
The ACGT Initial Architecture

Project Number: FP6-2005-IST-026996

Deliverable id: D3.1

Deliverable name: The ACGT Initial Architecture

Date: 21.11.2006

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: ACGT

Project Full Name: Advancing Clinico-Genomic Clinical Trials on
Cancer: Open Grid Services for improving
Medical Knowledge Discovery

Document id: D 3.1

Document name: The ACGT Initial Architecture

Document type (PU, INT, RE): RE

Version: DRAFT 1.3

Date: 21.11.2006

Authors:

Organization:

Address:

Juliusz Pukacki

PSNC

Noskowskiego 12/14,Poznan, Poland

Document type PU = public, INT = internal, RE = restricted

ABSTRACT:

This deliverable presents the first iteration of defining the architecture for ACGT environment.
In first part we are trying to find projects with similar goals to ACGT or using similar technolo-
gies to for building software infrastructure. Presented architectures should be treated as a point
of reference for our work on defining system architecture

Second part is devoted to ACGT architecture itself. It is the first iteration - initial phase - of
design process. We are trying to detect and point out the key components and sketch it in gener-
al words. There is also simple scenario that could be helpful in understanding the idea behind
presented architecture.

KEYWORD LIST: Architecture analysis, Grid environment, Biomedical Grid

ACGT D3.1 - The ACGT Initial Architecture

MODIFICATION CONTROL

Version Date Status Author

1.0 17.11.2006 Draft Juliusz Pukacki

1.1 20.11.2006 Draft Juliusz Pukacki

1.3 22.11.2006 Draft Juliusz Pukacki

1.4 19.12.2006 Draft Juliusz Pukacki

1.5 12.07.2007 Draft Juliusz Pukacki

List of contributors:

• Jarek Nabrzyski, PSNC

• Alberto Anguita, UPM

• Luis Martín, UPM

• Dennis Wegener FhG IAIS

ACGT D3.1 - The ACGT Initial Architecture

Table of Contents
1. Executive summary ... 6
2. Reference Architectures .. 8

GridLab Architecture .. 8
InteliGrid Architecture .. 9
DataMiningGrid .. 11
caGrid Architecture ... 13
myGrid Architecture ... 15

3. ACGT Initial Architecture .. 18
Hardware Layer .. 19
Common Grid Infrastructure ... 19
Advanced Grid Middleware .. 20
ACGT Business Processes Services ... 21
User Access and High Level Interoperability Layer ... 21

4. Layered Architecture Consequences ... 23
5. Components .. 25

Common Grid Infrastructure ... 25
Advanced Grid Middleware .. 30
ACGT Business Processes Services ... 38
User Access Layer .. 41

6. ACGT System Vision - Example .. 42
References ... 44

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 4 of 44

List of Figures
2.1. GridLab architecture .. 8
2.2. InteliGrid architecture .. 10
2.3. DataMiningGrid Architecture .. 12
2.4. caGrid architecture ... 14
2.5. myGrid architecture ... 16
3.1. ACGT Architecture - overview ... 19
4.1. Architecture modification - first option ... 23
4.2. Architecture modification - second option .. 24
5.1. ACGT components in the context of architecture ... 25
5.2. Role of the Mediator .. 39
6.1. Simple scenario .. 42

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 5 of 44

1. Executive summary
ACGT is an Integrated Project (IP) funded in the 6th Framework Program of the European Com-
mission under the Action Line “Integrated biomedical information for better health”. The high
level objective of the Action Line is the development of methods and systems for improved med-
ical knowledge discovery and understanding through integration of biomedical information (e.g.
using modelling, visualization, data mining and grid technologies). Biomedical data and informa-
tion to be considered include not only clinical information relating to tissues, organs or personal
health-related information but also information at the level of molecules and cells, such as that
acquired from genomics and proteomics research.

ACGT focuses on the domain of Cancer research, and its ultimate objective is the design, devel-
opment and validation of an integrated Grid enabled technological platform in support of post-
genomic, multi-centric Clinical Trials on Cancer. The driving motivation behind the project is
our committed belief that the breadth and depth of information already available in the research
community at large, present an enormous opportunity for improving our ability to reduce mortal-
ity from cancer, improve therapies and meet the demanding individualization of care needs.

The first part of deliverable is devoted to describing reference architectures of systems developed
in Grid projects or projects for biomedical research:

• GridLab: project from the computational Grids area, focused on designing API for the applic-
ation developers providing seamless access to the underlaying Grid infrastructure. Very im-
portant output of GridLab is also set of middleware services for building complex Grid envir-
onments.

• InteliGrid: Grid oriented project introducing the Grid technology to engineering applications
area. The goal of InteliGrid project is to provide a grid-based integration and interoperability
infrastructure to complex industries such as construction, automotive and aerospace.

• Data MIning Grid: the idea of the project was to develop tools and services for deploying
data mining applications on the grid.

• caGrid: the Cancer Biomedical Informatics Grid, a National Cancer Institute (USA) initiative
to link cancer researchers and their data. It is a voluntary virtual informatics infrastructure
that connects data, research tools, scientists, and organizations to leverage their combined
strengths and expertise in an open environment with common standards and shared tools.
One of the primary goals of caBIG is to create a grid infrastructure that supports semantic in-
teroperability. This will enable data and analytical tools provided by the participating cancer
research centers and public and private participants to be shared in a manner that is federated
and scalable.

• myGrid: myGrid is a UK e-Science project funded by the EPSRC involving five UK uni-
versities, the European Bioinformatics Institute and many industrial collaborators. The my-
Grid project aims to exploit the growing interest in Grid technology, with an emphasis on the
Information Grid, and provide middleware layers that make it appropriate for the immediate

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 6 of 44

needs of bioinformatics.

In the second part of this deliverable initial ACGT architecture is proposed. The whole system is
divided into four layers:

• Hardware Layer: consists of physical resources - computational nodes, databases, network
connections

• Common Grid Infrastructure: basic grid components residing on individual resources,
providing common grid infrastructure layer for ACGT environment.

• Advanced Grid Middleware: more advanced, collective services operating on common grid
infrastructure and providing more advanced mechanisms (metascheduling, data manage-
ment).

• ACGT Business Processes Services: higher level services - closer to end user, hiding com-
pletely underlaying Grid infrastructure, using metadescription for communication with end
user and to each other.

• User Access and High Level Interoperability Layer: variety of end user application used to
exploit functionality provided by the system.

This document provides the basis for the on-going prototyping. Based on the experiences with
the prototype, the final version of the architecture will be defined in D3.2.

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 7 of 44

2. Reference Architectures
In this section five reference architectures are described. They are relevant to the ACGT project
from different perspectives. Three of them are architectures originate from the grid oriented
projects (GridLab, InteliGrid, Data Minig Grid) and two others are tightly connected to bioin-
formatics area (caGrid, myGrid).

GridLab Architecture
The main goal of the GridLab Project was to provide a software environment for Grid-enabling
scientific applications. To provide an API through which applications access and use available
resources. This API directly reflects application needs. Among the intended functionality is the
exploration of available resources (CPU, storage, visualization, etc.); remote data access; applic-
ation migration; etc. The API is concentrated in the Grid Application Toolkit (GAT). The func-
tionality behind the API will be provided by interchangeable capability providers, which may be
GridLab services or third-party services.

General view of the GridLab architecture is presented on Figure 2.1, “GridLab architecture”

Figure 2.1. GridLab architecture

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 8 of 44

The applications, located on the highest level of the user space, can access all capability pro-
viders they need via the Grid Application Toolkit (GAT) API. The GAT also resides in user
space, providing interfaces to the capability providers in the capability space. The GAT main
feature is the ability to access various kinds of capability providers via adaptors specific to their
communication mechanism, and the semantics of invoking specific capability providers. The
GridLab project distinguishes between the GridLab services and third-party services (e.g. low-
level Grid services like GIS or GRAM, system services, libraries). Following the requirement,
the GAT is able and allowed to access all types of capability providers, on all levels.

Below the User Space on architecture picture, there is the Capability Space. It is divided in two
layers: the Service Layer and the Core Layer. The Service Layer consists of collective services
developed mainly within the GridLab project. They were implemented using web services tech-
nology with GSI security infrastructure. The services on this layer are responsible for: resource
management on grid level, data management (data storing, replication, file movement), grid
monitoring, grid level security (services authorization). The common feature of the services is
that they operate on many other services from the same layer or layer below.

The Core Layer is built with basic services located on individual hardware resources and provid-
ing remote access to it. A good example of such a basic service is GRAM component from Glo-
bus Tooklit used as a remote interface to computational resources (local queueing system). The
other components located in this layer are: hardware monitoring services, resource information
providers, data transfer servers, etc.

After the GridLab project had finished, most of the outcome of it was taken to Gridge Toolkit
supported and developed by Poznan Supercomputing and Networking Center. Gridge Toolkit is
considered to be set of integrated middleware services used to build grid environments. It is one
of the most important candidates for building grid infrastructure in ACGT.

InteliGrid Architecture
The goal of InteliGrid is to provide a grid-based integration and interoperability infrastructure to
complex industries such as construction, automotive and aerospace. Projects vision of future en-
gineering is a flexible, secure, robust, ambient accessible, interoperable, pay-per demand access
to information, communication and processing resources.

One of the major technological goals of InteliGrid is to make the grid infrastructure available to
the small to medium enterprise (SME) companies that are providing and using engineering soft-
ware and services. The core competencies of these companies are in topics such as structural
mechanics or 3D solid modelling and not in the latest trends in middleware technology or inter-
operability platforms. The project helps SMEs to enhance their applications with grid-computing
capabilities and increase efficiency provided by semantics.

InteliGrid created a platform supporting various emerging international standards (WSRF,
OGSA, WS-I, etc.) for the semantic integration of distributed engineering services using intelli-
gent ontology services to bridge the gap between technical grid concepts and engineering domain
concepts. Key building blocks of this solution are the InteliGrid Portal, InteliGrid Document
Management, InteliGrid Ontology Services, InteliGrid Business Object Services as well as sever-

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 9 of 44

al semantically annotated applications.

Figure 2.2, “InteliGrid architecture” presents the architecture of the system created in InteliGrid
project.

Figure 2.2. InteliGrid architecture

The low layer of the InteliGrid architecture consists of various physical infrastructure resources
(both data/storage and computing resources) offered by suppliers to InteliGrid Platform. All
these resources are available through well defined secure protocols and grid-enabled generic core
services for remote data access: GridFTP and WebDAV, and also for remote application submis-
sion and control: GT2/GT4 GRAM and DSP. All core services can be accessed via a network
through well defined interfaces and communication protocols to provide functionality to re-
questers.

Requesters to core services are located on a higher-layer called the InteliGrid middleware, or In-
teliGrid Platform. The InteliGrid Platform consists of generic Grid Middleware Services such as
Authorization Service (GAS), OGSA-DAI and Grid metascheduler (GRMS) based on mature
grid technologies and their open source reference implementations. There are also complement-
ary Grid Interoperability Services including Ontology Service(s), VO Registry and Discovery
Service(s) and Business Objects/Process Engines based on semantics and knowledge manage-
ment technologies.

Business Services as a part of InteliGrid Platform are available for end users (Business Service
Consumers) on-demand when they need them. In general, business services provide secure
SOAP-based interfaces, based on Web Services and WSRF technologies, so various clients run-
ning on local machines are able to discover their location, policies, interfaces and protocols.
Business services based on Web Services and WSRF technologies are in fact distributed soft-

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 10 of 44

ware components that provide information to applications rather that to humans through applica-
tion-oriented interfaces.

DataMiningGrid
The DataMiningGrid project was a shared cost Strategic Targeted Research Project (STREP)
granted by the European Commission (grant no. IST-2004-004475). It was part of the Sixth
Framework Programme of the Information Society Technologies Programme. The idea of the
project was to develop tools and services for deploying data mining applications on the grid by
meeting the requirements of modern distributed data mining scenarios. Within the project new
ways to utilize grid computing technology for applying data mining, especially regarding integ-
ration of applications, their execution in the grid, and user-friendliness were found. The
DataMiningGrid system has been designed to meet the requirements of distributed data mining
scenarios. Based on the grid middleware Globus Toolkit and other open technology and stand-
ards, the DataMiningGrid system provides tools and services facilitating the grid-enabling of
data mining applications without major intervention in the application. In order to address a wide
range of requirements arising from the need and context to mine data in distributed computing
environments, demonstration and testing of the DataMiningGrid system was done on the basis of
a selected set of real-world applications which represent use cases from a diverse set of sectors:

• Automotive industry (customer relationship management, which uses complex text-mining
and ontology learning grid-enabled applications)

• Health sector (grid-enabled and privacy-preserving analysis of geographically widely distrib-
uted medical patient records)

• Systems biology (grid-assisted re-engineering of gene regulatory networks and analysis of
proteins using computational simulations)

• Ecological modelling (produce more accurate ecological models much faster)

• Text mining (text classification, ontology learning and analysis of digital libraries)

The underlying approach of the DataMiningGrid project is depicted in Figure 2.3,
“DataMiningGrid Architecture”

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 11 of 44

Figure 2.3. DataMiningGrid Architecture

The philosophy in the DataMiningGrid project was to avoid implementing specialized services
and client-side components for each data mining application which is integrated in the grid envir-
onment. Instead an XML-based meta-data schema, the DataMiningGrid Application Description
Schema (ADS), has been developed, which allows application developers to describe each single
algorithm in detail regarding its options, inputs, outputs, resource requirements and additional in-
formation (vendor, version, etc.). The application descriptions are stored in a searchable reposit-
ory, which can be queried at any time to provide an up-to-date view of the applications currently
available in the grid. Furthermore, the descriptions can be used by generic client-side compon-
ents (e.g. a workflow editor, Web portal) for providing a dynamic GUI for specifying user set-
tings and additional help for specifying input data and resource requirements. The fact that in-
stead of implementing specialized services and client-side components for each data mining ap-
plication more generic components were developed also enables sophisticated features such as
execution of applications on remote machines, selected automatically by a resource broker,
without prior installation of these applications and the ability to utilize thousands of machines for
running highly parallel applications.

To meet the requirements, the following critical technology components were developed by the
project:

• Workflow editor and manager that facilitates the composition, execution and management of
complex data mining workflows in grid environments

• Data Mining Application Enabler which is used to grid enable existing data mining applica-

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 12 of 44

tions

• Grid-enabled data access and integration services that allow the users to identify (locate), ac-
cess, integrate and interface distributed data sources in a flexible way;

• Information services and a resource broker which will execute data mining applications in
grid environment

The DataMiningGrid architecture consists of 4 different layers. The bottom layer contains hard-
ware and software resources. Typical basis hardware is e.g. storage devices, processing element
and networks etc. The software is the actual data to mine, algorithms etc. A special kind of re-
source is a cluster, which is a collection of coupled computers with a local scheduler. The second
layer provides the main grid middleware functionality to DataMiningGrid system. The DataMin-
ingGrid system bases on GT4, which meets the requirements of OGSA and WSRF. On top of
this layer there is a layer containing higher level services (resource broker, information services,
data services). The DataMiningGrid resource broker, based on the GridBus resource broker, is
responsible for resource discovery and section, job preparation and submission and job monitor-
ing. The InformationServices are necessary for providing information on the resources and the
applications available in the grid. The DataMiningGrid DataServices are responsible for data ac-
cess e.g. by providing OGSA-DAI services for performing data mining related operations. The
top layer is the client layer which depicts all client side components. The DataMiningGrid sys-
tem comprises two different types of clients, a workflow editor and a web-based client. The
DataMiningGrid workflow editor and manager bases on Triana and contains client side compon-
ents which address users which have knowledge about data mining and workflow composing but
no knowledge about the underlying grid technology. For even less sophisticated users the web-
based clients provide the simplest kind of user interface.

caGrid Architecture
The caGRID project aims to produce a software system capable of handling biological data that
crosses compartments. The approach is to leverage existing technologies for the standardization
of data representation and semantics and couple them to a common data integration architecture.
caCORE is NCICB's platform for data management and semantic integration, built using formal
techniques from the software engineering and computer science communities. caCORE defines a
data model specified using industry standard techniques to define common biological constructs
(objects). By mapping compartments to these common data objects, the process of data integra-
tion can commence. More importantly, activation energy needed to cross and interoperate
amongst compartments is lowered enough to allow for more sophisticated biological discovery.

The overall architecture of caGrid is presented on Figure 2.4, “caGrid architecture”.

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 13 of 44

Figure 2.4. caGrid architecture

As a primary principle of caBIG is open standards, caGrid is built upon the community-driven
standards of Open Grid Services Architecture (OGSA). OGSA is the current specification for
grid infrastructure and has been developed over the past several years in the Global Grid Forum
(GGF), the community of users, developers, and vendors leading the global standardization ef-
fort for grid computing. The current release of caGrid is built using the Globus Toolkit 3.2
(GT3.2) and the OGSA Data Access Integration (OGSA-DAI) framework. GT3.2 is a reference
implementation of OGSA for service creation, deployment, and invocation and provides core
services such as the Index Service for service registration and discovery and Globus Security In-
frastructure (GSI) for security. The OGSA-DAI framework is an implementation of OGSA for
data services. It provides a set of interfaces and runtime support for implementing and deploying
data sources as Grid services.

Extending beyond the basic grid infrastructure, caBIG specializes these technologies to better
support the needs of the cancer research community. A primary distinction between basic grid
infrastructure and the requirements identified and implemented in caGrid is the attention given to
data modeling and semantics. caBIG adopts a model-driven architecture best practice and re-
quires that all data types used on the grid are formally described, curated, and semantically har-
monized. These efforts result in the identification of common data elements, controlled vocabu-
laries, and object-based abstractions for all cancer research domains. caGrid leverages existing
NCI data modeling infrastructure to manage, curate, and employ these data models. Data types
are defined in caCORE UML and converted into ISO/IEC 11179 Administered Components,
which are in turn registered in the Cancer Data Standards Repository (caDSR). The definitions
draw from vocabulary registered in the Enterprise Vocabulary Services (EVS), and their relation-
ships are thus semantically described.

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 14 of 44

In caGrid, both the client and service APIs are object oriented, and operate over well-defined and
curated data types. Clients and services communicate through the grid using Globus grid clients
and service infrastructure, respectively. The grid communication protocol is XML based, and
thus the client and service APIs must transform the transferred objects to and from XML. This
XML serialization of caGrid objects is restricted, as each object that travels on the grid must do
so as XML which adheres to an XML schema registered in the Global Model Exchange (GME).
As the caDSR and EVS define the properties, relationships, and semantics of caBIG data types,
the GME defines the syntax of the XML serialization of them. Furthermore, Globus services are
defined by the Web Service Description Language (WSDL). The WSDL describes the various
operations the service provides to the grid. The inputs and outputs of the operations, among other
things, in WSDL are defined by XML schemas. As caBIG requires that the inputs and outputs of
service operations use only registered objects, these input and output data types are defined by
the XSDs which are registered in GME. In this way, the XSDs are used both to describe the con-
tract of the service and to validate the XML serialization of the objects which it uses.

As caBIG aims to connect data and tools from 50+ disparate cancer centers, a critical require-
ment of its infrastructure is that it supports the ability of researchers to discover these resources.
caGrid enables this ability by taking advantage of the rich structural and semantic descriptions of
data models and services that are available. Each service is required to describe itself using caG-
rid standard service metadata. When a grid service is connected to the caBIG grid, it registers its
availability and service metadata with a central indexing registry service (Index Service). This
service can be thought of as the “yellow pages” and “white pages” of caBIG. A researcher can
then discover services of interest by looking them up in this registry. caGrid 0.5 provides a series
of high-level APIs and user applications for performing this lookup which greatly facilitate the
process.

myGrid Architecture
myGrid is an e-Science research project developing open source high-level middleware to sup-
port in-silico experiments in biology. In-silico experiments use databases and computational ana-
lysis rather than laboratory investigations to test hypothesis. In silico experiments are procedures
using computer based information repositories and computational analysis adopted for testing
hypothesis or to demonstrate known facts. myGrid focuses on data intensive experiments that
combine use of applications and database queries. The user is helped to create workflows (a.k.a.
experiments), sharing and discovering others’ workflows and interacting with the workflows as
they run.

The project’s goal is to provide middleware services as a toolkit to be adopted and used in a
”pick and mix” way by bioinformaticians, tool builders and service providers who in turn pro-
duce the end applications for biologists. The target environment is open, by which it means that
services and their users are decoupled. Services are not just used solely by their publishers but by
users unknown to the service provider, who may use them in unexpected ways.

The my Grid middleware framework employs a service-based architecture, firstly prototyped
with Web Services but with an anticipated migration path to the Open Grid Services Architecture
(OGSA) gives an account of the conversion of two my Grid services to OGSI services. The mid-
dleware services are intended to be collectively or selectively adopted by bioinformaticians, tool

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 15 of 44

builders and service providers who in turn produce the end applications for biologists. Fig-
ure 2.5, “myGrid architecture” shows the layered middleware stack of services.

Figure 2.5. myGrid architecture

The primary services to support routine in silico experiments fall into four categories:

• services that are the tools that will constitute the experiments, that is: specialised services
such as AMBIT text extraction, and external third party services such databases, computa-
tional analysis, simulations etc, wrapped as web services by Soaplab if required;

• services for forming and executing experiments, that is: work#ow management services, in-
formation management services, and distributed database query processing;

• semantic services for discovering services and workflows, and managing metadata, such as:
third party service registries and federated personalised views over those registries, ontolo-
gies and ontology management;

• services for supporting the e-Science scientific method and best practice found at the bench
but often neglected at the workstation, specifically: provenance management and change no-

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 16 of 44

tification.

The final layer (e) constitutes the applications and application services that use some or all of the
services described above.

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 17 of 44

3. ACGT Initial Architecture
Layering is one of the most popular architectural design pattern. It structures software, so it can
be decomposed into groups of subtasks such that each group of subtasks is at a particular level of
abstraction. It also helps to split responsibilities of the different groups of components in the sys-
tem. At first layered architecture were used to divide application presentation features from ap-
plication logic and database access (three-tier model). The highest level layer in that model is
used as an interface for the end user that translates tasks and results to somethingthe user can un-
derstand. Logic Layer coordinates the application, process commands, makes logical decisions.
It also moves and processes data between two surrounding layers. Within Data Layer all the in-
formation required by the application is stored and retrieved from storage databases or filesys-
tem.

Such a classical approach as described above can be used as a reference point for more complex
applications and systems. It is possible to extend basic model by spliting particular layers to ad-
ditional ones depending on the characteristics of the concrete problem. The actual meaning of the
layers also can be result of modelled enviroment.

Nowadays, one of the most important trend in system design is Service Oriented Architecture
(SOA). It defines software infrastructure as a loosely coupled software services to support the re-
quirements of the business processes and software users. In an SOA environment, resources on a
network are made available as independent services that can be accessed without knowledge of
their underlying platform implementation. A service-oriented architecture is not tied to a specific
technology. It may be implemented using a wide range of interoperability standards but the most
important standard in the context of SOA is Web Services. The key issue is that all services that
building some environment are independent from each other, they just publish their interfaces
and that is enough for any other entity in the system to invoke methods means 'use' the service.

Architecture proposed for the ACGT system is based on two described briefly in previous para-
graphs approaches. Components of the system are splinted into four abstract layers to group
functionality depending on 'distance' from physical resources, and level of abstractions they op-
erate on. The proposed layers are (Figure 3.1, “ACGT Architecture - overview”):

• Hardware Layer

• Common Grid Infrastructure Layer

• Advanced Grid Middleware

• ACGT Business Process (Model) Services

• User Access Layer

Comparing to classical three-tier model there are two additional layer that are very important
from Grid technology perspective.

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 18 of 44

Despite the fact that services are placed in some abstraction layers, within one layer (and also
from neighbouring layers) they are building kind of service-oriented environment. So it is pos-
sible to present those services in a context of the Service Oriented Architecture. As the SOA re-
quires the services are lously coupled, very well defined, by their interfaces descriptions, can be
managed separately. The very important feature of the SOA is a dynamism - the services can be
added (and removed) to the environment in dynamic manner. On the other hand howewer it is
necessary to define initial set of services based on user requirements analysis.

Figure 3.1. ACGT Architecture - overview

Hardware Layer
It is the lowest level layer in the ACGT system architecture. It consists of physical resources
scattered throughout the Europe, connected using some network infrastructure. There are two
main types of resources: computational nodes and data nodes: storage system or databases.

ACGT activity which affect this layer will be reduced to administration of machines which are
the part of the testbed. There can be also some work required in case of creation and support of
new database.

Common Grid Infrastructure
All the resources from Hardware Layer should be accessed remotely in as much unified way as
possible. Common Grid Infrastructure is responsible for providing mechanisms for remote access
to resources in a "grid" way.

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 19 of 44

Components from that layer located (installed) on individual resources and provides remote ac-
cess to it (and only it) in a context of concrete functionality. This layer should provide following
functionalities:

• job execution an control

• file transfer

• data bases access

• monitoring sensors

• resource information providers

For ACGT purposes, already existing technologies can be used. The most probable solution is
Globus Toolkit which comprises all required components for building common grid infrastruc-
ture. Some additional development can be done in context of access to specific data sources.

Most of the scenarios in ACGT are focused on date integration, so remote access to distributed
data sources is the most important technological challenge.

Advanced Grid Middleware
Advanced Grid Middleware is a layer responsible for providing more advanced mechanisms in
the Grid environment. Services from this layer can be described as "collective" because they op-
erate on set of lower level services, to realize more advanced actions - eg. metascheduling ser-
vice that submits jobs to different local queuing systems.

The same way as previous one, this layer will be built using existing software. Solution which is
considered is Gridge Toolkit, that provide following functionality:

• metascheduling

• data management (on file level)

• services authorization

• grid monitoring

• mobile user support

Some additional components will be required for distributed access to heterogeneous data
sources (databases) - OGSA-DAI technology is considered.

Adding new components to this layer there should be a requirement or recommendation that it

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 20 of 44

should be implemented in compliant technology - web services.

ACGT Business Processes Services
This layer consists of components which are not aware of physical resources and Grid environ-
ment. Grid is used as a whole, to perform more abstract actions, and to get information required
by end user. Services of this layer are using abstract description of world defined as some onto-
logy. There are also services that are able to translate high level description to language under-
standable by lower layer (Grid) . It provides higher level integration of different resources and
data and makes them more similar to real word objects.

It is possible do define following functionality for Business Processes Services:

• ontology description provisioning

• execution and control of workflows

• translation of abstract object to resources names

• translation of abstract actions to grid calls

• virtual organization management

• knowledge discovery

• biomedical algorithms

Services of this layer are specific for ACGT environment, so it will not be possible to use exist-
ing ones very often. Most services of this layer will be developed by ACGT and most of the res-
ults of development process will land on this layer.

User Access and High Level Interoperability
Layer
The layer gathers all application and tools that provide access to the ACGT Environment for end
user. There can be a wide variety of software, developed using different technology:

• portals

• standalone applications

• clients dedicated to specific operation

• workflows editors

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 21 of 44

• visualization tools

Client applications are in the most cases tightly connected to functionality provided by underlay-
ing layer. They are also going to be used by different but specific groups of users. Thus it would
be difficult to use general tool but there will be need to create dedicated application. These two
arguments are showing that User Access Layer will be mostly developed by ACGT.

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 22 of 44

4. Layered Architecture Consequences
Using layering as a architectural design pattern for ACGT brings some consequences to the
shape of the system. One of the important ones are restrictions in communication between layers
- components from layer N can only call components from layer N - 1 (below) and can be ac-
cessed by elements from layer N +1 (above). In some cases such restrictions are too strong thats
why it is possible to weaken it by using two mechanisms:

• Denoting that some layer can access more that one layers below

A good example showing that case is specialized client portal that can communicate directly
with grid metascheduler to perform job submission. But we should be aware that by perform-
ing such an action it is required to talk in a language understandable directly by metasched-
uler - can not use abstractions of Business Process Services.

Figure 4.1. Architecture modification - first option

• Adding additional vertical layer that crosses all horizontal layers (e.g. security mechanisms
that should be present in all layers)

The example of this case is security infrastructure, that should be consistant and present on
each layer. The other possibility is some registry service used for indexing services from dif-
ferent layers

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 23 of 44

Figure 4.2. Architecture modification - second option

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 24 of 44

5. Components
During requirements analysis some functional components were identified. Some of them came
from end users needs, and the others are important from the point of view of grid infrastructure
building. Yellow color on picture below denotes services that need to be developed by ACGT
consortium by themselves.

Figure 5.1. ACGT components in the context of architecture

Common Grid Infrastructure
Most of the components of this layer come from Globus Toolkit. The newest version of Globus
Toolkit (GT4) is the candidate to be used for the ACGT project. Globus is the well known stand-
ard for building Grid environments. The toolkit includes software for security, information infra-
structure, resource management, data management, communication, fault detection, and portabil-
ity. It is packaged as a set of components that can be used either independently or together to de-
velop applications.

Following GT4 components are the most important:

• GRAM

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 25 of 44

Grid Resource Allocation Management (GRAM) is a component of the Globus Toolkit re-
sponsible for job execution. Grid computing resources are typically operated under the con-
trol of a scheduler which implements allocation and prioritization policies while optimizing
the execution of all submitted jobs for efficiency and performance. GRAM is not a resource
scheduler, but rather a protocol engine for communicating with a range of different local re-
source schedulers using a standard message format. Rather than consisting of a monolithic
solution, GRAM is based on a component architecture at both the protocol and software im-
plementation levels. This component approach serves as an ideal which shapes the imple-
mentation as well as the abstract design and features.

There are two implementation of GRAM service: "web services and "pre-web services" Unix
server suite to submit, monitor, and cancel jobs on Grid computing resources. Both systems
are known under the moniker "GRAM", while "WS GRAM" refers only to the web service
implementation.

Job management with GRAM makes use of multiple types of service:

• Job management services represent, monitor, and control the overall job life cycle. These
services are the job-management specific software provided by the GRAM solution.

• File transfer services support staging of files into and out of compute resources. GRAM
makes use of these existing services rather than providing redundant solutions; WS
GRAM has further refactored some file transfer mechanisms present in pre-web service
GRAM.

• Credential management services are used to control the delegation of rights among dis-
tributed elements of the GRAM architecture based on users' application requirements.
Again, GRAM makes use of more general infrastructure rather than providing a redund-
ant solution, and WS GRAM has continued this refactoring to better separate credential
management at the protocol level.

For WS GRAM, the Globus Toolkit software development environment, and particularly
WSRF core, is used to implement distributed communications and service state. For pre-web
service GRAM, the "gatekeeper" daemon and GSI library are used for communications and
service dispatch.

WS GRAM utilizes WSRF functionality to provide for authentication of job management re-
quests as well as to protect job requests from malicious interference, while pre-web service
GRAM uses GSI and secure sockets directly. The use of GRAM does not reduce the ability
for system administrators to control access to their computing resources. The use of GRAM
also does not reduce the safety of jobs users run on a given computing resource. To protect
users from each other, jobs are executed in appropriate local security contexts, e.g. under spe-
cific Unix user IDs based on details of the job request and authorization policies. Addition-
ally, GRAM mechanisms used to interact with the local resource are design to minimize the
privileges required and to minimize the risks of service malfunction or compromise. A client
may delegate some of its rights to GRAM services in order to facilitate the above functions,
e.g. rights for GRAM to access data on a remote storage element as part of the job execution.

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 26 of 44

Additionally, the client may delegate rights for use by the job process itself. With pre-web
service GRAM, these two uses of rights are inseparable, while WS GRAM provides separate
control for each purpose (while still allowing rights to be shared if that is desired).

WS GRAM provides an "at most once" job submission semantics. A client is able to check
for and possibly resubmit jobs, in order to account for transient communication errors
without risk of running more than one copy of the job. Similarly, pre-web service GRAM
provides a two-phase submission mechanism to submit and then commit a job to be run.
While many jobs are allowed to run to their natural completion, GRAM provides a mechan-
ism for clients to cancel (abort) their jobs at any point in the job life cycle.

WS GRAM provides for reliable, high-performance transfers of files between the compute
resource and external (gridftp) data storage elements before and after the job execution. Pre-
web service GRAM can also stage with gridftp systems but with less flexible reliable-transfer
logic driving its requests. GRAM supports a mechanism for incrementally transferring output
file contents from the computation resource while the job is running. WS GRAM uses a new
mechanism to allow arbitrary numbers of files to be transferred in this fashion, while pre-web
service GRAM only supports incremental transfer of the job's standard output and error
streams.

• MDS

The Monitoring and Discovery System (MDS) is a suite of web services to monitor and dis-
cover resources and services on Grids. This system allows users to discover what resources
are considered part of a Virtual Organization (VO) and to monitor those resources. MDS ser-
vices provide query and subscription interfaces to arbitrarily detailed resource data and a trig-
ger interface that can be configured to take action when pre-configured trouble conditions are
met. The services included in the WS MDS implementation (MDS4), provided with the Glo-
bus Toolkit 4, acquire their information through an extensible interface which can be used to:
query WSRF services for resource property information, execute a program to acquire data,
or interface with third-party monitoring systems.

Grid computing resources and services can advertise a large amount of data for many differ-
ent use cases. MDS4 was specifically designed to address the needs of a Grid monitoring sys-
tem – one that publishes data that is available to multiple people at multiple sites. As such, it
is not an event handling system, like NetLogger, or a cluster monitor on its own, but can in-
terface to more detailed monitoring systems and archives, and can publish summary data us-
ing standard interfaces.

MDS4 includes two WSRF-based services: an Index Service, which collects data from vari-
ous sources and provides a query/subscription interface to that data, and a Trigger Service,
which collects data from various sources and can be configured to take action based on that
data. An Archive Service, which will provide access to historic data, is planned for a future
release. The Index Service is a registry similar to UDDI, but much more flexible. Indexes
collect information and publish that information as resource properties. Clients use the stand-
ard WSRF resource property query and subscription/notification interfaces to retrieve in-
formation from an Index. Indexes can register to each other in a hierarchical fashion in order

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 27 of 44

to aggregate data at several levels. Indexes are “self-cleaning”; each Index entry has a life-
time and will be removed from the Index if it is not refreshed before it expires. Each Globus
container that has MDS4 installed will automatically have a default Index Service instance.
By default, any GRAM, RFT, or CAS service running in that container will register itself to
the container’s default Index Service. The Trigger Service collects information and compares
that data against a set of conditions defined in a configuration file. When a condition is met,
or triggered, an action takes place, such as emailing a system administrator when the disk
space on a server reaches a threshold.

In addition to the services described above, MDS4 includes several additional software com-
ponents, including an Aggregator Framework, which provides a unified mechanism used by
the Index and Trigger services to collect data. The Aggregator Framework is a software
framework used to build services that collect and aggregate data. Services (such as the Index
and Trigger services) built on the Aggregator Framework are sometimes called aggregator
services, and have the following in common:

• They collect information via Aggregator Sources. An Aggregator Source is a Java class
that implements an interface (defined as part of the Aggregator Framework) to collect
XML-formatted data

• They use a common configuration mechanism to maintain information about which Ag-
gregator Source to use and its associated parameters (which generally specify what data
to get, and from where). The Aggregator Framework WSDL defines an [aggregating ser-
vice group entry type] that holds both configuration information and data. Administrative
client programs use standard [WSRF Service Group registration mechanisms] to register
these service group entries to the aggregator service.

• They are self-cleaning – each registration has a lifetime; if a registration expires without
being refreshed, it and its associated data are removed from the server.

MDS4 includes the following three Aggregator Sources:

• the Query Aggregator Source, which polls a WSRF service for resource property inform-
ation,

• the Subscription Aggregator Source, which collect data from a WSRF service via WSRF
subscription/notification,

• the Execution Aggregator Source, which executes an administrator-supplied program to
collect information.

Depending on the implementation, an Aggregator Source may use an external software com-
ponent (for example, the Execution Aggregator Source uses an executable program), or a
WSRF service may use an external component to create and update its resource properties
(which may then be registered to an Index or other aggregator service, using the Query or
Subscription Aggregator Source). This set of components are refered to as Information Pro-
viders. Currently, MDS4 includes the following sources of information: Hawkeye Informa-
tion Provider, Ganglia Information Provider, WS GRAM, Reliable File Transfer Service

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 28 of 44

(RFT), Community Authorization Service (CAS) , any other WSRF service that publishes re-
source properties

• RFT

RFT is a Web Services Resource Framework (WSRF) compliant web service that provides
“job scheduler"-like functionality for data movement. You simply provide a list of source
and destination URLs (including directories or file globs) and then the service writes your job
description into a database and then moves the files on your behalf. Once the service has
taken your job request, interactions with it are similar to any job scheduler. Service methods
are provided for querying the transfer status, or you may use standard WSRF tools (also
provided in the Globus Toolkit) to subscribe for notifications of state change events. The
provided service implementation is installed in a web services container (like all web ser-
vices) and a very simple client. There are Java classes available for custom development, but
due to lack of time and resources, work is still needed to make this easier.

• GridFTP

GridFTP is a high-performance, secure, reliable data transfer protocol optimized for high-
bandwidth wide-area networks. The GridFTP protocol is based on FTP, the highly-popular
Internet file transfer protocol. A set of protocol features and extensions defined already in
IETF RFCs was selected and added a few additional features to meet requirements from cur-
rent data grid projects.

GridFTP functionality includes some features that are supported by FTP extensions that have
already been standardized (RFC 959) but are seldom implemented in current systems. Other
features are new extensions to FTP.

• Grid Security Infrastructure and Kerberos support: Robust and flexible authentication, in-
tegrity, and confidentiality features are critical when transferring or accessing files. Grid-
FTP must support GSI and Kerberos authentication, with user controlled setting of vari-
ous levels of data integrity and/or confidentiality. GridFTP implements the authentication
mechanisms defined by RFC 2228, “FTP Security Extensions”.

• Third-party control of data transfer: To manage large datasets for distributed communit-
ies, authenticated third-party control of data transfers between storage servers must be
provided. A third-party operation allows a user or application at one site to initiate, mon-
itor and control a data transfer operation between two other sites: the source and destina-
tion for the data transfer. Our implementation adds Generic Security Services (GSS)-API
authentication to the existing third-party transfer capability defined in the FTP standard.

• Parallel data transfer: On wide-area links, using multiple TCP streams in parallel (even
between the same source and destination) can improve aggregate bandwidth over using a
single TCP stream. GridFTP supports parallel data transfer through FTP command exten-
sions and data channel extensions.

• Striped data transfer: Data may be striped or interleaved across multiple servers, as in a
DPSS network disk cache. GridFTP includes extensions that initiate striped transfers,

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 29 of 44

which use multiple TCP streams to transfer data that is partitioned among multiple serv-
ers. Striped transfers provide further bandwidth improvements over those achieved with
parallel transfers. The GridFTP protocol extensions was defined to support striped data
transfers.

• Partial file transfer: Some applications can benefit from transferring portions of files
rather than complete files: for example, high-energy physics analyses that require access
to relatively small subsets of massive, object-oriented physics database files. The best
that the standard FTP protocol allows is transfer of the remainder of a file starting at a
particular offset. GridFTP provides commands to support transfers of arbitrary subsets or
regions of a file.

• Automatic negotiation of TCP buffer/window sizes: Using optimal settings for TCP buf-
fer/window sizes can dramatically improve data transfer performance. However, manu-
ally setting TCP buffer/window sizes is an error-prone process (particularly for non-
experts) and is often simply not done. GridFTP extends the standard FTP command set
and data channel protocol to support both manual setting and automatic negotiation of
TCP buffer sizes for large files and for large sets of small files.

• Support for reliable and restartable data transfer: Reliable transfer is important for many
applications that manage data. Fault recovery methods are needed to handle failures such
as transient network and server outages. The FTP standard includes basic features for re-
starting failed transfers that are not widely implemented. GridFTP exploits these features
and extends them to cover the new data channel protocol.

Advanced Grid Middleware
The components of this layer are serving more advanced mechanisms in The Grid. They can be
called collective services because they operate on many lower level resources. In most cases they
are not required for the environment but they increase quality of service and can serve more ad-
vanced scenarios for the Grids.

The important part of the components of this layer is taken from Gridge Toolkit. Gridge Toolkit
is an internal PSNC open source software initiative aimed to help users to deploy ready-to-use
grid middleware services and create productive Grid infrastructures. All Gridge Toolkit software
components have been integrated together and form a consistent distributed system following the
same interface specification rules, license, quality assurance and testing.

Gridge tools and services enable applications to take advantage of dynamically changing grid en-
vironment. These tools have ability to deliver dynamic or utility computing to both, the applica-
tion users and developers and resource owners. Through supporting the shared, pooled and dy-
namically allocated resources and services, managed by automated, policy-based Grid Resource
Management System (GRMS) that interfaces with such services as Mercury monitoring system,
adaptive component services, data and replica management services and others, the Gridge offers
the state of the art dynamic grid features to applications. Gridge technology can be used by vari-
ous kinds of businesses, including vendors, but also financial companies, service organizations

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 30 of 44

etc.

• Gridge Resource Management System (GRMS)

The Gridge Resource Management System (GRMS) is an open source meta-scheduling sys-
tem, which allows developers to build and deploy resource management systems for large
scale distributed computing infrastructures. The GRMS, based on dynamic resource selec-
tion, mapping and advanced scheduling methodology, combined with feedback control archi-
tecture, deals with dynamic Grid environment and resource management challenges, e.g.
load-balancing among clusters, remote job control or file staging support. Therefore, the
main goal of the GRMS is to manage the whole process of remote job submission to various
batch queuing systems, clusters or resources. It has been designed as an independent core
component for resource management processes which can take advantage of various low-
level Core Services and existing technologies. Finally, the GRMS can be considered as a ro-
bust system which provides abstraction of the complex grid infrastructure as well as a tool-
box which helps to form and adapts to distributing computing environments.

The GRMS is a central point for all resource and job management activities an tightly co-
operates with other services: authorization, information systems, monitoring, data manage-
ment to fulfill applications requirements. The main features of the GRMS are:

• job submission

• job control (suspending, resuming, canceling)

• ability to chose “the best” resource for the job execution using multicriteria matching al-
gorithm

• support for the job checkpointing and migration

• support for file staging

• storing all information about the job execution

• user notifications support

• workflow jobs support

The GRMS has been designed as an independent set of components for resource manage-
ment processes which can take advantage of various low-level Core Services, e.g. GRAM,
GridFTP and Gridge Monitoring System, as well as various grid middleware services, e.g.
Gridge Authorization Service, Gridge Data Management Service. All these services working
together provide a consistent, adaptive and robust grid middleware layer which fits dynamic-
ally to many different distributing computing infrastructures. The GRMS implementation re-
quires Globus software to be installed on grid resources, and uses Globus Core Services de-
ployed on resources: GRAM, GridFtp, MDS (optional). The GRMS supports Grid Security
Infrastructure by providing the GSI-enabled web service interface for all clients, e.g. portals
or applications, and thus can be integrated with any other middleware grid environment.

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 31 of 44

One of the main assumptions for the GRMS is to perform remote jobs control and manage-
ment in the way that satisfies Users (Job Owners) and their applications requirements. All
users requirements are expressed within XML-based resource specification documents and
sent to the GRMS as SOAP requests over GSI transport layer connections. Simultaneously,
Resource Administrators (Resource Owners) have full control over resources on which all
jobs and operations will be performed by appropriate GRMS setup and installation. Note,
that the GRMS together with Core Services reduces operational and integration costs for Ad-
ministrators by enabling grid deployment across previously incompatible cluster and re-
sources. Technically speaking, the GRMS is a persistent service within a Tomcat/Axis con-
tainer. It is written completely in Java so it can be deployed on various platforms.

GRMS supports Grid Security Infrastructure by providing GSI-enabled Web Service inter-
faces and in fact acts on behalf of end users. The communication between the GRMS service
and all clients is done through a GSI-enabled HTTP-based protocol called httpg implement-
ing transport-level security introduced by Globus community. With the GAS, GRMS is able
to manage both, job grouping and jobs within collaborative environments according to pre-
defined VO security rules and policies. With the Data Management services from Gridge,
GRMS can create and move logical files/catalogs and deal with data intensive experiments.
Gridge Monitoring Service can be used by GRMS as an additional information system. Fi-
nally, Mobile service can be used to send notifications via SMS/emails about events related
to users’ jobs and as a gateway for GRMS mobile clients.

GRMS is able to store all operations in a database. Based on this information a set of very
useful statistics for both end users and administrators can be produced. All the data are also a
source for further, more advanced analysis and reporting tools. All users preferences and job
requirements must be expressed as XML-based resource specification documents, called
GRMS Job Description. Once such a request is sent, each job within GRMS receives a
unique ID and the whole process of job scheduling and control begins.

• Gridge Authorization Service (GAS)

The Gridge Authorization Service (GAS) is an authorization system which can be the stand-
ard decision point for all components of a system. Security policies for all system compon-
ents are stored in GAS. Using these policies GAS can return an authorization decision upon
the client request. GAS has been designed in such a way that it is easy to perform integration
with external components and it is easy to manage security policies for complex systems.
The possibility to integrate with the Globus Toolkit and many operating system components
makes GAS an attractive solution for grid applications.

Generally, an authorization service can be used for returning an authorization decision upon
the user request. The request has to be described by three attributes: user, object and opera-
tion. The requester simply asks if the specific user can perform the operation on the specific
object. Obviously, the query to an authorization service can be more complex and the answer
given by such service can be complicated, too. One of the services which can work in such
scenario is the Gridge Authorization Service (GAS). GAS has been designed in a form which
enables many possible applications. GAS can communicate in many ways with other com-
ponents. By using the modular structure of GAS it is easy to write a completely new commu-

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 32 of 44

nication module. The GAS complex data structure can be used to model many abstract and
real world objects and security policies for such objects. For example, GAS has been used for
managing security policies: for many Virtual Organizations, for services (like Gridge Re-
source Management Service, iGrid, Mobile Services and other) and for abstract objects like
communicator conferences or computational centers. These and many other features give a
possibility to integrate GAS with many existing solutions. Such integration can be very im-
portant, because it raises the security level of the existing solutions and makes it possible to
use the newest security technologies.

The main goal of GAS is to provide a functionality that would be able to fulfill most author-
ization requirements of grid computing environments. GAS is designed as a trusted single lo-
gical point for defining security policy for complex grid infrastructures. As flexibility is the
key requirement, it is to be able to implement various security scenarios, based on push or
pull models, simultaneously. Secondly, GAS is considered as independent of specific techno-
logies used at lower layers, and it should be fully usable in environments based on grid
toolkits as well as other toolkits. The high level of flexibility is achieved mainly through the
modular design of GAS and usage of a complex data structure which can model many scen-
arios and objects from the real world. It means that GAS can use many different ways for
communication with external components and systems, use many security data models and
hold security policy on different types of storage systems. These features make GAS attract-
ive for many applications and solutions (not only for those related with grids). GAS has to be
the trusted component of each system in which it is used and it brings about that the imple-
mentation of GAS was written in ANSI C. This choice makes GAS a very fast and stable
component which uses not much CPU power and little amount of memory. The main prob-
lem of many authorization systems is their management. It is not easy to work with a com-
plex system in a user-friendly way. Based on many experiences and the end user comments
together with GAS, the GAS administration portlet (web application) is provided, which
makes management as easy as possible. Flexibility of this solution gives users a full possibil-
ity of presenting only these security policies which are important for them. The GAS man-
agement is possible in two other ways: by the GUI GTK client and by the command line cli-
ent.

• Gridge Data Management System (GDMS)

Data storage, management and access in Gridge environment is supported by the Gridge Data
Management Suite (DMS). This suite composed of several specialized components allows to
build a distributed system of services capable of delivering mechanisms for seamless man-
agement of large amount of data. This distributed system is based on the pattern of autonom-
ic agents using the accessible network infrastructure for mutual communication. From the ex-
ternal applications point of view DMS is a virtual file system keeping the data organized in a
tree structure. The main units of this structure are metadirectories, which enable to put a hier-
archy over other objects and metafiles. Metafiles represent a logical view of computational
data regardless of their physical storage location.

Data Management System consists of three logical layers: the Data Broker, which serves as
the access interface to the DMS system and implement the brokering of storage resources,
the Metadata Repository that keeps information about the data managed by the system, and

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 33 of 44

the Data Container, which is responsible for the physical storage of data. In addition, DMS
contains modules which extend its functionality to fulfill the enterprise requirements. These
include the fully functional web based administrator interface and a Proxy to external sci-
entific databases. The Proxy provides a SOAP interface to the external databases, such as for
example those provided by SRS (Sequence Retrieval System).

The Data Broker is designed as an access point to the data resources and data management
services. A simple API of the Data Broker allows to easily access the functionality of the ser-
vices and the stored data. The Data Broker acts as a mediator in the flow of all requests com-
ing from external services, analyzes them and eventually passes to the relevant module. The
DMS architecture assumes that multiple instances of the Data Broker can be deployed in the
same environment, thus increasing the efficiency of data access from various points in the
global Grid environment structure.

The Metadata Repository is the central element of the Gridge distributed data management
solution. It is responsible for all metadata operations as well as their storage and mainten-
ance. It manages metadata connected with the data files, their physical locations and transfer
protocols that could be used to obtain them, with the access rights to the stored data and with
the metadescriptions of the file contents. Currently each DMS installation must contain a
single instance of the Metadata Repository, which acts as a central repository of the critical
information about the metacatalogue structure, user data and security policy for the whole
DMS installation.

The Data Container is a service specialized towards the management of physical data loca-
tions on the storage resources. The Data Container API is designed in a way to allow easy
construction and participation in the distributed data management environment of storage
containers for different storage environments. The Data Containers currently available in the
DMS suite include a generic file system Data Container, a relational database Data Container
and a tape archiver Data Container. The data stored on the various storage resources can be
accessed with one of the many available protocols including such as GASS, FTP and Grid-
FTP.

The Proxy modules are services that join the functionality of the Metadata Repository allow-
ing to list the available databanks, list their content, read the attached metadata attributes and
to build and execute queries, and of the Data Container to provide the data using the selected
data transfer protocol. Such Proxy container are highly customized towards the specific plat-
form they are working with to allow building complex queries and executing operations on
the found entries.

• Grid Monitoring - Mercury

The Mercury Grid Monitoring System has been developed within the GridLab project. It
provides a general and extensible Grid monitoring infrastructure. Mercury Monitor is de-
signed to satisfy specific requirements of Grid performance monitoring: it provides monitor-
ing data represented as metrics via both pull and push model data access semantics and also
supports steering by controls. It supports monitoring of Grid entities such as resources and
applications in a generic, extensible and scalable way.

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 34 of 44

The Mercury Monitoring is designed to satisfy requirements of Grid performance monitor-
ing: it provides monitoring data represented as metrics via both pull and push access se-
mantics and also supports steering by controls. It supports monitoring of Grid entities such as
resources and applications in a generic, extensible and scalable way. It is implemented in a
modular way with emphasis on simplicity, efficiency, portability and low intrusiveness on
the monitored system.

The aim of the Mercury Monitoring system is to support the advanced scenarios in Grid en-
vironment, such as application steering, self-tuning applications and performance analysis
and prediction. To achieve this the general GGF GMA architecture is extended with actuators
and controls. Actuators are analogous to sensors in the GGF GMA but instead of gathering
information, they implement controls and provide a way to influence the system.

The architecture of Mercury Monitor is based on the Grid Monitoring Architecture (GMA)
proposed by Global Grid Forum (GGF), and implemented in a modular way with emphasis
on simplicity, efficiency, portability and low intrusiveness on the monitored system.

The input of the monitoring system consists of measurements generated by sensors. Sensors
are controlled by producers that can transfer measurements to consumers when requested.

Sensors are controlled by producers that can transfer measurements to consumers when re-
quested. Sensors are implemented as shared objects that are dynamically loaded into the pro-
ducer at run-time depending on configuration and incoming requests for different measure-
ments.

In Mercury all measurable quantities are represented as metrics. Metrics are defined by a
unique name such as host.cpu.user which identifies the metric definition, a list of formal
parameters and a data type. By providing actual values for the formal parameters a metric in-
stance can be created representing an entity to be monitored. A measurement corresponding
to a metric instance is called metric value.

Metric values contain a time-stamp and the measured data according to the data type of the
metric definition. Sensor modules implement the measurement of one or more metrics. Mer-
cury Monitor supports both event-like (i.e. an external event is needed to produce a metric
value) and continuous metrics (i.e. a measurement is possible whenever a consumer requests
it such as, the CPU temperature in a host).

Continuous metrics can be made event-like by requesting automatic periodic measurements.
In addition to the functionality proposed in the GMA document, Mercury also supports actu-
ators.

Actuators are analogous to sensors but instead of taking measurements of metrics they imple-
ment controls that represent interactions with either the monitored entities or the monitoring
system itself. In addition to all mentioned features Mercury facilitates steering.

• Mobile User Services

Mobile software development in Gridge is focused on providing a set of applications that

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 35 of 44

would enable communication between Mobile devices, such as cell phones, Personal Digital
Assistants (PDA) or laptops and Grid Services on the other side. This class of applications is
represented by clients running on mobile devices, mobile gateways acting as a bridge
between clients and Grid services as well as additional specialized middleware services for
mobile users.

The main goal of the services is to make use of small and flexible mobile devices that are in-
creasingly used for web access to various remote resources. The system provides Grid access
mechanisms for such devices. This requires adoption of the existing access technologies like
portals for low bandwidth connectivity and low level end-user hardware. The mobile nature
of such devices also requires flexible session management and data synchronization. The sys-
tem enhances the scope of present Grid environments to the emerging mobile domain. Utiliz-
ing new higher bandwidth mobile interconnects, very useful and previously impossible scen-
arios of distributed and collaborative computing can be realized. To achieve this and taking
into consideration some still existing constraints of mobile devices, the Access for Mobile
Users group is developing a set of applications in the client-server model with the J2ME
CLDC/MIDP- java client, and portlet server working with GridSphere. This set allow us to
manage end user Grid jobs (steer an application) or view messages and visualizations pro-
duced by Grid applications on device such simple as standard mobile phone. The second
group of developed services is tightly connected with end user notifications about various
events in Grids. Events like: the information about user application is started or finished, the
visualization is ready for viewing or waiting for new data, can be send to end users using
various notifications way. It can be Email, SMS, MMS, or message of one of Internet Com-
municators like AIM, Yahoo, ICQ, Jabber etc. (including most popular in Poland Gadu-Gadu
and Tlen).

Mobile services gives also end users possibility to start a conference concerning aforemen-
tioned event between users of given virtual organization (including conferences between cli-
ents of different communicators).

The unique possibility of giving access to Grid resources for users of relatively weak devices
is one of features that distinguish Gridge mobile applications from other Grid systems.
Moreover, the used technology, Java 2 Micro Edition – Mobile Information Device Profile
(J2ME-MIDP) applications (midlets) on the client side allows to develop flexible, possibly
off-line working programs that may be used on a wide range of devices supporting J2ME.
Using the MIDP compliant device internal repository for storing data, gives the user possibil-
ity to use it later in offline state and prepare the data, to be sent in on-line state.

The Mobile Command Center (MCC) that acts as a gateway between mobile client and Grid
services is developed in Java as a GridSphere portlet (see Gridsphere.org) with separate
”mobile” context. MCC automatically grabs the device profile (like device class, screen size,
color depth, etc), this information is used during forwarding the request from mobile device
to Grid services (mainly GSI-enabled Web Services like Gridge MessageBox, Visualization
Service for Mobiles or Gridge Resource Management System). Services that can be accessed
from mobile device using MCC belong to two groups: the first group consists of Grid ser-
vices that were adopted to use with mobile devices, the second group are services developed
for use only with mobile devices. The Visualization Service for Mobiles belong to second

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 36 of 44

group and is used to view the application output in form of visualization prepared exactly ac-
cording to the User’s device capabilities. The advantage in this case is as follows: the large
amount of data is not sent via weak GPRS connections to the device that cannot store it in the
memory and cannot display it correctly. First group of services consists of Gridge Resource
Management System and Notification and Messenger Service. The first service can be used
in ’Collaborative scenario’ - the user can steer the application (even not being an owner)
from mobile device. He/she can get the jobs list, migrate, resume, suspend, cancel, edit, view
history and submit new job on the basis of edited/modified description of already finished
jobs. Using GRMS together with Notification service the user can register for user notifica-
tions related to the running jobs. In this way the user is notified about important events oc-
curring in the Grid (like jobs status changes, application output availability). These notifica-
tions can be send as Email,SMS and Internet Communicator (AIM, Yahoo etc) messages to
the user. Using the Messenger Service it is possible also to make a conference between users
of Virtual Organization defined in Gridge Authorization Service even if they use different
communicators.

• OGSA-DAI

OGSA-DAI is a middleware product which allows data resources, such as relational or XML
databases, to be exposed on to Grids. Various interfaces are provided and many popular data-
base management systems are supported. The software also includes a collection of compon-
ents for querying, transforming and delivering data in different ways, and a simple toolkit for
developing client applications. OGSA-DAI is designed to be extensible, so users can add
their own additional functionality.

The architecture of OGSA-DAI consists of a five layers each serving a different purpose. The
lowest layer is Data Layer. It consists of the data resources that can be exposed via OGSA-
DAI. Currently these include:

• Relational databases such as MySQL, SQL Server, DB2, Oracle, PostgreSQL,

• XML databases such as eXist, Xindice

• Files and directories in formats such as OMIM, SWISSPROT and EMBL

Business Logic Layer layer encapsulates the core functionality of OGSA-DAI. It consists of
components known as data service resources. Multiple data service resources can be de-
ployed to expose multiple data resources. There is a 1-1 relationship between data service re-
sources and data resources. The responsibilities of a data service resource include:

• Execution of perform documents - a perform document describes the actions that a data
service resource should to take on behalf of the client. Each action is known as an activ-
ity. OGSA-DAI already includes a large number of activities for performing common op-
erations such as database queries, data transformations and data delivery.

• Generation of response documents - a response document describes the status of execu-
tion of a perform document and may contain result data, such as the results from a data-
base query.

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 37 of 44

• Data resource access - interactions with data resources take place via the data resource
accessor component.

• Data transport functionality - data can be streamed in and out of data service resources to
and from clients and other data service resources.

• Session management - the creation, access and termination of session objects allowing
state to be stored across multiple requests to the data service resource. All perform docu-
ment requests are processed within a session. Sessions are also used for storing the
streams used by the data transport functionality. These are known as session streams.

• Property management - the creation, access and removal of properties associated with the
data service resource. These are known as data service resource properties and are gener-
ally used for exposing meta-data such as the status of a request or the schema of the un-
derlying data resource.

Presentation Layer encapsulates the functionality required to expose data service resources
using web service interfaces. OGSA-DAI includes two realisations, one compliant with WS-
RF and the other compliant with WSI (that is a solution that only relies on the specifications
mentioned in the WS-I basic profile, i.e. that do not use WSRF).

A client can interact with a data service resource via a corresponding data service. Depending
on whether a WSRF or WSI data service has been deployed, the client application must be
compliant with the WSRF or WSI standards.

ACGT Business Processes Services
Components located on that layer should operate in terminology understandable by end users:
biologists, clinicians, bioinformaticians. Their role should be: to take care about specific users re-
quests, to translate users requests to specific operation on grid environment (computation, data
retrieval)

• Semantic Mediator

The basic role of the Mediator within the ACGT environment is to provide ACGT users/tools
with a powerful mechanisms for retrieving data from integrated database systems (originally
distributed and heterogeneous).

During last years, advances in biomedical studies and related areas have led to an over-
whelming increase in the number and size of databases in such topic. Researchers usually
must analyse each of those databases in order to successfully conduct their experiments. Fur-
thermore, each database may offer specific query interfaces, forcing the researcher to learn
its details.

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 38 of 44

Figure 5.2. Role of the Mediator

Semantic mediation deals with this problem. It aims at offering a seamless and homogeneous
to heterogeneous and distributed data sources. This accomplished by offering users a unique
query interface which allows accessing several distributed databases in a transparent manner.

In order to accomplish this, the Mediator must deal with to major tasks:

• Solving schema level inconsistencies: this means that different database schemas must be
unified into a single schema. For example, two column may refer to the same concept,
but be differently named.

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 39 of 44

• Solving Instance level inconsistencies: this means that the same data may be differently
expressed in two databases. For example, two different identifiers could refer to the same
instance of a concept, of different units could be used in the same measure.

The Mediator will provide ACGT users and tools with a data gathering from distributed and
heterogeneous sources. It will also provide the necessary query interfaces and visualization
models. The query interface to be offered to end users must be simple enough for clinicians
to use, and admit some complex queries. Discussions are already ongoing to define the re-
quirements for the query language to be implemented. The Mediator will offer services to
KDD tools, therefore an API must be provided. There is a proposal of wrapping the tool with
Web-Services, thus taking advantage of its high compatibility and ease of use. There must
also be an agreement on the format of returned results. Probably, XML language will be used
in this aspect.

The Mediator will be right on top of data access mechanisms. This will be in charge of
providing wrappers, which will offer seamless access to different kinds of data sources.
Therefore a common query language will be offered. SQL or an adaptation of it will probably
be chosen.

• Master Ontology Service

The role of Master Ontology Service should be to describe the world used by end users and
provide a mapping between terms and physical resources in the Grid environment. That func-
tionality makes it one of the most important points of integration in the project

• Workflow Manager

Workflow Manager is a component responsible for execution and management of workflows
defined by end user and submitted to ACGT environment.

• Knowledge Discovery Tools

The role of Knowledge Discovery (KD) Tools is to provide a set of operators to analyse
clinico-genomic data, which can be connected into a KD workflow using a workflow editor.
Provides operators for data visualization, transformation, modeling, and for organizing and
optimizing workflow (Note: this concerns only the KID part of the workflow)

• ACGT Analytical Services

Analytical Services in ACGT environment are specialized services providing some precise
functionality for end user (data processing, data transformation). The services should be de-
veloped according to some methodology and using uniform technology (eg. web services).
They will need to be easily discovered and invoked. To achieve that goal interfaces should be
well defined and strongly typed operating on terms defined in common meta data repository.

• VO Management Service

The service responsible for creation and management of virtual organization for ACGT con-

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 40 of 44

sortium. It should provide means for adding new users, for managing roles of users in the
system, and relationships between users.

User Access Layer
It is rather difficult to point out any particular component form this layer because there will be
variety of different tools and client application placed here. Some of them will be for general use,
and there will be a lot specialized clients for specific tasks. One of possible generic application
could be workflow editor for creation and submission complicated tasks.

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 41 of 44

6. ACGT System Vision - Example
In this section simple scenario is presented. The intention is to provide a overview how a particu-
lar components will be cooperating to provide required functionality. Presented scenario is based
on one described i D2.1 deliverable: "User requirements and specification of the ACGT internal
clinical trial". The scenario is called "In-silico modeling of tumor response to therapy" (scenario
SC5). Example presented here is a simplified version of that scenario, showing some basic inter-
actions between different ACGT components placed in context of introduced architecture.

Figure 6.1. Simple scenario

The idea of the presented scenario is to do some computation on the Grid in a transparent way
using different data sources for computation. At first user constructs a request to the ACGT Sys-
tem as a workflow of separated tasks, using client application with nice GUI. The workflow is
described using vocabulary familiar to the user and defined in the ACGT Business Processes
Layer. Such kind of description goes to the Workflow Engine responsible for managing the exe-
cution of the user request. The first step of the workflow is to retrieve some data that will then be
used for computational job. The Workflow Engine (WE) calls the Semantic Mediator (SM) mod-
ule and asks for required data. The SM using knowledge contained in the Master Ontology for-
mulates query to the Grid Layer. Some Data Wrapper is used between physical database and a
Grid Service. As soon as data is retrieved the WE prepares description for metascheduler
(GRMS) to perform computation in the Grid environment. GRMS takes care of whole process of
computation: chooses "the best" machine, prepares execution environment by transferring input
data, and collect output data generated by job to make them available by upper layers. After the
computational job is done, the WE notifies end user about the results.

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 42 of 44

The idea of the presented scenario is not to provide detailed information about interactions
among particular components. The most important issue is to visualize differences between lay-
ers in architecture - level of abstraction on layers.

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 43 of 44

References
[GRIDGE] Gridge home page. http://www.gridge.org/.

[GLOBUS] Globus Toolkit home page. http://www.globus.org/.

[INTELI] InteliGrid project home page. http://www.inteligrid.com/.

[CABIG] caBIG home page. https://cabig.nci.nih.gov/.

[MYGRID] MyGrid home page. http://www.mygrid.org.uk/.

[DATAM] DataMiningGrid home page. http://www.datamininggrid.org/.

ACGT D3.1 - The ACGT Initial Architecture

21/11/2006 Page 44 of 44

http://www.gridge.org/
http://www.globus.org/
http://www.inteligrid.com/
https://cabig.nci.nih.gov/
http://www.mygrid.org.uk/
http://www.datamininggrid.org/

