
  

Figure 1: A) Planer manipulandum with horizontal display, B) 
Representative trajectories for a typical subject reaching to six 
target directions (green circles),  C) Maximum perpendicular error 
(shown with white lines) is calculated as the distance between the 
cursor position (blue line) and an ideal straight-line path. 
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Abstract— Manipulation of error feedback has been of great 
interest to recent studies in motor control and rehabilitation. 
Typically, motor adaptation is shown as a change in 
performance with a single scalar metric for each trial, yet such 
an approach might overlook details about how error evolves 
through the movement. We believe that statistical distributions 
of movement error through the extent of the trajectory can 
reveal unique patterns of adaption and possibly reveal clues to 
how the motor system processes information about error. This 
paper describes different possible ordinate domains, focusing 
on representations in time and state-space, used to quantify 
reaching errors. We hypothesized that the domain with the 
lowest amount of variability would lead to a predictive model of 
reaching error with the highest accuracy. Here we showed that 
errors represented in a time domain demonstrate the least 
variance and allow for the highest predictive model of reaching 
errors. These predictive models will give rise to more 
specialized methods of robotic feedback and improve previous 
techniques of error augmentation. 

I. INTRODUCTION 

Error feedback is critical for supporting motor adaptation 
in rehabilitation, sports, piloting, and skilled manual tasks 
[1, 2]. During goal-directed movements, predictions of 
sensory outcomes are compared with feedback errors in 
order to updated subsequent motor plans. Researchers have 
proposed that in order to compensate for a visual-motor 
rotation, an internal model is used to compare the desired 
goal with a motor plan. Error is calculated by comparing the 
goal trajectory and motor output, allowing for either online 
or trial-to-trial corrections [3-5]. This process involves many 
areas of the brain including the cerebellum, anterior 
cingulate cortex, and basal ganglia [6]. While error 
information in the human nervous system is clearly essential, 
little is known about their statistical properties or how they 
might be related to the learning process. 

During motor adaptation, feedback errors are commonly 
classified into three categories:  absolute error (the absolute 
deviation from a target), constant error (movement bias of 
the subject), and variable error (movement variability) [7]. 
To measure performance change of a subject across trials, 
many studies use a scalar metric to represent the absolute 
error from each trajectory (e.g. maximum perpendicular 
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error or initial offset angle). While such metrics effectively 
indicate changes in absolute error or any subject-specific 
constant error, they do not fully characterize variable errors. 
We believe that the variability in error, i.e. those occurring 
throughout the entire trajectory can reveal additional insight 
as to how the executed motor plan varies from trial to trial. 
Recent work by Wu et al. also suggests that movement 
variability is a key marker in the ability of the subject to 
learn, where there is greater learning as a result of a larger 
extent of exploration in the error space [8].  

Many studies have demonstrated the occurrence of error-
based learning, yet it is unclear what representation of error 
is most relevant to the motor system. Conditt et al. suggests 
that adaptation to a dynamic force environment involves an 
internal representation of the structure of the field [9]. 
Hudson and Landy suggest that movement representations 
consist of both position and vector coding, where each one 
uses different aspects of sensory feedback [10]. 
Generalization studies can also provide some insight as to 
how these errors our processed, where subjects experience a 
variation of a learned skill at new target locations, different 
speeds, or hand configurations. Goodbody and Wolpert 
found that generalization of learning a novel dynamically 
environment (such as a force field) was best when the force 
field was represented in state-space [11]. What is not yet 
known is how to best describe error, particularly which 
domain, or metric representation, should be used to most 
reliably predict error tendencies.   

Recent work by Huang and Patton showed how 
distribution analysis during free exploration can be used to 
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identify patterns of deficit for stroke survivor subjects that  

might not be explained with analyzing velocity or hand-
position alone [12]. This approach provides a subject-
specific picture of individual movement tendencies. One 
obvious speculation is whether individuals also produce 
unique profiles in the space of errors. Here, we performed a 
similar distribution analysis on error in targeted reaching 
movements. We focused on whether the error distributions 
were best characterized in either position or time domains.  
While there might be infinite possible coding mechanisms of 
error, we entertained versions of those most commonly used 
such as time or state-space (path length, distance along x-
axis, distance to origin, and distance to target). As a first 
attempt at characterizing how the variability in error is 
represented across an entire trajectory, we compared the 
mean and standard deviations of perpendicular error across 
each ordinate domain. We hypothesized that errors 
represented in time would be the least variable and allow for 
the best predictive models of error distributions.  

II. METHODS 

A. Human Subjects 
Subject data was analyzed from a previous experiment in 

which 9 healthy subjects were intermittently exposed to a 
30° visual feedback rotation while holding a planar 
manipulandum with a horizontal display (Fig. 1A). Subjects 
were instructed to reach from the center position to 6 target 
directions (Fig. 1B) and received feedback (colored targets) 
pertaining to their movement speed once they hit the target 
where yellow was too slow, red was too fast, and green was 
within the ideal velocity range. During the intermittent 
exposure phase, subjects experienced rotated visual 
feedback 1 in 7 trials, during the learning phase subjects 
experienced rotated visual feedback continuously with catch 
trials (brief removal of the distortion) every 1 in 7 trials.  All 
participants provided informed consent in accordance with 
Northwestern University Institutional Review Board. 
Participants were aged 21-40 (Mean age of 25 ± 3). Position 
of the robot cursor and handle were recorded at 500 Hz. 

B. Ordinate Domains 
Ordinate domains were defined to be the dependent 

measure for the sequence of error calculations. Since we 
were unsure what type of space ordinate to use, we further 
divided space into two candidate representations: Path 
length was determined as the Euclidian distance between the 
current and previous sample (representative of the distance 
along the actual trajectory). To calculate distance along x-
axis, trajectories were rotated to align with the x-axis and the 
distance was determined to be the respective change along 
the horizontal axis (representative of the distance along the 
intended trajectory).   

C. Mean and Variability of Movement Error 
For each trajectory, perpendicular error was measured as 

the distance from cursor position to the corresponding point 
along the ideal straight-line path (Fig. 1C). Perpendicular 

errors were then graphed with respect to time, path length, 
and distance along x-axis. The mean and standard deviation 
of perpendicular error were  determined at each sample and 
fit with a 5th order polynomial to produce a smooth, 
continuous representation of error across the trajectory for 
each ordinate (Fig. 2). Confidence intervals were calculated 
across subjects for all proposed ordinate domains using a 
significance level of 0.05 (Fig. 3).  

D. Predictive Model of Error 
A Gaussian distribution was used to represent the 

magnitude and range of perpendicular error (e) at each 
sample, calculated with time (t) or path length (d), using Eq. 
1 and Eq. 2 respectively,  using continuous functions of 
mean (𝜇) and standard deviation of error (𝜎). The Gaussian 
function was scaled by a value, a, such that the integral of 
each Gaussian in time and space was equal to 1; likewise, 
the sum of the frequency of error occurring at each point in 
time and space was equal to 1.  

 

𝑃!""#" 𝑡 = 𝑎(𝑡) ∗ exp  (− !!!(!) !

!!(!)!
)    (Eq-1) 

𝑃!""#" 𝑑 = 𝑎(𝑑) ∗ exp  (− !!!(!) !
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)  (Eq-2) 

 

 Histograms showing the density of perpendicular error vs. 
time and perpendicular error vs. path length were calculated 
using a 50 x 50 grid. A model predicting the probability of 
error was constructed for each subject as a function of time 
and distance from origin spanning the same range as the raw 
data (Fig. 4). 

E. Model Goodness of Fit 
 The coefficient of determination (R2) was calculated to 
test how well the prediction of reaching errors (modeled 
using a Gaussian distribution for at each ordinate sample) 
explained the experimental data for a given reach. We 
performed two-way within-subject repeated measures 
ANOVA with factors being the ordinate domain and phase.    
 

III. RESULTS 

Variability in Error 
Changes in mean perpendicular error and standard 

deviation of perpendicular error were detected between 
intermittent exposure, early learning and late learning (Fig. 

Figure 2: Examples of trajectories of perpendicular error from a typical 
subject’s center-out reaching movements during intermittent exposure 
(left), beginning of learning (center) and late in learning (right) were 
computed in terms of several ordinates, shown here with respect to path 
length. While the mean errors (magenta) exhibit evidence of learning 
across trials, the standard deviation (blue lines) successfully captures 
the trial-to-trial variation of error. 
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Figure 4: Histogram shows distribution of perpendicular errors 
during a reaching movement (left) and model predictions of error 
(right) during intermittent exposure to a visual rotation based on 
ordinates of A) time, B) distance along x-axis, and C) path length for 
a typical subject.  
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2) for the three proposed ordinates—time, path length, and 
distance along x-axis.  
 The distribution of mean perpendicular error across 
subjects (Fig. 3A) showed significantly different locations of 
peak error, where peak occurred at 33±3% of task 
completion for time, and 59±3% and 57±4% for path length 
and distance along x-axis respectively. These trends were 
consistent across all experimental phases tested.  

 The peak location of standard deviation of perpendicular 
error across subjects (Fig. 3B) was significantly different 
between time, path length, and distance along x-axis during 
intermittent exposure, early learning, and late learning. The 
overall variability was less for time as compared to path 
length (p=0.0105) and distance along x-axis (p=0.0018) 
during intermittent exposure. We found no significant 
difference in overall variability between ordinates during 
early learning and late learning.  
 
Predictability of error 
 We calculated the coefficient of determination (R2) 
between the probabilistic error model and the experimental 
data (Fig. 4, Fig. 5) for three proposed ordinate domains. 
Using a 2-factor within subject repeated measures ANOVA, 
we found significant differences between the three proposed 
ordain across phases (p=0.0458) and between ordinates 
(p=0.0042). Further post-hoc analysis using paired t-tests 
(with Bonferroni corrections for 9 possible comparisons) 
showed significantly different R2 values between ordinates 
of time and distance along x-axis during intermittent 
exposure and early learning (p=0.0057, p=0.0468) and 
significantly different R2 values between ordinates of path 

length and distance-along x-axis during intermittent 
exposure and early learning (p= 2.28 e-04, p= 0.0291).  

IV. DISCUSSION 

The purpose of this study was to test how variability in 
movement errors was reflected in different ordinate domains. 
We analyzed data from a previous experiment in which 
healthy subjects performed center-out reaching while 
experiencing a 30° rotated feedback condition. We examined 
how the distribution of perpendicular error varies based on 
the proposed ordinate domain, primarily focusing on time 
and state-space based ordinates. 

We found that the average perpendicular errors across 
subjects exhibit the same magnitude regardless of ordinate 
domain, though there were differences in peak location. The 
similarity of the maximum values of perpendicular error 
across domains demonstrates how the use of trajectory norms 
is a justified tool for tracking learning in motor control 
studies. However, the difference in peak location further 
motivates the need to investigate in what other ways the 
ordinate domains may differ. It is possible that the 
differences in peak location might be attributed to direct 
relationships between variables, for example between 
position, time, and velocity. However, the trial-to-trial 
variation is not be constrained by such dynamic relationships, 
allowing for peak velocity to occur at any point in time.  

During intermittent exposure, we found that the overall 
variability of error across subjects was lowest for the time 
domain than the two candidate ordinates based in state-space. 
This trend was also true, though not significant, during late 

Figure 3: A) Mean and B) standard deviation of perpendicular error 
for each subject during intermittent exposure (left), early (center) and 
late learning (right) during center-out reaching movements. Mean 
error trajectories exhibit similar magnitudes in terms of time (plotted 
in milliseconds), path length, and distance (plotted as distance), but 
with differences peak location. In contrast, the variability of error in 
terms of time is markedly lower than the other ordinate descriptions 
during intermittent exposure and late learning.  In addition, the peak 
of error variability in time occurs within a lower percentage of task 
completion compared to the ordinates associated with state space. 
Shaded region represents the 95% confidence interval for 9 subjects. 
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Figure 5: Coefficient of determination (R2) values indicate the 
goodness of fit between the proposed error distribution model and 
experimental data for three possible ordinate domains during 
intermittent exposure (left), early learning (center) and late learning 
(right).  Colored points denote individual subjects for each domain 
type, boxes denote subject means. Red bars indicate significant 
difference between pairs after post-hoc corrections.   

learning. During intermittent exposure, where there is high 
error and low variability, time is the least noisy of the 
proposed ordinates. In phases of high variability, such as in 
early learning, it is difficult to discern differences in ordinates 
domain. Further, the variability of error during intermittent 
exposure and late learning appear to be scaled versions of 
each other, possibly suggesting that patterns of variability are 
unique to each phase of learning.  

To demonstrate the effect of how variability in each 
ordinate domain contributes to the predictability of motor 
error distributions, we constructed a simple predictive model 
(Fig. 4) using Gaussian distributions across each ordinate 
domain with the mean and standard deviation of 
perpendicular error (with continuous polynomials for each 
ordinate domain). This modelling approach was able to 
explain approximately 40% of experimental data for each 
phase. The time ordinate domain showed the highest result 
during intermittent exposure. Possible iterations of this 
predictive model would allow for multiple Gaussian 
distributions at each sampling point or use a different 
distribution that does not enforce normality. Since the first 
half of movement has the highest probability, there is also 
possibility that such a model would better describe the 
experimental data if we broke up the trajectory into the 
ballistic phase and subsequent corrective phases.  

It remains uncertain whether multiple domains are used to 
update feedback in order to adapt to a visual-motor 
discrepancy. It is possible that the central nervous system 
could use multiple ordinate frames (including the ones we 
proposed) to update the motor plan or none of them. When 
observing the goodness of fit across phases, the ordinate of 
distance along x-axis had an upward improvement from 
intermittent exposure to late learning (Fig. 5). We believe that 
this ordinate is the most aligned to a state-representation and 
this improvement corresponds to previous evidence that a 
state space representation takes over once learning has 
plateaued [9, 10]. 

Our findings that time offers the best ordinate domain for 
representing errors is in agreement with known constraints in 
sensory-motor control. Because sensory feedback is time-
delayed, the motor system cannot react instantaneously to the 
state of the limb. Accordingly, our suggest results (Fig. 3) 
that during the ballistic phase of goal-directed reaching 
movements errors align in time. If we only consider the feed-
forward motor plan it is also possible that a spatial path is 
generated but is variable in time, Nashner and Berthoz 
showed that movement latencies associated with visual 
feedback is approximately 100 milliseconds, where peak 
error is shown to be with respect to the time domain [13].  

We conclude time to be the most substantive basis for a 
predictive model of performance error, since time-based 
errors demonstrated the least variance (Fig. 3) and led to the 
best fit using our simple modeling approach (Fig. 5). The 
ability to predict movement errors using the variability of 
subjects gives rise to better training techniques that are 
motivated by subjects’ reaching errors, such as error 
augmentation [4].  
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