
Leveraging Intensive Longitudinal Data to Better Understand Health
Behaviors*

Kevin P. Timms1, César A. Martı́n1, Daniel E. Rivera1, Eric B. Hekler2, and William Riley3

Abstract— Behavioral scientists have historically relied on
static modeling methodologies. The rise in mobile and wearable
sensors has made intensive longitudinal data (ILD)—behavioral
data measured frequently over time—increasingly available.
Consequently, analytical frameworks are emerging that seek to
reliably quantify dynamics reflected in these data. Employing an
input-output perspective, dynamical systems models from en-
gineering can characterize time-varying behaviors as processes
of change. Specifically, ILD and parameter estimation routines
from system identification can be leveraged together to offer
parsimonious and quantitative descriptions of dynamic behav-
ioral constructs. The utility of this approach for facilitating
a better understanding of health behaviors is illustrated with
two examples. In the first example, dynamical systems models
are developed for Social Cognitive Theory (SCT), a prominent
concept in behavioral science that considers interrelationships
between personal factors, the environment, and behaviors.
Estimated models are then obtained that explore the role of
SCT in a physical activity intervention. The second example
uses ILD to model day-to-day changes in smoking levels as a
craving-mediated process of behavior change.

I. INTRODUCTION

Historically, accurately quantifying human behavior with
respect to time had met with limited success. This is largely
due to methodological challenges associated with frequent
measurement of behavioral constructs, which helped lead to
behavioral science research’s reliance on tightly controlled
laboratory or clinical settings and correlational epidemio-
logical studies for studying behavior change. As a result,
hypothesized mechanisms of behavior change have largely
emerged from static analyses of cross-sectional data [1].

Recent advances in mobile technologies (e.g., smart
phones) and wearable sensors (e.g., wearable accelerometers)
have facilitated cost-effective collection of what behavioral
scientists call “intensive longitudinal data” (ILD)—frequent
measurements of behavioral constructs (e.g., how long an
individual engages in physical activity, levels of motivation to
engage in physical activity), including continuous-time and
real-time measurement of behaviors [2], [3]. With the rise
in the availability of ILD, behavioral scientists have been
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increasingly pursuing opportunities to better understand how
behaviors and related constructs change over time and how
exogenous variables such as environmental factors and thera-
peutic interventions affect these dynamics. Furthermore, ILD
offers a means to develop richer descriptions of theorized
behavior change mechanisms, which could help validate and
guide revisions to such hypothesized mechanisms.

Contrasting traditional statistical behavioral science meth-
ods, analytical frameworks have recently emerged that are
better suited to model dynamic phenomena captured in ILD.
Methods from engineering offer one such approach for char-
acterizing dynamic behaviors as processes of change [1], [4],
[5]. Specifically, continuous-time differential equation mod-
els that employ an input-output perspective—i.e., dynamical
systems models—are well suited for such analyses. For ex-
ample, recent work estimated low order differential equations
to describe dynamics observed in pain management [4],
smoking cessation [5], and physical activity intervention
[1] studies. The dynamic models developed in these efforts
draw from ILD and parameter estimation routines from
system identification to estimate gains, which quantify the net
response of a behavioral outcome variable (e.g., duration of
daily physical activity, self-reported urge to smoke cigarettes)
to unit changes in input variables (e.g., unit doses of be-
havioral counseling intended to promote healthy behaviors),
time constants, which quantify the speed of the outcome
variable’s response, system zeros, which indicate shape of
response, and more [6], [7]. Employing this approach to
characterize time-varying behaviors benefits from the fact
that system identification routines are reliable and mature,
having been applied within engineering settings for decades
[6], [7], and have been precoded in commercially-available
products such as MATLAB [7], [8]. Furthermore, dynamical
systems models often act as the basis for the design of
control algorithms that seek to automate optimal operation of
industrial systems; the connection to control theory suggests
that incorporating this engineering modeling approach into
behavioral science settings offers the opportunity to develop
novel closed-loop behavioral interventions (see [1], [5] and
articles referencing [4], [9]).

Through two case studies, this article summarizes the
usefulness of dynamical systems modeling and system iden-
tification for leveraging ILD in order to better understand
human behavior change: Section II outlines a dynamical sys-
tems approach for characterizing Social Cognitive Theory—
an influential concept in behavioral science that is based in
learning theory [10]—in the context of a physical activity
intervention (described in detail in [1]); Section III describes
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use of an engineering approach for examining smoking
behavior change and the role of statistical mediation—a
hypothesized mechanism of change commonly studied in the
social and behavioral sciences [11] (described in detail in
[5]); finally, Section IV comments on future research.

II. CASE STUDY I: SOCIAL COGNITIVE THEORY &
PHYSICAL ACTIVITY BEHAVIORS

Growing out of learning theory, Social Cognitive Theory
(SCT) revolves around the idea of triadic reciprocity, which
considers inter-relationships between personal factors (e.g.,
cognition, biology), the environment, and behaviors, seeking
to explain how internal and external factors lead an individual
to engage in target behaviors [1], [10]. Specifically, there
are five fundamental components of SCT, which are seen as
outputs in a dynamical systems sense (referred to as η1...6);
SCT attributes changes in these components to eight external
and internal factors, which are treated as exogenous inputs
in dynamical systems models (represented as ξ1...8):
• Self-management skills (η1) - complex set of behaviors

that increases an individual’s potential for engaging in
a target behavior, e.g., self-monitoring, goal setting.

• Outcome expectancy (η2) - perceived likelihood that
performing a target behavior will result in specific
outcomes.

• Self-efficacy (η3) - perceived ability to engage in a target
behavior.

• Behavior (η4) - target action of interest.
• Behavioral outcomes (η5) - results of target behavior,

e.g., weight loss due to increased physical activity.
• Cue to action (η6) - trigger to engage in a behavior.
• Skills training (ξ1) - activities that alter an individual’s

self-management abilities.
• Observed behavior (ξ2) - learning resulting from ob-

serving the results of others’ behaviors.
• Perceived social support (ξ3).
• Cues to action (ξ4, ξ8) - internal and external triggers,

respectively, that influence engagement in a behavior.
• Perceived obstacles (ξ5).
• Intrapersonal states (ξ6) - physical, mental, and emo-

tional states that influence self-efficacy.
• Environmental context (ξ7).
Dynamical systems models describing behavior change

via an SCT-based mechanism stem from a connection to
production-inventory systems [1], [4], [9]: Fig. 1 depicts SCT
in terms of a f luid analogy [1]. Here, the five outputs, η1...6,
are represented as fluid inventories (tanks), which accept
inflow streams of fluid. The manner in which the level of
fluid in an inventory changes in response to changes in
inflows represents the way in which Self-efficacy, Behavior,
etc., respond to changes in the respective factors that influ-
ence them. The specific inflows to each individual inventory
depicted in Fig. 1 reflect the relationships that formally define
SCT (see [10]). For example, the Self-management skills
inventory (η1) accepts three inflow streams: Skills training
(ξ1), which is an external input to the overall system and is
represented as an exogenous input stream flowing at a known

and controlled rate; a portion of the outflow stream from
the Behavior inventory, which reflects the inter-relationship
between the Self-management skills and Behavior constructs;
and the disturbance input ζ1, which represents the unmodeled
factors that influence Self-management skills. Altogether, the
six inventories in Fig. 1 are inter-connected to reflect the
triadic reciprocity proposed in [10].

An engineering model of SCT is developed by applying
the conservation of mass principle (which is used as a general
accounting principle here) to the inventories and assuming
the dynamic response of each output to changes in inputs are
adequately represented by first order differential equations.
The result is a system of differential equations:

τ1
dη1

dt
= γ11ξ1(t)+β14η4(t)−η1(t)+ζ1(t) (1)

τ2
dη2

dt
= γ22ξ2(t)+β21η1(t)+β25η5(t)

−η2(t)+ζ2(t) (2)

τ3
dη3

dt
= γ32ξ2(t)+ γ33ξ3(t)− γ35ξ5(t)+ γ36ξ6(t)

+β31η1(t)+β34η4(t)−η3(t)+ζ3(t) (3)

τ4
dη4

dt
= β42η2(t)+β43η3(t)+β46η6(t)

+β45η5(t)−η4(t)+ζ4(t) (4)

τ5
dη5

dt
= γ57ξ7(t)+β54η4(t)−η5(t)+ζ5(t) (5)

τ6
dη6

dt
= γ64ξ4(t)+ γ68ξ8(t)−η6(t)+ζ6(t) (6)

where the left hand side of the equations are transition terms
(units of η), i.e., the change in the level of an inventory (dη

[units of η]) over some time (dt [units of time]), is related
to the speed at which the inventory level responds to a unit
change in the tank’s inflows and outflows (time constant, τ);
ηi and ξi are the output and input variables, respectively,
that are fundamental to SCT; γi j is the gain between input
variable ξi and output variable η j; βmn is the gain for the
interrelationship between variable ξm and ξn; and ζi is an
unmodeled disturbance that affects output ηi [1].

SCT is among the most influential theories in behavioral
science, and has been recently examined in the context of
a physical activity intervention [1]. Specifically, estimated
dynamic models were obtained using averaged ILD from
six participants in the Mobile Interventions for Lifestyle
Exercise and Eating at Stanford (MILES) study [12]. These
models focused on a two-input, two-output problem: Self-
efficacy, as recorded on a 1-11 point scale by participants via
smart phone, and Behavior, the total number of steps taken
per day as measured by an accelerometer, were the outputs of
interest. The two inputs were intervention components: Skills
training, consisting of tips for engaging in a target behavior
delivered as reading material via the ‘mtrack’ smart phone
application (recorded as seconds spent reading the tips), and
external cues, consisting of smart phone reminders to set new
physical activity goals (recorded as the number of reminders
sent to a participant in a given period of time) [1], [12].
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Fig. 1. Fluid analogy describing behavior change according to the
mechanism constituting SCT.

For model estimation, Eqs. (1) through (6) were sub-
stituted, rearranged, and transformed to give a state-space
representation of the two-input, two-output problem. From
this semi-physical structure, a prediction-error estimation
approach (the idgrey command in MATLAB, which allows
a user to specify a state-space model structure in which
only certain elements of the matrices are estimated [8]) and
the MILES data, the following parameter estimates were
obtained:

τ{1,2,3,4,5,6} = {0.66,2.25,0.55,3.00,0.94,0.64}
γ{11,22,32,33,35,36,57,64,68} = {1.32,1,1,1,1,1,1,0.1,0.88}

β{21,31,42,43,54,34,25,14,46,45} =
{0.9,0.05,0.9,0.5,0.67,0.18,0.5,0.65,0.01,0.1}

Depicted in Fig. 2, these estimates together correspond to
model fits—determined using a normalized root mean square
error calculation [8]—equal to 49.54% for Self-Efficacy and
34.95% for Behavior (where 100% would indicate the model
explains all of the variance observed in the data) [1]. Because
these estimates and fit percentages were obtained in sec-
ondary analysis of data with limited construct measurements
and for a small number of individuals, these percentages
and the model predictions in Fig. 2 are encouraging; a more
informative data set will likely further elucidate the role of
SCT in physical activity behavior change, i.e., result in better
predictive ability and fit percentages.

III. CASE STUDY II: MEDIATION & SMOKING
CESSATION

Statistical mediation considers a multivariate relationship
in which the level of an outcome variable, Y , is determined
by the level of an independent variable, X , and a mediator
variable, M, where the level of M is also affected by X .
Behavioral scientists typically model mediation with the
following static structural equations:

M = β01 +aX + e1 (7)
Y = β02 + c′X +bM+ e2 (8)
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Fig. 2. Average data (solid blue) used for estimation of the two-input, two-
output SCT problem and the resulting model predictions (dotted black).

where β01 and β02 are intercepts, e1 and e2 are error terms,
and a, b, and c′ quantify the net effect X has on M, M on Y ,
and X directly on Y , respectively [11]; in dynamical systems
terms, a, b, and c′ are the steady-state gains [5].

Considering X , M, and Y as continuous-time constructs
(i.e., X ,M, and Y = f (t)), each relationship in (7) and (8)
can be examined as individual input-output processes. Devel-
oped in detail in [5], dynamical systems models describing
a process of behavior change according to a mediational
mechanism are represented in algebraic form via Laplace-
transform as:

M(s) = Pa(s)X(s) (9)
Y (s) = Pc′(s)X(s)+Pb(s)M(s) (10)

where Pa, Pb, and Pc′ represent the individual processes by
which changes in X(t) lead to changes over time in M(t),
changes in M(t) lead to changes in Y (t), and changes in
X(t) lead directly to changes in Y (t), respectively. With the
appropriate ILD, Pa(s), Pb(s), and Pc′(s) transfer functions
can be estimated to describe mediated behavior change.

A University of Wisconsin study collected such ILD.
Fig. 3 depicts group average ILD (dash-dot red) for Craving
(average craving level reported by participants on a given
day) and CPD (total number of cigarettes smoked per day),
collected nightly via personal digital assistant from approxi-
mately 100 subjects who received no active cessation therapy
from two weeks pre-target quit date (pre-TQD) through the
first four weeks of a quit attempt [13]. Using this data, a
set of transfer function models were estimated to examine
Craving-mediated cessation in which Quit(t) is treated as
X(t), reflecting initiation of a quit attempt (Quit = 0, t <
TQD, = 1, t ≥TQD), group average Craving(t) ILD is M(t),
and group average CPD(t) ILD is Y (t). The pem command
in MATLAB (a prediction-error approach using sophisti-
cated regression routines that fit a user-specified, low order,
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continuous-time differential equation to discrete-time data
[7], [8]) was used to estimate the parameters in a two step
procedure: first, Pa(s) was estimated as a single-input, single-
output problem, with Quit as the input and Craving as the
output; next, Pb(s) and Pc′(s) were estimated simultaneously
in a two-input, one-output problem with Craving and Quit
as the inputs and CPD as the output. This resulted in the
following estimated transfer functions:

Pa(s)=
−3.90(−24.21s+1)

17.13s+1
Pb(s)=

−0.30
1.89s+1

Pc′(s)=−10.24
(11)

As indicated by the quit attempt simulated using these
models (dotted brown in Fig. 3) and the 64.7% fit for
Craving and 84.38% fit for CPD, these models quantify
the mediational relationship hypothesized to be at play
within smoking cessation behavior change. Examining these
equations suggest the direct X(t)→ Y (t) path models the
immediate reduction in CPD that occurs on TQD, while
the X(t)→ M(t)→ Y (t) path—i.e., Pa and Pb in series—
models the small and slow resumption of smoking post-TQD.
The parameter estimates also reflect the inverse response in
Craving (initial increase before ultimately settling to reduced
levels, reflected in the negative Pa gain and zero term values),
the fast reduction in smoking on TQD (there are no time
constants or derivative terms required by Pc′ ), and the small
resumption in smoking (small Pb gain, equal to -0.30) [5].

IV. SUMMARY & FUTURE WORK

The case studies presented in this paper illustrate the
potential of a dynamical systems approach for describing the-
orized behavior change mechanisms. Specifically, stemming
from a connection between production-inventory manage-
ment in supply chains [4], [9], differential equation models
were presented that leverage ILD to describe behavior change
according to SCT and mediational processes in the context
of a physical activity intervention and smoking cessation.
While promising, both of the case studies presented entail
secondary analysis of existing data, which were not obtained
through experiments designed with dynamical systems mod-
eling in mind. In the future, high fidelity models with greater
predictive ability could be estimated using more informative
data collected through novel trials that are better suited for
this analytical approach. Notably, experiment-design princi-
ples from system identification could be used to develop
novel input signals [1], [4]. For these experiments, the value
of the adjustable input signal of interest would be varied over
time such that the input signal is more persistently excited in
order to promote a greater range of dynamics and variability
in the outputs [7]. As the processes examined in these
experiments involve human subjects, these protocols must
adhere to strict practical, ethical, and medical constraints.
For example, [4] describes a “patient-friendly” clinical trial
protocol which varies the dose of a pharmaceutical for a pain-
management intervention on a biweekly basis, and repeats
the dose schedule so that the first set of measurements can
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Fig. 3. Averaged Craving and CPD ILD (dash-dot red) used to model
Craving-mediated changes in CPD during a quit attempt; model predictions
depicted as dotted brown lines.

be used for estimation and the second set for validation.
Ultimately, more rigorous estimation and validation of dy-
namical systems models should draw from data obtained in
such novel clinical trials in order to more reliably quantify
the dynamics of SCT and mediational processes.
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