
ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

The ACGT technical architecture: Final 
Specification

Project Number: FP6-2005-IST-026996

Deliverable id: D 3.4

Deliverable name: The ACGT technical architecture: Final Specification

Submission Date: 02/04/2009

11/06/10 Page 1 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: ACGT

Project Full Name: Advancing Clinico-Genomic Clinical Trials on Cancer: 
Open Grid Services for improving Medical Knowledge 
Discovery

Document id:

Document name: The ACGT technical architecture: Final Specification

Document type (PU, INT, 
RE)

INT

Version: 0.5

Submission date:

Editor:
Organisation:
Email:

Juliusz Pukacki
PSNC
pukacki@man.poznan.pl

Document type PU = public, INT = internal, RE = restricted

ABSTRACT

This deliverable presents final vision of ACGT infrastructure architecture. At first 
key design concept are described, and the global view of the architecture picture.

Then the detailed view is presented, with description of the most of the components 
developed within ACGT and the interactions between them. There is also a chapter 
concerning physical deployment of the component in the ACGT testbed.

KEYWORD  LIST:  System  Architecture,  Service  Oriented  Architectures, 
Architecture Design Patterns, Grid, Distributed Computer Systems, Globus, Gridge 
Toolkit

11/06/10 Page 2 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

MODIFICATION CONTROL

Version Date Status Author

0,1 27.02.2009 Draft J. Pukacki

0,2 4.02.09 Draft J. Pukacki

0,3 4.07.09 Draft J.Pukacki

List of Contributors

− Alberto Anguita, UPM

− Erwin Bonsma, Philips

− Stefan Castille, Custodix

− Johan Karlsson, UMA

− Luis Martin, UPM

− Thierry Sengstag, SIB

− Stelios Sfakianakis, FORTH

− Dennis Wegener, FhG

11/06/10 Page 3 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

Contents

  EXECUTIVE SUMMARY.....................................................................................................................................5

  1. OVERVIEW........................................................................................................................................................6

  2 KEY CONCEPTS................................................................................................................................................7

  3 ACGT FINAL ARCHITECTURE.......................................................................................................................9

 3.1 DESIGN VIEW.....................................................................................................................................................9
 3.2 LAYERS DESCRIPTION..........................................................................................................................................9
 3.4 SERVICES ROLES...............................................................................................................................................11
 3.5 IMPLEMENTATION VIEW......................................................................................................................................12

 3.5.1 Components of User Access layer........................................................................................................14
 3.5.2 ACGT specific services........................................................................................................................17
 3.5.3 Advanced Grid Services.......................................................................................................................20
 3.5.4 Common Grid Services........................................................................................................................23

 3.6 DEPLOYMENT VIEW...........................................................................................................................................26

  REFERENCES......................................................................................................................................................29

  APPENDIX A - ABBREVIATIONS AND ACRONYMS..................................................................................30

11/06/10 Page 4 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

Executive Summary

ACGT is an Integrated Project (IP) funded in the 6th Framework Program of the European 
Commission under the Action Line “Integrated biomedical information for better health”. The 
high  level  objective  of  the  Action  Line  is  the  development  of  methods  and  systems for 
improved medical knowledge discovery and understanding through integration of biomedical 
information  (e.g.  using  modelling,  visualization,  data  mining  and  grid  technologies). 
Biomedical  data  and  information  to  be  considered  include  not  only  clinical  information 
relating to tissues, organs or personal health-related information but also information at the 
level of molecules and cells, such as that acquired from genomics and proteomics research.

ACGT focuses on the domain of Cancer research, and its ultimate objective is the design, 
development and validation of an integrated Grid enabled technological platform in support of 
post-genomic,  multi-centric  Clinical  Trials  on  Cancer.  The  driving  motivation  behind  the 
project is our committed belief that the breadth and depth of information already available in 
the research community at large, present an enormous opportunity for improving our ability 
to reduce mortality from cancer, improve therapies and meet the demanding individualization 
of care needs.

11/06/10 Page 5 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

1. Overview

This deliverable presents the final specification of the ACGT environment. The process of 
designing the architecture was based on evolution of the idea. At first the general rules were 
introduced - an overview of the system and the general functionality it should provide for the 
end users.  

As a main design pattern the layered concept was chosen ,the next step was to define layers 
of the architecture and decompose required functionality into that layers.

The layers themselves were also described in a context  of  the general  functionality they 
should  provide.  They  also  determined  the  communication  rules  between  different 
components.   Owing  to  this,  it  was  possible  to  assign  the  work  of  each  technical 
workpackage to the appropriate design scheme. The WP4 workpackage was responsible to 
provide the grid infrastructure that consists of the two layers: Common Grid Infrastructure 
and Advanced Grid Services.

The rest of the workpackages were building their software based on the provided interfaces 
to grid environment.

In  the  initial  phase  also  the  common  security  rules  were  design  and  developed,  so  all 
implemented services in the next phases could take into account security policy of ACGT.

The next  important  step in  the architecture design was to define the actual  components 
(services) and put them on the architecture picture with all dependencies among them.

There were no rigid rules for component and their role in the ACGT environment proposed. 
The ACGT environment was meant to design as a set of loosely coupled services offering 
their interfaces to others. Each component can be used as separate entity, but binding them 
together based on some scenario provides more advanced functionality.

It reveals the importance of the leading scenarios for the architecture design process. After 
the scenarios was define it was possible to detect required components and dependencies 
between them.

11/06/10 Page 6 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

2 Key concepts

There are two the most important concepts behind ACGT architecture design. The first one is 
layering and the second one is Service Oriented Architecture (SOA) concept.

They were used together in a process of design and development of the ACGT infrastructure 
components. So in some cases final architecture is a kind of compromise between those two 
ideas.

Layering is one of the most popular architectural design pattern. It structures software, so it 
can be decomposed into groups of components such that each group of components is at a 
particular level of abstraction. It also helps to split responsibilities of the different groups of 
components in the system.

At  first  layered  architecture  were  used  to  divide  application  presentation  features  from 
application  logic  and database  access  (three-tier  model).  The  highest  level  layer  in  that 
model is used as an interface for the end user that translates tasks and results to something 
the user can understand.

Logic layer coordinates the application, process commands, makes logical decisions. It also 
moves  and  processes  data  between  two  surrounding  layers.  Within  Data  Layer  all  the 
information required by the application is stored and retrieved from storage databases or 
filesystem. 

Such a classical approach as described above can be used as a reference point for more 
complex applications and systems. It is possible to extend basic model by spiting particular 
layers to additional  ones depending on the characteristics  of  the concrete problem.  The 
actual meaning of the layers also can be result of modelled environment.

For  the  ACGT infrastructure  the  layers  denotes  group  of  components  performing  some 
operations more ore less specific to the bio-medical background of the project. The upper 
layers (closer to the end user) are strongly connected to the terms and ideas from the biology 
and medicine areas. They are using specific language, try to benefit from ontology developed 
within the project, and staying distant from the technical infrastructure behind - computers, 
networks, storages, etc.

The lower layers were design to be universal in the context of operations performed. Their 
main  role  is  to  provide  an  access  to  physical  resources  in  the  most  convenient  way. 
Components of that layers are not aware of problem specific vocabulary, they are not using 
ontology  descriptions,  and  can  be  easily  replaced  with  the  different  ones  with  similar 
functionality if necessary.

There are some principles behind the layers design. The important one is to implement the 
services in  the same layer  using the same or  similar  technology.  So the communication 
between  components  within  the  layer  is  based  on  the  same  mechanisms.  It  makes 
development  process much easier  and makes possible  to introduce some guidelines  for 
software developers. This rule is especially important for the layers that have a lot newly 
developed components. I the case of reusing the existing infrastructure it  is not as much 
significant.

The  other  rule  connected  with  layering  is  clear  layer  separation  in  the  terms  of 
communication between layers. It means that component of one layer can only communicate 
to the components of the layer directly below. It makes architecture much more clear and 
better structured. Of course some exception from this rule are accepted. For instance some 
logical  functionality  can be  used  by  the  components  of  all  layers,  and  it  is  pointless  to 
replicate the same element throughout all layers.

11/06/10 Page 7 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

Nowadays, one of the most important trend in system design is Service Oriented Architecture 
(SOA). It defines software infrastructure as a loosely coupled software services to support 
the requirements of the business processes and software users. In an SOA environment, 
resources on a network are made available as independent services that can be accessed 
without  knowledge  of  their  underlying  platform  implementation.  A  service-oriented 
architecture is not tied to a specific technology. It may be implemented using a wide range of 
interoperability  standards but  the most  important  standard in  the context  of  SOA is  Web 
Services. The key issue is that all services that building some environment are independent 
from each other, they just publish their interfaces and that is enough for any other entity in 
the system to invoke methods means 'use' the service.

At first sight it is maybe difficult to imagine the how the SOA concept coexists with layering 
paradigm. The explanation is that they operates on different levels of abstraction. Layering 
concerns functionality of services and the distance from the end user and physical resources, 
on the other hand SOA describes the communication pattern.

The two concepts together constitutes the logical framework and provides clear guidelines 
for service developers. So for the newly developed service at first it the location within the 
layers must be defined. The decision about it is based on the role of the service, if it will be 
used directly  by the end user,  or  if  it  provides access to physical  resources.  When it  is 
decided development of the service should follow SOA rules: it should be independent entity 
accessed via network through the well  defined interface.  It  should work as a standalone 
component or provide functionality cooperating with the other services. 

11/06/10 Page 8 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

3 ACGT final architecture

3.1 Design view
The  role  of  the  initial  architecture  was  to  deliver  basic  framework  for  infrastructure 
developers.  It  was  supposed  to  help  all  technical  partners  in  ACGT  consortium  in 
development of  their  software components.  At  the beginning of  the project  there was no 
detailed specification of the required services to be created, so the initial architecture was 
intended to be a framework - a design view of the future architecture.

The picture below presents that general design view as a starting point for development of 
ACGT infrastructure.

Fig.1. ACGT layered architecture.

There are five horizontal layers presented on the picture. The lower ones are located closer 
to  physical  resources.  The mechanisms used for  distributed access to  resources is  grid 
technology. The layers at the top are responsible for providing ACGT specific solutions for 
bioinformaticians and clinicians.

There are also two vertical layers. The first one is logging infrastructure and is used by the 
services regardless the location within architecture. It s very important to have ability to track 
one  the activity that in many cases involves different services from different layers. 

The other vertical layer is security that constitutes common infrastructure for all components 
in the infrastructure. It is very important to keep consistent security policies throughout the 
infrastructure. And also to be able to dynamically manipulate the policies in the context of 
virtual organisation management.

3.2 Layers description
As it is marked on the picture with green colour the grid technologies are present on the 
three lower layers. The lowest one are the hardware resources where the computation is 
done and where physical  data is  stored.  The role of  the next  layer  above the hardware 

11/06/10 Page 9 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

resources  is  to  provide  unified,  remote  access  to  physical  resources.  It  provides  basic 
functionality required for remote computing and data access:

• job execution and control

• basic authentication and authorization

• file transfer

• databases access

• hardware monitoring

• information about state of resources (static and dynamic metrics)

The  last  Grid  layer  is  Advanced  Middleware  Layer.  It  is  responsible  for  providing  more 
advanced mechanisms in the Grid environment. Services from this layer can be described as 
"collective" because they operate on set of lower level services, to realize more advanced 
actions - e.g. metascheduling service that submits jobs to different local queuing systems 
using Common Grid Infrastructure remote interfaces.

Functionality provided by this layer can be gathered in a following main points:

• resource management - metascheduling

• data management (database access and file storing and transferring)

• services authorization

• grid monitoring

As it can be seen on architecture picture the Grid layers are separated from the rest of the 
system that is build with services that provides specific ACGT content.

The advantage of it is clearly visible: based on that Grid platform it is possible to build many 
different environments for different fields, not only biomedicine.

Grid  layers  are  supposed  to  provide  standard  and  secure  way  for  accessing  hardware 
resources of the Grid environment.

ACGT business  process  layer  consists  of  components  which  are  not  aware  of  physical 
resources and Grid environment. Grid is used as a whole, to perform more abstract actions, 
and  to  get  information  required  by  end  user.  Services  of  this  layer  are  using  abstract 
description of the world defined as some ontology.

There  are  also  services  that  are  able  to  translate  high  level  description  to  language 
understandable  by  lower  layer  (grid)  .  It  provides  higher  level  integration  of  different 
resources and data and makes them more similar to real word objects.

It is possible do define following functionality for Business Processes Services:

• ontology description provisioning

• execution and control of workflows

• translation of abstract object to resources names

• translation of abstract actions to grid calls

• virtual organization management

• knowledge discovery

• biomedical algorithms

Services of this layer are specific for ACGT environment, but in some cases it is possible to 
reuse existing ones. For instance it is very important to include analytical services that are 

11/06/10 Page 10 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

already  there,  into  ACGT  infrastructure.  The  level  of  integration  depends  on  security 
requirements.  If  there  are  no  restrictions  in  using  the  service  it  is  possible  to  skip  the 
integration on the level of authentication and authorization. But there are more problems with 
introducing security policies for the third party components. They require ACGT compliant 
wrappers responsible for taking care of access rights management that is consistent with the 
whole security policy of ACGT. More detailed description of the security policies of ACGT 
can be fount in chapter 5. 

The User Access Layer contains all application and tools that provide access to the ACGT 
Environment for end user. There can be a wide variety of software, developed using different 
technology:

• portals

• standalone applications

• clients dedicated to specific operation

• workflows editors

• visualization tools

Client  applications  are  in  the  most  cases  tightly  connected  to  functionality  provided  by 
underlying layer. They are also going to be used by different but specific groups of users. 
Thus it  would  be difficult  to  use general  tool  but  there will  be need to create dedicated 
application.  These  two  arguments  are  showing  that  User  Access  Layer  will  be  mostly 
developed by ACGT. 

3.4 Services roles
In the ACGT environment there can be a lot of different services. The SOA paradigm defines 
architecture as a  loosely coupled software services to support the requirements of business 
processes and software users. That is very general definition. We would like to build ACGT 
environment in a SOA manner but  it  is  required to add some semantic,  some additional 
constraints and rules for building the ACGT services. 

The services in ACGT environment can be categorized based on different criteria: 

• Position in ACGT architecture

 
The  goal  of  layered  architecture  is  to  introduce  different  abstractions  levels  for 
services. Services from different layers operates on different terminology. Some of 
them are located near the physical resources using hardware terms, the others ale 
located near end user and should be contacted using language of meta descriptions. 
The other important fact is that upper layer services are specific to some scientific 
area and lower level ones are more general and could be used in a generic way by 
different clients: 

• Service of Common Grid Layer 
The Services from that layer are used for accessing hardware resources. 

• Service of Advanced Grid Layer
Provides more advanced, collective functionality, using lower level services to 
realize clients requests. 

• Service of Business Model Layer
These are specific services for ACGT environment. They are closer to the end 
user, can operate on terms from bio and cancer research world (meta 
descriptions, ontology) 

11/06/10 Page 11 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

• Role in ACGT environment
It is obvious that services can play different roles in distributed environment. For 
ACGT we can define two main groups: 

• Infrastructure Service 

The  services  used  for  building  ACGT environment  (middleware),  they  are 
performing  some  more  general  actions  -  management  issues.  All  of  the 
services  from Grid  layers  belongs  to  this  group.  They  are  responsible  for 
performing general actions like computational jobs scheduling and monitoring, 
file  access  and  transfer,  database  access,  authorization  decisions.  The 
examples of infrastructure services  are: Grid Resource Management System, 
Data  Management  System,  Grid  Authorization  Service,  etc.
There  are  some  more  application  specific  services  that  belongs  to 
infrastructure.  Very  good  example  of  it  is  GridR  Service,  responsible  for 
spawning R scripts in the grid environment.

• Analytical Tool Service 

These are the application oriented services dedicated for one kind of activity. 
They are not performing any general tasks, but are focused on concrete goal. 
They are mostly located in ACGT Business Model Layer 

• Owner/maintainer of the service 

• ACGT Service 

Service developed or adopted by ACGT consortium that has full control over 
it. The control means possibility to introduce common policies for building such 
a  service,  for  instance  applying  the  same security  mechanisms,  the  same 
technology  for  accessing  the  service,  etc.  This  services  should  also  be 
trustworthy - we need to be sure that what the service is supposed to do is in 
fact doing. Remark: all Infrastructure Services should be ACGT Services. 

• Third Party Service 

It is not possible to build everything from scratch. There is a lot of existing 
tools available freely that can be used without any limitations. We should to 
define  the policy  (evaluation  procedures)  of  incorporating  such  services  to 
ACGT  infrastructure.  In  some  cases  it  means  developing  additional 
components - wrappers etc.

3.5 Implementation view
The next  step in  architecture design is  to put  real  components on the design view,  and 
describe the interactions between components.

11/06/10 Page 12 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

Fig. 2. Implementation view of the architecture.

The picture above presents most of the components building ACGT environment. From the 
left there are end user tools for accessing the infrastructure. The most important one is the 
ACGT Portal that consists of several portlets (applications embedded into portal) used for 
accessing different services from the layer below. Then there are ACGT specific services 
responsible for performing advanced scenarios and using grid infrastructure (last two rows) 
for accessing resources.

Because of SOA idea introduced in ACGT architecture it is difficult to present in clear way 
the  interactions  between  components.  On  the  picture  below  the  lines  present  the 
communication among services:

Fig.3. Communication dependencies between component of ACGT infrastructure.

11/06/10 Page 13 of 31

OBTIMA
Workflow

Editor

DMS
Portlet

Workflow
Editor

Metadata
Registration

VO
Management

GRMS

DMS

GAS

Globus
GRAM

GridR
Service

Workflow
Enactor

Mediator
Service

GridR
Session

Metadata
Repository

Ontology
Service

Wrapper
Service

MDS

GridFTP

Logging
Service

Databases
(DICOM,BASE

CTMS)

Authorization
Plugins

Portal

Oncosimulator
Service

VO
Management

Service

Analytical
Services

Visualization
Application

OBTIMA
Workflow

Editor

DMS
Portlet

Workflow
Editor

Metadata
Registration

VO
Management

GRMS

DMS

GAS

Globus
GRAM

GridR
Service

Workflow
Enactor

Mediator
Service

GridR
Session

Metadata
Repository

Ontology
Service

Wrapper
Service

MDS

GridFTP

Logging
Service

Databases
(DICOM,BASE

CTMS)

Authorization
Plugins

Portal

Oncosimulator
Service

VO
Management

Service

Analytical
Services

Visualization
Application



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

As you can see the it does not look clear enough - there is no point to present the interaction 
in a such way. Thus it  is much better to stick to layered composition of elements on the 
overall  architecture picture,  and try to present  different  aspects of  ACGT architecture on 
separate pictures. 

Fig.4. Communication dependencies between layers.

3.5.1 Components of User Access layer
There are two types of application developed for the end user to access ACGT infrastructure. 
The most important one is ACGT Portal consists of collection of applications called portlets.

The ACGT Portal is built on the Gridsphere portal framework. GridSphere is an open-source 
JSR-168 compliant portal framework that is ready to run with a suite of tutorial and example 
modular web components,  called portlets.  A portlet  is a module of  a dynamic web page 
created  using  Java.  For  creating  dynamic  web  pages,  JSP  (Java  Servlet  Pages)  was 
developed, which combines html with java - a JSP web server to run such applications is 
needed. As only some parts of the dynamic page actually needs to be modified while doing a 
set  of  actions,  web  page  content  was  redesigned  as  a  set  of  integrated  dynamic  JSP 
modules and a static html content.

JSR (Java Portlet Specification) 168 is one of the main standards in portal development. JSR 
168 is a standard API for integrating portlets in portlet containers. JSR-168 defines a contract 
between the portlet container and portlets and provides a convenient programming model for 
portlet  developers.  The  Java  Portlet  Specification  V1.0  was  developed  under  the  Java 
Community Process (having as members experts from leading industry companies) as JSR 
168,  and  released  in  October  2003.  The  second  version  of  the  standard,  Java  Portlet 
Specification V2.0 or JSR286 was released in July 2008 and is in the process of adoption.

The  Gridsphere  portal  framework  provides  a  standard  based  platform  for  the  easy 
development of portlets.  Portlets are defined by a standard API and provide a model for 
developing new portal  components that can be shared and exchanged by various portlet 
containers.  Gridsphere  provides  a  portlet  container,  a  collection  of  core  portlets  and  an 
advanced user interface library that  makes developing new portlets easier  for  application 
developers.

The most important portlets are:

• Workflow editor

11/06/10 Page 14 of 31

OBTIMA
Workflow

Editor

DMS
Portlet

Workflow
Editor

Metadata
Registration

VO
Management

GRMS

DMS

GAS

Globus
GRAM

GridR
Service

Workflow
Enactor

Mediator
Service

GridR
Session

Metadata
Repository

Ontology
Service Wrapper

Service

MDS

GridFTP

Logging
Service

Databases
(DICOM,BASE

CTMS)

Authorization
Plugins

Portal

Oncosimulator
Service

VO
Management

Service

Analytical
Services



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

The ACGT Workflow Editor is a graphical tool that allows a user to combine different 
ACGT services into complex workflows.  This tool is accessible through the ACGT 
Portal  and  therefore  has  a  web  based  graphical  user  interface.  It  supports  the 
searching and the browsing of  the available  services  and data sources and their 
composition through some intuitive and user friendly interface. The workflows created 
can be stored in a user’s specific area and later retrieved and edited so new versions 
of  them can be produced.  The publication  and sharing of  the workflows are also 
supported so that the user community can exchange information and users benefit 
from each other’s research. Finally the workflow editor supports the execution of the 
workflows  and  the  monitoring  of  their  enactment  status
Mode detailed information can be found at: "D9.3 – Data and Metadata Management"

• GridR Session

In ACGT the R environment, namely GridR, is used as a tool for the remote execution 
of R code in the grid. More specifically, the task of the execution of the R code is 
submitted as a grid job to a remote grid machine. The current implementation of the 
server side GridR components that are related to the grid environment is based on 
several  external  software  components,  namely  the  GT4  grid  middleware,  an 
installation  of  the  R  environment  on  the  grid  machines  which  will  execute  the 
functions  remotely  and  a  GRMS-Server  installation  from  the  Gridge  toolkit  on  a 
central machine in the grid environment that is responsible, for instance, for resource 
management.
On the client side, GridR consists of a set of R functions and involves the Cogkit, 
which is responsible for proxy generation and data transfer, and a GRMS-Client. The 
client  side  part  is  structured  around  the  components  “RemoteExecution” 
(JobSubmission and JobDescription Generator) and “Locking”. The RemoteExecution 
component is responsible for the execution of R code as a job in the grid environment 
by transforming the R code to execute into a set of files, creating a job description file 
in the respective job description language,  and submitting the job to the resource 
management system by the GRMS-client. During this process, the locking component 
takes  care  of  the  consistency  of  files/variables.
An R programming language interface that supports the access to the ACGT services 
is provided in the ACGT environment. This means that R users and developers will 
have access to distributed resources in a transparent fashion, as if those resources 
were  local.  The  complexity  of  the  grid  is  thus  hidden  from  the  user.
Again,  accessing the ACGT grid  environment  requires  no changes in  the core R 
implementation. In practice grid access is performed through the call of predefined R 
functions loaded from a package. R users can make use of the grid technology in a 
transparent way by passing the functions to be executed in the grid as input to one of 
those  predefined  functions  (grid.apply)  in  their  local  code.
TheGridR Session is an applet developed by FhG as a GridR web-based client. The 
applet was wrapped inside a portlet and made available in the private area of the 
portal.

• Metadata Registration

The  user  interface  to  the  Metadata  Repository  are  a  JSR  168  compliant  portlet 
application that allows a user to browse and edit the Services and Data types stored 
into  the  Metadata  Repository.  It  also  allows  the  user  to  start  (enact)  a  service.
The  Metadata  Registration  Portlets  v2.0  were  developed  using  the  available 
Gridsphere tools and relay on plain JSP and minimal JavaScript for rendering. These 
portlets replace the Metadata Registration Portlets designed for the first prototype of 
the ACGT Portal and presented in D14.2.

• DMS portlet

11/06/10 Page 15 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

Gridge Data Management System is one of the main components of Gridge Data 
Management Suite (GDMSuite) - a middleware platform providing a uniform interface 
for connecting heterogeneous data sources over a network. GDMSuite stands for the 
backbone of the Gridge environment, on which computational services would perform 
its  operations.  Gridge Data  Management  Suite  constitutes  a  bundle  of  packages, 
designed for the creation of a complete and robust data management environment. It 
is intended to fulfill even the enterprise requirements of grid environments in terms of 
reliability, security and performance.

Data Management System (DMS) is a middleware application, based on SOA model 
that determines a loose coupling between reusable components, which are platform-, 
language-,  and  operating  system-independent.  Similar  to  computing  and  network 
resources,  DMS provides  services  to  manage  and  retrieve  data  files  in  order  to 
support grid jobs. The computational resources managed by DMS can be described 
by metadata scheme, which allows create an abstract, semantic and explorable layer 
of resources.

Originally, DMS was provided with a stand-alone Web interface called DMS Portal.
The DMS Portlet was developed by SIVECO by emulating all the features available in 
the DMS Portal. Also the web service layer used by the DMS Portal to access the 
backend applications was ported into the DMS Portlet.

• GRMS portlet

The  Gridge  Resource  Management  System  (GRMS)  is  an  open  source  meta-
scheduling  system,  which  allows  developers  to  build  and  deploy  resource 
management  systems  for  large  scale  distributed  computing  infrastructures.  The 
GRMS, based on dynamic resource selection,  mapping and advanced scheduling 
methodology, combined with feedback control architecture, deals with dynamic Grid 
environment  and  resource  management  challenges,  e.g.  load-balancing  among 
clusters, remote job control or file staging support. Therefore, the main goal of the 
GRMS is to manage the whole process of remote job submission to various batch 
queuing systems, clusters or resources. It has been designed as an independent core 
component  for  resource  management  processes,  which  can  take  advantage  of 
various low-level Core Services and existing technologies. Finally, the GRMS can be 
considered  as  a  robust  system,  which  provides  abstraction  of  the  complex  grid 
infrastructure as well  as a toolbox,  which helps to form and adapts to distributing 
computing environments.

• VO Management portlet

This portlet can be used for defining security policies for resources inside created 
VOs. It is a frontend to the authorization  service of ACGT (GAS) which is the central 
point  for  storing  security  policy  and  VO  definition  for  the  whole  environment.
The VO Management Portlet provides a better approach to a VO approach to roles 
and rights, while keeping a good control of the resource access.

The  other  applications  dedicated  for  end  user  are  OBTIMA:  complex  clinical  trial 
management tool, Workflow Editor - the same application that is used in portal (can be also 
executed as a standalone tool), Visualization Applications - miscellaneous applications used 
for visualization of data generated by other applications.

ObTiMA (Ontology based Trial Management for ACGT) is a  tool which is currently under 
development enables the chairman of a clinical trial to set up and manage multi-centric trials 
from a single interface. This is not a trivial task at all and has eluded many efforts to date, 

11/06/10 Page 16 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

primarily because of the complexity of the task but also because of the incompatible data 
formats and semantics of systems currently in use at hospitals.

One of the main components of ObTiMA is the CRF Creator, which allows a chairman to 
capture  data  definitions  for  a  clinical  trial  in  a  standardized  way.  Another  component  of 
ObTiMA is the Trial Outline Builder used for writing the Trial Protocol (essentially the plan of 
the Trial). With the help of templates given by an integrated Master Protocol the chairman of 
a trial will be guided through all steps of the development of a new trial which will be more 
streamlined and allow data from different trial  sites and IT systems to be integrated in a 
seamless and easy to analyze manner. 

From a clinical  point of view ObTiMA will  help to increase the number of clinico-genomic 
trials by facilitating the workload involved in creating a new trial. More importantly, patients 
participating  in  such  trials  are  expected  to  benefit  from  new  treatment  options  that  will 
become available.

3.5.2 ACGT specific services
3.5.2.1 Workflow enactor

The  Workflow  Engine  or  Enactor  is  the  software  component  that  is  responsible  for  the 
execution of the workflows. In the ACGT platform the workflow enactor is a third party WS-
BPEL compliant engine (Apache ODE, http://ode.apache.org/). 

The workflow enactor is a central component of the architecture in the sense that it needs to 
interoperate  with  all  the  other  analytical  and  bioinformatics  services.  This  is  because  a 
"workflow" is a high level program constructed by the users that it consists of all the steps 
that should be executed in order to deliver an output or achieve a larger and sophisticated 
goal by the composition and orchestration of the existing ACGT services and tools. Therefore 
communication with the other services through the enactor also validates the interoperability 
of these services. 

The choice of BPEL as the workflow technology although it offers advantages, such as the 
standards  compliance,  maturity,  robustness,  etc.,  presented  new  challenges  when 
incorporated in the Grid-based ACGT architecture. In particular Grid specific technologies 
such as WSRF and Grid Security (GSI)  are not  immediately  interoperable with the WS-I 
(http://www.ws-i.org/) based BPEL standard. Especially the delegation of credentials that is 
supported  by  GSI  is  of  so  much  importance  in  the  ACGT use  cases  that  required  the 
introduction  of  additional  machinery:  the  so  called  "Proxy  services".

11/06/10 Page 17 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

Fig.5.  Workflow system architecture

As seen in the image above the enactor does not contact directly the GSI-enabled ACGT 
services. Instead each "real" ACGT service is mirrored ("proxied") by a corresponding "proxy 
service" that is confined in a secure workflow environment. The proxy service has the same 
programmatic  interface with  the original  service  and in  its  implementation  it  forwards  all 
requests to the service that it mirrors. The BPEL workflows deployed in the enactor do not 
contain the invocation of the original ACGT services but the invocation of the corresponding 
proxy services in their places. Therefore the enactor is unaware of the whole GRID security 
framework, it "considers" that the services contacted during the workflow execution are the 
real ones.

This way the Proxy services function as bridges between the BPEL engine and the ACGT 
Grid services.

3.5.2.2 Metadata Service 

The ACGT tool metadata repository handles metadata for the following main tasks:

• Publish (register) tools by service providers.

• Find (discover) tools by service clients.

• Bind (invoke) tools by service clients

• Modify existing tool metadata.

• Retrieve all tool metadata (for metadata browsing tools).

The repository has been implemented in several layers:

• Modular API: This Application Programming Interface (API) integrates different tool 
repositories  and  provides  discovery/find  functionality  for  tools,  data  types  and 
functional categories. It uses an access module to integrate with the ACGT repository 
databases.

11/06/10 Page 18 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

• RepoServices API: This API is used internally in the Modular API access layer to the 
ACGT repository databases.  It  is  described in  this  section  to provide a complete 
overview of the metadata repository architecture.

3.5.2.3 Semantic Mediator  and Mapping Tool Service

The Semantic Mediator is the core component of the ACGT Semantic Mediation layer. It is in 
charge of accepting queries in terms of the ACGT Master Ontology and translating them into 
terms of the physical databases included in the integration platform. The Semantic Mediator 
can be accessed as an OGSA-DAI service, making it available to any terminal connected to 
the internet. Three different services comprise the Semantic Mediator:

• SemanticMediator: this is the main service offered by the Semantic Mediator (and it is 
called also as the resource). It offers a SPARQL interface for performing queries in 
terms of the Master Ontology. The received queries are handled by the Semantic 
Mediator accordingly to the existing database mappings, so a new query for each 
-underling data source is produced and their results are properly merged and sent 
back to the user

• MappingList: this service allows retrieving the content of all mapping files included in 
the Semantic Mediator. This service is used by the Query Tool.

• updateMappingList:  through  this  service,  new  mappings  can  be  included  in  the 
integration platform. This service is used by the Mapping Tool.

OGSA-DAI services are invoked using perform documents. The complete specification of this 
type of documents is described in [OGSADAI]. Each of the three services of the Semantic 
Mediator requires a different set of arguments, and produces a different type of result. Next 
subsections depict the details and interface of the three services.

The Mapping Tool plays an important role within the ACGT Semantic Mediation layer, as it  
offers the possibility of including new data sources in the integration platform. This process 
involves  establishing  relations  between  elements  of  the  schema  of  the  source  to  be 
integrated and elements of the ACGT Master Ontology—which acts as global schema for the 
mediator. These relations are called mappings, and the process of establishing mappings is 
called mapping process. The mappings are used by the mediator in the task of translating 
integrated queries into queries for the underlying databases.

The mapping process often requires some degree of expertise on both the domain of the 
data being mapped and the inner technical characteristics of the mappings being produced. 
To this end, the Mapping Tool incorporates a series of features aimed at facilitating this task 
and reducing as much as possible the user’s workload. These are listed below:

• Web-based friendly  user interface:  the interface offers an intuitive approach to all 
available  actions.  Access  is  offered  through  Internet,  avoiding  installation 
requirements at the user terminal

• Extensive and powerful mapping editor: a complete editor allows creating and editing 
mappings with all necessary detail

• Collaborative environment: the environment offers the possibility of two or more users 
to concurrently collaborate on the same project

3.5.2.4 GridR Service

11/06/10 Page 19 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

The GridR package provides an R programming language interface that supports the access 
to  the  ACGT  services.  This  means  that  R  users  and  developers  will  have  access  to 
distributed  resources  in  a  transparent  fashion,  as  if  those  resources  were  local.  The 
complexity of the grid is thus hidden from the user. Accessing the ACGT grid environment 
requires no changes in  the core R implementation.  In  practice grid  access is  performed 
through the call of predefined R functions loaded from a package. R users can make use of 
the grid technology in a transparent way by initializing the grid environment once (grid.init) 
based on a pre-defined configuration and passing the functions to be executed in the grid as 
input to one of those predefined functions (grid.apply) in their local code.

The GridR service interface supports the execution of user-defined scripts as well  as the 
execution of scripts that had been pre-registered in a repository. In the ACGT platform, the 
GridR service is implemented as a GSI-secured grid service based on the Globus Toolkit 4 
libraries and on the Gridge Toolkit  [5].  In detail,  the GridR service includes clients to the 
Gridge data management system (DMS), which is a virtual file system for data organization 
in grid environments, and to the Gridge grid resource management system (GRMS), which is 
responsible for grid resource management and scheduling of grid jobs.

The interface to the DMS is based on files; this implies that all input and output data have to 
be passed to and from GridR by physical files. For this purpose, the GridR service attaches a 
header to each script which makes the contents of input files accessible in the R session on 
the execution machine as elements of a predefined R list. The interface for the output is a list 
of file or directory names that the user can use to export data from the session.

The  developer  of  a  parallel  GridR  script  is  offered  a  “directive”-like  mechanism  for  the 
annotation  of  the  parts  of  the  script  that  can  run  in  parallel.  With  the  help  of  these 
annotations, the GridR service can split the script into parallel or non-parallel sections that 
are or are not to be run in parallel as grid jobs. 

Technically, the GridR service translates the parallelization information into a complex GRMS 
job description representing the workflow to be performed for the execution of the parallel 
and  non-parallel  script  sections  (e.g.,  including  the  dependency  of  the  different  script 
sections or the specification of which files have to be staged in and out), and submits it as 
GRMS job.

3.5.2.5 Oncosimulator Service

The Oncosimulator is an advanced tool which is able to simulate the response of tumours 
and  affected  normal  tissues  to  therapeutic  schemes  based  on  clinical,  imaging, 
histopathologic and molecular data of a given cancer patient. It aims at optimizing cancer 
treatment  on  a  patient-individualized  basis  by  performing  in  silico  (on  the  computer) 
experiments of candidate therapeutic schemes.

The initial implementation of this application gained a form of the standalone code that can 
be run as a batch job on personal computer as well  as on hardware resources of a grid 
infrastructure. The component of ACGT infrastructure responsible for running the application 
on the grid  resources is  GRMS (Gridge Resource Management  System).  But  there is  a 
requirement  to  provide the access to the functionality  of  the application  via  web service 
interface. Oncosimulator Service is the components fulfilling this requirements.

3.5.3 Advanced Grid Services
3.5.3.1 Resource Management

The  component  responsible  for  resource  management  within  Gridge  Toolkit  is  GRMS 
(Gridge  Resource  Management  System).  It  is  an  open  source  meta-scheduling  system, 
which allows developers to build and deploy resource management systems for large scale 

11/06/10 Page 20 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

distributed  computing  infrastructures.  GRMS  is  based  on  dynamic  resource  selection, 
mapping  and  an  advanced  scheduling  methodology,  combined  with  feedback  control 
architecture,  and  deals  with  dynamic  grid  environment  and  resource  management 
challenges, e.g., load-balancing among clusters, remote job control or file staging support. 
Therefore,  the  main  goal  of  the  GRMS is  to  manage  the  whole  process  of  remote  job 
submission to various batch queuing systems, clusters or resources. It has been designed as 
an  independent  core  component  for  resource  management  processes  which  can  take 
advantage of various low-level core services and existing technologies. Finally, GRMS can 
be  considered  as  a  robust  system  which  provides  abstraction  of  the  complex  grid 
infrastructure as well as a toolbox which helps to form and adapts to distributing computing 
environments.

GRMS is a central point for resource and job management activities and tightly cooperates 
with other services responsible for authorization, monitoring, and data management to fulfill 
the requirements of the applications. The main features of GRMS are job submission, job 
control (suspending, resuming, cancelling), the ability to chose "the best" resource for the job 
execution  using  multi-criteria  matching  algorithm,  support  for  job  checkpointing  and 
migration,  support  for  file  staging,  storing  information  about  the  job  execution,  user 
notifications support, workflow jobs support etc.

GRMS  has  been  designed  as  an  independent  set  of  components  for  the  resource 
management processes which can take advantage of various low-level  core services as, 
e.g.,  GRAM [3],  GridFTP [3]  and the Gridge Monitoring System, as well  as various grid 
middleware  services,  e.g.,  the  Gridge  Authorization  Service  and  the  Gridge  Data 
Management Service. All these services working together provide a consistent, adaptive and 
robust grid middleware layer which fits dynamically to many different distributing computing 
infrastructures. The GRMS implementation requires the Globus software [3] to be installed 
on  the  grid  resources,  and  uses  the  following  core  Globus  services  deployed  on  the 
resources:  GRAM,  GridFTP,  and  MDS  (optional).  GRMS  supports  the  Grid  Security 
Infrastructure by providing GSI-enabled web service interfaces for all clients, e.g., portals or 
applications, and thus can be integrated with any other compliant grid middleware.

One of the main assumptions for GRMS is to perform remote job control and management in 
the  way  that  satisfies  users  (job  owners)  and  their  applications  requirements.  All  user 
requirements are expressed within an XML-based resource specification document and sent 
to GRMS as SOAP requests over GSI transport layer connections. Simultaneously, resource 
administrators (resource owners) have full control over owned resources on which the jobs 
and operations will  be performed by an appropriate GRMS setup and installation.  GRMS 
together with the core services reduces operational and integration costs for administrators 
by enabling  grid  deployment  across heterogeneous (and maybe previously  incompatible) 
cluster  and  resources.  Technically  speaking,  GRMS  is  a  persistent  service  within  a 
Tomcat/Axis  container.  It  is  written completely  in Java so it  can be deployed on various 
platforms.

3.5.3.2 Data Management

Data storage,  management and access in  the Gridge environment  are supported by the 
Gridge  Data  Management  Suite  (DMS).  This  suite,  composed  of  several  specialized 
components,  allows  building  a  distributed  system  of  services  capable  of  delivering 
mechanisms for seamless management of large amounts of data. It is based on the pattern 
of autonomic agents using the accessible network infrastructure for mutual communication. 
From the external applications point of view DMS is a virtual file system keeping the data 
organized in a tree-like structure. The main units of this structure are meta-directories, which 
allow creating a hierarchy over other objects and metafiles. Metafiles represent a logical view 
of data regardless of their physical storage location.

11/06/10 Page 21 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

Data Management System consists of three logical layers: the Data Broker, which serves as 
the access interface to the DMS system and implement the brokering of storage resources, 
the Metadata Repository that keeps information about the data managed by the system, and 
the Data Container, which is responsible for the physical storage of data. In addition, DMS 
contains modules which extend its functionality to fulfil the enterprise requirements. These 
include  the  fully  functional  web  based  administrator  interface  and  a  Proxy  to  external 
scientific databases. The Proxy provides a SOAP interface to the external databases, such 
as for example those provided by SRS (Sequence Retrieval System).

The Data Broker is designed as an access point to the data resources and data management 
services. A simple API of the Data Broker allows to easily access the functionality of the 
services and the stored data. The Data Broker acts as a mediator in the flow of all requests 
coming from external services, analyses them and eventually passes to the relevant module. 
The DMS architecture assumes that multiple instances of the Data Broker can be deployed 
in the same environment, thus increasing the efficiency of data access from various points in 
the global Grid environment structure.

The Metadata Repository is the central element of the Gridge distributed data management 
solution.  It  is  responsible  for  all  metadata  operations  as  well  as  their  storage  and 
maintenance. It manages metadata connected with the data files, their physical locations and 
transfer protocols that could be used to obtain them, with the access rights to the stored data 
and with the metadescriptions  of  the file  contents.  Currently  each DMS installation  must 
contain a single instance of the Metadata Repository, which acts as a central repository of 
the critical information about the metacatalogue structure, user data and security policy for 
the whole DMS installation.

The  Data  Container  is  a  service  specialized  towards  the  management  of  physical  data 
locations on the storage resources. The Data Container API is designed in a way to allow 
easy  construction  and  participation  in  the  distributed  data  management  environment  of 
storage  containers  for  different  storage  environments.  The  Data  Containers  currently 
available  in  the  DMS  suite  include  a  generic  file  system  Data  Container,  a  relational 
database Data Container and a tape archiver Data Container. The data stored on the various 
storage resources can be accessed with one of the many available protocols including such 
as GASS, FTP and GridFTP.

The  Proxy  modules  are  services  that  join  the  functionality  of  the  Metadata  Repository 
allowing  to  list  the  available  databanks,  list  their  content,  read  the  attached  metadata 
attributes and to build and execute queries, and of the Data Container to provide the data 
using  the  selected  data  transfer  protocol.  Such  Proxy  container  are  highly  customized 
towards the specific platform they are working with to allow building complex queries and 
executing operations on the found entries.

3.5.3.3 Security Services

The most important element of security infrastructure in Gridge is authorization service called 
GAS. The Gridge Authorization Service (GAS) is an authorization system which can be the 
standard  decision  point  for  all  components  of  a  system.  Security  policies  for  all  system 
components  are  stored  in  GAS.  Using  these  policies  GAS  can  return  an  authorization 
decision upon the client request. GAS has been designed in such a way that it is easy to 
perform integration with external components and it is easy to manage security policies for 
complex systems. The possibility to integrate with the Globus Toolkit and many operating 
system components makes GAS an attractive solution for grid applications.

Generally, an authorization service can be used for returning an authorization decision upon 
the user  request.  The request  has to be described by three attributes:  user,  object  and 
operation. The requester simply asks if the specific user can perform the operation on the 
specific object. Obviously, the query to an authorization service can be more complex and 

11/06/10 Page 22 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

the answer given by such service can be complicated, too. One of the services which can 
work in such scenario is the Gridge Authorization Service (GAS). GAS has been designed in 
a form which enables many possible applications. GAS can communicate in many ways with 
other components. By using the modular structure of GAS it is easy to write a completely 
new communication module. The GAS complex data structure can be used to model many 
abstract and real world objects and security policies for such objects. For example, GAS has 
been used for managing security policies: for many Virtual Organizations, for services (like 
Gridge Resource Management Service, Mobile Services and other) and for abstract objects 
like communicator conferences or computational centres. These and many other features 
give a possibility to integrate GAS with many existing solutions. Such integration can be very 
important, because it raises the security level of the existing solutions and makes it possible 
to use the newest security technologies.

The  main  goal  of  GAS  is  to  provide  a  functionality  that  would  be  able  to  fulfil  most 
authorization requirements of grid computing environments. GAS is designed as a trusted 
single logical point for defining security policy for complex grid infrastructures. As flexibility is 
the key requirement, it is to be able to implement various security scenarios, based on push 
or  pull  models,  simultaneously.  Secondly,  GAS is  considered as  independent  of  specific 
technologies used at lower layers, and it should be fully usable in environments based on 
grid toolkits as well as other toolkits. The high level of flexibility is achieved mainly through 
the modular design of GAS and usage of a complex data structure which can model many 
scenarios and objects from the real world. It means that GAS can use many different ways 
for communication with external components and systems, use many security data models 
and hold security policy on different types of storage systems. These features make GAS 
attractive for many applications and solutions (not only for those related with grids). GAS has 
to be the trusted component of each system in which it is used and it brings about that the 
implementation of GAS was written in ANSI  C.  This choice makes GAS a very fast and 
stable component which uses not much CPU power and little amount of memory. The main 
problem of many authorization systems is their management. It is not easy to work with a 
complex  system in  a  user-friendly  way.  Based  on  many  experiences  and  the  end  user 
comments together with GAS, the GAS administration portlet (web application) is provided, 
which makes management as easy as possible. Flexibility of this solution gives users a full 
possibility of presenting only these security policies which are important for them. 

3.5.4 Common Grid Services
3.5.4.1 GRAM

Grid  Resource  Allocation  Management  (GRAM)  is  a  component  of  the  Globus  Toolkit 
responsible for  job execution.  Grid computing resources are typically  operated under  the 
control of a scheduler which implements allocation and prioritization policies while optimizing 
the execution of all submitted jobs for efficiency and performance. GRAM is not a resource 
scheduler,  but  rather a protocol engine for  communicating  with a range of  different  local 
resource  schedulers  using  a  standard  message  format.  Rather  than  consisting  of  a 
monolithic solution, GRAM is based on a component architecture at both the protocol and 
software implementation levels. This component approach serves as an ideal which shapes 
the implementation as well as the abstract design and features.

There are two implementation of GRAM service: "web services and "pre-web services" Unix 
server suite to submit, monitor, and cancel jobs on Grid computing resources. Both systems 
are known under the moniker "GRAM", while "WS GRAM" refers only to the web service 
implementation.

Job management with GRAM makes use of multiple types of service:

11/06/10 Page 23 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

• Job management services represent, monitor, and control the overall job life cycle. 
These services are the job-management  specific  software provided by the GRAM 
solution.

• File  transfer  services  support  staging  of  files  into  and out  of  compute  resources. 
GRAM  makes  use  of  these  existing  services  rather  than  providing  redundant 
solutions; WS GRAM has further refactored some file transfer mechanisms present in 
pre-web service GRAM.

• Credential management services are used to control the delegation of rights among 
distributed  elements  of  the  GRAM  architecture  based  on  users'  application 
requirements. Again,  GRAM makes use of more general infrastructure rather than 
providing  a  redundant  solution,  and  WS GRAM has  continued  this  refactoring  to 
better separate credential management at the protocol level.

For  WS GRAM,  the  Globus  Toolkit  software  development  environment,  and  particularly 
WSRF core, is used to implement distributed communications and service state. For pre-web 
service GRAM, the "gatekeeper" daemon and GSI library are used for communications and 
service dispatch.

WS GRAM utilizes  WSRF functionality  to  provide  for  authentication  of  job  management 
requests as well as to protect job requests from malicious interference, while pre-web service 
GRAM uses GSI and secure sockets directly. The use of GRAM does not reduce the ability 
for system administrators to control access to their computing resources. The use of GRAM 
also does not reduce the safety of jobs users run on a given computing resource. To protect 
users from each other, jobs are executed in appropriate local security contexts, e.g. under 
specific  Unix  user  IDs  based  on  details  of  the  job  request  and  authorization  policies. 
Additionally,  GRAM  mechanisms  used  to  interact  with  the  local  resource  are  design  to 
minimize  the  privileges  required  and  to  minimize  the  risks  of  service  malfunction  or 
compromise. A client may delegate some of its rights to GRAM services in order to facilitate 
the above functions, e.g. rights for GRAM to access data on a remote storage element as 
part of the job execution.

Additionally, the client may delegate rights for use by the job process itself. With pre-web 
service GRAM, these two uses of rights are inseparable, while WS GRAM provides separate 
control for each purpose (while still allowing rights to be shared if that is desired). WS GRAM 
provides an "at  most  once"  job submission semantics.  A client  is  able  to check for  and 
possibly resubmit jobs, in order to account for transient communication errors without risk of 
running more than one copy of the job. Similarly, pre-web service GRAM provides a two-
phase submission mechanism to submit and then commit a job to be run.

While many jobs are allowed to run to their natural completion, GRAM provides a mechanism 
for clients to cancel (abort) their jobs at any point in the job life cycle. WS GRAM provides for 
reliable,  high-performance  transfers  of  files  between  the compute  resource and  external 
(gridftp) data storage elements before and after the job execution. Preweb service GRAM 
can also stage with gridftp systems but  with less flexible reliable-transfer  logic driving its 
requests. GRAM supports a mechanism for incrementally transferring output file contents 
from the computation resource while the job is running. WS GRAM uses a new mechanism 
to allow arbitrary numbers of files to be transferred in this fashion, while pre-web service 
GRAM only supports incremental transfer of the job's standard output and error streams.

3.5.4.2 MDS

The Monitoring and Discovery  System (MDS)  is  a suite of  web services  to monitor  and 
discover  resources  and  services  on  Grids.  This  system  allows  users  to  discover  what 
resources are considered part of a Virtual Organization (VO) and to monitor those resources. 
MDS services provide query and subscription interfaces to arbitrarily detailed resource data 
and a trigger interface that can be configured to take action when pre-configured trouble 
conditions are met. The services included in the WS MDS implementation (MDS4), provided 

11/06/10 Page 24 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

with the Globus Toolkit 4, acquire their information through an extensible interface which can 
be used to: query WSRF services for resource property information, execute a program to 
acquire data, or interface with third-party monitoring systems.

Grid  computing  resources  and  services  can  advertise  a  large  amount  of  data  for  many 
different  use  cases.  MDS4  was  specifically  designed  to  address  the  needs  of  a  Grid 
monitoring system – one that publishes data that is available to multiple people at multiple 
sites. As such, it is not an event handling system, like NetLogger, or a cluster monitor on its 
own, but can interface to more detailed monitoring systems and archives, and can publish 
summary data using standard interfaces.

MDS4  includes  two  WSRF-based  services:  an  Index  Service,  which  collects  data  from 
various  sources  and  provides  a  query/subscription  interface  to  that  data,  and  a  Trigger 
Service,  which collects  data from various  sources and can be configured to take action 
based on that data. An Archive Service, which will provide access to historic data, is planned 
for a future release. The Index Service is a registry similar to UDDI, but much more flexible.  
Indexes collect information and publish that information as resource properties. Clients use 
the  standard  WSRF  resource  property  query  and  subscription/notification  interfaces  to 
retrieve  information  from an  Index.  Indexes  can  register  to  each  other  in  a  hierarchical 
fashion in order to aggregate data at several levels. Indexes are “self-cleaning”; each Index 
entry has a lifetime and will be removed from the Index if it is not refreshed before it expires. 
Each  Globus  container  that  has  MDS4  installed  will  automatically  have  a  default  Index 
Service instance.

By default, any GRAM, RFT, or CAS service running in that container will register itself to the 
container’s default Index Service. The Trigger Service collects information and compares that 
data against a set of conditions defined in a configuration file. When a condition is met, or 
triggered,  an action takes place,  such as emailing  a system administrator  when the disk 
space on a server reaches a threshold.

In  addition  to  the  services  described  above,  MDS4 includes  several  additional  software 
components, including an Aggregator Framework, which provides a unified mechanism used 
by the Index and Trigger services to collect data. The Aggregator Framework is a software 
framework used to build  services that  collect  and aggregate data. Services (such as the 
Index  and  Trigger  services)  built  on  the  Aggregator  Framework  are  sometimes  called 
aggregator services, and have the following in common:

• They collect  information via Aggregator Sources. An Aggregator Source is a Java 
class that implements an interface (defined as part of the Aggregator Framework) to 
collect XML-formatted data

• They use a common configuration mechanism to maintain information about which 
Aggregator Source to use and its associated parameters (which generally  specify 
what data to get, and from where).  The Aggregator Framework WSDL defines an 
[aggregating service group entry type] that holds both configuration information and 
data. Administrative client programs use standard [WSRF Service Group registration 
mechanisms] to register these service group entries to the aggregator service.

• They are  self-cleaning  –  each registration  has a lifetime;  if  a  registration  expires 
without being refreshed, it and its associated data are removed from the server. 

MDS4 includes the following three Aggregator Sources:

• the Query Aggregator  Source,  which polls  a WSRF service for  resource property 
information,

• the Subscription  Aggregator  Source,  which collect  data from a WSRF service via 
WSRF subscription/notification,

• the Execution Aggregator Source, which executes an administrator-supplied program 
to collect information.

11/06/10 Page 25 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

Depending  on  the implementation,  an Aggregator  Source may use an external  software 
component (for example, the Execution Aggregator Source uses an executable program), or 
a  WSRF  service  may  use  an  external  component  to  create  and  update  its  resource 
properties (which may then be registered to an Index or other aggregator service, using the 
Query  or  Subscription  Aggregator  Source).  This  set  of  components  are  refered  to  as 
Information  Providers.  Currently,  MDS4  includes  the  following  sources  of  information: 
Hawkeye  Information  Provider,  Ganglia  Information  Provider,  WS  GRAM,  Reliable  File 
Transfer Service (RFT), Community Authorization Service (CAS) , any other WSRF service 
that publishes resource properties.

3.5.4.3 GridFTP

GridFTP is  a high-performance,  secure,  reliable data transfer  protocol  optimized for  high 
bandwidth wide-area networks. The GridFTP protocol is based on FTP, the highly-popular 
Internet file transfer protocol. A set of protocol features and extensions defined already in 
IETF RFCs was selected and added a few additional features to meet requirements from 
current data grid projects.

GridFTP functionality  includes  some features that  are supported by FTP extensions that 
have already been standardized (RFC 959) but are seldom implemented in current systems. 
Other features are new extensions to FTP.

•  Grid  Security  Infrastructure  and  Kerberos  support:  Robust  and  flexible  authentication, 
integrity, and confidentiality features are critical when transferring or accessing files. GridFTP 
must support GSI and Kerberos authentication, with user controlled setting of various levels 
of data integrity and/or confidentiality. GridFTP implements the authentication mechanisms 
defined by RFC 2228, “FTP Security Extensions”.

• Third-party control of data transfer: To manage large datasets for distributed communities, 
authenticated third-party control of data transfers between storage servers must be provided. 
A third-party operation allows a user or application at one site to initiate, monitor and control 
a data transfer operation between two other sites: the source and destination for the data 
transfer. Our implementation adds Generic Security Services (GSS)-API authentication to the 
existing third-party transfer capability defined in the FTP standard.

• Parallel  data transfer:  On wide-area links,  using multiple TCP streams in parallel  (even 
between the same source and destination) can improve aggregate bandwidth over using a 
single  TCP  stream.  GridFTP  supports  parallel  data  transfer  through  FTP  command 
extensions and data channel extensions.

• Striped data transfer: Data may be striped or interleaved across multiple servers, as in a 
DPSS network disk cache. GridFTP includes extensions that initiate striped transfers, which 
use multiple TCP streams to transfer data that is partitioned among multiple servers. Striped 
transfers  provide  further  bandwidth  improvements  over  those  achieved  with  parallel 
transfers. The GridFTP protocol extensions was defined to support striped data transfers.

• Partial file transfer: Some applications can benefit from transferring portions of files rather 
than  complete  files:  for  example,  high-energy  physics  analyses  that  require  access  to 
relatively small subsets of massive, object-oriented physics database files. The best that the 
standard FTP protocol allows is transfer of the remainder of a file starting at a particular 
offset. GridFTP provides commands to support transfers of arbitrary subsets or regions of a 
file.

• Automatic negotiation of TCP buffer/window sizes: Using optimal settings for TCP buffer/ 
window  sizes  can  dramatically  improve  data  transfer  performance.  However,  manually 
setting TCP buffer/window sizes is an error-prone process (particularly for nonexperts) and is 
often simply not done. GridFTP extends the standard FTP command set and data channel 

11/06/10 Page 26 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

protocol to support both manual setting and automatic negotiation of TCP buffer sizes for 
large files and for large sets of small files.

• Support for reliable and restartable data transfer: Reliable transfer is important for many 
applications that manage data. Fault recovery methods are needed to handle failures such 
as  transient  network  and  server  outages.  The FTP standard includes  basic  features  for 
restarting failed transfers that are not widely implemented. GridFTP exploits these features 
and extends them to cover the new data channel protocol.

3.6 Deployment view
Deployment view of the architecture focuses on the actual instances of components installed 
and used in the testbed and all the possibilities of deployment of different components.

It is possible to classify the types of services with regards to deployment requirements:

1) Components deployed on each machine of the testbed

The components of this kind are mostly responsible for remote access to physical resources 
(computational nodes or databases).  The most important part of the infrastructure providing 
access  to  resources  is  Globus  Toolkit.  It  provides  mechanisms  for  remote  application 
submission, monitoring of the resource availability and its parameters, transferring files, etc.

The most important software entities installed on computational resources are:

-  GRAM:  Globus  Toolkit  component  responsible  for  applications  submission  and 
management, it can be configured to run the executable via simple "fork' mechanism but the 
recommended configuration for ACGT grid infrastructure is a to interface the local queueing 
system.  The  motivation  for  that  is  following:  grid  resources  are  not  dedicated  to  ACGT 
testbed, so it is very important to keep local resource management policy consistent. Local 
queueing system deployed on machine manages usage of the node by a different external 
entities or  organizations and keeps the availability  of the computational power on proper 
level, preventing overloading on the one hand and task starvation on the other.

For the resources joining ACGT testbed, if there is no queuing system already installed we 
have recommended OpenPBS/Torque solution, and provide all required support for it.

- GridFTP: it is a software component independent from Globus Toolkit but compliant with it 
in a context of technology. It is required to deploy GridFTP server on each node used for 
computation in ACGT testbed. Metascheduler of ACT is using that component to transfer all 
files required for computation. It is not possible to submit any remote application execution 
without GridFTP installed on computational node.

- Grid monitoring agents: that elements are mostly part of Globus Toolkit and are responsible 
for  providing  all  available  information  about  status  of  the  computational  node:  hardware 
parameters  (number  of  processors,  processors  type,  operating  system  etc),  dynamic 
parameters  (processors  performance,  load  of  the  machine,  number  of  tasks  in  a  local 
queues), software components deployed (applications, libraries).

That information is than used by metascheduler in a process of mapping tasks to resources 
on a middleware level (grid scheduling).

- GAS plugins: components developed by PSNC that have to reside on GRAM and GridFTP 
on each  computational  node.  They  are  responsible  for  authorization  procedures  and  for 
virtual account management.

Before anybody can use any resource the security policy stored in the Gridge Authorization 
Service (GAS) must be checked. This is what the plugins are responsible for: they are calling 

11/06/10 Page 27 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

GAS and asking, if  given person is allowed to submit a task or transfer data to resource. 
Virtual  accounts  is  a  very  convenient  mechanism  for  accessing  resources  in  a  Virtual 
Organizations. The idea is based on policies stored in a central authorization service. Based 
on that policy there is a pool of accounts created and managed by service in a dynamic way - 
person accessing resource - when allowed to do it - is mapped one of virtual accounts on a 
local machine.

The other - separate from the grid infrastructure - components installed on resources are 
data wrappers. They are used for accessing different databases that can be used by more 
advanced mediation tools and distributed queering mechanisms.

Fig.6. Deployment view of the ACGT architecture.

2) Collective infrastructure services

This category of components are building the advanced middleware of grid infrastructure. 
They are responsible for providing unified interface for resource management (GRMS) , data 
management  (DMS),  authorization  framework  (GAS),  etc.  The  collective  services  are 
deployed as a central management points of the architecture - one instance of each service 
for the whole testbed. The reason of having the  single instance of this services is the ability  
to manage the underlying resources. GRMS is able to perform load balancing in the grid 
environment. DMS deals with the files that can be accessed by different clients, and from 
different  locations.  Authorization  service  keeps  the  overall  policy  of  accessing  different 
resources in the grid.

There  is  a  threat,  that  the  collective  services  can  be  a  single  point  of  failure  of  the 
infrastructure. There are some ways to decrease the risk of the infrastructure failure. For the 
GRMS  it  is  possible  to  duplicate  a  deployment  of  the  service  -  we  can  have  backup 
installation that can be used in case of problems with main one. Of course it  requires to 
implement some additional logic on a client level - user level tools should be able to switch 
between a different instances of GRMS in a dynamic way.

11/06/10 Page 28 of 31

Portal

Grid node

GRAM

Auth plugin

GridFTP

MDS

Grid node

GRAM

Auth plugin

GridFTP

MDS

GRMS

DMS

GAS

GridR
Service

Workflow
Enactor

Mediator
Service

Metadata
Repository

Ontology
Service

Oncosimulator
Service

VO
Management

Service

Analytical
Services

Wrapper
 Service

DB DB DB

Data
Storage

Wrapper
 Service

Wrapper
 Service

Data
Storage

OBTIMA
OBTIMAOBTIMA



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

DMS can provide similar duplication mechanism as GRMS does. In addition to that,  it  is 
designed  to be able to exploit different data storages that can be located in a distributed 
locations.

3) ACGT specific services 

There is no limitation for the number of instances of ACGT services in the environment. Each 
of the service needs to be registered in the repository and then can be used by the end user. 
It does not matter if the client application invokes instance A or B of the same functional 
component. So it is possible to have distributed network of services located near the location 
of the end user to provide maximum response time for the client.

4) User interface applications

For the user interface application the number of instance does not matter. Standalone tools 
can be used by the individual users separately. The portal client is a little different case. 
Single installation can be used by multiple users, so it is possible to have one instance of 
portal for the whole environment. But it is possible to have the portal install on multiple sites.

However there is requirement for some portlets to be the only one instance in the testbed. It 
concerns  administration  portlets:  VO  management,  GAS  administrator  portlet,  DMS 
administration portlet.

11/06/10 Page 29 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

References

[1] Globus Tooklit http://www.globus.org

[2] Gridge Toolkit http://www.gridge.org

[3] ACGT D4.1 Prototype and report of the ACGT GRID layer

[4] http://www.globus.org/toolkit/docs/4.0/

[5] http://www.globus.org/toolkit/docs/4.0/security/key-index.html

[6]  I.  Foster,  “Globus  Toolkit  Version  4:  Software  for  Service-Oriented  Systems”,  IFIP 
International Conference on Network and Parallel Computing, Springer-Verlag LNCS 3779, 
pp 2-13, 2006

[7] J. Pukacki, M. Kosiedowski, R. Mikołajczak, M. Adamski, P. Grabowski, M. Jankowski, M. 
Kupczyk, C. Mazurek, N. Meyer, J. Nabrzyski, T. Piontek, M. Russell, M. Stroiński, M. Wolski 
“Programming Grid Applications with Gridge”, Computational Methods in Science and 
Technology vol. 12, Poznan 2006.

[8] D. Wegener, T. Sengstag, S. Sfakianakis, S. Rüping, “Supporting parallel R code in 
clinical trials: a grid-based approach”. Accepted for publication at the HiPGCoMB 2008 
workshop

11/06/10 Page 30 of 31



ACGT FP6-026996                         D3.4 – The ACGT technical architecture: Final Specification

Appendix A - Abbreviations and acronyms

SOA Service Oriented Architecture

GRMS Gridge Resource Management System

GAS Gridge Authorization Service

GDMS Gridge Data Management System

RFT Reliable File Transfer

MDS Monitoring & Discovery Service

WSDL Web Service Definition Language

11/06/10 Page 31 of 31


