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Abstract— Point-process linear models of stride intervals
have been recently proven to provide a unique characteri-
zation of human gait dynamics through instantaneous time
domain features. In this study we propose novel instanta-
neous measures characterizing nonlinear gait dynamics using
a quadratic autoregressive inhomogeneous point-process model
recently devised for the instantaneous assessment of physio-
logical, natural, and physical discrete dynamical systems. Our
mathematical framework accounts for long-term information
given by the past events of non-stationary non-Gaussian time
series, expressed by a Laguerre expansion of the Wiener-
Volterra terms. Here, we present a study of gait variability
from data gathered from physionet.org, including 15 record-
ings from young and elderly healthy volunteers, and patients
with Parkinson’s disease. Results show that our instantaneous
polyspectral characterization provides an informative tracking
of the inherent nonlinear dynamics of human gait, which is
significantly affected by aging and locomotor disabilities.

I. INTRODUCTION

The study of gait dynamics has provided important infor-
mation on the physiology of human gait and on the locomotor
control system, as well as objective measurement of mobility
and functional status [1]. Indeed, dysfunctions of the neural
control of locomotion, aging, and chronic diseases seriously
affect gait variability [2], [3]. For instance, it has been shown
that gait variability dramatically increases in patients with
Parkinson’s disease (PD) and Huntington’s disease [2].

Recently, using linear statistical modeling, we demon-
strated the intuitive point-process nature of human gait
dynamics [4]. Each stride, in fact, can be represented by
a sequence of events, and the stochastic series uncertainty
refers to the timing of such events. Because the process
can be seen as a sequence of zeros (absence of events)
and ones (presence of events), this series can be effectively
studied using the mathematical formulation given by point
process theory [5]–[10]. The intrinsic probabilistic structure
of each stride event generation is defined as function of the
previous strides. As the probability function of a stride event
is defined at each moment in time, point-process modeling
allows to continuously characterize the discrete dynamics
in an instantaneous fashion. Goodness-of-fit measures are
also provided via a Kolmogorov-Smirnov (KS) test derived
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from the time-rescaling theorem [5]. Other successful ap-
plications of the point process methodology concern a very
wide range of phenomena such as earthquake occurrences
[11], traffic modeling [12], neural spiking activity [13],
human heartbeats dynamics [5]–[9], [14]. Preliminary point-
process applications to gait variability have allowed us to
define instantaneous measures of stride dynamics [4]. As a
step forward, we now investigate nonlinear gait dynamics.
Several studies, in fact, demonstrated that stride pace is
the result of complex neural and somato-motor activities
generating moment-to- moment oscillations with significant
nonlinear and fractal properties [15]–[17]. As a matter of
fact, nonlinear measures such as multifractal indices [16],
[17] and Lyapunov exponents [15] have been revealed as
powerful quantifiers of gait dynamics. Accordingly, the aim
of this study is related to the application of nonlinear point-
process models for the estimation of gait nonlinear dynamics
and extraction of novel instantaneous measures. We took
advantage from our recent work in which we defined a
novel inhomogeneous point-process framework endorsed by
second-order nonlinear autoregressive terms, allowing for
instantaneous estimation of the signal polyspectra, such as
the dynamic bispectrum and trispectrum [6], [8], [9]. This
nonlinear framework includes long-term memory capability
through the Laguerre expansions of the Wiener-Volterra
kernels [6], [7], [9], [18]. The orthonormal basis of the
discrete-time Laguerre functions expands the kernels and
reduces the number of unknown parameters that need to be
estimated.

Here, we present four mathematical formulations specifi-
cally tailored for modeling gait dynamics: a quadratic Non-
linear fully Autoregressive (NAR) model, and a NAR model
with Laguerre expansion of kernels (NARL), along with
their two linear counterparts (AR and ARL, respectively).
Remarkably, using the NAR and NARL models it is pos-
sible to define novel instantaneous quantifiers such as the
polyspectral power of the stride variability. Experimental
results are obtained by applying all four models to data of
stride times (available on PhysioNet [19]) gathered from 15
recordings from young and elderly healthy volunteers, and
patients with Parkinson’s disease.

II. METHODOLOGY OF STATISTICAL SIGNAL
PROCESSING

Let us consider the expectation of the Taylor expansion
of a general NAR model formulation driven by independent,
identically distributed Gaussian random variables with zero
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mean [6]:

E[y(k)] = γ0 +

M∑
i=1

γ1(i) y(k − i) +

∞∑
n=2

M∑
i1=1

· · ·
M∑
in=1

γn(i1, . . . , in)

n∏
j=1

y(k − ij) . (1)

Given the autoregressive structure of eq. 1, the system can
be identified with only exact knowledge of the output data.
This formulation can be embedded into the point-process
framework and used to model the first order moment of the
inter-event probability of the locomotor systems considering
nonlinear terms up to the second order, i.e. γ0, γ1(i),
and γ2(i, j). In order to reduce the number of unknown
parameters that need be estimated in eq. 1, it is possible to
expand the linear and nonlinear terms by using the Laguerre
functions [18]:

φj(k) = α
k−j
2 (1− α)

1
2

j∑
i=0

(−1)i
(
k

i

)(
j

i

)
αj−i(1− α)i

where φj is the jth-order discrete time orthonormal Laguerre
function with k ≥ 0, and α is the discrete-time Laguerre
parameter (0 < α < 1) which determines the rate of
exponential asymptotic decline of these functions.

A. Point-Process Model of Gait Nonlinear Dynamics

Given a single event E and the events set {uj}Jj=1 detected
from the stochastic time series, EEj = uj−uj−1 > 0 denotes
the jth E-E interval within the an observation interval t ∈
(0, T ] [6]. Assuming history dependence and an inverse
Gaussian probability distribution of the waiting time t−uj
until the next E, it is possible to write:

f(t|Ht, ξ(t)) =

[
ξ0(t)

2π(t− uj)3

] 1
2

× exp

{
−1

2

ξ0(t)[t− uj − µEE(t,Ht, ξ(t))]2

µEE(t,Ht, ξ(t))2(t− uj)

}
(2)

with j = Ñ(t) the index of the previous event
before time t and Ñ(t) the left continuous sam-
ple path of the associated counting process, Ht =
(uj ,EEj ,EEj−1, ...,EEj−M+1),ξ(t) the vector of the time-
varying parameters, µEE(t,Ht, ξ(t)) the first-moment statis-
tic (mean) of the distribution, and ξ0(t) > 0 the shape pa-
rameter of the inverse Gaussian distribution. As f(t|Ht, ξ(t))
indicates the probability of having an event at time t given
that a previous event has occurred at uj and µEE(t,Ht, ξ(t))
can be interpreted as signifying the most probable moment
when the next event is likely to occur.

B. Linear and Nonlinear Modeling of µEE(t,Ht, ξ(t))

In this study, we define two nonlinear models, along
with their two linear counterparts, by characterizing the
mean of the IG probability function within the point-process
framework. The four models are defined as follows:

• The NAR model with degree of nonlinearity 2 as
follows:

µEE(t,Ht, ξ(t)) = EEÑ(t) +

p∑
i=1

γ1(i, t) ∆EEÑ(t)−i

+ γ0 +

q∑
i=1

q∑
j=1

γ2(i, j, t) ∆EEÑ(t)−i ∆EEÑ(t)−j (3)

where ∆EEÑ(t)−i = EEÑ(t)−i − EEÑ(t)−i−1.
• The AR linear model is defined considering only terms

up to the first order in the eq. 3.
• The NARL formulation, i.e. a NAR using also the

Laguerre expansion of the Wiener-Volterra terms, is as
follows:

µEE(t,Ht, ξ(t)) = EEÑ(t)+g0(t)+

p∑
i=0

g1(i, t) li(t
−)+

q∑
i=0

q∑
j=0

g2(i, j, t) li(t
−) lj(t

−) . (4)

where li(t
−) =

∑Ñ(t)
n=1 φi(n)(EEÑ(t)−n −

EEÑ(t)−n−1) is the output of the Laguerre filters
just before time t. Note that the Laguerre expansion of
the g0,{g1(i)}, and {g2(i, j)} allows to retain all the
past information of the series, even with a finite degree
of nonlinearities.

• The ARL linear model is defined considering only terms
up to the first order in eq. 4.

Of note, in all formulations we have considered the
derivative E-E series in order to improve stationarity
within the sliding time window W , and we have chosen
W = 90 sec. in all cases [6], [8]. Because µEE(t,Ht, ξ(t))
is defined in continuous time, it is possible to obtain
instantaneous estimates at very fine, arbitrary timescales,
without interpolation between the arrival times of two events.
Given a local observation interval (t − l, t] of duration l,
we find the unknown time-varying parameter vector ξ(t) =
[ξ0(t), g0(t), g1(0, t), ..., g1(p, t), g2(0, 0, t), ..., g2(i, j, t)].
that maximizes the local log-likelihood through the well-
known Newton-Raphson procedure [5], [6]. The recursive,
causal nature of the estimation allows to predict each
new observation given the previous history. The model
and all its parameters are therefore also updated at each
iteration without priors. We determine the optimal order
{p, q} based on the Akaike Information Criterion and
the model goodness-of-fit (obtained by prefitting the
model to a subset of the data), which is based on the
Kolmogorov-Smirnov (KS) test and associated KS statistics
[5], [6]. Autocorrelation plots are also considered to test the
independence of the model-transformed intervals [5]. Once
the order {p, q} is determined, the initial NARL coefficients
are estimated by the method of least squares [5], [6].

C. Novel Quantitative Tools of Gait Dynamics: Linear and
Nonlinear Variance from Instantaneous Polyspectra

In order to provide quantitative tools related to polyspec-
tra representations, it is necessary to link the NAR and
NARL models to the traditional input-output Wiener-Volterra
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model [6], [8]. The transformation between eq. 3 and the
input-output Wiener-Volterra model can be performed in the
frequency domain by using the following general relation-
ship [6] between the Fourier transforms of the input-output
Volterra kernels of order p, Hp(f1, . . . , fn), to be estimated
and the Fourier transforms of the extended NAR terms,
Γ′1(f1) and Γ′2(f1, f2) [6]:

q∑
p=mid(q)

∑
σ∈σq

Hp(fσ(1), ..., fσ(r), ωσ(r+1)+

fσ(r+2), ..., fσ(q−1) + fσ(q))× Γ′1(fσ(1)) · · ·Γ′1(fσ(r))

× Γ′2(fσ(r+1), fσ(r+2)) · · ·Γ′2(fσ(q−1), fσ(q)) = 0 (5)

where q is a given integer representing the kernel order,
mid(q) = dq/2e, r = 2p − q and σq is the permutation
set of Nq .

As quantitative dynamical features, in this study we con-
sider the instantaneous estimation of the first and second
order moments (µEE and σEE), the spectral power Q(t), and
the bispectral power B(t). The spectral power is derived from
the time-varying linear autospectrum computed as:

Q(t) =

ˆ
f

2(1− cos(ω))Sxx(f, t)H1(f, t)H1(−f, t)

− 3

2π

ˆ
H3(f, f2,−f2, t)Sxx(f2, t)df2 (6)

where Sxx(f, t) = σ2
EE.

The bispectral power is derived by the dynamical Bis-
pectrum as reported in [6] by integrating |B(f1, f2)| in the
appropriate triangular region of non-redundancy.

III. EXPERIMENTAL DATA AND RESULTS

We tested the performance of our linear and nonlinear
point process models in experimental datasets (from Phys-
ionet.org) comprised of ∼300 consecutive strides gathered
from 15 subjects: 5 healthy young (age 23-29), 5 healthy
elderly (age 60-77), and 5 PD patients (age 71-77) [19]. In
these datasets, gait data (i.e., stride time intervals such that
each event E is represented by a stride) was recorded via an
ultra-thin force-sensitive switch placed in the insole of the
right shoe while subjects walked around a large oval track
(>160 m), and logged via a recorder strapped to the right
ankle [19].

Exemplary plots of the stride times, gait variability, his-
tograms, first and second order NARL terms, as well as the
bispectra, are shown in Fig. 1. All data were processed in
order to evaluate the KS statistics and perform a further
comparison between the four models. KS distance values
from all of the subjects and for each model are reported
in Table I. This analysis revealed more emphasized gait
nonlinear dynamics in both elderly subjects and PD patients.
In young subjects, in fact, linear models provided the best
fitting performance on all subjects, whereas the nonlinear
models provided significantly lower KS distances on the
other two groups.

Then, we tested if our indices (i.e. the first
(µEEGAIT

(t,Ht, ξ(t))) and second moment order (σEEGAIT
),

as well as the spectral (Q(t)) and bispectral (B(t)) power)
were able to uniquely chracterize each of the three groups
(i.e. Young, Elderly, PD) . All the features were extracted

TABLE I KS DISTANCES FROM THE YOUNG, ELDERLY, AND PD
SUBJECTS DATASETS USING POINT-PROCESS LINEAR AND NONLINEAR

MODELS.

YOUNG NARL NAR ARL AR
Subj 1 0.0439 0.0676 0.0459 0.0350
Subj 2 0.0343 0.0349 0.0272 0.0214
Subj 3 0.0257 0.0380 0.0238 0.0213
Subj 4 0.0389 0.0528 0.0296 0.0411
Subj 5 0.0371 0.0466 0.0248 0.0379

ELDERLY NARL NAR ARL AR
Subj 1 0.0205 0.0461 0.0301 0.0250
Subj 2 0.0395 0.0333 0.0468 0.0341
Subj 3 0.0241 0.0426 0.0280 0.0359
Subj 4 0.0171 0.0218 0.0235 0.0233
Subj 5 0.0164 0.0326 0.0228 0.0291

PD NARL NAR ARL AR
Subj 1 0.0524 0.0515 0.0969 0.0671
Subj 2 0.0416 0.05312 0.0744 0.0704
Subj 3 0.0469 0.0373 0.0574 0.0487
Subj 4 0.0976 0.1313 0.1199 0.1245
Subj 5 0.0617 0.1259 0.0790 0.0993

Bold values indicate the best result fit.

TABLE II KS DISTANCES FROM THE YOUNG, ELDERLY, AND PD
SUBJECTS DATASETS USING POINT-PROCESS LINEAR AND NONLINEAR

MODELS.

Young Elderly PD

µEE(ms) 1113.5 ± 69.3 1032.7 ± 75.7 1132.3 ± 105.5
σEE (ms2) ∗ 267.58 ± 27.12 204.23 ± 32.48 2343.0 ±1025.6

Q(t)∗ 255.22 ± 32.58 172.40 ± 30.20 2962.9 ± 1749.9
(Low) (Low) (High)

B(t)∗ 186.16 ± 31.66 33.48 ± 2.56 145.06 ± 37.46
(High) (Low) (High)

∗ p < 0.05 from non-parametric Kruskall-Wallis test with null hypothesis
of equal medians

from the NARL point-process model and were averaged
for each recording. Results, obtained through the Kruskall-
Wallis test with null hypothesis of equal medians, are shown
in Table II and expressed as Median(X) ± MAD(X),
where MAD(X) = Median(|X − Median(X)|). We
found that no statistical difference was associated to the
µEEGAIT

(t,Ht, ξ(t)) feature exclusively, whereas the other
three NARL features were associated to a p < 0.01.
In particular, a further post-hoc analysis through the
Mann-Whitney non-parametric test revealed that the second
moment order σEEGAIT

and the spectral power Q(t)
resulted significantly higher in patients with PD than young
and elderly subjects (p < 0.03), whereas the bispectral
power B(t) resulted significantly lower in elderly subjects
than young subjects and PD (p < 0.01). Therefore, all
three groups are unequivocally identified. The PD group
is identified by high spectral and bispectral powers, the
Elderly group by low spectral and bispectral powers, and
the Young group by low spectral and high bispectral powers
(see Table II).

IV. CONCLUSION AND DISCUSSIONS

In this study, we test the applicability of the NAR and
NARL inhomogeneous point-process models to human gate
data. By extending the previous point process methodological
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Fig. 1. Plots related (from the left) a gait of a young person and gait of
an elderly person. (from the top) In the first panel, the estimated NARL
µ(t), shown in blue, is superimposed on the recorded series (red asterisks).
Below, the histograms, the first and the second order NARL terms, and
the bispectra are shown. On the bottom, the KS distance values for the
considered nonlinear models, i.e. NARL and NAR, are reported.

approach based on linear modeling [4], we investigate gait
nonlinear dynamics in young and elderly subjects, as well
as in PD patients. Our nonlinear probabilistic framework
inherits all the advantages of the previous linear models
[5] and, thanks to the novel fully nonlinear autoregressive
formulation, is able to provide a novel nonlinear charac-
terization through estimates of polyspectra. Of note, these
features cannot be simply computed as the Fourier transform
of the second and high-order input-output transfer functions,
because they also embed higher-order nonlinear feedbacks
[6], [9], [14].

In the presented application, we demonstrate that nonlinear
models provide a better description of gait dynamics in
elderly subjects and patients with PD, whereas a linear
structure is more prevalent in young subjects (see Tables I),
possibly reflecting stronger and healthier control mechanisms
of locomotion. In addition, we have been able to univocally
discern the short walkings gathered from Young, Elderly and
PD. In particular, PD patients are defined by highest spectral
power, Elderly subjects by highest bispectral power, whereas
only a combination of spectral and bispectral power is able to
separate young subjects from both Elderly and PD (see Table
II). The presented novel instantaneous features of gait non-
linear dynamics can open interesting avenues to explore the
dynamics of human gait in real-time, including correlations

with other behavioral and physiological measures, possibly in
a clinical scenario. Future work focuses on the application of
other time-varying nonlinear and complexity measures (e.g.
entropy), also applied to different groups of subjects and
patients with locomotor disabilities.

REFERENCES

[1] J. M. Hausdorff, “Gait dynamics, fractals and falls: finding meaning in
the stride-to-stride fluctuations of human walking,” Human movement
science, vol. 26, no. 4, pp. 555–589, 2007.

[2] J. M. Hausdorff, M. E. Cudkowicz, R. Firtion, J. Y. Wei, and A. L.
Goldberger, “Gait variability and basal ganglia disorders: Stride-to-
stride variations of gait cycle timing in parkinson’s disease and
huntington’s disease,” Movement disorders, vol. 13, no. 3, pp. 428–
437, 1998.

[3] J. D. Schaafsma, N. Giladi, Y. Balash, A. L. Bartels, T. Gurevich, and
J. M. Hausdorff, “Gait dynamics in parkinson’s disease: relationship
to parkinsonian features, falls and response to levodopa,” Journal of
the neurological sciences, vol. 212, no. 1, pp. 47–53, 2003.

[4] R. J. Ellis, L. Citi, and R. Barbieri, “A point process approach for
analyzing gait variability dynamics,” in Engineering in Medicine and
Biology Society, EMBC, 2011 Annual International Conference of the
IEEE. IEEE, 2011, pp. 1648–1651.

[5] R. Barbieri, E. Matten, A. Alabi, and E. Brown, “A point-process
model of human heartbeat intervals: new definitions of heart rate
and heart rate variability,” American Journal of Physiology-Heart and
Circulatory Physiology, vol. 288, no. 1, p. H424, 2005.

[6] G. Valenza, L. Citi, E. Scilingo, and R. Barbieri, “Point-process
nonlinear models with laguerre and volterra expansions: Instantaneous
assessment of heartbeat dynamics,” Signal Processing, IEEE Transac-
tions On, vol. 61, no. 11, pp. 2914–2926, 2013.

[7] L. Citi, G. Valenza, and R. Barbieri, “Instantaneous estimation of
high-order nonlinear heartbeat dynamics by lyapunov exponents,” in
Engineering in Medicine and Biology Society (EMBC), 2012 Annual
International Conference of the IEEE. IEEE, 2012, pp. 13–16.

[8] G. Valenza, L. Citi, E. Scilingo, and R. Barbieri, “Instantaneous
bispectral characterization of the autonomic nervous system through
a point-process nonlinear model,” in World Congress on Medical
Physics and Biomedical Engineering May 26-31, 2012, Beijing, China.
Springer, 2013, pp. 530–533.

[9] ——, “Using laguerre expansion within point-process models of
heartbeat dynamics: A comparative study,” in Proceedings of IEEE-
EMBC. IEEE, 2012.

[10] G. Valenza, L. Citi, and R. Barbieri, “Instantaneous nonlinear assess-
ment of complex cardiovascular dynamics by laguerre-volterra point
process models,” in Proceedings of IEEE-EMBC. IEEE, 2013.

[11] Y. Ogata, “Space-time point-process models for earthquake occur-
rences,” Annals of the Institute of Statistical Mathematics, vol. 50,
no. 2, pp. 379–402, 1998.

[12] A. Horváth and M. Telek, “A markovian point process exhibiting
multifractal behaviour and its application to traffic modeling,” in Proc.
of the Fourth International Conference on Matrix-Analytic Methods in
Stochastic Models. World Scientific: Singapore, 2002, pp. 183–208.

[13] R. Barbieri, L. Frank, D. Nguyen, M. Quirk, V. Solo, M. Wilson,
and E. Brown, “Dynamic analyses of information encoding in neural
ensembles,” Neural Computation, vol. 16, no. 2, pp. 277–307, 2004.

[14] G. Valenza, L. Citi, A. Lanata, E. Scilingo, and R. Barbieri, “A non-
linear heartbeat dynamics model approach for personalized emotion
recognition,” in Proceeding of IEEE-EMBC. IEEE, 2013, pp. 2579–
2582.

[15] U. H. Buzzi, N. Stergiou, M. J. Kurz, P. A. Hageman, and J. Heidel,
“Nonlinear dynamics indicates aging affects variability during gait,”
Clinical Biomechanics, vol. 18, no. 5, pp. 435–443, 2003.

[16] B. J. West and N. Scafetta, “Nonlinear dynamical model of human
gait,” Physical Review E, vol. 67, no. 5, p. 051917, 2003.

[17] J. M. Hausdorff, P. L. Purdon, C. Peng, Z. Ladin, J. Y. Wei, and
A. L. Goldberger, “Fractal dynamics of human gait: stability of long-
range correlations in stride interval fluctuations,” Journal of Applied
Physiology, vol. 80, no. 5, pp. 1448–1457, 1996.

[18] V. Marmarelis, “Identification of nonlinear biological system using
laguerre expansions of kernels,” Ann. Biomed. Eng., vol. 21, pp. 573–
589, 1993.

[19] J. Hausdorff et al., “Gait in aging and disease database,” Online at
http://physionet.org/physiobank/database/gaitdb/, Physionet Database.

6976


