ACGT FP6-026996 
                     D4.6 – Distributed logging service for ACGT environment - report


[image: image1.png]
Distributed logging service for ACGT environment - report


Project Number:
FP6-2005-IST-026996

Deliverable id:
D 4.6

Deliverable name:
Distributed logging service for ACGT environment - report

Submission Date:
30/11/2009

[image: image2.png]
	COVER AND CONTROL PAGE OF DOCUMENT

	Project Acronym:
	ACGT

	Project Full Name:
	Advancing Clinico-Genomic Clinical Trials on Cancer: Open Grid Services for improving Medical Knowledge Discovery

	Document id:
	D 4.6

	Document name:
	Distributed logging service for ACGT environment -  report

	Document type (PU, INT, RE)
	PU

	Version:
	0.6 - DRAFT

	Date:
	00/11/2009

	Editor:
Organisation:
Address:
	Juliusz Pukacki
PSNC
pukacki@man.poznan.pl


Document type PU = public, INT = internal, RE = restricted
	ABSTRACT:

The present document provides an description of logging system developed and deployed for ACGT environment


	KEYWORD LIST: Grid, logging, distributed logging, grid services 


	MODIFICATION CONTROL

	Version
	Date
	Status
	Author

	
	
	
	

	0.1
	10/11/2009
	Draft
	Pawel Spychala

	0.2
	19/11/2009
	Draft
	Pawel Spychala

	0.3
	20/11/2009
	Draft
	Juliusz Pukacki

	0.4
	24/11/2009
	Draft
	Stelios Sfakianakis

	0.5
	24/11/2009
	Draft
	Pawel Spychała

	0.6
	25/11/2009
	Draft
	Pawel Spychala


List of Contributors

· Pawel Spychala, PSNC
· Stelios Sfakianakis, FORTH
· Giorgos Zacharioudakis, FORTH
Contents

4Contents


5Executive Summary


6Introduction


7Overview and functionality


8Internal architecture


10Client – Server communication


10Security aspects


11Support for other implementation


11Using log repository in distributed system components


11Logging conventions


11Application requirements


12Who


12What to log


12How to log


13Exploring log messages in log repository


13Description of dedicated web portal interface for Distributed Logging


18Description of Log Monitor mode interface (DMS portal)


20Log repository web service


20Building of query object


22ACGT Toth Installation


23Writing logs events to repository


23Exploring log repository


23Client application configuration


24Preliminary steps


24Requesting module name


24Downloading and installing appender


25Standalone application configuration


25Configuration for web services deployed on web application server


25Configuration of web services on Tomcat example


27Sample of code using JMSAppender configuration


28Use case: Logging at the Workflow Environment


29Implementation of the Proxy Logging


31References


32Appendix A - Abbreviations and acronyms




 TC "Heading" \l 3 
Executive Summary

ACGT is an Integrated Project (IP) funded in the 6th Framework Program of the European Commission under the Action Line “Integrated biomedical information for better health”. The high level objective of the Action Line is the development of methods and systems for improved medical knowledge discovery and understanding through integration of biomedical information (e.g. using modelling, visualization, data mining and grid technologies). Biomedical data and information to be considered include not only clinical information relating to tissues, organs or personal health-related information but also information at the level of molecules and cells, such as that acquired from genomics and proteomics research.

ACGT focuses on the domain of Cancer research, and its ultimate objective is the design, development and validation of an integrated Grid enabled technological platform in support of post-genomic, multi-centric Clinical Trials on Cancer. The driving motivation behind the project is our committed belief that the breadth and depth of information already available in the research community at large, present an enormous opportunity for improving our ability to reduce mortality from cancer, improve therapies and meet the demanding individualization of care needs.

Introduction

Component modules of distributed system demand applying special approach to problem of registering and indicating events to allow performing process of supervising, debugging and failure-detection analysis. However using actually available tools seems to be insufficient in case of analysis distributed heterogeneous systems designed in service oriented architecture. In that case each part of functionality of the whole system is executed on many independent hardware nodes and whole action is fragmented to smaller executions process that may generate events locally. Tracking execution of such distributed operations and analyzing relationship that rising in such cases becomes difficult and arduous. Besides existing solutions in many cases do not support collecting complex events or are not free of charge (e.g. EventLog Analyzer) or dedicated for explicit platform (NetWare Control Center). Furthermore, those solutions frequently are based on concept of working on client side (e.g. Chainsaw), which causes that collected log events are stored on local system and possibility of sharing them is difficult or in many cases is not possible.

Whole logging mechanism should also be designed as highly efficient (functionality is frequently accomplished with use of many independent hardware nodes) and should provide storing events in consistent state. The main goal of such system is to assure process of tracking and monitoring distributed executions and perform queries through already collected in repository events as simple as possible. It is needed a tool that is able to analyze events occurred in the distributed system and store them in defined structure into the repository. TOTH distributed logging system delivers mechanism to sending events from clients to remote server that performs functionality of remote events repository for analyzing and querying collected resources.

Integration of client applications (standalone applications or web service) with TOTH log repository is possible by simple using enhancement for log4j logging mechanism (for Java applications) or by using specially designed web service for storing events (for Java or other programming languages which allows using SOAP web service protocol). Additionally designed web service interface and delivered web portals  using those web service allow to explore log events repository with possibility of filtering outputs and building advanced queries for static analyze (querying log repository), preprocess of incoming events (parsing key-values from messages) and performing active analyze of events (defining email notifications).
Overview and functionality
TOTH Distributed Logging module is useful for those systems that bases on diffused application. Monitoring such loosely coupled system may be, in that case, succored by analyzing collected in TOTH repository events coming from modules of monitored system. In that case TOTH is used as application for integrating, preprocessing and collecting events generated by each of system component. Communication mechanism of collecting such events bases on standard Java logging mechanism with prepared appropriate extension allowing to send events to remote repository or bases on using appropriate log repository web service method. Logging mechanism allows integrating centralized logging for almost all application written in Java language with minimal effort for implementation. The main goals that have been considered during developing this tool were as follows:

· Openness  – possibility of adding new modules and enhancing its basing functionality

· Flexibility – simplified procedure of client application configuration with connection of possible further tuning  of logging system by advanced administrators

· Scalability – fault tolerance

· Intuitive interface basing on web portal and web services

Distributed Logging system delivers solutions supporting following operations:

· Monitoring state of system platform (inspection of resources or module states and events). 

Actual state of execution individual module inspected distributed system or state of resources laying under its control may be discovered by analyzing collected in repository events.

· Support for distributed debugging.

Log events repository allows to collect and investigate the execution process of distributed operation thankful of integration and delivering wide spread of query possibilities, preprocessing functionality and filtering on events repository.

· Monitoring distributed productivity.

Appropriate defined log events allows to monitor execution times and perform a efficiency tests by logging start and stop or request execution time of analyzed operations

Each event that is sent to log repository (no matter if it is sent by using web service method or by using log4j mechanisms) is preprocessed. This preprocessing relies on parsing text message coming with events and isolating key-value pairs that may be used in further analysis for building user queries.

Functionality of user Web portal interface bases on prepared TOTH web service. It allows managing information about modules that stores events in the repository, to perform user management and to define simple access policy basing on allowing appropriate users to access log events from appropriate log sources (log modules). The log repository analysis may be performed by executing user queries that defines interested conditions that has to be fulfilled by events from repository.

TOTH was designed as independent Web application and was mainly considered to be used by middleware components (DMS, GRMS). Its main goal is to deliver useful set of tools that allows performing administrative tasks or helps with debugging and developing new applications. Those presumptions are fulfilled by services accessible by portal interface (available as a separate TOTH web portal or as a panel on DMS web interface) which uses web services of the log warehouse. That warehouse performs:

· Collecting of the log events;

· Storing incoming preprocessed events;

· User access to the log events incoming from distributed system modules

· Execution of user queries basing on user conditions allowing to filtering repository.

Internal architecture

TOTH log module was designed to be used in distributed systems. Its internal structure bases on modules that are communicating each other using SOAP protocol and delivering functionality basing on web services. Distributed nature of whole system in many cases causes necessity of specific knowledge of the system deployment to manage, administrating and tuning those component modules.

Implementation of a distributed logging system in ACGT consists of three main components:

· Centralized log events repository for distributed logging – module for collecting and managing collected log events, preprocessing events, instant analyze of events from all components of monitored distributed system and for exploring collected events and filtering them;

· User access  module – set of user forms in web portal form (as a separate web portal and special panel in the DMS portal) that uses log repository web services method for building queries on collected logs and managing 

· Client module that may be used by Java application for sending events to log repository with using log4j library mechanisms.

Log events repository delivers functionality using JMS queue for sending log events and SOAP web services for implementing both: storing and querying events and management functionality. 

The internal architecture of TOTH Log Repository consists of following elements:

· Based on PostgresSQL database log events repository allowing to perform queries and add events

· Connector based on implementation of JMS queue listening for incoming log events to store in the repository. Applications may send logs to this connector using prepared log4j appender or may send events using its own implementation of JMS queue. JMS broker for ACGT services is listening under brokerURL=tcp://moss1.man.poznan.pl:7547. Prepared log4j appender is already configured to use this queue;

· Web Service interface which delivers functionality for querying log repository and storing new events using WS methods. This is alternate possibility of adding new events to the Log repository (the other way is to use log4j appender by java applications).

· User interface that uses described above log repository web service is accessible from two places:
· From DMS access portal – the TOTH mode panel
· As a separate application accessible set of forms
Schematic draw presenting internal structure is presented on Fig. 1.


[image: image3]
Fig. 1 Distributed Logging Module - Internal Architecture
Applications which are designed to log events in remote repository may use standard log4j implementation and write logs using prepared appender with predefined Log Broker parameters (JMS queue address) or may use specially delivered method logEvent from Log Broker web service. Using web service method is especially dedicated for applications which are not Java applications and are able to use SOAP web service to implement remote logging on their own platform. Prepared log4j appender sends events generated by application or web service to the remote JMS Queue which is used by Log Broker as a events consumer.

Events from JMS Queue and logged by web service logEvent method are preprocessed by the Log Broker module. Befor it may be stored in the internally used database events are parsed and analyzed. At first events are checked if it comes from already defined sources. Is event source is not defined it won’t be stored in the database repository. They are just dropped. Secondly, text message which comes together with the event is parsed. The key-values are searched from the beginning of the message and, if found, they are stored in appropriate internal database representation for future use. Parsed keys from the event message need not to be predefined. If there is no such key – it will be created automatically together with its value.

If the Distributed Logging Module is configured to proxy events for further analyze (for external application) incoming events are sent directly according to the configuration. This configuration is possible by administrator and relays on appropriate log4j configuration of the log module.

Additionally, it is possible to define a trigger condition that causes sending email notification if condition is fulfilled by incoming event. This functionality may be interesting for distributed system administrator. Events coming from particular source may define some exception situation, which should be notified actively. Condition is configurable with preciseness of log event source and log event level. For example if some module sends crash event (incoming event from defined source will be on FATAL level) some user will be automatically notified by email in that case. 

All incoming events coming from well known sources are parsed and stored into the internal database representation. This repository may be queried with help of appropriate web service method. It allows defining suitable conditions basing on keys and their values, sources and log events levels. Repository may be explored by defined users. Authentication and access authorization is based on user certificates. Users have got access to those events according to the internal policy. This policy defines which user has access to events from which source on which level. 

All exploring tasks are realized with use of Log Repository web service methods available for users. Additionally there is set of web service method suitable for administrating Log Repository (creating users and sources, managing access policy).
Client – Server communication

There are two aspects of communication between log events repository and its clients. The first one touches web services and applications that stores events during its execution, the second one is affected to the clients which are exploring repository. To store events client application may use prepared log4j appender which is preconfigured to sends events to the server JMS queue or may use server API delivered as a log repository SOAP web service. Sending events via JMS appender may be the simplest way to use in Java clients applications. SOAP web service may be used by other application (including Java application) which is able to connect to the web service basing on SOAP.

Java Message Service is one of the standard for communication between distributed components basing on simple messages. It is assumed that implementation of this concept is asynchronous, efficient and reliable. Distributed logging system engine uses JMS to realize communication between monitored applications and server.  It is used a free implementation of a JMS called ActiveMQ (http://www.activemq.org/). This communication bases on TCP protocol. ActiveMQ implementation on which distributed logging system is deployed on provides:

· Different connector implementations using HTTP, SSL/TCP, STOMP, WS-Notification (and other)

· Different possibilities of storing events, e.g. JDBC, Journal, Cache

· Possibility of scaling by clustering

· Client server communication and pear-to-pear communication schema.

Security aspects

To assure appropriate security level there is possible to use SSL transmission. Log events are in that case sent in secure channel and confidentiality is ensured. It demand appropriate configuration for the prepared JMS appender and server configuration to define events queue to use SSL connections (http://www.activemq.org/How+do+I+use+SSL).

Support for other implementation

There is possible to integrate JMS with other programming languages. For C implementations it is possible to use STOMP protocol and libstomp library (http://stomp.codehaus.org/C+Client). Detailed list of possible solutions is available on ActiveMQ site (http://www.activemq.org/C+Integration).

Using log repository in distributed system components

Collaboration with external modules bases on communication with use of JMS queue or SOAP web services methods. Particular modules of distributed system monitored with help of distributed logging system stores events in repository using prepared log4j library appender or uses web service API. Appender is responsible for sending messages to log queue basing on JMS implementation. Log repository modules consume events from this queue and store them in internal repository database. Sending events with use of web service methods relies on calling remote web service method logEvent(EventBean eb) by client application. That method stores message in the log repository.

Exploring log events repository is possibile via Web service methods. Those methods deliver functionality of retrieving events fulfilling filter conditions. Such filtering is performed by executing user queries on the repository. Queries bases on conditions, which defines criteria of querying. Those web service methods are used by web portal which allows using repository web services in simple way. It allows retrieving content from the log repository and constructing queries basing n adding appropriate conditions.

Log events repository stores events (usually in the database system). However it is also possible to export a set of logs to external file and even forward incoming events by using log4j platform. Thanks that it is possible to access to distributed system’s logs from single point. Acting as such single access point log repository module realizes Proxy functionality that proxies in forwarding incoming events. It is possible to define a receiver which allows to explore events (e.g. Chainsaw application).

Logging conventions

This chapter describes some guidelines for user that want to store logging information coming from their distributed modules in centralized log repository. There are considered directives that may help during implementation phase of logging in client modules and standalone applications that uses distributed logging repository. 
Application requirements

There are two possibilities of storing log events in remote repository. First one relies on using predefined appender and appropriate log4j configuration by Java standalone application or web service module written in Java. The second one bases on using log repository web service method for storing log events.

To use predefined appender client application have to be Java-native application (appender is written in Java and is delivered inside of prepared jar library file). Predefined appender is available together with all configuration examples and is accessible as one package. This package contains both: example log4j configuration file and set of jar libraries containing predefined appender and used in that case other libraries. Standalone Java applications should be able to see those appender and other classes form libraries, so those jar files should be placed on the Java classpath. Additionally Java application should use log4j mechanism for logging messages. An example configuration file is described further.

If client application is not Java-style and/or cannot use log4j and prepared appender for logging it may use standard web service of log broker to store events in remote repository. Appropriate web service method called logEvent(EventBean eb) is available and may be used by applications able to call SOAP web service methods.

Who

Distributed Logging module was designed for developers who are creating applications and web services working in distributed environment. In that case centralized log repository may be helpful tool for debugging and tuning all component of such system. 

Logging system was not designed for end users. Possibilities of storing low level information (MDC field of log event may store stack traces, key-values may consist information about internal module states, log event levels indicates minority of events readable in most cases for developers) in huge amounts. That’s causes that the main user of distributed logging module should be a system developers and administrators, and users may fill overburdened of technical related details and environment –specific nuances. 
What to log

Storing log events are stored in centralized repository obliges user to pay special attention to log helpful events and to restrain of sending excessive information. Storing internal process execution by single module should be logged locally in most cases. It seems to be enough to store information about start and finishing of method execution and store execution state in that case. 

The start and stop execution events should store also important objects state in that execution context, such as parameter of the call and returned value. It is important not to store e.g. whole arrays in the log events (in that case it is enough to store overall number of entries) nor to store all object attribute (just choose the most important one to identify objects).

Each log event is defined by timestamp (it defines when this event occurred), so logging start and finish of the execution causes that the overall execution time may be read from log repository by analyzing start/stop events.

Besides start/stop events it is important to log each meaningful information about execution process such as occurring error, exceptions thrown by used objects, unintentional execution state that may lead to problematic errors. Those information should be logged by appropriate log message coming together with log event and should be understandable and consist of helpful description of detected situation.

How to log

Each log entry is described by following fields:

· Source

· Level

· Location

· Logger

· Time

· Thread

· NDC

· MDC

· Message

The source field allows defining source of log event messages. It is assumed that this field defines log source module (user application, web service, part of distributed system). This module generates events (e.g. Data Broker module of the DMS generates messages with set source field to the value ‘ACGT DMS DataBroker’).

Sources are defined by TOTH system administrator. It is not created automatically. So, if user wants to log his/her own messages from his/her module/application to the central repository described as ‘My Application’ it is necessary at first to add such source on the TOTH log server by TOTH administrator.

Additionally TOTH Log Repository is able to parse log message and read key-value pairs from them. It is assumed that such information are stored at the beginning of message field of log event. Each key-value pair should be separated by ‘;’ char, keys are separated by ‘:’ char from its values. It is assumed that keys should be capitalized. 

Here are guidelines for using TOTH repository in distributed environment:

· Choose a module name used for identification as a source 

It is important that module name (source of log events) should be easily identified. It is not a good idea to use common name for different modules because it will be difficult to determine real source application that stores events in log repository.

· Use keys-values for storing clue debug information 

Key-value allows storing additional information in repository that could be help in debugging process. It is suggested to set information about executed operation (e.g. OPERATION:addFile), its parameters (e.g. FILENAME:test.log) and some additional session specific attributes (e.g: NODE_ID:1001; USER:testUser; JOB_ID:someID). The set of keys-values can be useful to construct query on log repository that can help with investigating distributed operations executions. This set may vary depending on internal implementation and should be prepared reasonable, keeping in mind that too much information may cause a mess.

Exploring log messages in log repository

To get Access to stored events in the log repository user has to have appropriate privileges. That policy is managed by TOTH administrator. It is necessary to create appropriate user of TOTH repository and create sources for him/her or add some permissions for reading events for particular sources (as described above). 

Users are identified by their DN from private certificate, which in most cases is similar to following example:

/C=EU/O=ACGT/OU=PSNC/CN=Some User

Appropriate user has to be created in the TOTH repository by TOTH module administrator.

Users are created basing on their DN. TOTH administrator is responsible to set appropriate permissions for users to set of sources. User may retrieve events from sources to which he/she has access.

Description of dedicated web portal interface for Distributed Logging
Dedicated web portal allows to both: managing of the Distributed Logging events repository and exploring events repository. There are two different modes available: the first one for standard repository user and the second one for repository administrator.

Standard repository user is able to explore log events repository basing on assumed conditions that should be fulfilled by events. User retrieves events list which meet conditions and to which user is privileged. Access policy is defined by admin by assigning appropriate sources of events for users on appropriate log level. User may filter repository by constructing filter condition by specifying source, log event level, logger name and timestamp. Additionally user may turn on and off interesting columns of presented result by checking out appropriate checkboxes. Some example view of main page of the log repository browser is presented on Fig. 2.
[image: image4.jpg]
Fig. 2 Log Events Repository portal
Additionally dedicated web portal delivers interesting functionality of importing/exporting log events from/to repository. Log events for importing should have standard log4j xml log event format. It will be imported to the repository according to actual policy and administrative settings. It has to be noticed that log sources has to be defined. Only events for defined sources will be imported.
[image: image5.jpg]
Fig. 3 Log Events Repository portal - importing log events from file
Events from repository may be filtered and exported according to the filter condition. User may specify file format and log event format and set export additional conditions. Example user form is presented on Fig. 4.
[image: image6.jpg]
Fig. 4 Log Events Repository portal - exporting log events to external file
Active monitoring functionality lies on possibility of defining set of log events which will cause triggering email notification. It is possible to define log event level for different source which will cause notification action. Notification messages are sent to user according to the email address defined during creating user account.
[image: image7.jpg]
Fig. 5 Log Events Repository portal - defining active monitoring
Functionality of administrative panels is available for Distributed Log Repository administrator defined during system installation. User defined as administrator is automatically switched to the administrative panel. The main functionality of those panel consists of managing user accounts and managing log sources. Defining access policy relies on adding privileged users to the defined source. All users that are privileged to retrieve events from defined source on appropriate level are able to list those events.

The administrative panel is presented on Fig. 6.
[image: image8.jpg]
Fig. 6 Log Events Repository portal - administrative functionality - managing users
Presented list of users may be managed by adding new user account, removing existing user account and modifying it. Possibility of removing accounts is active just for those users which are not defined as an owner of any source. To delete user having assigned sources it is necessary to remove this assignment (assign ownership to source to other user) and delete user.

Modifying and adding user account leads to similar form. This page allows defining user name, password, email address (for notification purposes) and access policy for sources. The ACGT installation of the Distributed Logging Repository bases on user certificate used for authentication and resource access authorization. User names for user accounts should be in that case equal to the user distinguished names defined in user certificate. Defining access password in not necessary in that case – user are logged in and authorization is performed basing on their private certificates sent together with the request. The Fig. 7 is presenting example form for user updating.
[image: image9.jpg]
Fig. 7 Log Events Repository portal - administrative functionality - updating user information
Besides user account management Distributed Logging Repository admin has to manage with the log sources. Each events incoming to the Log Broker JMS query or incoming by Log Broker web service is analyzed and preprocessed. It is stored into log repository just if source of this event is defined in the log repository. That’s why developers have to contact the Log Repository administrator to request a module name for his application.

Example list of log sources is presented on Fig. 8.

Defining new source lies on setting appropriate name for this source and define user as a log source owner. Additionally other users may get access to events from this source. Such access grant is realized by adding user to access list with appropriate log events level. In that way it is possible to define that some user has full access to the log events and other one has limited access to events with FATAL level. Fig. 9 is presenting executing action of managing log source.
[image: image10.jpg]
Fig. 8 Log Events Repository portal - administrative functionality - managing defined sources
[image: image11.jpg]
Fig. 9 Log Events Repository portal - administrative functionality - adding new source
Description of Log Monitor mode interface (DMS portal)
The Log Monitor mode of the DMS access portal allows to access to the monitor of the log events tool. The interface of the Distributed Logging module pages are designed for enabling an access to the Log Monitor services. The basic functionality of this mode is the log repository exploration. Log events are gathered from DMS modules continuously. Log module retrieves events, analyses and collects them within the log message repository. User of the Log Monitor (usually the system administrator) is able to retrieve all events from this repository, with possibility of defining query conditions (selecting events) and defining the range of the presented information. Some example view of the log panel on the DMS portal is presented on the Fig. 10.
[image: image12.jpg]
Fig. 10 Log Mode of the DMS administrative portal
The set of the checkboxes titled "Headers" allows defining the view of the log events grid. It is possible to switch off and switch on each of the columns to present the search result in comfortable way.
Changes the displayed column set need to be confirmed by the "Apply changes" button

[image: image13.jpg]
Fig. 11 Headers toolbar
The set of search attributes is use during the log events repository querying. The attributes definition allows selecting interested subset of the events. There is possible to define following set of attributes:

· log event sources - allows to define the set of modules that generated interested events;

· logged event level;

· the timestamp defining the point in time to select events generated before or after it;

· logger that save the message;

· set of attribute - values pair that allow to refine search according to the parsed attributes and their values;

[image: image14.jpg]
Fig. 12 Search conditions and controls
Accepting the attributes and their values changes need to be confirmed with the "Apply changes" button. Removing and adding condition causes that the page and log events grid are refreshed immediately.

The proper timestamps format is: "RRRR-MM-DD HH:MM:SS.s", e.g. "2005-08-01 13:00:00.0".
The search conditions attributes are collected by the AND operator during the querying.
Control properties allow changing the behavior of the log events grid. It allows setting the number of events displayed on one page and set the auto refresh property. When "auto-refresh" option is selected, the page will be reloaded according to the refresh interval and as a result the contents of the log event grid will be updated. The auto-refresh option allows to track the changes how the log events repository changes.

The result of search on the log events repository is presented within the log events grid. This table presents all events that fulfill the search conditions on paged grid. The title bar of the table informs about the number of events that were found inside of the repository. The result set is splinted into a page. Navigating on the result set is realized by the pages indicators at the right side of the log grid title bar. There is maximum five pages shown including the actually displayed. "<<" and ">>" buttons enable to quick jump to the first and last page.

[image: image15.jpg]
Fig. 13 Log events grid
The log events repository is updated in online mode. The content of the grid may change according to the new (freshly added) events. The grid presents events starting from the freshes one, so refreshing the displayed page will query the repository again and all events and their corresponding pages will be updated.

The log events grid shows events that fulfill the selecting conditions and columns that are chosen to projection.

Log repository web service

Building of query object

Prepared web service functionality for exploring log repository bases on one most important method public LoggingBean[] query(Condition conditions[], int limit, int offset) throws LogBrokerException.

This method allows performing query on the log repository and returns set of log events objects fulfilling passed conditions. Conditions are concatenated by and operator. Each condition allows setting appropriate value for:

· log event level and operator valid for this condition (events may be filtered as those which have level greater, equal or lower then given);

· logger name, which is in log4j nomenclature name of the class generating events (e.g. de.fhg.iais.kd.gridr.services.GridRServiceACGTUtil);

· log event timestamp – this is the timestamp coming within log event and defining the creation time of the event – timestamp of event appearance; It is possible to set appropriate operator to filter log events repository to those which are earlier or later that assumed timestamp;

· event attributes – keys and their values stored together with the event

To describe simple scenario of executing query on log repository from Java code following example was prepared:

Condition[] condObj = new Condition[cond_length];
Source[] sources = logMonHandler.getSources();

for (int i=0; i<condObj.length; i++) {

condObj[i] = new Condition();

condObj[i].setLogger(logger+"%");

Date date = new Date();

Timestamp tFrom = new Timestamp(date.getTime());

condObj[i].setTimestamp(tFrom.getTime());

condObj[i].setTimestampOperator(Condition.GREATER);

if ((sLevel != null) && (!"".equals(sLevel))) {


if (Integer.parseInt(sLevel) < 0)



condObj[i].setLevel(Condition.TRACE);


else

condObj[i].setLevel(Condition.LEVELS[Integer.parseInt(sLevel)/10000]);


condObj[i].setLevelOperator(Condition.GREATER);

} else {


condObj[i].setLevel(Condition.TRACE);


condObj[i].setLevelOperator(Condition.GREATER);

}

condObj[i].setSource(sources[i]);

KeyValue[] keyVal = new KeVale[1];


keyVal[0].setKey(“KEY”);


keyVal[0].setValue(“value”);


condObj[i].setAttributes(keyVal);
}
long lCount = logMonHandler.queryCount(condObj);
LoggingBean beans[] = null;
if (lCount > 0)

beans = logMonHandler.query(condObj, pageSize, from);
else

beans = new LoggingBean[0];
 Presented above sample code creates some condition objects array and fills it with appropriate values defining condition. All conditions are connected with and operator. This sample code sets for each condition values for the logger, the timestamp, events log level, source and set of key-values.

To find out how many log events fulfills such defined conditions the queryQount method is performed. It allows to decide if there are some events fulfilling conditions at all or (if any) allows deciding if the result set may be read at once or if results should be paged.

The query methods allows to pass the conditions array and additionally allows to define page size (number of events returned in one execution of query method) and start event number. If queryCount indicates that the result set is huge it is possible to retrieve images in portions according to the assumed page size and appropriate use of pageSize and from parameters of the query web service method.
ACGT Toth Installation

TOTH repository is designed to store log events and explore stored events. Its functionality allows executing queries on repository to analyze collected debug information. Building queries bases on conditions objects which allow defining log events’ level, source, age of the log events (timestamp) and additional values of keys describing events. As a result of the query request user gets set of events fulfilling conditions according to the policy defining access user to the log events sources.

It also allows storing events using TOTH repository web service methods, which is an alternative way instead of putting them into the JMS queue (using JMSAppender designed for log4j).

That functionality is available by web service methods. As mentioned at the beginning of this document web service is described by following WSDL file:

https://moss1.man.poznan.pl:7546/wsrf_dmsmon/services/LogBroker?wsdl

There are prepared two separate web applications that are User Interfaces for accessing TOTH log broker functionality. One of them is a part of DMS administrative portal available under http://moss1.man.poznan.pl:7540/dmsadm/ URL address (the TOTH mode of this portal leads to the view presenting content of the log repository with possibility of constructing query). The second one is deployed at  https://moss1.man.poznan.pl:7546/gift/app URL and presents dedicated TOTH client application.

Both web applications allow performing queries on TOTH repository basing on conditions allowing to filter interesting log events attributes. Searching through the repository bases on conditions prepared on log events attributes. Presented set of events is always a result of given query parameters and complies access policy. 

Access policy is built on user permissions set to defined log sources. Privileged TOTH Log Repository users have access to the log events which are stored for those sources which are set as accessible for those users. In other way the access policy bases on sources, to which users may have granted access.

Users of TOTH User Interface portals are authenticated basing on their certificates (as in other modules). Access to the repository bases on internal policy defined by TOTH administrator. TOTH administrator manages TOTH users (add some users basing on their DN) and modifies their rights to access events produced by defined earlier source modules. Access can be granted to the source events basing on level of the log events. It is possible to grant access to events from some source to two users, but it is also possible to define that one of them has full access to all events from this source and the other one has access just to events of level ERROR and above. In that situation not all users will have access to logs on DEBUG level.

Querying TOTH repository user gets always set of events from sources to which he/she has granted access and with level which is allowed for him/her.

Writing logs events to repository

There are two possibilities of storing log messages in log repository: using web service method or using log4j appender.

The preferred way of storing log events is to use prepared for using log4j library java applications appender. In that case application has to be written in Java 1.4 or above and has to be implemented in that way that it uses log4j mechanisms for logging debug information. It is just needed to slightly modify the log4j configuration file and add some needed libraries to the class path to log messages to remote TOTH log repository.

The alternate way is to use TOTH log broker web service interface. To store and retrieve log events using TOTH log broker web service method client application has to be able to use TOTH log broker API Web Service described in formal way by Web Service Description Language document available on https://moss1.man.poznan.pl:7546/wsrf_dmsmon/services/LogBroker?wsdl

This Web Service bases on GSI-Enabled configuration and demands to use clients certificates for using its methods for authenticate users and authorize their access to the repository events. Configuration and use of WS varies on different platform. This document focuses on using log repository to store log events, which in simplest way is done using log4j appender as described below.

Exploring log repository

To query through log repository using existing user interface user has to be a valid DMS user (if he/she wants to use TOTH mode on DMS admin portal) and has to be defined as privileged TOTH user by TOTH administrator. In both cases user has to have his/her own certificate for authorizing purposes.

Client application configuration

This chapter describes few steps needed to store log messages in central TOTH Log Repository. The client installation describes the minimal steps for configuration of the module that uses log4j library for logging events during its work. This configuration will allow using the centralized log events repository for the distributed system simultaneously with defined earlier logging configuration. The configuration is performed using standard log4j properties file. The configuration with use the xml file is preferred.

Preliminary steps

According to the application architecture developer has to decide which installation path is suitable for his module. There are slight different steps suggested to run logging in case of standalone application and web service running under application server.

It may be useful to get basic knowledge about log4j configuration possibilities. The simplest way of implementing integration with Distributed Logging is to prepare appropriate configuration for log4j to use predefined appender sending events to remote log repository. However basing configuration is described in hereby document.

It is also possible that it would be necessary to use other approach if application cannot use log4j mechanisms. In that case developer should focus on web service that allows storing log events and implementing appropriate functionality in his own application to use that web service.

Requesting module name

Each application or module of distributed system can log messages to the remote TOTH log repository. Repository accepts and parses log messages before it is stored into database. Each log events is defined by source object. It allows determining module that generates events. Implementation of TOTH repository allows storing events from modules which are well known. That’s why it is necessary to define module as a source in TOTH repository before module or application can send log messages.

Appropriate source has to be created in the TOTH repository by TOTH module administrator.

Additionally in order to retrieve messages logged by user module/application appropriate user has to be created basing on DN and appropriate privilege for log source has to be set for this user to let him/her to retrieve messages from this module as described further.

The simplest way of use functionality of storing events in remote log repository is to configure log4j for using prepared appender that sends events to ACGT TOTH repository instance. To use specially prepared appender it is necessary to add needed jar libraries to the application class path with appropriate configuration for TOTH Log Repository and to configure log4j for using this appender.

Downloading and installing appender

Prepared package with preconfigured appender (toth-acgt-mini.zip) is available from main page of DMS portal (http://moss1.man.poznan.pl:7540/dmsadm/ link name: ‘Download the TOTH client for application (Log Repo client) [zip file]’). It contains necessary jars in lib subdirectory and example log4j xml configuration file (logconfig.xml). The lib\toth_client.jar file enclosed in lib subdirectory of this package is predefined to connect to the JMS queue of ACGT TOTH log broker. Appender is producing log events stored in this JMS queue from which TOTH log broker consumes events, parse log message and stores them into internal log repository. The address of this log broker queue is defined in jndi.properties file in the toth_client.jar and points to the brokerURL address set to tcp://moss1.man.poznan.pl:7547 and defines a destination queue as a queue named dms.PublicLogQueue. This predefined configuration in the toth_client.jar allows simply to use this jar file by just putting it on the class path. To use TOTH Log Repository as a remote log repository it is just needed to configure log4j to use this JMSAppender and set the source module name in standard log4j configuration file. In most cases whole configuration bases on modifying log configuration xml file in that way that it will define JMSAppender and define a reference to this appender for appropriate package as it is done during standard log4j configuration procedure.

Standalone application configuration

1. Download and extract zip package containing necessary libraries and simple configuration file

2. http://moss1.man.poznan.pl:7540/dmsadm/docs/toth-acgt-mini.zip

3. Put jar libraries from this package to application libs and make sure that they are on class path

4. Modify application’s log4j config file for using prepared JMSAppender

5. Some sample configuration of log4j xml file is described below.

Configuration for web services deployed on web application server

1. Download and extract zip package containing necessary libraries and simple configuration file

http://moss1.man.poznan.pl:7540/dmsadm/docs/toth-acgt-mini.zip

2. Put following jar libraries from this package to [Tomcat home]\server\lib:

a ctivemq-core-3.0.jar 
concurrent-1.3.4.jar 
geronimo-spec-jms-1.1-rc4.jar 
geronimo-spec-j2ee-management-1.0-rc4.jar

3. Put remaining jar libraries from this package to deployed web application libs

4. Modify JAVA_OPTS variable by adding
-Djava.naming.factory.initial=org.activemq.jndi.ActiveMQInitialContextFactory

Example of starting tomcat script:

#!/bin/sh

# Environment variables for Tomcat instance

export CATALINA_HOME=[Tomcat home path]

export JAVA_OPTS="-server -Djava.naming.factory.initial=org.activemq.jndi.ActiveMQInitialContextFactory"

export CATALINA_OPTS="-Xms1024m -Xmx1024m"

# Running

$CATALINA_HOME/bin/catalina.sh $1

5. Modify application’s log4j config file for using prepared JMSAppender

Some sample configuration of log4j xml file is described below.

Configuration of web services on Tomcat example

This point describes sample log4j configuration that using JMSAppender for storing events in the TOTH log repository. It is basing on the configuration file included to the zip package.

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration debug="true" 

  xmlns:log4j='http://jakarta.apache.org/log4j/'>

  <!—- 1 -->

  <appender name="ASYNC" class="org.apache.log4j.AsyncAppender">

    <param name="BufferSize" value="256"/>

    <appender-ref ref="TOTH_JMS" />

  </appender>

  <appender name="CONSOLE" class="org.apache.log4j.ConsoleAppender">

    <layout class="org.apache.log4j.PatternLayout">

      <param name="ConversionPattern" value="%p %t %d{DATE} %c - %m%n"/>

    </layout>

  </appender>

  <!—- 2 -->

  <appender name="TOTH_JMS" class="pl.psnc.progress.szdmon.source.JMSAppender">

    <param name="source" value="Other ACGT Module"/>

    <param name="destinationBindingName" value="listenerDestination"/>

    <param name="destinationConnectionFactoryBindingName" value="ConnectionFactory"/>

    <param name="locationInformation" value="true"/>

    <param name="reloadFrequency" value="10"/>

    <param name="extended" value="true"/>

    <param name="Threshold" value="INFO"/>

  </appender>

  <!—- 3 -->

  <logger name="$log_scope" additivity="false">

    <level value="debug"/>

    <!-- Please uncomment line below to log messages to TOTH Log Repository -->

    <!--<appender-ref ref="TOTH_JMS"/>-->

  </logger>

  <root>

    <level value="info"/>

    <appender-ref ref="CONSOLE"/>

  </root>

</log4j:configuration>

Configuration of the prepared appender bases on three main points:

· Configuring appender as an asynchronous appender.

This causes that time consuming for storing log messages has almost no influence to the application. Specially important when network delay between host on which client application works and host on which TOTH Log Repository runs is significant.

It is important to configure log4j appender in similar way to this one presented at code under marker <!-- 1 --> 

· Configuring JMSAppender.

Sample configuration of JMSAppender is presented under marker <!-- 2 -->

This is the point where source is defined – line with parameter name source in this section allows to define name of the source of events produced by client application ("Other ACGT Module" in this example):

    <param name="source" value="Other ACGT Module"/>

Please use the module name, which was send with request for module name. TOTH repository will accept only events coming from accepted and defined in the repository sources.

· Using defined earlier JMSAppender to log events for desired class/package.

Sample usage of defined JMSappender is shown under point <!-- 3 --> in configuration example.

It is just needed to add reference to the defined JMSAppender to those packages which logs should be written to the TOTH repository;

    <appender-ref ref="TOTH_JMS"/>

All other configuration parameters as log broker URL address and log broker queue name are preconfigured in the jndi.properties file placed in the toth_client.jar as written before. They are preconfigured, so it is no need to change parameters in the jndi.properties in toth_client.jar file.

Sample of code using JMSAppender configuration

There is no need to change client application code for using JMSAppender if application already uses log4j log mechanism. Here is some sample code of very simple class that uses log4j for storing events. If the logconfig.xml configuration has been prepared as described above, this application will send some events to the TOTH repository.

package pl.psnc.test;

import java.io.BufferedReader;

import java.io.InputStreamReader;

import org.apache.log4j.Logger;

import org.apache.log4j.xml.DOMConfigurator;

import java.io.IOException;

public class LogGenerator {

    private static Logger logger;

    static {

        DOMConfigurator.configure("logconfig.xml");

        logger = Logger.getLogger(LogGenerator.class);

    }

    public static void main(String[] args) throws IOException {

        BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

        String line;

        int id=0;

        while (!"".equals(line = br.readLine())) {

        
logger.error(line+";ID:"+ id++ +"; Error message from LogTester");

        
logger.debug(line+";ID:"+ id++ +"; Debug message from LogTester");

        
logger.info(line+";ID:"+ id++ +"; Info message from LogTester");

        }



    }

}

This simple application takes input from standard input stream (System.in) and composes some message for storing it in the TOTH repository using standard log4j mechanisms. It is possible to add some key-values which may be parsed by TOTH broker. The key-value are parsed from the beginning of the log message field and have to be separated by ‘; ‘ char. For example given the string:

KEY:value1;NAME:foo;OPERATION:test

Will cause that this simple application will send three log messages (with log level set to ERROR, DEBUG and INFO) as follows:

KEY:value1;NAME:foo;OPERATION:test;ID:0; Error message from LogTester

Should be parsed by TOTH repository as message “Error message from LogTester” with assigned values: “value1”, “foo”, “test” and “0” for keys: “KEY”, “NAME”, “OPERATION” and “ID”.

Use case: Logging at the Workflow Environment

To assist bioinformaticians in building their complex scientific workflows, a Workflow Editor and Enactment Environment, called WEEE, have been designed and implemented in the context of the ACGT platform. They consist of a suite of graphical tools that allow a user to combine different web services into complex workflows. This environment is accessible through the ACGT Portal and there-fore features a web based graphical user interface. It supports searching and browsing of a tool (service) registry and of re-spective data sources, as well as their orchestration’ and com-position through an intuitive and user friendly interface. The created scientific workflows can be stored in a user’s specific area and later retrieved and edited so new versions of them can be produced. The designed workflows can be executed in a remote machine or even in a cluster of machines in the Grid so there is no burden imposed on the user’s local machine since the majority of computation and data transfer of the intermediate results are taken place in the Grid where the serv-ices are run. The publication and sharing of the workflows are also supported so that the user community can exchange information and users benefit from each other’s research. WEEE is based on the BPEL [3] workflow standard and supports the BPEL representation of complex bioinformatics workflows.

To integrate advanced processing capabilities into standard BPEL workflows and standard Grid services, we introduced “Proxy” services that offer the bridge between the business process view of BPEL engines and the Grid secure services of the ACGT ecosystem (Błąd! Nie można odnaleźć źródła odwołania.). Each "real" ACGT service is mirrored by a corresponding "proxy service". The proxy service has the same programmatic interface with the original service and, in its implementation, forwards all requests to the service that it mirrors, which makes the BPEL engine agnostic of the whole underlying service execution. These proxies or wrapper services provide BPEL friendly facades of the original, “real” ACGT services, effectively working as calls transformation bridges between the two worlds.
[image: image16.png]
Fig. 14 The Proxy services at the ACGT Workflow Environment
The introduction of the proxy services allows the implementation of workflow specific logging mechanisms in a transparent and non-intrusive way. Since every communication between the ACGT services in a workflow execution crosses the proxy gateways, automatic logging of this communication is possible, regardless of whether the real services use the same logging system or not. What is more, proxy services are aware of the context of each communication, i.e. they “know” the workflow execution details in each request - response. Such information is valuable because it allows the aggregation of the log messages per workflow execution and workflow specific queries and views are possible. 

Implementation of the Proxy Logging 

As described above the Proxy Services are interception points for the service to service communication taking place in the execution of the ACGT workflows and therefore are perfect places for capturing and registering the activity logs. All the currently available proxy services use the Log4J open source library for storing log messages in the local file system. Here we describe the use of TOTH in order to store the debug and error messages in a distributed and more open way.

As already mentioned TOTH offers two different approaches on how to incorporate it as a logging facility. The first approach is to use it as a web service and invoke it programmatically, and the second approach is to use it as an “Appender” to the log4j logging facility. Since the Proxy services implementation was already using the log4j logging framework, before the introduction of TOTH, the transition to TOTH was easier by incorporating the second approach. 

The log messages are divided inside the source code at different hierarchical categories according the information they carry and their importance for the developer and the end user. These categories are DEBUG, INFO, WARN, ERROR, FATAL and which, as their name denotes, carry more important information as their category (logging level) increments. The information which on DEBUG level is meaningful only to the developer, at the INFO logging level is usually meaningful also to the end user for inspecting the status of an executing component and at the WARN level and above, the logged information usually refers to some erroneous or exceptional circumstances, of which the developer and/or the end user should be aware of. The usage of TOTH and the distributed logging is used in parallel with the usage of local log files, since the log4j and the TOTH mechanisms allow this. This is done not only for redundancy of the available information and easy access to the logs, but also for performance reasons and of course separation of the information for easy filtering. Since the information which is logged at the DEBUG level is usually not of any importance for the end users or developers of other modules, it was decided that the information logged at TOTH is only the log messages of category INFO or higher.

A great advantage of the TOTH framework is that its usage is possible without making any changes at all to the source code, just some minor configurations to the log4j configuration files and libraries, which is very helpful especially in legacy code and applications. In order to exploit TOTH in its full extent though, some modifications to the log comments are usually needed in order to conform to the TOTH log formatting. This special formatting of the logs permits the automatic extraction of pieces of log comments as key-value pairs and easy search on these key values by using a web based search form. In the incorporation of TOTH to the proxy services implementation, we included some common key-value pairs such as OPERATION, EXECUTION, FILEID, DIRID etc, which recurrently appear to most of the modules, and we introduced also a set of new “keys” for logging and filtering information:

· WORKFLOW_ID, providing the internal identification number of the specific workflow that is executed; and

· ENACTMENT_ID, which provides the unique identification number of the execution of the workflow

These new keys are meaningful only in the context of the Workflow Environment since they refer to unique IDs used from the workflow environment modules and service proxies to distinguish between different workflows and distinct executions of them respectively. Apart from these new keys and minor refactoring of the logging messages, the incorporation of TOTH was a straightforward procedure.

References

[1] Gridge Toolkit http://www.gridge.org

[2] ACGT D4.1 Prototype and report of the ACGT GRID layer

[3] Alves A, Arkin A, Askary S, Barreto C, Bloch B, Curbera F, et al. Web services business process execution language version 2.0. OASIS Standard. 2007; 11.
Appendix A - Abbreviations and acronyms

	API
	Application Programming Interface. The public interface provided by libraries and services.

	DMS
	Data Management System. The grid-based file storage system that is used in ACGT.

	GAS
	Grid Authentication Server. The authentication server that is used within ACGT

	OGSA
	Open Grid Services Architecture

	OGSA-DAI
	OGSA standard for Data Access and Integration. A middleware product that supports the exposure of data sources onto the grid.

	SVN
	Subversion, the version control system used within ACGT.

	URI
	Uniform Resource Identifier. A string of characters that identifies or names an object on the Internet. It is a generalisation of URL.

	URL
	Uniform Resource Locator. A type of URI that specifies where a resource is available, and the mechanism for retrieving it.

	XML
	Extensible Markup Language. The format that is used by web services to exchange data.

	JMS
	Java Message Service

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	


Log Repo WS



Admin WS



Log Broker



logEvent(eb)



JMS Queue



Source: App_A



Java App



Source: WS_A



Web Service



Source: App_1





Application



DMS Admin Portal

Log Repository Panel



Dedicated Log Repository Portal

Administrator and User access



Email Notification



External Log Analyzing Application

(Chainsaw, ...)



JMS log4j Appender



JMS log4j Appender





Active Log Analyzing Module





25/11/09

Page 35 of 35

