
ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

Prototype and report of the ACGT GRID
layer

Project Number: FP6-2005-IST-026996

Deliverable id: D 4.1

Deliverable name: Prototype and report of the ACGT GRID layer

Submission Date: 03/12/2007

14/01/2008 Page 1 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: ACGT

Project Full Name: Advancing Clinico-Genomic Clinical Trials on Cancer:
Open Grid Services for improving Medical Knowledge
Discovery

Document id: D 4.1

Document name: Prototype and report of the ACGT GRID layer

Document type (PU, INT,
RE)

INT

Version: 2

Submission date: 03/12/2007

Editor:
Organisation:
Email:

Juliusz Pukacki
PSNC
pukacki@man.poznan.pl

Document type PU = public, INT = internal, RE = restricted

ABSTRACT:

This deliverable presents the Grid infrastructure introduced for ACGT project. Grid
Services are placed on two layers on the general software architecture. The first one is
responsible for unified access to underlying hardware net of resources distributed all
over Europe. The second one consists of more advanced, collective Grid services
providing all necessary mechanisms for resource management, data management and
grid monitoring.

KEYWORD LIST:Grid, Grid Services, Globus Toolkit, Service Oriented
Architecture, Semantic Grid, Grid Resource Management Systems, Data
Management, Grid Monitoring

14/01/2008 Page 2 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

MODIFICATION CONTROL

Version Date Status Author

1.0 20/11/2007 Draft J. Pukacki

2.0 03/12/2007 Draft J.Pukacki

3.0 21/12/2007 Draft J.Pukacki

4.0 11/01/2008 Draft J.Pukacki

List of Contributors

− Jarek Nabrzyski, PSNC

− Tomasz Piontek, PSNC

− Bogdan Ludwiczak, PSNC

14/01/2008 Page 3 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

Contents

 EXECUTIVE SUMMARY...5

 1. INTRODUCTION...6

 1.1. THE GRID..6
 1.2. THE SEMANTIC WEB...6
 1.3. THE SEMANTIC GRID...7

 2. GRID LAYERS ON ACGT ARCHITECTURE..8

 3. BASIC GRID SERVICES..10

 3.1. GRAM...10
 3.2. MDS..11
 3.3. RFT...12
 3.4. GRIDFTP..12

 4. ADVANCED GRID MIDDLEWARE...14

 4.1. GRMS...14
 4.2. GAS...17
 4.3. GDMS...18
 4.4. MERCURY - GRID MONITORING..19
 4.5. MOBILE USER SERVICES..20
 4.6. OGSA-DAI...21

 5. SERVICES CLASSIFICATION..23

 6. GRID SERVICES IMPLEMENTATION. ..25

 6.1. INTRODUCTION..25
 6.2. PREPARING HOSTING ENVIRONMENT (SERVICE CONTAINER)..25
 6.3. CREATING A LOW PRIVILEGE ACCOUNT..25
 6.4. SETUP CA CERTIFICATES..25
 6.5. REQUESTING SERVICE CERTIFICATE...25
 6.6. DOWNLOADING AND INSTALLING GLOBUS TOOLKIT 4.1.2...25
 6.7. DOWNLOADING AND INSTALLING APACHE TOMCAT..26
 6.8. DEPLOYING WSJAVA INTO TOMCAT..26
 6.9. CONFIGURING TOMCAT..27
 6.10. STARTING TOMCAT..29

 7. GRID MONITORING PORTAL..30

 APPENDIX A - ABBREVIATIONS AND ACRONYMS..36

 APPENDIX B: IMPLEMENTATION OF SIMPLE HELLO WORLD SERVER AND CLIENT...................37

14/01/2008 Page 4 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

Executive Summary

ACGT is an Integrated Project (IP) funded in the 6th Framework Program of the European
Commission under the Action Line “Integrated biomedical information for better health”. The
high level objective of the Action Line is the development of methods and systems for
improved medical knowledge discovery and understanding through integration of biomedical
information (e.g. using modelling, visualization, data mining and grid technologies).
Biomedical data and information to be considered include not only clinical information
relating to tissues, organs or personal health-related information but also information at the
level of molecules and cells, such as that acquired from genomics and proteomics research.

ACGT focuses on the domain of Cancer research, and its ultimate objective is the design,
development and validation of an integrated Grid enabled technological platform in support of
post-genomic, multi-centric Clinical Trials on Cancer. The driving motivation behind the
project is our committed belief that the breadth and depth of information already available in
the research community at large, present an enormous opportunity for improving our ability
to reduce mortality from cancer, improve therapies and meet the demanding individualization
of care needs.

14/01/2008 Page 5 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

1. Introduction

1.1. The Grid
At the beginning grid computing was about providing a hardware and software infrastructure
that provides dependable, consistent, pervasive, and inexpensive access to high-end
computational capabilities. Then it evolved into more general definition of bringing all,
different resources together in order to achieve advanced functionality that was not possible
without grid. It was defined by Ian Foster et al in "The Anatomy of the Grid: Enabling
Scalable Virtual Organizations" as follows:

"The real and specific problem that underlies the Grid concept is coordinated resource
sharing and problem solving in dynamic, multi-institutional virtual organizations. The sharing
that we are concerned with is not primarily file exchange but rather direct access to
computers, software, data, and other resources, as is required by a range of collaborative
problem-solving and resource brokering strategies emerging in industry, science, and
engineering."

The most important attributes of the Grid are:

• coordinates resources that are not subject to centralized control

• using standard, open, general-purpose protocols and interfaces

• to deliver non-trivial qualities of service

The common components existing in Grids are:

• Remote storage and/or replication of data sets

• Publication of datasets using global logical name and attributes in the catalogue

• Security: access authorization and uniform authentication

• Uniform access to remote resources (data and computational resources)

• Publication of services and access cost

• Composition of distributed applications using diverse software components including
legacy programs.

• Discovery of suitable datasets by their global logical names or attributes

• Discovery of suitable computational resources

• Mapping and Scheduling of jobs (Aggregation of distributed services)

• Submission, monitoring, steering of jobs execution

• Movement of code/data between the user desktop machines and distributed
resources

• Enforcement of quality of service requirements

• Metering and Accounting of resource usage

1.2. The Semantic Web
As described in Wikipedia: "The Semantic Web is an evolution of the World Wide Web in
which information is machine processable (rather than being only human oriented), thus
permitting browsers or other software agents to find, share and combine information more

14/01/2008 Page 6 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

easily." In Semantic Web by using additional technology helps to categorize and organize the
human information contained on a web page with machine-readable and understandable
information that can then be used by applications to process the information. The key
technology used are:

• XML

• RDF (Resource Description Framework)

• OWL (Web Ontology Language)

1.3. The Semantic Grid.
The Semantic Grid come into existence as a try to introduce the semantic web technologies
into the grids. The semantic grid group describes the semantic grid as "an extension of the
current grid in which information and services are given well-defined meaning, better
enabling computers and people to work in cooperation."

The following graph describes evolution of technologies:

Fig.1. Evolution of technologies

14/01/2008 Page 7 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

2. Grid Layers on ACGT architecture.

The following picture presents general overview of ACGT architecture.

Fig.2. ACTT Architecture Overview

As it is marked on the picture with green colour the grid technologies are present on the
three lower layers. The lowest one are the hardware resources where the computation is
done and where physical data is stored. The role of the next layer above the hardware
resources is to provide unified, remote access to physical resources. It provides basic
functionality required for remote computing and data access:

• job execution and control

• basic authentication and authorization

• file transfer

• databases access

• hardware monitoring

• information about state of resources (static and dynamic metrics)

The last Grid layer is Advanced Middleware Layer. It is responsible for providing more
advanced mechanisms in the Grid environment. Services from this layer can be described as
"collective" because they operate on set of lower level services, to realize more advanced
actions - e.g. metascheduling service that submits jobs to different local queuing systems
using Common Grid Infrastructure remote interfaces.

Functionality provided by this layer can be gathered in a following main points:

• resource management - metascheduling

• data management (database access and file storing and transferring)

• services authorization

14/01/2008 Page 8 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

• grid monitoring

As it can be seen on architecture picture the Grid layers are separated from the rest of the
system that is build with services that provides specific ACGT content.

The advantage of it is clearly visible: based on that Grid platform it is possible to build many
different environments for different fields, not only biomedicine.

Grid layers are supposed to provide standard and secure way for accessing hardware
resources of the Grid environment.

14/01/2008 Page 9 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

3. Basic Grid Services.

Most of the components of this layer come from Globus Toolkit. The newest version of
Globus Toolkit (GT4) is used for the ACGT project. as a basic Grid middleware infrastructure.

Globus is not a monolithic software system but consists of some network services that
operate together providing unified background for Grid environments.

3.1. GRAM
Grid Resource Allocation Management (GRAM) is a component of the Globus Toolkit
responsible for job execution. Grid computing resources are typically operated under the
control of a scheduler which implements allocation and prioritization policies while optimizing
the execution of all submitted jobs for efficiency and performance. GRAM is not a resource
scheduler, but rather a protocol engine for communicating with a range of different local
resource schedulers using a standard message format. Rather than consisting of a
monolithic solution, GRAM is based on a component architecture at both the protocol and
software implementation levels. This component approach serves as an ideal which shapes
the implementation as well as the abstract design and features.

There are two implementation of GRAM service: "web services and "pre-web services" Unix
server suite to submit, monitor, and cancel jobs on Grid computing resources. Both systems
are known under the moniker "GRAM", while "WS GRAM" refers only to the web service
implementation.

Job management with GRAM makes use of multiple types of service:

• Job management services represent, monitor, and control the overall job life cycle.
These services are the job-management specific software provided by the GRAM
solution.

• File transfer services support staging of files into and out of compute resources.
GRAM makes use of these existing services rather than providing redundant
solutions; WS GRAM has further refactored some file transfer mechanisms present in
pre-web service GRAM.

• Credential management services are used to control the delegation of rights among
distributed elements of the GRAM architecture based on users' application
requirements. Again, GRAM makes use of more general infrastructure rather than
providing a redundant solution, and WS GRAM has continued this refactoring to
better separate credential management at the protocol level.

For WS GRAM, the Globus Toolkit software development environment, and particularly
WSRF core, is used to implement distributed communications and service state. For pre-web
service GRAM, the "gatekeeper" daemon and GSI library are used for communications and
service dispatch.

WS GRAM utilizes WSRF functionality to provide for authentication of job management
requests as well as to protect job requests from malicious interference, while pre-web service
GRAM uses GSI and secure sockets directly. The use of GRAM does not reduce the ability
for system administrators to control access to their computing resources. The use of GRAM
also does not reduce the safety of jobs users run on a given computing resource. To protect
users from each other, jobs are executed in appropriate local security contexts, e.g. under
specific Unix user IDs based on details of the job request and authorization policies.
Additionally, GRAM mechanisms used to interact with the local resource are design to
minimize the privileges required and to minimize the risks of service malfunction or
compromise. A client may delegate some of its rights to GRAM services in order to facilitate

14/01/2008 Page 10 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

the above functions, e.g. rights for GRAM to access data on a remote storage element as
part of the job execution. Additionally, the client may delegate rights for use by the job
process itself. With pre-web service GRAM, these two uses of rights are inseparable, while
WS GRAM provides separate control for each purpose (while still allowing rights to be
shared if that is desired).

WS GRAM provides an "at most once" job submission semantics. A client is able to check for
and possibly resubmit jobs, in order to account for transient communication errors without
risk of running more than one copy of the job. Similarly, pre-web service GRAM provides a
two-phase submission mechanism to submit and then commit a job to be run. While many
jobs are allowed to run to their natural completion, GRAM provides a mechanism for clients
to cancel (abort) their jobs at any point in the job life cycle.

WS GRAM provides for reliable, high-performance transfers of files between the compute
resource and external (GridFTP) data storage elements before and after the job execution.
Pre-web service GRAM can also stage with GridFtp systems but with less flexible reliable-
transfer logic driving its requests. GRAM supports a mechanism for incrementally transferring
output file contents from the computation resource while the job is running. WS GRAM uses
a new mechanism to allow arbitrary numbers of files to be transferred in this fashion, while
pre-web service GRAM only supports incremental transfer of the job's standard output and
error streams.

3.2. MDS
The Monitoring and Discovery System (MDS) is a suite of web services to monitor and
discover resources and services on Grids. This system allows users to discover what
resources are considered part of a Virtual Organization (VO) and to monitor those resources.
MDS services provide query and subscription interfaces to arbitrarily detailed resource data
and a trigger interface that can be configured to take action when pre-configured trouble
conditions are met. The services included in the WS MDS implementation (MDS4), provided
with the Globus Toolkit 4, acquire their information through an extensible interface which can
be used to: query WSRF services for resource property information, execute a program to
acquire data, or interface with third-party monitoring systems.

Grid computing resources and services can advertise a large amount of data for many
different use cases. MDS4 was specifically designed to address the needs of a Grid
monitoring system - one that publishes data that is available to multiple people at multiple
sites. As such, it is not an event handling system, like NetLogger, or a cluster monitor on its
own, but can interface to more detailed monitoring systems and archives, and can publish
summary data using standard interfaces.

MDS4 includes two WSRF-based services: an Index Service, which collects data from
various sources and provides a query/subscription interface to that data, and a Trigger
Service, which collects data from various sources and can be configured to take action
based on that data. An Archive Service, which will provide access to historic data, is planned
for a future release. The Index Service is a registry similar to UDDI, but much more flexible.
Indexes collect information and publish that information as resource properties. Clients use
the standard WSRF resource property query and subscription/notification interfaces to
retrieve information from an Index. Indexes can register to each other in a hierarchical
fashion in order to aggregate data at several levels. Indexes are "self-cleaning"; each Index
entry has a lifetime and will be removed from the Index if it is not refreshed before it expires.
Each Globus container that has MDS4 installed will automatically have a default Index
Service instance. By default, any GRAM, RFT, or CAS service running in that container will
register itself to the container's default Index Service. The Trigger Service collects
information and compares that data against a set of conditions defined in a configuration file.
When a condition is met, or triggered, an action takes place, such as emailing a system
administrator when the disk space on a server reaches a threshold.

14/01/2008 Page 11 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

In addition to the services described above, MDS4 includes several additional software
components, including an Aggregator Framework, which provides a unified mechanism used
by the Index and Trigger services to collect data. The Aggregator Framework is a software
framework used to build services that collect and aggregate data. Services (such as the
Index and Trigger services) built on the Aggregator Framework are sometimes called
aggregator services, and have the following in common:

• They collect information via Aggregator Sources. An Aggregator Source is a Java
class that implements an interface (defined as part of the Aggregator Framework) to
collect XML-formatted data

• They use a common configuration mechanism to maintain information about which
Aggregator Source to use and its associated parameters (which generally specify
what data to get, and from where). The Aggregator Framework WSDL defines an
[aggregating service group entry type] that holds both configuration information and
data. Administrative client programs use standard [WSRF Service Group registration
mechanisms] to register these service group entries to the aggregator service.

• They are self-cleaning - each registration has a lifetime; if a registration expires
without being refreshed, it and its associated data are removed from the server.

MDS4 includes the following three Aggregator Sources:

• the Query Aggregator Source, which polls a WSRF service for resource property
information,

• the Subscription Aggregator Source, which collect data from a WSRF service via
WSRF subscription/notification,

• the Execution Aggregator Source, which executes an administrator-supplied program
to collect information.

Depending on the implementation, an Aggregator Source may use an external software
component (for example, the Execution Aggregator Source uses an executable program), or
a WSRF service may use an external component to create and update its resource
properties (which may then be registered to an Index or other aggregator service, using the
Query or Subscription Aggregator Source). We refer to this set of components as Information
Providers. Currently, MDS4 includes the following sources of information: Hawkeye
Information Provider, Ganglia Information Provider, WS GRAM, Reliable File Transfer
Service (RFT), Community Authorization Service (CAS) , any other WSRF service that
publishes resource properties

3.3. RFT
RFT is a Web Services Resource Framework (WSRF) compliant web service that provides
"job scheduler"-like functionality for data movement. You simply provide a list of source and
destination URLs (including directories or file globs) and then the service writes your job
description into a database and then moves the files on your behalf. Once the service has
taken your job request, interactions with it are similar to any job scheduler. Service methods
are provided for querying the transfer status, or you may use standard WSRF tools (also
provided in the Globus Toolkit) to subscribe for notifications of state change events. We
provide the service implementation which is installed in a web services container (like all web
services) and a very simple client. There are Java classes available for custom development,
but due to lack of time and resources, work is still needed to make this easier.

3.4. GridFTP
GridFTP is a high-performance, secure, reliable data transfer protocol optimized for high-
bandwidth wide-area networks. The GridFTP protocol is based on FTP, the highly-popular

14/01/2008 Page 12 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

Internet file transfer protocol. We have selected a set of protocol features and extensions
defined already in IETF RFCs and added a few additional features to meet requirements
from current data grid projects.

GridFTP functionality includes some features that are supported by FTP extensions that
have already been standardized (RFC 959) but are seldom implemented in current systems.
Other features are new extensions to FTP.

• Grid Security Infrastructure and Kerberos support: Robust and flexible authentication,
integrity, and confidentiality features are critical when transferring or accessing files.
GridFTP must support GSI and Kerberos authentication, with user controlled setting
of various levels of data integrity and/or confidentiality. GridFTP implements the
authentication mechanisms defined by RFC 2228, "FTP Security Extensions".

• Third-party control of data transfer: To manage large datasets for distributed
communities, we must provide authenticated third-party control of data transfers
between storage servers. A third-party operation allows a user or application at one
site to initiate, monitor and control a data transfer operation between two other sites:
the source and destination for the data transfer. Our implementation adds Generic
Security Services (GSS)-API authentication to the existing third-party transfer
capability defined in the FTP standard.

• Parallel data transfer: On wide-area links, using multiple TCP streams in parallel
(even between the same source and destination) can improve aggregate bandwidth
over using a single TCP stream. GridFTP supports parallel data transfer through FTP
command extensions and data channel extensions.

• Striped data transfer: Data may be striped or interleaved across multiple servers, as
in a DPSS network disk cache. GridFTP includes extensions that initiate striped
transfers, which use multiple TCP streams to transfer data that is partitioned among
multiple servers. Striped transfers provide further bandwidth improvements over
those achieved with parallel transfers. We have defined GridFTP protocol extensions
that support striped data transfers.

• Partial file transfer: Some applications can benefit from transferring portions of files
rather than complete files: for example, high-energy physics analyses that require
access to relatively small subsets of massive, object-oriented physics database files.
The best that the standard FTP protocol allows is transfer of the remainder of a file
starting at a particular offset. GridFTP provides commands to support transfers of
arbitrary subsets or regions of a file.

• Automatic negotiation of TCP buffer/window sizes: Using optimal settings for TCP
buffer/window sizes can dramatically improve data transfer performance. However,
manually setting TCP buffer/window sizes is an error-prone process (particularly for
non-experts) and is often simply not done. GridFTP extends the standard FTP
command set and data channel protocol to support both manual setting and
automatic negotiation of TCP buffer sizes for large files and for large sets of small
files.

• Support for reliable and restartable data transfer: Reliable transfer is important for
many applications that manage data. Fault recovery methods are needed to handle
failures such as transient network and server outages. The FTP standard includes
basic features for restarting failed transfers that are not widely implemented. GridFTP
exploits these features and extends them to cover the new data channel protocol.

14/01/2008 Page 13 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

4. Advanced Grid Middleware.

The components of this layer are serving more advanced mechanisms in The Grid. They can
be called collective services because they operate on many lower level resources. In most
cases they are not required for the environment but they increase quality of service and can
serve more advanced scenarios for the Grids.

4.1. GRMS
The Gridge Resource Management System (GRMS) is an open source meta-scheduling
system, which allows developers to build and deploy resource management systems for
large scale distributed computing infrastructures. The GRMS, based on dynamic resource
selection, mapping and advanced scheduling methodology, combined with feedback control
architecture, deals with dynamic Grid environment and resource management challenges,
e.g. load-balancing among clusters, remote job control or file staging support. Therefore, the
main goal of the GRMS is to manage the whole process of remote job submission to various
batch queuing systems, clusters or resources. It has been designed as an independent core
component for resource management processes which can take advantage of various low-
level Core Services and existing technologies. Finally, the GRMS can be considered as a
robust system which provides abstraction of the complex grid infrastructure as well as a
toolbox which helps to form and adapts to distributing computing environments.

The GRMS is a central point for all resource and job management activities an tightly
cooperates with other services: authorization, information systems, monitoring, data
management to fulfil applications requirements. The main features of the GRMS are:

• job submission

• job control (suspending, resuming, cancelling)

• ability to chose "the best" resource for the job execution using multicriteria matching
algorithm

• support for the job checkpointing and migration

• support for file staging

• storing all information about the job execution

• user notifications support

• workflow jobs support

The GRMS has been designed as an independent set of components for resource
management processes which can take advantage of various low-level Core Services, e.g.
GRAM, GridFTP and Gridge Monitoring System, as well as various grid middleware services,
e.g. Gridge Authorization Service, Gridge Data Management Service. All these services
working together provide a consistent, adaptive and robust grid middleware layer which fits
dynamically to many different distributing computing infrastructures. The GRMS
implementation requires Globus software to be installed on grid resources, and uses Globus
Core Services deployed on resources: GRAM, GridFtp, MDS (optional). The GRMS supports
Grid Security Infrastructure by providing the GSI-enabled web service interface for all clients,
e.g. portals or applications, and thus can be integrated with any other middleware grid
environment.

One of the main assumptions for the GRMS is to perform remote jobs control and
management in the way that satisfies Users (Job Owners) and their applications
requirements. All users requirements are expressed within XML-based resource specification
documents and sent to the GRMS as SOAP requests over GSI transport layer connections.

14/01/2008 Page 14 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

Simultaneously, Resource Administrators (Resource Owners) have full control over
resources on which all jobs and operations will be performed by appropriate GRMS setup
and installation. Note, that the GRMS together with Core Services reduces operational and
integration costs for Administrators by enabling grid deployment across previously
incompatible cluster and resources. Technically speaking, the GRMS is a persistent service
within a Tomcat/Axis container. It is written completely in Java so it can be deployed on
various platforms.

GRMS supports Grid Security Infrastructure by providing GSI-enabled Web Service
interfaces and in fact acts on behalf of end users. The communication between the GRMS
service and all clients is done through a GSI-enabled HTTP-based protocol called httpg
implementing transport-level security introduced by Globus community. With the GAS,
GRMS is able to manage both, job grouping and jobs within collaborative environments
according to predefined VO security rules and policies. With the Data Management services
from Gridge, GRMS can create and move logical files/catalogs and deal with data intensive
experiments. Gridge Monitoring Service can be used by GRMS as an additional information
system. Finally, Mobile service can be used to send notifications via SMS/emails about
events related to users jobs and as a gateway for GRMS mobile clients.

GRMS is able to store all operations in a database. Based on this information a set of very
useful statistics for both end users and administrators can be produced. All the data are also
a source for further, more advanced analysis and reporting tools. All users preferences and
job requirements must be expressed as XML-based resource specification documents, called
GRMS Job Description. Once such a request is sent, each job within GRMS receives a
unique ID and the whole process of job scheduling and control begins.

GRMS has modular architecture, it consists of some functional modules (Fig.3)

Fig.3. GRMS Architecture

14/01/2008 Page 15 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

1) Broker Module

 • Steering process of job submission,

 • Choosing the best resources for job execution (scheduling algorithm),

 • Transferring input and output files for job's executable.

2) Resource Discovery Module

 • Finding resources that fulfils requirements described in Job Description,

 • Providing information about resources, required for job scheduling.

3) Job Manager Module

 • Checking status of running job,

 • Cancelling running job,

 • Monitoring for status changes of running job.

4) Job Queue

 • Providing internal job queuing,

 • Providing ability to implement different queue management algorithms.

5) Web Service Interface

 • Providing user access by HTTPS or HTTPG protocols.

 • Communicating with Broker Module by RMI protocol.

 • Returning job information without Broker Module mediation.

6) Job Registry

 • Providing persistent storage of internal job data.

 • Contains job execution history.

7) Workflow Module

 • Providing workflow tasks execution.

 • Triggering job's tasks due to workflow description.

The aim of the Broker Module is to control the whole process of resource and job
management within GRMS. This module steers a flow of requests to GRMS and is also
responsible for an appropriate cooperation with other modules. In the current release of
GRMS, the Broker Module contains basic scheduling and policy strategies: matchmaking
and multi-criteria matchmaking. The first strategy is relatively simple but in fact very efficient
approach for managing resources on which the advanced reservation is not possible. The
second strategy allows more flexible and more accurate resource selections according to
both users and administrator's requirements and preferences. These two strategies can be
easily modified as well as new scheduling and policy modules can be integrated with the
Broker Module.

The Job Manager Module is responsible for monitoring of job status changes within GRMS
and then storing information in a Job Registry together with many additional parameters
(including resource requirements of jobs, user names, job Ids, submission times, pending
times, execution times, jobmanagers to which jobs were submitted, history of migration if
jobs have been migrated, etc). Due to an importance of historic information, especially in
multi site or large scale resource management systems, GRMS provides the interface for
users and administrator to receive information about past GRMS activities. The access to
historic information can be considered as a feedback to the Broker Module and allows

14/01/2008 Page 16 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

developers to implement new dynamic scheduling approaches and policies within GRMS,
e.g. prediction based schedulers or fair-sharing. The tracking of historical resource utilization
for all users results in the ability to modify job priorities, ensuring a balance appropriate
access, and optimizing administrator criteria (e.g. job throughput or turnaround time).

The Resource Discovery Module monitors a status of distributed resources and therefore
uses a flexible hierarchical access to both central and local information services. This module
uses various techniques to discover and get an efficient access to up-to-date and accurate
(both static and dynamic) information about resources. The goal of the Resource Discovery
Module it to deliver all information in a form and in time required by the Broker Module and its
scheduling and policy strategies. Also to this module new extending techniques can be
applied (e.g. indexing or caching) to speed up a flow of information.

Job Registry stores information about jobs and tasks in RDBMS. These data contains
informations about job's current status, description, coallocation etc. Due to speed
improvement, job's database is divided on two parts: in first of them only data about active
(unfinished) jobs is stored, in second one data about already finished jobs.

Workflow Engine is a complete, robust and full featured workflow management engine,
responsible for steering of the execution of the particular tasks of the workflow. It keeps track
of the running tasks, triggers the execution of the next ones according to defined workflow. It
also keeps consistency of the input and output files that might be just references inside the
workflow.
Task triggering in a workflow is based on the status changes of the parent task(s) - any state
can be defined as a trigger. So it is possible to define a child task that will be executed as
soon as the parent for instance fails. Besides it the case of more than one parents it is
possible to specify if the triggering event is alternative or conjunction of the parent's statuses
changes or. One of the other important role of the Workflow Engine is the support for the
parametric job descriptions - it decomposes the parametric description into bunch of
separate tasks and manages its execution.

Job Queue is a fully configurable, statefull repository of the submitted to GRMS jobs and
tasks. It is possible to define different algorithm for selecting tasks for the execution. Default
configuration is implemented as a FIFO queue. The interesting mechanism is ability to
configure the number of tasks served simultaneously which is very useful in case of
deploying GRMS on slower machines.

4.2. GAS
The Gridge Authorization Service (GAS) is an authorization system which can be the
standard decision point for all components of a system. Security policies for all system
components are stored in GAS. Using these policies GAS can return an authorization
decision upon the client request. GAS has been designed in such a way that it is easy to
perform integration with external components and it is easy to manage security policies for
complex systems. The possibility to integrate with the Globus Toolkit and many operating
system components makes GAS an attractive solution for grid applications.

Generally, an authorization service can be used for returning an authorization decision upon
the user request. The request has to be described by three attributes: user, object and
operation. The requester simply asks if the specific user can perform the operation on the
specific object. Obviously, the query to an authorization service can be more complex and
the answer given by such service can be complicated, too. One of the services which can
work in such scenario is the Gridge Authorization Service (GAS). GAS has been designed in
a form which enables many possible applications. GAS can communicate in many ways with
other components. By using the modular structure of GAS it is easy to write a completely
new communication module. The GAS complex data structure can be used to model many
abstract and real world objects and security policies for such objects. For example, GAS has

14/01/2008 Page 17 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

been used for managing security policies: for many Virtual Organizations, for services (like
Gridge Resource Management Service, iGrid, Mobile Services and other) and for abstract
objects like communicator conferences or computational centers. These and many other
features give a possibility to integrate GAS with many existing solutions. Such integration can
be very important, because it raises the security level of the existing solutions and makes it
possible to use the newest security technologies.

The main goal of GAS is to provide a functionality that would be able to fulfill most
authorization requirements of grid computing environments. GAS is designed as a trusted
single logical point for defining security policy for complex grid infrastructures. As flexibility is
the key requirement, it is to be able to implement various security scenarios, based on push
or pull models, simultaneously. Secondly, GAS is considered as independent of specific
technologies used at lower layers, and it should be fully usable in environments based on
grid toolkits as well as other toolkits. The high level of flexibility is achieved mainly through
the modular design of GAS and usage of a complex data structure which can model many
scenarios and objects from the real world. It means that GAS can use many different ways
for communication with external components and systems, use many security data models
and hold security policy on different types of storage systems. These features make GAS
attractive for many applications and solutions (not only for those related with grids). GAS has
to be the trusted component of each system in which it is used and it brings about that the
implementation of GAS was written in ANSI C. This choice makes GAS a very fast and
stable component which uses not much CPU power and little amount of memory. The main
problem of many authorization systems is their management. It is not easy to work with a
complex system in a user-friendly way. Based on many experiences and the end user
comments together with GAS, the GAS administration portlet (web application) is provided,
which makes management as easy as possible. Flexibility of this solution gives users a full
possibility of presenting only these security policies which are important for them. The GAS
management is possible in two other ways: by the GUI GTK client and by the command line
client.

4.3. GDMS
Data storage, management and access in Gridge environment is supported by the Gridge
Data Management Suite (DMS). This suite composed of several specialized components
allows to build a distributed system of services capable of delivering mechanisms for
seamless management of large amount of data. This distributed system is based on the
pattern of autonomic agents using the accessible network infrastructure for mutual
communication. From the external applications point of view DMS is a virtual file system
keeping the data organized in a tree structure. The main units of this structure are
metadirectories, which enable to put a hierarchy over other objects and metafiles. Metafiles
represent a logical view of computational data regardless of their physical storage location.

Data Management System consists of three logical layers: the Data Broker, which serves as
the access interface to the DMS system and implement the brokering of storage resources,
the Metadata Repository that keeps information about the data managed by the system, and
the Data Container, which is responsible for the physical storage of data. In addition, DMS
contains modules which extend its functionality to fulfill the enterprise requirements. These
include the fully functional web based administrator interface and a Proxy to external
scientific databases. The Proxy provides a SOAP interface to the external databases, such
as for example those provided by SRS (Sequence Retrieval System).

The Data Broker is designed as an access point to the data resources and data management
services. A simple API of the Data Broker allows to easily access the functionality of the
services and the stored data. The Data Broker acts as a mediator in the flow of all requests
coming from external services, analyzes them and eventually passes to the relevant module.
The DMS architecture assumes that multiple instances of the Data Broker can be deployed

14/01/2008 Page 18 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

in the same environment, thus increasing the efficiency of data access from various points in
the global Grid environment structure.

The Metadata Repository is the central element of the Gridge distributed data management
solution. It is responsible for all metadata operations as well as their storage and
maintenance. It manages metadata connected with the data files, their physical locations and
transfer protocols that could be used to obtain them, with the access rights to the stored data
and with the metadescriptions of the file contents. Currently each DMS installation must
contain a single instance of the Metadata Repository, which acts as a central repository of
the critical information about the metacatalogue structure, user data and security policy for
the whole DMS installation.

The Data Container is a service specialized towards the management of physical data
locations on the storage resources. The Data Container API is designed in a way to allow
easy construction and participation in the distributed data management environment of
storage containers for different storage environments. The Data Containers currently
available in the DMS suite include a generic file system Data Container, a relational
database Data Container and a tape archiver Data Container. The data stored on the various
storage resources can be accessed with one of the many available protocols including such
as GASS, FTP and GridFTP.

The Proxy modules are services that join the functionality of the Metadata Repository
allowing to list the available databanks, list their content, read the attached metadata
attributes and to build and execute queries, and of the Data Container to provide the data
using the selected data transfer protocol. Such Proxy container are highly customized
towards the specific platform they are working with to allow building complex queries and
executing operations on the found entries.

4.4. Mercury - Grid Monitoring
The Mercury Grid Monitoring System has been developed within the GridLab project. It
provides a general and extensible Grid monitoring infrastructure. Mercury Monitor is
designed to satisfy specific requirements of Grid performance monitoring: it provides
monitoring data represented as metrics via both pull and push model data access semantics
and also supports steering by controls. It supports monitoring of Grid entities such as
resources and applications in a generic, extensible and scalable way.

The Mercury Monitoring is designed to satisfy requirements of Grid performance monitoring:
it provides monitoring data represented as metrics via both pull and push access semantics
and also supports steering by controls. It supports monitoring of Grid entities such as
resources and applications in a generic, extensible and scalable way. It is implemented in a
modular way with emphasis on simplicity, efficiency, portability and low intrusiveness on the
monitored system.

The aim of the Mercury Monitoring system is to support the advanced scenarios in Grid
environment, such as application steering, self-tuning applications and performance analysis
and prediction. To achieve this the general GGF GMA architecture is extended with actuators
and controls. Actuators are analogous to sensors in the GGF GMA but instead of gathering
information, they implement controls and provide a way to influence the system.

The architecture of Mercury Monitor is based on the Grid Monitoring Architecture (GMA)
proposed by Global Grid Forum (GGF), and implemented in a modular way with emphasis on
simplicity, efficiency, portability and low intrusiveness on the monitored system.

The input of the monitoring system consists of measurements generated by sensors.
Sensors are controlled by producers that can transfer measurements to consumers when
requested.

14/01/2008 Page 19 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

Sensors are controlled by producers that can transfer measurements to consumers when
requested. Sensors are implemented as shared objects that are dynamically loaded into the
producer at run-time depending on configuration and incoming requests for different
measurements.

In Mercury all measurable quantities are represented as metrics. Metrics are defined by a
unique name such as host.cpu.user which identifies the metric definition, a list of formal
parameters and a data type. By providing actual values for the formal parameters a metric
instance can be created representing an entity to be monitored. A measurement
corresponding to a metric instance is called metric value.

Metric values contain a time-stamp and the measured data according to the data type of the
metric definition. Sensor modules implement the measurement of one or more metrics.
Mercury Monitor supports both event-like (i.e. an external event is needed to produce a
metric value) and continuous metrics (i.e. a measurement is possible whenever a consumer
requests it such as, the CPU temperature in a host).

Continuous metrics can be made event-like by requesting automatic periodic measurements.
In addition to the functionality proposed in the GMA document, Mercury also supports
actuators.

Actuators are analogous to sensors but instead of taking measurements of metrics they
implement controls that represent interactions with either the monitored entities or the
monitoring system itself. In addition to all mentioned features Mercury facilitates steering.

4.5. Mobile User Services
Mobile software development in Gridge is focused on providing a set of applications that
would enable communication between Mobile devices, such as cell phones, Personal Digital
Assistants (PDA) or laptops and Grid Services on the other side. This class of applications is
represented by clients running on mobile devices, mobile gateways acting as a bridge
between clients and Grid services as well as additional specialized middleware services for
mobile users.

The main goal of the services is to make use of small and flexible mobile devices that are
increasingly used for web access to various remote resources. The system provides Grid
access mechanisms for such devices. This requires adoption of the existing access
technologies like portals for low bandwidth connectivity and low level end-user hardware.
The mobile nature of such devices also requires flexible session management and data
synchronization. The system enhances the scope of present Grid environments to the
emerging mobile domain. Utilizing new higher bandwidth mobile interconnects, very useful
and previously impossible scenarios of distributed and collaborative computing can be
realized. To achieve this and taking into consideration some still existing constraints of
mobile devices, the Access for Mobile Users group is developing a set of applications in the
client-server model with the J2ME CLDC/MIDP- java client, and portlet server working with
GridSphere. This set allow us to manage end user Grid jobs (steer an application) or view
messages and visualizations produced by Grid applications on device such simple as
standard mobile phone. The second group of developed services is tightly connected with
end user notifications about various events in Grids. Events like: the information about user
application is started or finished, the visualization is ready for viewing or waiting for new data,
can be send to end users using various notifications way. It can be Email, SMS, MMS, or
message of one of Internet Communicators like AIM, Yahoo, ICQ, Jabber etc. (including
most popular in Poland Gadu-Gadu and Tlen).

Mobile services gives also end users possibility to start a conference concerning
aforementioned event between users of given virtual organization (including conferences
between clients of different communicators).

14/01/2008 Page 20 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

The unique possibility of giving access to Grid resources for users of relatively weak devices
is one of features that distinguish Gridge mobile applications from other Grid systems.
Moreover, the used technology, Java 2 Micro Edition - Mobile Information Device Profile
(J2ME-MIDP) applications (midlets) on the client side allows to develop flexible, possibly off-
line working programs that may be used on a wide range of devices supporting J2ME. Using
the MIDP compliant device internal repository for storing data, gives the user possibility to
use it later in offline state and prepare the data, to be sent in on-line state.

The Mobile Command Center (MCC) that acts as a gateway between mobile client and Grid
services is developed in Java as a GridSphere portlet (see Gridsphere.org) with separate
"mobile" context. MCC automatically grabs the device profile (like device class, screen size,
color depth, etc), this information is used during forwarding the request from mobile device to
Grid services (mainly GSI-enabled Web Services like Gridge MessageBox, Visualization
Service for Mobiles or Gridge Resource Management System). Services that can be
accessed from mobile device using MCC belong to two groups: the first group consists of
Grid services that were adopted to use with mobile devices, the second group are services
developed for use only with mobile devices. The Visualization Service for Mobiles belong to
second group and is used to view the application output in form of visualization prepared
exactly according to the User's device capabilities. The advantage in this case is as follows:
the large amount of data is not sent via weak GPRS connections to the device that cannot
store it in the memory and cannot display it correctly. First group of services consists of
Gridge Resource Management System and Notification and Messenger Service. The first
service can be used in "Collaborative scenario" - the user can steer the application (even not
being an owner) from mobile device. He/she can get the jobs list, migrate, resume, suspend,
cancel, edit, view history and submit new job on the basis of edited/modified description of
already finished jobs. Using GRMS together with Notification service the user can register for
user notifications related to the running jobs. In this way the user is notified about important
events occurring in the Grid (like jobs status changes, application output availability). These
notifications can be send as Email,SMS and Internet Communicator (AIM, Yahoo etc)
messages to the user. Using the Messenger Service it is possible also to make a conference
between users of Virtual Organization defined in Gridge Authorization Service even if they
use different communicators.

4.6. OGSA-DAI
OGSA-DAI is a middleware product which allows data resources, such as relational or XML
databases, to be exposed on to Grids. Various interfaces are provided and many popular
database management systems are supported. The software also includes a collection of
components for querying, transforming and delivering data in different ways, and a simple
toolkit for developing client applications. OGSA-DAI is designed to be extensible, so users
can add their own additional functionality.

The architecture of OGSA-DAI consists of a five layers each serving a different purpose. The
lowest layer is Data Layer. It consists of the data resources that can be exposed via OGSA-
DAI. Currently these include:

• Relational databases such as MySQL, SQL Server, DB2, Oracle, PostgreSQL,

• XML databases such as eXist, Xindice

• Files and directories in formats such as OMIM, SWISSPROT and EMBL

Business Logic Layer layer encapsulates the core functionality of OGSA-DAI. It consists of
components known as data service resources. Multiple data service resources can be
deployed to expose multiple data resources. There is a 1-1 relationship between data service
resources and data resources. The responsibilities of a data service resource include:

14/01/2008 Page 21 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

• Execution of perform documents - a perform document describes the actions that a
data service resource should to take on behalf of the client. Each action is known as
an activity. OGSA-DAI already includes a large number of activities for performing
common operations such as database queries, data transformations and data
delivery.

• Generation of response documents - a response document describes the status of
execution of a perform document and may contain result data, such as the results
from a database query.

• Data resource access - interactions with data resources take place via the data
resource accessor component.

• Data transport functionality - data can be streamed in and out of data service
resources to and from clients and other data service resources.

• Session management - the creation, access and termination of session objects
allowing state to be stored across multiple requests to the data service resource. All
perform document requests are processed within a session. Sessions are also used
for storing the streams used by the data transport functionality. These are known as
session streams.

• Property management - the creation, access and removal of properties associated
with the data service resource. These are known as data service resource properties
and are generally used for exposing meta-data such as the status of a request or the
schema of the underlying data resource.

Presentation Layer encapsulates the functionality required to expose data service resources
using web service interfaces. OGSA-DAI includes two realisations, one compliant with WSRF
and the other compliant with WSI (that is a solution that only relies on the specifications
mentioned in the WS-I basic profile, i.e. that do not use WSRF). For each realisation there is
a WSDL document that describes the interface.

A client can interact with a data service resource via a corresponding data service.
Depending on whether a WSRF or WSI data service has been deployed, the client
application must be compliant n must be compliant with the WSRF or WSI standards.

14/01/2008 Page 22 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

5. Services Classification.

In the ACGT environment there can be a lot of different services. The SOA paradigm defines
architecture as a loosely coupled software services to support the requirements of business
processes and software users. That is very general definition. We would like to build ACGT
environment in a SOA manner but it is required to add some semantic, some additional
constraints and rules for building the ACGT services. The services in ACGT environment can
be categorized based on different criteria:

• Position in ACGT architecture

The goal of layered architecture is to introduce different abstractions levels for
services. Services from different layers operates on different terminology. Some of
them are located near the physical resources using hardware terms, the others ale
located near end user and should be contacted using language of meta descriptions.
The other important fact is that upper layer services are specific to some scientific
area and lower level ones are more general and could be used in a generic way by
different clients:

• Service of Common Grid Layer

The Services from that layer are used for accessing hardware resources.

• Service of Advanced Grid Layer

Provides more advanced, collective functionality, using lower level services to realize
clients requests.

• Service of Business Model Layer

These are specific services for ACGT environment. They are closer to the end user,
can operate on terms from bio and cancer research world (meta descriptions,
ontology)

• Role in ACGT environment

It is obvious that services can play different roles in distributed environment. For
ACGT we can define two main groups:

• Infrastructure Service

The services used for building ACGT environment (middleware), they are performing
some more general actions - management issues. Most of the services from Grid
layers belongs to this group. The examples of such a service are: Registry Service,
Resource Management, etc...

• Analytical Tool Service

Tools for concrete, bio-oriented tasks. They are mostly located in ACGT Business
Model Layer

• Owner/maintainer of the service

• ACGT Service

Service developed or adopted by ACGT consortium that has full control over it. The
control means possibility to introduce common policies for building such a service, for
instance applying the same security mechanisms, the same technology for accessing
the service, etc. This services should also be trustworthy - we need to be sure that
what the service is supposed to do is in fact doing.

Remark: all Infrastructure Services should be ACGT Services.

14/01/2008 Page 23 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

• Third Party Service

It is not possible to build everything from scratch. There is a lot of existing tools
available freely that can be used without any limitations. We should to define the
policy (evaluation procedures) of incorporating such services to ACGT infrastructure.
In some cases it means developing additional components - wrappers etc.

Consequences of that classification.

• Security

Classification of the services is very important from a security point of view. It is
necessary for defining policies for creation, introducing or managing the services. The
point is: there will be different policies for different types of services (this is main
motivation of classification).

For example: all Infrastructure Services should use the same
authentication/authorization mechanisms, and after validation procedures can be
treated as a trusted services.

On the other hand it is not possible to enforce any implementation changes to Third
Party Services so we need to remember that it is forbidden to send any confidential
data to them.

Analytical Tools developed by ACGT members should also obey the rules for
authentication/authorization but we can leave some of them publicly available (without
any access restrictions).

• Integration

From the point of view of integration for each group of services we can define what
technology we support. For ACGT services we can enforce common technology of
implementation (that would be useful for Infrastructure Services)

14/01/2008 Page 24 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

6. Grid services implementation.

6.1. Introduction
This section contains all the necessary information to implement and deploy a secure ACGT
web service from scratch based on the Globus Toolkit (version 4.1.2).

6.2. Preparing Hosting Environment (Service Container)
The hosting environment for the axis based web service is tomcat as a servlet container and
axis as a SOAP engine. The simplest way to create the hosting environment for gsi-enabled
web services is to deploy the java ws-core (which is part of Globus Toolkit 4) into tomcat and
then to remove or not unnecessary globus core WSRF services leaving only part of globus
responsible for ws-security.

6.3. Creating a low privilege account
The first [optional] step is to create a low privilege user for the service. On most linux/unix
systems the following commands should work.

groupadd services
useradd -g services -d /home/hello -c "GSI-enabled Hello World Web Service"
hello

6.4. Setup CA certificates
This step defines set of Cetificate Authorities which the service will trust.

1.Download the ACGT CA certificates: Acgt-ca.tar

2.Extract the certificates and place them in the correct directory

• $HOME/.globus - to be visible only for the created user,

• /etc/grid-security - to be globally visible.

cd $HOME/.globus
tar xpf ~/Acgt-ca.tar
chown -R hello:services *

6.5. Requesting service certificate

• use the grid-cert-request command to create a certificate request for the service. The
grid-cert-request command is part of Globus toolkit.

export X509_CERT_DIR=/home/piontek/.globus/certificates/; grid-cert-request
-service hello -host druid-bis.man.poznan.pl -ca -dir .

• send the certificate request (hellocert_request.pem file) to the ACGT CA and wait for
the signed certificate.

6.6. Downloading and installing Globus Toolkit 4.1.2
You can skip this point if the GT 4.1.2 is already installed.

14/01/2008 Page 25 of 50

mailto:support@custodix.com

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

wget http://www-unix.globus.org/ftppub/gt4/4.1.2/installers/src/
gt4.1.2-all-source-installer.tar.gz
tar xzf gt4.1.2-all-source-installer.tar.gz
mkdir gt-4.1.2
cd gt4.1.2-all-source-installer

Use --prefix option to choose destination directory.

./configure --prefix=/home/piontek/tmp/ACGT/globus/gt-4.1.2

Globus Toolkit 4.1.2 can be also downloaded from alternative site.

Install Globus limiting installation only to wsjava package (aka. ws-core).

make wsjava install

If the installation fails with following of similar error:

~/tmp/ACGT/globus/gt4.1.2-all-source-installer $ make wsjava install
cd gpt && OBJECT_MODE=32 ./build_gpt
build_gpt ====> installing GPT into /home/piontek/tmp/ACGT/globus/gt-4.1.2
build_gpt ====> building /home/piontek/tmp/ACGT/globus/gt4.1.2-all-source-
installer/gpt/support/Compress-Zlib-1.21
build_gpt ====> building /home/piontek/tmp/ACGT/globus/gt4.1.2-all-source-
installer/gpt/support/IO-Zlib-1.01
build_gpt ====> building /home/piontek/tmp/ACGT/globus/gt4.1.2-all-source-
installer/gpt/support/makepatch-2.00a
build_gpt ====> building /home/piontek/tmp/ACGT/globus/gt4.1.2-all-source-
installer/gpt/support/Archive-Tar-0.22
build_gpt ====> building /home/piontek/tmp/ACGT/globus/gt4.1.2-all-source-
installer/gpt/support/PodParser-1.18
build_gpt ====> building /home/piontek/tmp/ACGT/globus/gt4.1.2-all-source-
installer/gpt/support/Digest-MD5-2.20
build_gpt ====> building /home/piontek/tmp/ACGT/globus/gt4.1.2-all-source-
installer/gpt/packaging_tools
/home/piontek/tmp/ACGT/globus/gt-4.1.2/sbin/gpt-build -srcdir=source-
trees/wsrf/java/common/source gcc32dbg
sh: NOT: command not found
ERROR: Untar failed
make: *** [globus_java_ws_core_common] Error 255

Plese check if locations of all needed tools in the
${GLOBUS_PATH}/var/lib/perl/Grid/GPT/LocalEnv.pm file are set properly.

6.7. Downloading and installing Apache Tomcat
Download and install Apache Tomcat servlet container (version 5.5.x)

wget http://ftp.tpnet.pl/vol/d1/apache/tomcat/tomcat-5/v5.5.25/bin/
apache-tomcat-5.5.25.tar.gz
tar xzf apache-tomcat-5.5.25.tar.gz

Please note, that Tomcat 5.5.x requires java JRE 5.0. If you want to use java 1.4 please
install additionally the JDK 1.4 Compatability Package

The Tomcat 5.5.25 and JDK 1.4 Compatability Package can be also downloaded from
alternative site.

6.8. Deploying wsjava into Tomcat
Go to the directory where the wsjava package was installed and do following set of actions:

14/01/2008 Page 26 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

$ export GLOBUS_LOCATION=`pwd`
$ ant -f share/globus_wsrf_common/tomcat/tomcat.xml deploySecureTomcat
-Dtomcat.dir=<tomcat.dir>

Where <tomcat.dir> is an absolute path to the Tomcat installation directory.

Also, -Dwebapp.name=<name> property can be specified to set the name of the web
application under which the installation will be deployed. By default "wsrf" web application
name is used. In our example the name was set to acgt value.

$ export GLOBUS_LOCATION=`pwd`
$ ant -f share/globus_wsrf_common/tomcat/tomcat.xml deploySecureTomcat
-Dtomcat.dir=<tomcat.dir> -Dwebapp.name=acgt

6.9. Configuring Tomcat
In addition to the above deployment step it is also needed to configure the Tomcat to use
appropriate connectors and valves responsibles for GSI-security. Please modify the
<tomcat.dir>/conf/server.xml configuration file.

• Add a HTTPS Connector in the <Service name="Catalina"> section and update the
parameters appropriately with your local configuration:

<Connector
 className="org.globus.tomcat.coyote.net.HTTPSConnector"
 port="8443" maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
 autoFlush="true"
 disableUploadTimeout="true" scheme="https"
 enableLookups="true" acceptCount="10" debug="0"
 protocolHandlerClassName="org.apache.coyote.http11.Http11Protocol"
 socketFactory="org.globus.tomcat.catalina.net.BaseHTTPSServerSocketFac
tory"
 proxy="/path/to/proxy/file"
 cert="/path/to/certificate/file"
 key="/path/to/private/key/file"
 cacertdir="/path/to/ca/certificates/directory"
 encryption="true"/>

In the above the proxy, cert, key and cacertdir attributes are optional. Furthermore, the proxy
and the combination of cert and key attributes are mutually exclusive. The encryption
attribute is also optional (defaults to true if not set).

The mode attribute can also be set to specify the connection mode. There are two supported
connection modes: ssl and gsi. The ssl mode indicates a regular SSL connection mode. The
gsi mode indicates a SSL connection mode with transport-level delegation support. The ssl
mode is the default mode if the mode attribute is not specified. Please note that the gsi mode
is intended for advanced users only.

Important! The credentials and certificate configuration is used only by the connector and is
not used by the rest of the web services stack in Globus Toolkit. To configure credentials
inside container please modify the Security Descriptor file.

Go to the <tomcat.dir>/webapps/<name>/WEB-INF/etc/globus_wsrf_core directory and
modify content of global_security_descriptor.xml file setting paths to credential and key in
<certitificate> section, where <name> is value of -Dwebapp.name property used during the
deployment of wsjava into tomcat. If the property wasn't specified the default value is “wsrf”.
For this guide tha <name> value was set to acgt.

<?xml version="1.0" encoding="UTF-8"?>
<containerSecurityConfig xmlns="http://www.globus.org/security/descriptor/
container" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.globus.org/security/descriptor

14/01/2008 Page 27 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

name_value_type.xsd"
xmlns:param="http://www.globus.org/security/descriptor" >
 <credential>
 <cert-key-files>
 <key-file value="/PATH/servicekey.pem"/>
 <cert-file value="/PATH/servicecert.pem"/>
 </cert-key-files>
 </credential>
</containerSecurityConfig>

• Add a HTTPS Valve in the <Engine name="Catalina" ... > section:

<Valve className="org.globus.tomcat.coyote.valves.HTTPSValve55"/>

You may have to edit <tomcat.dir>/webapps/<name>/WEB-INF/web.xml if you are running
Tomcat on a non-default port, that is if not using port 8443 (HTTPS). For example, if you run
Tomcat on port 443 using HTTPS then the WSRF servlet entry should be modified to have
the following defaultProtocol and defaultPort parameters:

<web-app>
 ...
 <servlet>
 <servlet-name>WSRFServlet</servlet-name>
 <display-name>WSRF Container Servlet</display-name>
 <servlet-class>
 org.globus.wsrf.container.AxisServlet
 </servlet-class>
 <init-param>
 <param-name>defaultProtocol</param-name>
 <param-value>https</param-value>
 </init-param>
 <init-param>
 <param-name>defaultPort</param-name>
 <param-value>443</param-value>
 </init-param>
 <load-on-startup>true</load-on-startup>
 </servlet>
 ...
</web-app>

Alternatively, you can use the setDefaults Ant task to set the default protocol/port in the
web.xml file:

$ cd $GLOBUS_LOCATION
$ ant -f share/globus_wsrf_common/tomcat/tomcat.xml setDefaults \
 -Dtomcat.dir=<tomcat.dir> \
 -DdefaultPort=<port> -DdefaultProtocol=<protocol>

Copy
$GLOBUS_LOCATION/lib/common/log4j-*.jar
and
$GLOBUS_LOCATION/lib/common/commons-logging-*.jar
files to <tomcat.dir>/webapps/<name>/WEB-INF/lib/ directory. Then configure the Log4j
configuration file in <tomcat.dir>/webapps/<name>/WEB-INF/classes/ directory
appropriately. The debugging settings will only affect the web application code.

Please always check the Tomcat log files under the <tomcat.dir>/logs directory for any errors
or exceptions.

14/01/2008 Page 28 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

6.10. Starting Tomcat
It is recommended to increase the maximum heap size of the JVM when running the
container. By default on Sun JVMs a 64MB maximum heap size is used. The maximum heap
size can be set using the -Xmx JVM option. Please add the property -Xmx512M to
JAVA_OPTS in the <tomcat>/bin/catalina.sh file.

IMPORTANT: By default Sun 1.4.x+ JVMs are configured to use /dev/random device as an
entropy source. Sometimes the machine can run out of entropy and applications and using
the /dev/random device will block until more entropy is available. One workaround for this
issue is to configure the JVM to use /dev/urandom (non-blocking) device instead. For Sun
JVMs a java.security.egd system property can be set to configure a different entropy source.
Please add the -Djava.security.egd=file:/dev/urandom property to JAVA_OPTS in the
<tomcat>/bin/catalina.sh file.

Start the tomcat using <tomcat-root>/bin/startup.sh script and check if it works listing
available services. In any web browser try to open following page https://localhost:
8443/<name>/services, where <name> is value of -Dwebapp.name property used during the
deployment of wsjava into tomcat. If the property wasn't specified the default value is “wsrf”.

The list of hosted services should be displayed:

And now... Some Services
• NotificationTestService (wsdl)
 • generateNotification
 • selfSubscribe
• TestAuthzService (wsdl)
 • addDeclinedMethod
 • SAMLRequest
• CounterService (wsdl)
 • add
 • createCounter
• TestServiceWrongWSDL (wsdl)
 • createResource
 • resetNumInstances
 • getInstanceInfo
 • testLocalInvocation
• ShutdownService (wsdl)
 • shutdown
• ...

There is some set of wsrf-core services, that are unnecessary to start simple gsi-enabled
web service and can be removed. From the <tomcat-root>/webapps/<name>/WEB-INF/etc
directory remove all files and directories except the “globus_wsrf_core” directory. If you want
you can also remove all services except the gsi/AuthenticationService one from the <tomcat-
root>/webapps/<name>/WEB-INF/etc/globus_wsrf_core/server-config.wsdd file.

The list of services should be:

And now... Some Services
• gsi/AuthenticationService (wsdl)
• requestSecurityTokenResponse
• requestSecurityToken

More details can be found in Apendix B "Implementation of simple Hello World server and
client"

14/01/2008 Page 29 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

7. Grid Monitoring Portal.

For a dynamically changing Grid environment there is a need to provide tools for
administrators for monitoring state of the infrastructure services.

Grid Monitoring Portal is one of such a tool used for quick identification of services failures or
other errors. It consists of two parts:

• testing tools

• publishing service

The testing tools are a framework for running parallel tests written in Java or any
programming language through executing new processes, and a set of ready-to-go tests
implemented mostly using Globus Java CoG Kit and shell scripts running native clients for
different grid services. Results of these tests are written into a relational database. The
framework can extended very easily to fit current needs of Grid Testbed configuration.

The publishing service is used for access to results of tests stored by testing tools in a
relational database. Portlet is used as client for this service which displays current result set
and history of tests. The web-client was extended to work with useful possibility of launching
the test directly from the portlet, giving the administrator not only the tool for monitoring the
testbed status, but also the ability to force the framework to start the desired test and see on-
line the possibly changing test status/result.

In the table below the map the user can see a matrix of all hosts and services – so, it is
easier to see the whole status and determine what is down and up. For every host we can
also check the actual state of a service by clicking on the check hyperlink. (Fig. 4). A suitable
colour tells if a service is up (green) or down (red), grey fields mean that on the given host
there is no such service installed.

Fig.4. Grid Monitoring portlet.

14/01/2008 Page 30 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

After clicking on the status value -OK or FAILED- another table is shown (), which displays a
list of all conducted tests and their results. If a result is FAILED then the cause could be
checked by clicking on the failed hyperlink (), then the reason is shown to the user.

The portlet is highly configurable – the user is able to add more services, hosts and centers
which appear in the database, more human readable names can be set, details for
administrator, web page, graphic files can be changed, depth of the tests’ history can be set.

The list of implemented tests (only part of them are used in ACGT testbed):

• iStore - tests whether each machine is registered in iGrid central server called iStore.
The test uses native iGrid client to get search.xml file and then processes it using
Java XML tools to search for machines. If a machine is found, hardware info and list
of jobmanagers are extracted.

• iServe - tests whether iGrid local part iServe (developed by GridLabWP-10) is running
on each machine. The test runs gridlab-search-client against each machine. The
test is implemented using native iGrid client.

• iGrid jobmans - tests whether any jobmanagers are listed in iStore for a given
machine. The test is implemented in Java.

• merge jobmans - this test merges together lists of jobmanagers found in GRIS and in
iStore. It is used as a prerequisite for other tests like Jobmanagers test. The test is
implemented in Java.

• GRIS - tests whether each machine is running Grid Resource Information Service.
Connects to each machine on port 2135, performs two unauthenticated LDAP queries
with branch point Mds-Vo-name=local,o=grid. The first query is with scope
ONELEVEL_SCOPE and filter (objectClass=*), getting information about CPU and
OS. The second query is with scope SUBTREE_SCOPE and filter
(objectClass=MdsServiceGram), searching for available jobmanagers. The test is
implemented in Java using standard LDAP provider.

• Gatekeeper - tests whether Globus Gatekeeper is running on each machine. Tries to
authenticate to a gatekeeper by calling Gram.ping() method. The test is implemented
in Java using Globus Java CoG Kit 1.1 classes.

• mercury2 - tests whether the monitoring server version 2.X (developed by
GridLabWP-11) is running on each machine. Runs the command monclient -n
host.loadavg -p host=$MACHINE -v monp://$MACHINE for each machine. The test is
implemented by using the native monitoring client.

• mercury2.3.1 - test whether monitoring software installed on each machine is version
2.3.1.

• GridFTP - tests whether each machine is running Grid File Transfer Protocol server.
Connects to each machine to port 2811, performs GSI authentication to the Grid FTP
server and then disconnects. The test is implemented in Java using Globus Java
CoG Kit 1.1 classes.

• CA - tests whether each machine has certificates and policy files of all required
Certification Authorities. Extracts all file names from CA tarball and submits a shell
script to each remote machine to test existence of the same files in directory /etc/grid-
security/certificates/. This test is run only if the Gatekeeper test was successful. The
test is implemented using shell scripting and native globusrun client.

• Mapfile - tests whether each machine has required accounts in grid-mapfile. Gets all
Distinguished Names (DN) from master grid-mapfile, reads grid-mapfile from each
machine by submitting /bin/cat /etc/grid-security/grid-mapfile, extracts DNs from it and

14/01/2008 Page 31 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

compares them to DNs from master grid-mapfile. This test is run only if Gatekeeper
test was successful. The test is implemented using shell scripting and native
globusrun client.

• GSISSH - tests whether each machine is running Secure Shell (SSH) daemon with
Grid Security Infrastructure (GSI) extensions. Runs command gsissh -p 2222
$MACHINE echo "TESTSTRING" and searches for "TESTSTRING" in the output.
The test is implemented by calling native gsissh client.

• Software - tests whether the required software is installed. Submits a complex shell
script to each remote machine, which first sources /etc/gridlab.conf file to set the
environment variables and then tries to find the required software packages. This test
is run only if the Gatekeeper test was successful. The test is implemented using shell
scripting and native globusrun client.

• Java - tests whether java implementation on the remote machine is at least version
1.3. This test submits a remote shell script using native globusrun client.

• Delphoi - tests whether GridLab adaptive software is running on each machine. Runs
command control-pythia check -host $MACHINE for each machine. The test is
implemented using native adaptive client.

• Jobmanagers - tests jobmanagers as advertised by GRIS or iGrid on each machine.
Gets all jobmanagers found by the "merge jobmans" test and submits job /bin/echo
"XXX TEST XXX" to each one. Searches for XXX TEST XXX in the job outbut. So the
number of tested jobmanagers depends on result of GRIS and iStore test. This is a
"composite" test which produces variable number of results. This test is run only if
Gatekeeper test was succesful and at least one jobmanager is available. The test is
implemented in Java using Globus Java CoG Kit 1.1 classes.

• GRMS - tests whether Grid Resource Management Service can submit a job to each
jobmanager. Calls operation submitJob(String xml,StringHolder jobId) on the GRMS
service to submit /bin/date as a simple job to each jobmanager. Then it polls the
GRMS for the job status until it finishes. The test is implemented in Java using
Apache Axis and Globus 3 classes.

• Mpicc - tests whether it is possible to compile C programs using Message Passing
Interface libraries. Submits a complex shell script, which downloads source of a
simple MPI C program (cpi.c) using globus-url-copy from GASS server, then compiles
the source. Tries to cope with many different operating systems, but may fail for
unknown OSes. This test is run only if the Gatekeeper test was successful. The test
is implemented using shell scripting and native globusrun client.

• mpif77 - tests whether it is possible to compile FORTRAN77 programs using
Message Passing Interface libraries. Submits a complex shell script, which
downloads the source of a simple MPI F77 program (mpi_prog.f) using globus-url-
copy from GASS server, then compiles the source. Tries to cope with many different
operating systems, but may fail for unknown OSes. This test is run only if the
Gatekeeper test was successful. The test is implemented using shell scripting and
native globusrun client.

• MPI-C - tests whether MPI C program can be run on all jobmanagers advertised by
GRIS on each machine. Gets all jobmanagers found by the GRIS test and submits an
MPI job which runs the MPI C program previously compiled by the mpicc test. The
RSL for the job includes (jobType=mpi)(count=2) to run the job on two CPUs.
Currently ignores Condor jobmanagers, as they don't support MPI jobs. This is a
"composite" test which produces a variable number of results. This test is run only if
the Gatekeeper test was successful and GRIS reported that at least one jobmanager
and mpicc test was succesful. The test is implemented in Java using Globus Java
CoG Kit 1.1 classes.

14/01/2008 Page 32 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

• MPI-f77 - tests whether MPI FORTRAN77 program can be run on all jobmanagers
advertised by GRIS on each machine. Gets all jobmanagers found by the GRIS test
and submits an MPI job which runs the MPI F77 program previously compiled by the
mpif77 test. The RSL for the job has (jobType=mpi)(count=2) to run the job on two
CPUs. Currently ignores Condor jobmanagers, as they don't support MPI jobs. This is
a "composite" test which produces variable number of results. This test is run only if
the Gatekeeper test was successful and GRIS reported that at least one jobmanager
and mpif77 test was successful. The test is implemented in Java using Globus Java
CoG Kit 1.1 classes.

• GRMS MPI - test whether GridLab Resource Management Service developed by
WP-9 can submit an MPI job to each jobmanager. Calls the operation
submitJob(String xml,StringHolder jobId) on the GRMS service to a submit cpi
executable compiled during the "mpicc" test as an MPI job for two CPUs to each
jobmanager found in the GRIS test. Then, it polls the GRMS for the job status until it
finishes. Some jobmangers are disabled because they are known not to handle MPI
jobs. The test is implemented in Java using Apache Axis and Globus 3 classes.

• GAT - gets the sources of GridLab GAT engine, compiles them on each machine and
runs their tests by running the command make -C engine tests. The test depends
heavily on correct settings in /etc/gridlab.conf.

• Mercury compile - gets the latest source of Mercury monitoring tool and tries to
compile it on each machine. The test depends heavily on correct settings in
/etc/gridlab.conf. Problems should be consulted with GridLab WP-11 (Monitoring).

• Triana – gets Triana from CVS and tries to run it on remote machines.

• Cactus – gets Cactus with C-GAT thorns sources from CVS and tries to compile them
against GAT and adaptors on the remote machine.

• GRMS WS – tests if the GRMS Web Service is installed on given machine. Simple
call of common getServiceDescription() method is performed during test.

• GAS – tests if the GAS Web Service is installed on given machine. Simple call of
common getServiceDescription() method is performed during test.

• eNanos – tests if the eNanos web service is installed and if it is working – it uses a
simple command ping for the target service

• UNICORE – checks if target unicore system is available – it checks if target unicore
gateway is on-line and then checks if other unicore hosts are available and belong to
the given VO unicore site

• JOSH – checks if target host is up, if service is installed and running, then tries to
submit a very simple job

There is also other portlet within Monitoring Portal. It shows a map of Europe and all the
machines participating the testbed. It uses data gathered in the database and renders it so
that users can see the actual status of the whole portlet.

14/01/2008 Page 33 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

Fig.5. Grid Testbed Map

14/01/2008 Page 34 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

References

[1] Globus Tooklit http://www.globus.org

[2] Gridge Toolkit http://www.gridge.org

[3] "GRMS Admin Guide"
http://www.gridge.org/files/grms/doc/admin/pdf/view/GrmsAdminGuide.pdf

[4] "GRMS User Guide"
http://www.gridge.org/files/grms/doc/user/pdf/view/GrmsUserGuide.pdf

[5] "GDMS Admin Guide"
http://www.gridge.org/files/dms/doc/admin/pdf/view/DMSAdminGuide.pdf

[6] "GDMS User Guide"

http://www.gridge.org/files/dms/doc/user/pdf/view/DMSUserGuide.pdf

[7] Russell Butek "Which style of WSDL should I use?" http://www.ibm.com/developerworks/
webservices/library/ws-whichwsdl/

[8] "Axis Reference Guide" http://ws.apache.org/axis/java/reference.html

[9] "Authorization Framework Documentation"
http://www.globus.org/toolkit/docs/development/4.1.2/security/authzframe/index.html

14/01/2008 Page 35 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

Appendix A - Abbreviations and acronyms

SOA Service Oriented Architecture

GRMS Gridge Resource Management System

GAS Gridge Authorization Service

GDMS Gridge Data Management System

RFT Reliable File Transfer

MDS Monitoring & Discovery Service

WSDL Web Service Definition Language

14/01/2008 Page 36 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

Appendix B: Implementation of simple Hello World
server and client

This chapter shows how to implement simple gsi-enabled web service and client. The service
has only one method hello with no arguments and it returns depending on version
information about the caller (the user Distinguished Name) or complex information about
proxy delegated to the service.

IMPORTANT All classes and jars containing examples presented below were compiled using
java 1.5.

1. Creating WSDL file describing the service interface

This point can be omitted if you want to build the client or service basing on the existing
WSDL file.

Interface of every service must be described in Web Service Definition Language. The
WSDL document can be written manually or generated using appropriate tools. One of such
tools that can be used to generate WSLD file is Java2WSDL tool provided with Axis.

• Design the service interface as java class making public all methods you want to be
available. IMPORTANT: Do not use java interface to model the service. In such case
names of parameters in generated WSDL file will be arg1, arg2 ... argN instead of
real ones.

package acgt.examples.hello;
public class HelloException extends Throwable {
 public int errorCode;
 public String errorMessage;
}
ServiceException.java
package acgt.examples.hello;
public class Hello {
 public String hello() throws HelloException {
 return null;
 }
}

Hello.java

• Compile the class modeling the service interface with option switching on additional
debug information (“-g” option of javac tool). Otherwise the java2WSDL tool will not
be able to obtain real names of parameters.

javac -g *.java

• Use the java2WSDL tool to generate the WSDL file

Usage: java org.apache.axis.wsdl.Java2WSDL [options] class-of-portType

Detailed information about the java2WSDL tool can be found on Axis Reference Guide page.

The most important options are:

-o, --output <argument>

14/01/2008 Page 37 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

 output WSDL filename

-l, --location <argument>

 service location url

-P, --portTypeName <argument>

 portType name (obtained from class-of-portType if not specified)

-b, --bindingName <argument>

 binding name (--servicePortName value + "SOAPBinding" if not specified)

-S, --serviceElementName <argument>

 service element name (defaults to --servicePortName value + "Service")

-s, --servicePortName <argument>

 service port name (obtained from --location if not specified)

-n, --namespace <argument>

 target namespace

-p, --PkgtoNS <argument>=<value>

 package=namespace, name value pairs

-N, --namespaceImpl <argument>

 target namespace for implementation wsdl

-A, --soapAction <argument>

 value of the operations soapAction field. Values are DEFAULT,

 OPERATION or NONE. OPERATION forces soapAction to the name

 of the operation. DEFAULT causes the soapAction to be set

 according to the operations meta data (usually ""). NONE forces

 the soapAction to "". The default is DEFAULT.

-y, --style <argument>

 The style of binding in the WSDL, either DOCUMENT, RPC, or WRAPPED.

-u, --use <argument>

 The use of items in the binding, either LITERAL or ENCODED

Following set of options is recommend:

 --soapAction OPERATION

 --style WRAPPED

 --use LITERAL

The“--location” option is mandatory.

The "Which style of WSDL should I use?" [7] article describes differences between different
styles of WSDL files.

java -cp
.:./jars/axis.jar:./jars/jaxrpc.jar:./jars/log4j-1.2.13.jar:./jars/commons-
logging-1.1.jar:./jars/commons-discovery-0.2.jar:./jars/wsdl4j-1.5.1.jar:./
jars/saaj.jar \

14/01/2008 Page 38 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

 org.apache.axis.wsdl.Java2WSDL \
 --style WRAPPED \
 --use LITERAL \
 --soapAction OPERATION \
 --namespace http://www.eu-acgt.org/ \
 --namespaceImpl http://www.eu-acgt.org/ \
 --location HelloLocation \
 --output hello.wsdl \
 acgt.Hello

All the jars needed for Java2WSDL tool can be taken from GT4.1.2 or downloaded as a
separated tarball.

As a result the Java2WSDL tool should generate the hello.wsdl file.

 <wsdl:types>
 <schema elementFormDefault="qualified" targetNamespace="http://www.eu-
acgt.org/" xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="hello">
 <complexType/>
 </element>
 <element name="helloResponse">
 <complexType>
 <sequence>
 <element name="helloReturn" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <complexType name="HelloException">
 <sequence>
 <element name="errorCode" type="xsd:int"/>
 <element name="errorMessage" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <element name="fault" type="impl:HelloException"/>
 </schema>
 </wsdl:types>

 <wsdl:message name="helloRequest">
 <wsdl:part element="impl:hello" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="HelloException">
 <wsdl:part element="impl:fault" name="fault"/>
 </wsdl:message>
 <wsdl:message name="helloResponse">
 <wsdl:part element="impl:helloResponse" name="parameters"/>
 </wsdl:message>

 <wsdl:portType name="Hello">
 <wsdl:operation name="hello">
 <wsdl:input message="impl:helloRequest" name="helloRequest"/>
 <wsdl:output message="impl:helloResponse" name="helloResponse"/>
 <wsdl:fault message="impl:HelloException" name="HelloException"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="HelloSoapBinding" type="impl:Hello">
 <wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="hello">
 <wsdlsoap:operation soapAction="http://www.eu-acgt.org/hello"/>
 <wsdl:input name="helloRequest">

14/01/2008 Page 39 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="helloResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="HelloException">
 <wsdlsoap:fault name="HelloException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="HelloService">
 <wsdl:port binding="impl:HelloSoapBinding" name="Hello">
 <wsdlsoap:address location="HelloLocation"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Please modify the value of soapAction in binding section to be in url format, otherwise
invoking the client you will get following error:

ERROR handler.AddressingHandler [main,invoke:120] Exception in AddressingHandler

org.apache.axis.types.URI$MalformedURIException: No scheme found in URI.
 at org.apache.axis.types.URI.initialize(URI.java:653)

In the example value of soapAction was changed to:

<wsdlsoap:operation soapAction="http://www.eu-acgt.org/hello"/>

2. Implementing gsi-enabled Web Service

2.2. Generating stub classes

Having the WSDL file describing the service's interface, use the WSDL2java tool to generate
auxiliary axis classes hiding the complexity of SOAP communication.

Usage: java org.apache.axis.wsdl.WSDL2Java [options] WSDL-URI

Detailed information about the WSDL2java tool can be found on Axis Reference Guide page.

The most important options are:

-s, --server-side

 emit server-side bindings for web service

-S, --skeletonDeploy <argument>

 deploy skeleton (true) or implementation (false) in deploy.wsdd.

 Default is false. Assumes --server-side.

-N, --NStoPkg <argument>=<value>

 mapping of namespace to package

-f, --fileNStoPkg <argument>

 file of NStoPkg mappings (default NStoPkg.properties)

-p, --package <argument>

14/01/2008 Page 40 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

 override all namespace to package mappings, use this package name instead

-o, --output <argument>

 output directory for emitted files

-u, --allowInvalidURL

 emit file even if WSDL endpoint URL is not a valid URL

-B, --buildFile

 emit Ant Buildfile for web service

Use the --server-side option if you want the auxiliary code for service side to be created.
Otherwise the tool will generate only client side code. It is also recommended to use the
--skeletonDeploy option set to “true”, what makes thedeploy.wsd file, describing the service
during the deployment simpler.

java -cp .:./jars/axis.jar:./jars/log4j-1.2.13.jar:./jars/commons-logging-1.1.jar:./jars/commons-
discovery-0.2.jar:./jars/jaxrpc.jar:./jars/saaj.jar:./jars/wsdl4j-1.5.1.jar \

 org.apache.axis.wsdl.WSDL2Java \

 --server-side \

 --skeletonDeploy true \

 --package acgt.examples.hello.stub \

 --allowInvalidURL \

 --buildFile \

 --output wsdl2java \

 hello.wsdl

All jars needed for WSDL2Java tool can be taken from GT4.1.2 or downloaded as a
separated tarball.

Following set of files should be generated:

./wsdl2java
|-- acgt
| `-- examples
| `-- hello
| `-- stub
| |-- HelloException.java
| |-- HelloService.java
| |-- HelloServiceLocator.java
| |-- HelloSoapBindingImpl.java
| |-- HelloSoapBindingSkeleton.java
| |-- HelloSoapBindingStub.java
| |-- Hello_PortType.java
| |-- deploy.wsdd
| `-- undeploy.wsdd
`-- build.xml

2.2. Implementing the service functionality

14/01/2008 Page 41 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

Previous step (WSDL2java) should generate set of java classes including the
Hello_PortType class containing definition of service's portType (interface) and the
HelloSoap_BindingImpl class one implementing this portType/interface.

/**
 * Hello_PortType.java
 *
 * This file was auto-generated from WSDL
 * by the Apache Axis 1.4 Mar 01, 2007 (10:42:15 CST) WSDL2Java emitter.
 */
package acgt.examples.hello.stub;
public interface Hello_PortType extends java.rmi.Remote {
 public java.lang.String hello() throws java.rmi.RemoteException,
acgt.examples.hello.stub.HelloException;
}
/**
 * HelloSoapBindingImpl.java
 *
 * This file was auto-generated from WSDL
 * by the Apache Axis 1.4 Mar 01, 2007 (10:42:15 CST) WSDL2Java emitter.
 */
package acgt.examples.hello.stub;

public class HelloSoapBindingImpl implements
acgt.examples.hello.stub.Hello_PortType{
 public java.lang.String hello() throws java.rmi.RemoteException,
acgt.examples.hello.stub.HelloException {
 return null;
 }
}

Please, fill in interface methods in HelloSoapBindingImpl.java file with real service
functionality.

2.2.1. Hello World!: Showing who's calling

The service returns information about indentity (subject of certificate aka. Distinguished
Name) of the user who invoked the hello method.

/**
 * HelloSoapBindingImpl.java
 */

package acgt.example.hello.stub;

import java.security.Principal;
import javax.security.auth.Subject;
import org.apache.axis.MessageContext;
import org.globus.wsrf.impl.security.authentication.Constants;

public class HelloSoapBindingImpl implements
acgt.examples.service.stub.Hello_PortType
{
 public java.lang.String hello() throws java.rmi.RemoteException,
acgt.examples.hello.stub.HelloException
 {
 String userDN = null;

14/01/2008 Page 42 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

 Subject subject =
(Subject)MessageContext.getCurrentContext().getProperty(Constants.PEER_SUBJ
ECT);

 if(subject != null)
 {
 Principal principal = null;
 if(subject.getPrincipals().isEmpty() == false)
 {
 principal =
(Principal)subject.getPrincipals().iterator().next();
 if(principal != null)
 {
 userDN = principal.getName();
 }
 }
 }
 return userDN;
 }
}

Following set of jars is needed to compile the code:

axis.jar

jaxrpc.jar

wsrf_core.jar

All these jars can be taken from Globus Toolkit 4.1.2 or downloaded as a separated tarball.

Compile all classes generated by WSDL2Java tool including the modified
HelloSoapBindingImpl.java one and generate jar archive.

To generate the hello.jar yourself download the tarball (containing ant build file, all needed
jars and code) file and simply invoke ant tool:

ant

The Apache Ant is required!

2.2.2.Hello World!: Showing information about delegated proxy

The service returns full information about proxy certificate that was delagated to the service
(Distinguished Name, proxy type, proxy lifetime, etc.).

/**
 * HelloSoapBindingImpl.java
 */
package acgt.examples.hello.stub;
import java.security.Principal;
import javax.security.auth.Subject;
import javax.security.auth.Subject;
import org.apache.axis.MessageContext;
import org.ietf.jgss.GSSCredential;
import org.globus.wsrf.impl.security.authentication.Constants;
import org.globus.gsi.GlobusCredential;
import org.globus.gsi.gssapi.GlobusGSSCredentialImpl;

public class HelloSoapBindingImpl implements
acgt.examples.hello.stub.Hello_PortType {

14/01/2008 Page 43 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

 public java.lang.String hello() throws java.rmi.RemoteException,
acgt.examples.hello.stub.HelloException {
 GSSCredential credential = null;
 Subject subject =
(Subject)MessageContext.getCurrentContext().getProperty(Constants.PEER_SUBJ
ECT);
 if(subject != null)
 {
 try
 {
 if(subject.getPrivateCredentials().isEmpty() == false)
 {
 credential =
(GSSCredential)subject.getPrivateCredentials().iterator().next();
 if (credential != null && credential instanceof
GlobusGSSCredentialImpl) {
 GlobusCredential globusCred =
((GlobusGSSCredentialImpl)credential).getGlobusCredential();

 return globusCred.toString();
 }
 else
 return "No Globus proxy";
 }
 }
 catch(Exception e){
 return "Failed to get user's credential: " + e;
 }
 }
 return "ERROR";
 }
}

Following set of jars is needed to compile the code:

axis.jar

jaxrpc.jar

wsrf_core.jar

cog-jglobus.jar

All these jars can be taken from Globus Toolkit 4.1.2 or downloaded as a separated tarball.

Compile all classes generated by WSDL2Java tool including the modified
HelloSoapBindingImpl.java one and generate jar archive.

To generate the hello.jar yourself download the tarball (containing ant build file, all needed
jars and code) file and simply invoke ant tool:

ant

The Apache Ant is required!

2.3. Deploying Service

• copy jar with code implementing the service's functionality to the <tomcat>/webapps/
<name>/WEB-INF/lib directory

• create a directory in <tomcat>/webapps/<name>/WEB-INF/etc

14/01/2008 Page 44 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

• copy deploy.wsdd file generated by WSDL2Java tool to the created directory under
the server-config.wsdd name.

After tomcat restart (<tomcat>/bin/shutdown.sh and <tomcat>/bin/startup.sh) the deployed
service should be listed on list of deployed service. Using any Web browser check the list of
services inter the following location http://localhost:8080/<name>/services, where name is
name choosen during the deploying globus to the tomcat. If the name wasn't specified the
default one is "wsrf".

And now... Some Services

 * Hello (wsdl)

 o hello

 * gsi/AuthenticationService (wsdl)

 o requestSecurityTokenResponse

 o requestSecurityToken

3. Implementing gsi-enabled Web Service Client

The aim of this part of guide is to show step by step how to write and configure simple gsi-
enabled command line java client, able to contact service described in previous chapter
without and with delegation of user proxy certificate.

3.1. Generating stub classes

Having the WSDL file describing the service's interface, use the WSDL2java tool to generate
auxiliary axis classes hiding the complexity of SOAP communication.You can skip this point
and use stub classes generated for the service or generate them once again limiting the
process only to classes needed on client side.

Usage: java org.apache.axis.wsdl.WSDL2Java [options] WSDL-URI

Detailed information about the WSDL2java tool can be found on Axis Reference Guide page.

The most important options are:

-N, --NStoPkg <argument>=<value>

 mapping of namespace to package

-f, --fileNStoPkg <argument>

 file of NStoPkg mappings (default NStoPkg.properties)

-p, --package <argument>

 override all namespace to package mappings, use this package name instead

-o, --output <argument>

 output directory for emitted files

-u, --allowInvalidURL

 emit file even if WSDL endpoint URL is not a valid URL

-B, --buildFile

 emit Ant Buildfile for web service

Do not use the --server-side option if you want only the client side code to be generated.

14/01/2008 Page 45 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

java -cp .:./jars/axis.jar:./jars/log4j-1.2.13.jar:./jars/commons-logging-1.1.jar:./jars/commons-
discovery-0.2.jar:./jars/jaxrpc.jar:./jars/saaj.jar:./jars/wsdl4j-1.5.1.jar \

 org.apache.axis.wsdl.WSDL2Java \

 --package acgt.examples.hello.stub \

 --allowInvalidURL \

 --buildFile \

 --output wsdl2java \

 hello.wsdl

All jars needed for WSDL2Java tool can be taken from GT4.1.2 or downloaded as a
separated tarball.

Following set of files should be generated:

./wsdl2java
|-- acgt
| `-- examples
| `-- hello
| `-- stub
| |-- HelloException.java
| |-- HelloService.java
| |-- HelloServiceLocator.java
| |-- HelloSoapBindingStub.java
| `-- Hello_PortType.java
`-- build.xml

3.2. Client code

The client code is relatively simple, but its more important parts were marked by numbers in
comments and explained below.

package acgt.examples.hello;
import java.net.MalformedURLException;
import java.net.URL;
import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;
import acgt.examples.hello.stub.Hello_PortType;
import acgt.examples.hello.stub.HelloServiceLocator;
import acgt.examples.hello.stub.HelloException;
import org.apache.axis.client.Stub;
import org.globus.axis.gsi.GSIConstants;
import org.globus.axis.util.Util;
import org.globus.wsrf.impl.security.authentication.Constants;
import org.globus.wsrf.impl.security.authorization.IdentityAuthorization;
import org.gridforum.jgss.ExtendedGSSManager;
import org.ietf.jgss.GSSCredential;
import org.ietf.jgss.GSSException;

public class HelloClient
{
 public static void main(String[] args)
 {
 String url = args[0];
 URL hello_url = null;
 try
 {

14/01/2008 Page 46 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

 hello_url = new URL(url);
 }
 catch(MalformedURLException e1)
 {
 System.err.println("Malformed url: " + url);
 System.exit(1);
 }
 String hello_dn = args[1];
 ExtendedGSSManager manager =
(ExtendedGSSManager)ExtendedGSSManager.getInstance();
 GSSCredential credential = null;
 try
 {
/* 1 */ credential =
manager.createCredential(GSSCredential.INITIATE_AND_ACCEPT);
 }
 catch(GSSException e)
 {
 System.err.println("Failed to load user's proxy");
 System.exit(1);
 }
 HelloServiceLocator locator = new HelloServiceLocator();
 Hello_PortType hello = null;
 try
 {
/* 2 */ hello = locator.getHello(hello_url);
 }
 catch(ServiceException e)
 {
 System.err.println("Failed to get port type");
 System.exit(1);
 }
/* 3 */ ((Stub)hello)._setProperty(GSIConstants.GSI_CREDENTIALS,
credential);
/* 4 */ ((Stub)hello)._setProperty(GSIConstants.GSI_MODE,
GSIConstants.GSI_MODE_FULL_DELEG);
/* 5 */ ((Stub)hello)._setProperty(Constants.GSI_TRANSPORT,
Constants.ENCRYPTION);
/* 6 */ ((Stub)hello)._setProperty(Constants.GSI_SEC_CONV,
Constants.SIGNATURE);
/* 7 */ ((Stub)hello)._setProperty(Constants.AUTHORIZATION, new
IdentityAuthorization(hello_dn));
/* 8 */ Util.registerTransport();
 try
 {
/* 9 */ String user = hello.hello();
 System.out.println(user);
 }
 catch(HelloException e)
 {
 System.err.println("Operation failed:");
 System.err.println("errorCode: " + e.getErrorCode());
 System.err.println("errorMessage: " + e.getErrorMessage());
 }
 catch(RemoteException e)
 {
 System.err.println(e);
 }
 }
}

Marked parts have following meanings:

14/01/2008 Page 47 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

(1) Loads user credential from default location. Please see "Client configuration" section
for details,

(2) Creates and returns object representing Hello interface,

(3) Sets user certificate to be used to authenticate the user,

(4) Sets delegation mode to "full". If you do not want to delegate the proxy replace
GSIConstants.GSI_MODE_FULL_DELEG constatnt with
GSIConstants.GSI_MODE_NO_DELEG one

(5) Forces client to encrypt communication, that guaranties as well privacy as integrity,

(6) Tells the client to use only digital signatures to protect messages integrity for "Secure
Conversation", encryption is not needed on this level because the whole "channel" is
encrypted,

(7) Sets service Distinguished Name that will be used during the mutual authentication,
must be used if delegation of certificate was chosen.Delegation of proxy certificate to
unknown service is not allowed,

(8) Registers axis transports for https and httpg protocols,

(9) Invokes remote method.

3.3. Client configuration

To work properly, client has to be able to load user's proxy certificate and validate service
credential during the handshake procedure. To do this it needs to know location of the file
containing proxy certificate and directory containing public keys of Certificate Authorities it
should trust.

• Client looks for proxy according to following ruls:

 It first checks the X509_USER_PROXY system property. If the property

 is not set, it checks next the 'proxy' property in the current

 configuration. If that property is not set, then it defaults to a

 value based on the following rules:

 If a UID system property is set, and running on a Unix machine it

 returns /tmp/x509up_u${UID}. If any other machine then Unix, it returns

 ${tempdir}/x509up_u${UID}, where tempdir is a platform-specific

 temporary directory as indicated by the java.io.tmpdir system property.

 If a UID system property is not set, the username will be used instead

 of the UID. That is, it returns ${tempdir}/x509up_u_${username}

• Client looks for the CA directory according to following rules:

 It first checks the X509_CERT_DIR system property. If the property

 is not set, it checks next the 'cacert' property in the current

 configuration. If that property is not set, it tries to find

 the certificates using the following rules:

 First the ${user.home}/.globus/certificates directory is checked.

 If the directory does not exist, and on a Unix machine, the

14/01/2008 Page 48 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

 /etc/grid-security/certificates directory is checked next.

 If that directory does not exist and GLOBUS_LOCATION

 system property is set then the ${GLOBUS_LOCATION}/share/certificates

 directory is checked.

CoG library configuration can be modified using the COG properties file
~/.globus/cog.properties

#Java CoG Kit Configuration File

proxy=/tmp/x509up_u501

cacert=/etc/grid-security/certificates/

3.4. Running the client

Following set of jars is needed to run the client:

 Globus jars (download tarball):

 addressing-1.0.jar

 axis.jar

 cog-axis.jar

 cog-jglobus.jar

 commons-codec-1.3.jar

 commons-discovery-0.2.jar

 commons-httpclient-3.0.jar

 commons-logging-1.1.jar

 cryptix-asn1.jar

 cryptix.jar

 cryptix32.jar

 globus_java_authz_framework.jar

 jaxrpc.jar

 jce-jdk13-131.jar

 log4j-1.2.13.jar

 opensaml-1.1.jar

 puretls.jar

 saaj.jar

 wsdl4j-1.5.1.jar

 wsrf_core.jar

 wsrf_core_stubs.jar

 wsrf_provider_jce.jar

 wss4j.jar

 xalan-2.6.jar

14/01/2008 Page 49 of 50

ACGT FP6-026996 D4.1 – Prototype and report of the ACGT GRID layer

 xmlsec-1.2.1.jar

Additionally the client-config.wsdd file from Globus 4.1.2 is has to be placed in directory listed
on CLASSPATH.

IMPORTANT: By default Sun 1.4.x+ JVMs are configured to use /dev/random device as an
entropy source. Sometimes the machine can run out of entropy and applications and using
the /dev/random device will block until more entropy is available. One workaround for this
issue is to configure the JVM to use /dev/urandom (non-blocking) device instead. For Sun
JVMs a java.security.egd system property can be set to configure a different entropy source.

-Djava.security.egd=file:/dev/urandom

Client usage:

java -Djava.security.egd=file:///dev/urandom
acgt.examples.hello.HelloClient <SERVICE_URL> <SERVICE_DN>

for example:

#!/bin/bash
CLASSPATH=.
for i in ./jars/*.jar; do CLASSPATH=$CLASSPATH:$i; done
java -cp $CLASSPATH -Djava.security.egd=file:///dev/urandom \
 acgt.examples.hello.HelloClient \
 https://localhost:8443/HELLO/services/Hello \
 "/C=PL/O=GRID/O=PSNC/CN=Hello/druid-bis.man.poznan.pl"

Following results should be diplayed:

• for Hello World!: Showing who's calling

/C=PL/O=GRID/O=PSNC/CN=Tomasz Piontek

• for Hello World!: Showing information about delegated proxy

subject : C=PL,O=GRID,O=PSNC,CN=Tomasz
Piontek,CN=1168110104,CN=2070173049
issuer : C=PL,O=GRID,O=PSNC,CN=Tomasz Piontek,CN=1168110104
strength : 512 bits
timeleft : 31931 sec
proxy type : Proxy draft compliant impersonation proxy

14/01/2008 Page 50 of 50

