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Abstract— In this work we propose a 2D discrete stochastic
model for the simulation of axonal biogenesis. The model is
defined by a third order Markov Chain. The model considers
two main processes: the growth process that models the elonga-
tion and shape of the neurites and the bifurcation process that
models the generation of branches. The growth process depends,
among other variables, on the external attraction field generated
by a chemoattractant molecule secreted by the target area. We
propose an estimation scheme of the involved parameters from
real fluorescent confocal microscopy images of single neurons
within intact adult Drosophila fly brains. Both normal neurons
and neurons in which certain genes were inactivated have been
considered (two mutations). In total, 53 images (18 normal, 21
type 1 mutant and 14 type 2 mutant) were used. The model
parameters allow us to describe pathological characteristics of
the mutated populations.

I. INTRODUCTION

Much effort has been devoted to the morphological anal-
ysis of axonal trees. It is known that their morphology im-
pacts network connectivity, thus influencing its functioning.
However, many of the mechanisms involved in their mor-
phogenesis are still not completely understood. Therefore, a
simulation framework for realistic axonal trees could provide
an insight into this process.

Several methods are currently present in the literature,
which differ with respect to the processes being modeled,
the methodology and type of data used for the parameter
estimation and the dimension considered (2D, 3D or 4D).

In [1] the authors introduce a 2D model of self wiring
neural networks inspired from previous work on the study
of patterning of bacterial colonies. Neurons are represented
as being composed of the soma, dendrites and axons. Neu-
rites and somas communicate with each other by means of
attractive or repulsive signals that determine the networks
morphology.

On the other hand, [2] presents a 3D stochastic model
of neuronal growth cones (tips of the growing axon) that
takes into account the concentration of guidance molecules
to determine their behavior. Although this model presents an
interesting approach, the authors do not use the model to
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estimate the attraction field. Instead, it is an input necessary
to simulate the behavior of the axons. Moreover, they do not
consider bifurcations.

Finally, Koene et al. [3] propose a very complete model for
the generation of 4D (3D and time) neuronal networks that
includes both axons and dendrites. For each neurite’s growth
cone, the model considers the processes of elongation, turn-
ing and branching. However, no attraction field is considered.
The authors estimate some of the parameters from real 4D
data, and others are set manually based on properties of real
neurons.

In this paper we propose a 2D discrete stochastic model for
the simulation of axonal biogenesis. The model is defined by
a three step Markov Random Chain. It considers an external
attraction field, and all the involved parameters (including
those defining the attraction field) are estimated from real
data.

II. MODEL DESCRIPTION

We consider a discrete stochastic process to model the
axonal tree formation that considers growth and bifurcation.
The growth process models the elongation and shape of the
neurites, and depends on both the internal rigidity of the
neurite and on an external attraction field. On the other hand,
the bifurcation process models the generation of branches.
Both processes are considered to be independent from each
other. Each branch of the resulting axonal tree is then a
realization of a third-order Markov chain.

A. Growth Process

This process models the formation of the neurites on
a discrete lattice L ⊂ Z2. The number of points N on
a filament (i.e. its length) is determined using a Gaussian
distribution function N (µ, σ2), where µ, σ2 are parameters
to be estimated. This choice was made after fitting different
distributions to the lengths observed in our database.

The shape of the path is determined point by point using
a second order Markov Chain that depends on the elastic
properties of the neurites and on the external attraction
field generated by a chemo-attractant molecule secreted by
the target area. Given a point nt on a path, the position
of the next point on the path (nt+1) depends on the two
previous points nt−1, nt−2 and on the external field in nt (
∆(nt) ). Two main cases are defined (plus all the possible
rotations) depending on the configuration of nt, nt−1, nt−2.
For each case, the elasticity contribution is defined on Figure
1. The attraction field is given by the vector ∆(nt) =
(∆R(nt),∆T (nt)). ∆R is the attraction to the right and ∆T
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to the top of the image (see Figure 4), which are assumed
to be positive.
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Fig. 1: Diagram showing the two possible main configura-
tions and the different elasticities considered in each case.

To compute the conditional probabilities, we consider the
sum of the elasticity and the external field and normalize it.
Let us consider the cases presented on Figure 1, and define
the following quantities:{

S1 = Ea + 2Eb + ∆R(nt) + ∆T (nt)

S2 = Ec + Ed + Ee + ∆R(nt) + ∆T (nt)
(1)

Then, the conditional probabilities for nt+1 are summarized
on Figure 2.
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Fig. 2: Conditional probabilities P (nt+1|nt, nt−1, nt−2) as-
sociated with the cases presented on Figure 1

The configurations obtained by the possible rotations are
treated in a similar way.

B. Bifurcation Process
The bifurcation process is defined by the probability of

branching Pb. For a given point nt in a path, the probability
of a branching event taking place in that point is determined
by Pb(nt). This probability is piecewise constant during
time.

Branches grow independently of the main axon following
the same model.

C. Parameter Estimation
The model parameters are given by

(Pb, µ, σ
2, Ea, Eb, Ec, Ed, Ee) and the external field

(∆x(u, v),∆y(u, v)), for (u, v) ∈ L.
Let us consider a set of axonal trees A (where A could be

equal to 1), Denote by la, a ∈ A the length (i.e., number of
pixels) of the main branch of axon a. We then have:

P̂b =

∑
a∈ANb(a)∑

a la
(2)

where Nb(a) is the number of branches in a.
Moreover, the mean and variance of the probability distri-

bution that determines the length of a path is equal to µ and
σ2. Therefore, we have the following estimators:

µ̂ =

∑
a∈A la

card(A)
σ̂2 =

∑
a∈A(la − µ̂)2

card(A)
(3)

For the remaining parameters, we assume that ∆ is constant.
As we will see in section III, ∆ can be approximated as being
constant over subsets of L. Notice also that if we consider
several axons, they all need to be registered in the same
space.

There remains seven parameters. For each configuration of
the past (i.e, nt−1, nt−2)) we obtain three or four equations
depending on which case we are on (see Figure 2). This gives
forty eight equation in total when we take into account all
the possible rotations. If we consider the cases associated to
configuration (a) in Figure 2, we obtain the following three
equations: 

N1

NT
= Êa+∆̂R

Ŝ1

N2

NT
= Êb+∆̂T

Ŝ1

N3

NT
= Êb

Ŝ1

(4)

where N1,2,3 are the number of times that the configurations
given on Figures 3 (a, b, c) are present on the axon, NT =
N1 +N2 +N3 and Ŝ1 = Êa + 2Êb + ∆̂R + ∆̂T .
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Fig. 3: The 3 possible positions of nt+1 for the configuration
present in Figure 2 (a).

Thus, we obtain the following linear equations:
( N1

NT
− 1).Êa + 2. N1

NT
.Êb + ( N1

NT
− 1).∆̂R + N1

NT
.∆̂T = 0

N2

NT
.Êa + (2. N2

NT
− 1).Êb + N2

NT
.∆̂R + ( N2

NT
− 1).∆̂T = 0

N3

NT
.Êa + (2. N3

NT
− 1).Êb + N3

NT
.∆̂R + N3

NT
.∆̂T = 0

(5)
The same reasoning is applied to obtain the total system of
forty eight equations, which we solve using the Least Mean
Squared (LMS) method.

In a real scenario, we would expect the values of the
probabilities to change depending on the position of the
considered point. This is particularly true for the attraction
field, since the sensitivity to attractive gradients varies along
the gradient and gets lower close to the source present at
the upper edge of each image (see Section III). Therefore,
we calculate the values of the probabilities for each point
of a path using a sliding window scheme. The optimum
size of the estimation window was calculated by first using
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Fig. 4: Channel 1 (left; GFP staining) and 2 (right; Fasciclin
II staining) for a given image (maximum intensity projec-
tions).

Fig. 5: Original confocal microscopy image of an axonal tree
(left) and its tracing (right) (maximum intensity projections).

the model to simulate paths with known probabilities, and
then running the estimation procedure using different sizes
of windows and calculating the error between the two. We
determined that a good compromise between error of the
estimation and size of the window is 800 points.

III. VALIDATION

For the validation, we have fluorescently labeled single
neurons within intact adult Drosophila fly brains, and have
acquired 3D fluorescent confocal microscopy images of their
axonal trees. Both normal neurons and neurons in which
the function of the imp (mutant type 1) or profilin (mutant
type 2) genes was inactivated were imaged. imp encodes
a conserved RNA binding protein controlling subcellular
mRNA transport and local protein synthesis, and is essential
for axonal remodeling [4]. profilin encodes a regulator of
the actin cytoskeleton involved in axonal pathfinding [5].
Mutations in these two conserved genes have been linked to
neurological pathologies [6], [7].

Each image stack has a resolution of 0.093967 ×
0.093967× 0.814067 µm and two channels (see Figure 4).
The morphology of single axonal trees is visible in the first
channel and was manually segmented by an experienced
biologist (see Figure 5). The morphology of the overall
neuronal structure in which axons are developing is visible
in the second channel. In total, 53 images (18 normal, 21
type 1 mutant and 14 type 2 mutant) were used.

In order to study the attraction field of the populations, all
stacks were registered against the first image of the normal
population. This was performed using the second channel
of each images, and the transformations were then used

to correct the first channel. Images were registered by first
aligning them with a rigid registration algorithm, followed
by a non linear demons registration step.

Due to the ratio between the resolution on the z axis and
on the x,y plane, we have considered the maximum intensity
projections of the images along the z axis.

A. Results

We have estimated the model parameters for each hierar-
chical level of each image, and then averaged these values
between the images to obtain sets of representative values
for each population. We have used these values to generate
several axonal trees for each population to visually compare
the obtained simulations with the real images (see Figure 6).
We determine that the real and synthetic images present a
similar morphology.

Moreover, given that all images were registered, we are
able to use the estimated parameters to generate two fields for
each population, a scalar field that represents the magnitude
of Ea/Eb and a vector field that represents the attraction field
∆. Since we obtain some estimates on a sparse set of points
in the x,y plane, we extrapolate the fields using a Gaussian
Markov Random Field [8].

In addition, we have averaged the second channel of all
the registered images to obtain an approximation of the
average shape of the overall neuronal structure in which
axons are developing. We have then plotted the ∆ field for
each population on these three mean images. By qualitatively
analyzing the resulting images we have determined that there
is no relevant difference on the field between the three
populations (see Figure 7, we only present the results for
the normal populations because they are very similar with
respect to the other populations). We can appreciate that the
field points towards the target area (which is located at the
top right corner of the image) and that its norm is stronger
at the starting point of the axons (bottom right section) and
weaker near the target area.

The same procedure was used to analyze the difference
on the scalar fields for each population (see Figure 8). In
this case we can detect a significant difference between the
populations. Given that Ea/Eb is related to the flexibility of
the axons, we can determine that the normal axons have a
more constant direction throughout its length, followed by
mutant type 2 and mutant type 1 (see Figure 8).

IV. CONCLUSIONS

In this paper we propose a 2D discrete stochastic model
for the simulation of axonal trees based on Markov Chains.
The model considers several independent processes (elonga-
tion, shape and bifurcation) that are determined by several
parameters, all of which can be directly estimated from real
static data. We have validated the model on a set of 53 real
fluorescent confocal microscopy images of single neurons
within intact adult Drosophila fly brains. Both normal neu-
rons and neurons in which certain genes were inactivated
were considered (18 normal, 21 mutant type 1 and 14 type 2).
For each class of neurons, we have estimated the parameters
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Fig. 8: Ea/Eb scalar field for the normal (left), mutant type 1 (middle) and mutant type 2 (right) populations.

(a) (b)

(c) (d)

Fig. 6: Real normal and mutant type 1 axonal trees (left top
and bottom respectively) and synthetic trees (right, top and
bottom) generated using the parameters estimated from each
respective image.

and generated synthetic axonal trees, which are similar to the
real ones. Moreover, results show that the parameter’s values
provide information about the axon growth properties of the
populations. In the future we intend to extend the model to
3D and to include the growth speed by considering 3D time
sequences of developing axons.

REFERENCES

[1] Segev R., Ben-Jacob E. Generic modeling of chemotactic based self-
wiring of neural networks. Neural Networks, Mar;13(2):185-99, 2000.

[2] Kobayashi T., Terajima K., Nozumi M., Igarashi M., Akazawa K.
A stochastic model of neuronal growth cone guidance regulated by
multiple sensors. Journal of Theoretical Biology, 21;266(4):712-22,
2010.

[3] Koene R.A., Tijms B., van Hees P., Postma F., de Ridder A., Ramakers
G.J.A. , van Pelt J., van Ooyen A. NETMORPH: A Framework for
the Stochastic Generation of Large Scale Neuronal Networks With
Realistic Neuron Morphologies. Neuroinformatics, Volume 7, Issue 3,
pp 195-210, September 2009.

[4] Medioni C., Ramialison M., Ephrussi A., Besse, F. Imp promotes
axonal remodeling by regulating profilin mRNA during Drosophila
brain development. In press, Current Biology.

(a)

(b)

Fig. 7: Norm (top) and direction (bottom) of the attraction
field for the normal population.

[5] Wills Z., Marr L., Zinn K., Goodman C.S, Van Vactor D. Profilin and
the Abl tyrosine kinase are required for motor axon outgrowth in the
Drosophila embryo. Neuron, 22, 291−299, 1999.

[6] Donnelly C.J. et al. Limited availability of ZBP1 restricts ax-
onal mRNA localization and nerve regeneration capacity. EMBO J,
30(22):4665−77, 2011.

[7] Wu C.H. et al. Mutations in the profilin 1 gene cause familial
amyotrophic lateral sclerosis. Nature, 488(7412):499−503, 2012.

[8] Winkler G. Image Analysis, Random Fields and Markov Chain Monte
Carlo Methods: A Mathematical Introduction (Stochastic Modelling
and Applied Probability). Springer, ISBN-10: 3540442138.

6817


