/WrapperServices/trunk. This creates a folder with the name trunk; you might want to rename this, e.g. to WrapperServices.

· Create a distributable version of the WrapperServices:
· Go to the directory where you've put the repository, e.g. C:/svn/WrapperServices

· Invoke ant distribute. This creates a subfolder build/wrapperServices that contains everything you need to install the wrapperservices:

· /bin contains a batch-file that allows you to easily use the wrapperServices

· /etc contains the resource description files, and the XML Schema Definition (XSD) files for the resource description files and OGSA-DAI activities

· /lib contains all the libraries (JAR-files) needed to use the wrapper services for a DICOM and SQL resource

· /perform contains some sample perform documents for a DICOM and SQL resource

· Install the wrapperservices:
· Go to the build/wrapperServices folder

· Use ant -f install.xml. This will start the installation process:

· Copying of XSD files to the %GLOBUS_LOCATION/share/schema/ogsadai/xsd folder

· Copying of jar-files to the %GLOBUS_LOCATION/lib folder.
· Copying of resource configuration files to the %GLOBUS_LOCATION/etc/ogsadai_wsrf folder, where each resource will have its own subfolder

· Replacing SCHEMA-PATH token in the resource configuration files with the path to the XSD files

· Deploying the resources by adding the resources names to the %GLOBUS_LOCATION/etc/ogsadai_wsrf/_ogsadai_DataService.dsr.xml configuration file. The following resources are added: ClassicModelsResource, ClassicModelsSQLResource, and TestImageResource

· Modify for each deployed resources its dataResourceConfig.xml file:
· For the ClassicModelsResource:

· Replace RESOURCE-CONFIG-PATH in the URI with the full path to the ClassicModels.n3 file. Windows users should replace all backslashes \ with normal slashes /. E.g. C:/ws-core-4.0.3/etc/ogsadai_wsrf/ClassicModelsResource

· For the ClassicModelsSQLResource:

· Replace RESOURCE-CONFIG-PATH in the role map configuration as above.

· Replace the driver uri with the uri of the SQL database; defaults to jdbc:mysql://localhost/ClassicModels, i.e., the ClassicModels database in the local SQL database, so if you want to use the local SQL database, you do not have to modify this.

· For the TestImageResource:

· Correct the path to the DICOMdictionary.xml file, as above.

· Fill in DICOM server details for the queryRetrieveSCP: E.g. AET = CONQUESTGRIDNODE, hostname = gridnode.ehv.campus.philips.com, port = 5678.

· Fill in details for the query-retrieve part of the data resource (the queryRetrieveSCU). E.g. AET = DICOMQR, hostname = localhost, port = 5678.

· Fill in details for the image retrieval part of the data resource (the storageSCP). For example:

 <storageSCP>

 <aetitle>DICOMRCV</aetitle>

 <hostname>localhost</hostname>

 <portRange min="5680" max="5689"/>

 </storageSCP>
This will create the DICOM data access service with 10 image retrievers, named DICOMRCV0 till DICOMRCV9.

The DICOM protocol only allows sending images to application entities known by the server, so it is of utmost importance that the details filled in here are also known to the DICOM server. For the Conquest server, you can achieve this by adding the following lines to the file acrnema.map (which you can do using the tab "Known DICOM Providers"):

DICOMRCV0

127.0.0.1
5680

un

DICOMRCV1

127.0.0.1
5681

un

DICOMRCV2

127.0.0.1
5682

un

DICOMRCV3

127.0.0.1
5683

un

DICOMRCV4

127.0.0.1
5684

un

DICOMRCV5

127.0.0.1
5685

un

DICOMRCV6

127.0.0.1
5686

un

DICOMRCV7

127.0.0.1
5687

un

DICOMRCV8

127.0.0.1
5688

un

DICOMRCV9

127.0.0.1
5689

un
B.4 Testing the local installation

Next, check if all works correctly.
· Start the data access services by starting the Globus container:

· Invoke: %GLOBUS_LOCATION%/bin/globus-start-container -nosec

· Configure the convenience script use-wrappers.bat. It can be used to invoke the data access services.

· The script can be found in the build/wrapperServices/bin folder. Check that the environment variables are correctly set:
· OGSA-DAI should be set to the full path of your OGSA-DAI installation, E.g. C:/ogsadai-wsrf-2.2
· WEB_SERVICE should be set to the URL of your local webservice, E.g. http://255.255.255.255:8080/wsrf/services/ogsadai/DataService

· Test the relational data access service:

· Go to the test/perform/ClassicModelsResource folder. It contains example perform documents for this resource.

· Invoke: use-wrappers ClassicModelsResource SimpleQuery.xml

· Test the DICOM data access service:
· Go to the test/perform/TestImageResource folder. It contains example perform documents for this resource.

· Invoke: use-wrappers TestImageResource SimpleQuery.xml
When both tests run without error, your installation is successful.

sparqlXML

retrieveRS

Forwarded�ResultsRS

uidRS

Sparql�ResultsRS

Deliver to URL

Retrieve images

Results to XML

Extract UIDs

SPARQLQuery

� Although not shown in the figure, there can be other applications/or services that use the data access services directly. It is anticipated, however, that most will do so through the mediator service.

� There are at least ten different ones, e.g.: E.g. RDQL, Triple, SeRQL,Versa, N3, RQL, RDFQL, RxPath, SPARQL and SquishQL.

� OGSA-DAI 3.0 has recently been released (at the time of writing this deliverable). The data access services have, however, been implemented using an earlier version of the platform, OGSA-DAI 2.2. Significant changes have been made to OGSA-DAI in the Version 3.0 release, including changes to the conceptual architecture. Unless mentioned otherwise, this deliverable describes and refers to OGSA-DAI Version 2.2.

� The actual database has a slightly different schema. Most notably, the names of tables, columns and string values are in German. The actual query and database schema can be found in [� REF Bonsma2007 \h ��1�]. All differences are only cosmetic.

� We have not attempted a formal proof, but at the very least, we are not aware of any SPARQL queries that cannot be translated into a SQL query.

� This data access service, however, is at the moment only available within Philips. It is not accessible to other partners in the project, as the data should only be accessed by institutes that have signed the accompanying consent form. Once the ACGT security infrastructure can enforce such fine-grain access, and after it has been thoroughly tested, the data access service could be made more widely available.

� Not reflected in the model, but a single image may contain multiple frames. For example, a multi-frame ultrasound image may show an animation of a beating heart; each frame showing the same body part at different times.

� Note, when the DICOM server supports the Study Root Q/R information model, it is at least possible to query on study attributes without specifying a particular patient. This is presumably one of the reasons why this Q/R information model is included in the standard.

� If the DICOM server supports the Study Root Q/R information model this can be done using a single query. Otherwise multiple queries are necessary, one for each patient.

� The match will not necessarily be included in the query that is sent to the server, as will be explained later.

� Which of these two termination criteria is effectively used varies per query and experiment configuration, as it depends on the time it takes to execute a query.

� This also explains why the data access service can handle even fewer number of bulk queries in parallel compared to the relational data access service. The number of results that are returned by the respective bulk queries is similar, and in fact, even slightly smaller for the DICOM database.

� Fortunately, OGSA-DAI handles low memory relatively gracefully by aborting requests before there is no memory available at all anymore. This means that the Web Service container itself typically keeps on running.

� OGSA-DAI also provides an asynchronous data delivery mode which could in theory be used to stream results. This, however, is not practical for two reasons. First of all, its implementation is buggy (and very, very slow). Secondly, and even more importantly, it is OGSA-DAI specific and uses a Java-specific binary representation of the data, which defeats one of the main reasons of using Web Services, namely interoperability.

� When it is known that a specific DICOM database does not support certain optional attributes, these can be excluded from its schema. Nevertheless, the more general schema still applies but it will contain properties that will never appear in the data.

� Surname not known, but the author is a frequent and highly rated poster of the newsgroup.

Page ii

(19/12/2007

