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Abstract— Among various aspects of cell cycle, understanding 

synchronization mechanism of cell cycle is important because of 

the following reasons. (1)Cycles of cell assembly should 

synchronize to form an organ. (2) Synchronizing cell cycles are 

required to experimental analysis of regulatory mechanisms of 

cell cycles. (3) Cell cycle has a distinct phase relationship with 

the other biological rhythms such as circadian rhythm. However, 

forced as well as mutual entrainment mechanisms are not clearly 

known. In this study, we investigated entrainability of cell cycle 

models of yeast cell under the periodic forcing to both of the cell 

mass and molecular dynamics. Dynamics of models under study 

involve the cell mass growing exponentially. In our result, they 

are shown to allow only a limited frequency range for being 

entrained by the periodic forcing. In contrast, models with linear 

growth are shown to be entrained in a wider frequency range. It 

is concluded that if the cell mass is included in the cell cycle 

regulation, its entrainability is sensitive to a shape of growth 

curve assumed in the model. 

I. INTRODUCTION 

The cell division cycle is a fundamental process of cell 
biology, and a detailed understanding of its function and 
regulation is critical to many applications in biotechnology 
and medicine. Molecular mechanisms underlying cell cycle 
regulation have been clarified [1]. The master regulatory 
molecules are enzymes called cyclin-dependent protein 
kinases (Cdks). When associated with appropriate cyclins, 
Cdks trigger major events of the chromosome cycle such as 
DNA replication, chromosome condensation, and spindle 
assembly, by phosphorylating target proteins. Deactivation of 
mitotic Cdk allows cells to divide and enter the interphase. 
Regulatory mechanism of cell cycle has been studied for 
variety of organisms including budding yeast, fission yeast, 
and mammalian cells. Although there are significant 
differences in machinery from one specie to another, the 
underlying cell cycle engine is conserved [2]. Among various 
aspects of cell cycle, understanding entrainment mechanism 
of cell cycle is important because of the reasons shown below. 
First of all, forming an organ likely to need the 
synchronization between cell cycles [3]. Second, entraining 
cell cycles is required to experimental analysis of regulatory 
mechanisms of cell cycles [4]. Third, cell cycle keeps a 
distinct phase relationship with a circadian rhythm, which 
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have been attracting attention from the viewpoints of 
oncogeny and chronotherapy of cancer [5,6]. However, forced 
as well as mutual entrainment mechanisms are not clearly 
known.  

A number of mathematical models have been developed to 
describe the dynamics of cell cycle. One of major trends of 
modeling is that the cell cycle engine is regarded as a limit 
cycle or a cascade of bifurcations including a limit cycle 
driven by the growth of cell mass [2,7,8,9]. In this study, 
owing to these models we investigate entrainmenability of cell 
cycle under the periodic forcing to the cell mass and molecular 
regulatory dynamics. Simulation and analysis show 
significance of growth curve of cell mass in entrainability and 
limitation of entrainment under the exponential growth.  

II. PERIODIC FORCING OF CELL CYCLE MODELS WITH 

EXPONENTIAL GROWTH OF CELL MASS 

A. Cell Cycle Model 

Since, as shown above, the cell cycle engine is structurally 
similar to each other over the eukaryote species, the model of 
budding yeast cell is subject to investigation here [10]. Our 
investigation is to get general insight into the constituent 
mechanism shared commonly. Therefore, the model used here 
is only a sample for study. The model equations are given as 
follows. 
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where, X denotes the concentration of heterodimer of cyclin 
and Cdk, and Z that for regulatory agent of mitosis. For more 
details, please refer to Battogtokh and Tyson [10]. Used 
parameter values are those of the original, i.e., k1=0.002, 
k2=0.053, k3=0.01, k4=2, k5=0.05, k6=0.04, k7=1.5, k8=0.19, 

k9=0.64, k10=0.005, k11=0.07, k12=0.08, =0.005776, 
P=0.15, J1=0.005, and J2=0.01. The cell is set to divide into 
“daughter cells” when X gets across the threshold, 0.05, 
downward. The cell mass of “daughter cell” is a half of the 
“mother cell” at division (the proportional division rule). Key 
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features under special concern here are the exponential growth 
of cell mass, m, and its involvement in production of X in a 
monotonically increasing fashion. Such m-dependency of the 
cell cycle dynamics is a central idea that m irreversibly 
induces a cascade of dynamics bifurcations [2]. Model’s 
dynamics are shown in Fig.1, where the period of cycle is 

given by T0=ln2/from the division rule and exponential 

growth of cell mass [10]. That is,  alone determines T0 
regardless of the machinery of cell cycle control.  

B. Periodic Forcing of Cell Cycle Model 

Experimentally, synchronizing cell cycles is realized by 
periodic exchange between galactose and glucose media or 
acute activation of cyclin transcription [4]. The media 
exchange possibly affects both of cell growth and molecular 
machinery. Biologically, the circadian clock is expected to 
affect the progress of cell cycle through the molecular agents 
Per1/2 and Wee1 [5]. In order to mimic this situation, 
according to Battogtokh and Tyson [10], the periodic forcing 
to the cell mass growth and molecular machinery of cell cycle 
are implemented by 
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where f  is a frequency of periodic forcing. As shown in eq.(1), 
k10 controls production of Cdc20.  

Naturally,  f around f0 (=1/T0) or f roughly satisfying pf:qf0 
(p, q: natural number) could allow synchronization by the 
periodic forcing (entrainment), and the entrainable range of f 
depends on the coupling strength, A. Entrainability of limit 
cycle oscillator is characterized by the entrainable frequency 
range as a function of the coupling strength, i.e., “Arnold’s 
tongue” [11]. Battogtokh calculated the Arnorld’s tongue for 
the model (1) [12]. Here, we re-compute the Arnold’s tongues 
under periodic forcing to both of the cell mass and k10, and 

under forcing only to k10. Figure 2 shows the variations of the 
cell mass at division (md), where a large variation indicates 
that one-to-one entrainment does not take place. The range of 
entrainable frequency is estimated as an interval between 
frequencies at which the variance of md dips to half its depth 
from the reference level obtained by a linear regression as a 
function of f/f0. Estimated Arnold’s tongues are shown in Fig.3. 
The results for different forcing conditions share the property 
that only a limited entrainable frequency range is allowed 
independent of A, although the frequency range for each 

 

 
Figure 2. Variations of cell mass at division for perturbations to m and 

k10 (top) and only to k10 (bottom).  A=0.45. Resolution of f/f0=0.001. 

 

 
Figure 3. Arnold’s tongues for perturbations to m and k10 (top) and only 

to k10 (bottom). Resolution of f/f0=0.001. Missing parts are only due to 

numerical instability within the resolution used here. 

 
Figure 4. Arnold’s tongue for the perturbations to m and ka20. Resolution 

of f/f0=0.001. A missing part is only due to numerical instability within 

the resolution used here. 

 
Figure1. Dynamics of the cell cycle model  
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entrainment ratio moves higher as A increases for the case of 
forcing to m and k10. Such a limited entrainable frequency 
range was also shown in [12].  

C. Periodic Forcing of Generic Cell Cycle Model 

Next, this limitation in entrainment is shown to be general 
as long as the framework of the model (1) is shared. The 
generic detailed model of cell cycle is used for this purpose [8], 
where the cell mass grows exponentially, and the production 
rates of all cyclins are multiplied by the cell mass. For more 
detail, please refer directly to [8]. Periodic forcing is 
introduced in the following way. 
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where ka20 is modulated because of the model structure that 
ka20 is a production rate of Cdc20 protein [8]. The cell cycle is 
entrained by the periodic forcing with f=f0 in a one-to-one 
manner (the results are omitted here), where the parameter 
values follows the set of budding yeast [8]. The Arnold’s 
tongues are computed based on the variations of md under the 
periodic forcing to both of the cell mass and ka20, and the 
periodic forcing only to ka20. The result under the former 
condition is only shown in Fig.4. Similar to the previous 
model (1), the generic model allows only a limited entrainable 
frequency range independent of A. 

From experimental and biological points of view, the 
limited ability of entrainment shared by the different models 
implies that synchronization of cell cycle is difficult to be 
realized, considering possible diversity in the period of 
individual cell cycle and difference between intrinsic periods 
of circadian rhythm and cell cycle. Our concern here is the 
reason for the limited entrainability. As shown before, the 
period of the model cell cycle with the exponential growth of 

cell mass is T0=ln2/. This means not only that  solely 
determines the period of cycle independent of the cell cycle 
machinery, but that the perturbation to the molecular 
machinery cannot change the period. Because, generally 
speaking, entrainment needs change in the period of oscillator 
subject to the periodic forcing, the cell cycle with the 
exponential growth and proportional division is expected not 
to allow mutual and forced entrainments for 

0
f f .  

D. Exponential Growth Limits Ability of Entrainment 

The limitation of ability of entrainment described above 
can be attributed to the exponential growth of cell mass. 
Figure 5 illustrates how the exponential growth works under 
perturbation, where we are confined to a temporal 
perturbation. Provided that the cell divides at t on the way to 
the cell cycle completion due to perturbation, the cell mass is 
reduced from S’ (A) to S’/2 (B) because of the proportional 
division. The point B on the perturbed trajectory is always on 
the extension from the point C on the unperturbed trajectory, 
which is known from the fact that the following relations are 

satisfied. For point B, S’/2= 1/2S0exp(t). On the other hand, 
the extension curve from the point C at t is expressed by 

S(t)=S0exp((t-T0))= S0exp(t)/exp(T0)=S’/2, where please 

remind the relation exp(T0)=2. Since the moment t at which 
the cell division takes place under perturbation is arbitrary, it 
is proven that the perturbed trajectory of the cell mass growth 
is always on the unperturbed one. Because of stability of cell 

cycle, the steady relation T0=ln2/should be reached after the 

temporal perturbation. Therefore, the perturbed trajectory of 
the cell mass is completely superposed on the unperturbed one 
at least asymptotically in the steady state. In other words, even 
if the molecular machinery delays or advances the division 

 

 
Figure 6. Arnold’s tongues for the perturbations to m and ka20 (top) and 

only to ka20 (bottom). Resolution of f/f0=0.005 (top) and 0.003 (bottom). 

Amissing part is only due to numerical instability within the resolution 

used here. 

 
Figure 5. Trajectories of exponential growth of cell mass with and 

without perturbation. 
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due to the perturbation, the phase of cell cycle restores the 
unperturbed phase of oscillation, i.e., a null phase response. 
Although further investigation may be necessary for us to 
understand the entrainment under continuous perturbation, the 
situation could be regarded as that under the repetition of 
temporal perturbation.   

III. PERIODIC FORCING OF CELL CYCLE MODELS WITH 

LINEAR GROWTH OF CELL MASS 

Although, as mentioned above, the exponential growth of 
cell mass is widely shared in the cell cycle models, there are 
experimental studies showing non-exponential growth [13]. 
Here, a linear growth mechanism of cell mass is included in 
the cell cycle models used so far and their dynamics are 
examined. After confirming steady oscillations in the models 
with the linear growth, periodic forcing is introduced as 
follows. 

(1 sin(2 ))
dm
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     ,                           (4) 

where forcing to k10 or ka20 is applied in the same way as 
before. Entrainable frequency range as a function of coupling 
strength A is obtained for the models with the linear growth of 
cell mass. Since qualitative features are shared by the model 
(1), only the result for the generic model is shown in Fig.6. 
Wider entrainable frequency range than in the exponential 
growth is shown for 1:1 and 1:2 entrainment regardless of the 
detail model structure. Figure 7 illustrated the unperturbed 
and perturbed trajectories of cell mass for the linear growth 
case, where S

*
 is the cell mass at division in the steady state. 

For point B, S’(t)/2= 1/4S
*
+t/2. The extension from the point 

C at t is expressed by S(t)=t because of the relation 

T0=S
*
/(2 in the linear growth case. Both lines meet only at 

t=T0, i.e., unperturbed division. Therefore, it is proven that the 
same thing as the exponential growth could not happen in the 
linear case. If the molecular machinery delays or advances the 
division due to the perturbation, the phase of cell cycle 
remains shifted, i.e., a non-null phase response. These results 
confirm our idea that the exponential growth limits the ability 
of entrainment due to its own numerical property shown in 
Fig.5.  

IV. CONCLUSION 

Regardless of the detail model structure, it is shown that the 

exponential growth limits the entrainability of the cell cycle 

model that includes the cell mass as a regulatory factor for the 

progress of cycle. This property could not explain the distinct 

phase relationship between cell cycles and circadian rhythm 

[14]. Therefore, an alternative growth curve might fit [13], or 

different regulatory mechanisms from those involving the 

growth of cell mass might be plausible. Actually, the other 

trends of modeling are exemplified by a model consists of 

cascades of bifurcation including limit cycles [15] and 

modeling within the transport theoretical framework of aged 

population [16]. Those models appear to accommodate the 

circadian control mechanisms. Synchronizations with the 

other cell cycles and biological rhythms are biologically and 

clinically very important. Our result here provides a criterion 

for examining the reality of models built in different contexts. 
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Figure 7. Trajectories of linear growth of cell mass with and without 

perturbation. 
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