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Abstract— This study introduces a new Generalized Leaky 

Integrate-and-Fire (GLIF) neuron model. Unlike Normal Leaky 

Integrate-and-Fire (NLIF) models, the leaking resistor in the 

GLIF model equation is assumed to be variable, and an 

additional term would have the bias current added to the model 

equation in order to improve the accuracy. Adjusting the 

parameters defined for the leaking resistor and bias current, a 

GLIF model could be accurately matched to any 

Hodgkin-Huxley (HH) model and be able to reproduce plausible 

biological neuron behaviors. 

I. INTRODUCTION 

The spiking neuron model has become an essential 

computational unit in the third generation of artificial neural 

networks, commonly referred to as Artificial Spiking Neural 

Network (ASNN) [1]. Spiking neuron models as the key 

computing unit in ASNN, were well reviewed in [2-4], 

ranging from the most complicated and yet most biologically 

plausible models to the simplest models. However, the 

challenge still remains in finding a spiking neuron model 

which combines both computational efficiency and biological 

accuracy. 

The Hodgkin-Huxley (HH) model is the most popular 

model known to biologists [5]. This HH model is a set of 

Ordinary Differential Equations (ODE) which describe the 

dynamics of cell membrane potential and ion transportations 

of a neuron. The parameters are estimated by analyzing the 

ionic current data gathered from the voltage clamped 

experiments on the giant axon neuron of a squid [6, 7]. 

Although the HH model has been proven to be most accurate 

in reproducing the neuro-electrical activities of biological 

neurons, its applications in ASNN are still rare, due to its 

computational complexity. 

Researchers interested in building large scale ASNNs also 

proposed another category of neuron models which are 

simpler than the more intricate neuron models, yet could still 

reproduce some of the basic features found in biological 

neurons. Such kind of neuron models are usually referred to as 

“phenomenal models” [8]. One of the most commonly used 

models is called the Leaky Integrate-and-Fire (LIF) 

model [9], which treat the neuron as a passive capacitor 

connected by a linear leaky resistor. The LIF model is seen as 
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a valuable tool for analyzing key neuron properties because of 

the way it models one of the key features of a neuron’s 

membrane: the membrane’s conductance. Also, the 

ODE-based model can be solved analytically, thus providing 

intuitive insight to the biological neuron activities [10]. 

The LIF model is considered as a one-dimensional model 

since there is only one state variable in its ODE. 

Two-dimensional models such as the FitzHugh-Nagumo 

model [11], the Morris-Lecar model [12], the Izhikevich 

model [13] as well as the Adaptive Exponential 

Integrate-and-Fire model [14] introduce additional state 

variables in their ODEs to mimic the more complicated 

neuro-electrical features. However, two- or more dimensional 

models are more computationally taxing and are close to 

impossible to be solved analytically in contrast to their 

one-dimensional counterparts.  

In this study, we propose a design model of a new 

Generalized LIF (GLIF) by innovative modifications of the 

Normal Leaky Integrate-and-Fire (NLIF) model. The ODE of 

the GLIF model is one-dimensional in complexity so that it 

could be solved analytically, while its computational 

requirements are amenable to minimization. 

II. MODEL DEFINITION 

The following equations define the newly developed GLIF 

model, which is a modification of the NLIF model: 


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where u is the membrane voltage of a neuron, Cm is the 

membrane capacitance, and t
f
 is the most recent firing time as 

defined by: 
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Function gkern in (1) describes the trajectory of the overall 

membrane conductance after each output fires; while function 

ikern describes the trajectory of the post-fire overall ionic 

current.  

Stimulation of this model is expressed as a summation of 

currents from all synapses connected to this neuron, denoted 

by is in (1). The firing time of this neuron as defined by (2) is 

updated when the membrane voltage crosses a threshold uth. 
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Immediately after each output fire, a new t
f
 is used to calculate 

gkern and ikern. The time interval t – t
f
 is referred to as the 

survival time, i.e., the length in which the neuron stays 

quiescent since the last time it fired. 

We assume that the kernel functions could be described 

through summation terms of a set of functions gj as follows:  


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where g0 is the constant leaking conductance when the neuron 

is quiet, gj are bell-shaped functions which could fit the 

trajectories of conductance for each ion-channels during an 

action potential, and Ej are the resting potentials for those 

channels. The bell-shaped curves gj as used here are the 

derivatives of generalized sigmoid functions Γj, which are 

formulated as follows: 
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where Aj, µj, lj, and kj are empirical parameters controlling the 

shape and location of the bell curve, which need to be fitted to 

the experimental ionic current data. 

III. PARAMETERS ESTIMATION 

GLIF model could be fitted to a HH model by adjusting its 

parameters according to the statistical features of the HH 

neuron dynamics. We demonstrate here the steps to fit the 

GLIF model to the original HH model suggested by Hodgkin 

and Huxley [5] with two active ion channels. The currents in 

the sodium channel, the potassium channel and the linear 

leaky channel are as defined below: 
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The maximum conductance for sodium, potassium and 

leaking channels are found to be   Na = 120 mS/cm
2
, 

  K = 36 mS/cm
2
, and gL = 0.3 mS/cm

2
, respectively. The 

corresponding reversal potentials adopted were 

ENa = 115 mV, EK = −12 mV, and EL = 10.6 mV. 

We used one current based synapse [15] driven by Poisson 

spike train as the stimulation to the HH neuron. However, the 

synapse weights for individual input spikes were assumed to 

be random variable with uniform distribution. Suppose the 

input spike train has m spikes arriving at time instants s
(1)

, s
(2)

, 

..., s
(m)

 , the connection weights will be w1, w2, ..., wm, 

individually, and the synaptic current injected to the HH 

neuron could be expressed as: 
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where is
*
 is the shape function for a single input current spike, 

with maximum current Is,max = 23 µA/cm and rising/decay 

time τs = 2 ms, and with Θ denoting a Heaviside step function. 

An experiment to determine parameters in the GLIF model 

was designed using the following steps: 

i) Choose randomly a frequency λP between 1 Hz and 

1 kHz. 

ii) Generate a spike train that lasts 1000 ms by a Poisson 

Process using λP as the mean rate. 

iii) Choose randomly a connection weight between 0 and 1 

for each spike in the spike train. 

iv) Assign randomly a sign for each connection weight with 

equal positive and negative possibility. 

v) Calculate the input currents for the generated spike train 

by using (7). 

vi) Numerically solve the ODE in (6) for 1000 ms as in the 

Wolfram Mathematica computation environment. 

vii) Record membrane voltage u, gating variables m, n, and h 

at 0.1 ms time steps and save them onto a file. 

The experiment was repeated 1000 times with different 

mean rates λP to ensure statistically reliable results. 

A. Firing thresholds 

Firing thresholds could be estimated by analyzing the local 

maxima found in the recorded membrane voltages. The 

bifurcation dynamic property of HH neuron separates the 

recorded membrane voltage peaks into two categories. We 

defined the peaks happened lower than 50mV as non-spiking 

peaks, and the voltage below which 95% of all recorded 

non-spiking peaks could be found as the firing threshold: 

  th th
: | 0.95.

peaks
u P U U u   

The cumulative distribution function (CDF) of the 

probability density for the non-spiking peaks were calculated 

from the recordings, and the resulted threshold is 

uth = 4.69 mV. 

B. Kernel functions 

In order to fit the GLIF kernel functions to the HH model, 

we searched for all the firing moments in the recorded 

membrane voltage, and sliced the recorded state variables m, n 

and h according to these firing moments. In this way, the 

absolute simulation time base implied in the records was 

converted to the survival time base. The conductance of both 

ion channels at each survival time step is calculated by: 
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Figure 1.  Comparison of membrane potentials in GLIF, HH and NLIF 

models. 


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where m[i], n[i], and h[i] indicate the values of state variables 

m, n, and h at the i-th survival time step τ[i]. 

The membrane voltage and channel conductance were 

grouped into sequential survival time intervals:  


0 1 1 2

[τ , τ ),[τ , τ ), ..., [τ 1, τ ).
q q
  

The mean values and standard variances were calculated for 

each group of u, gNa, and gK, while the mean values of gNa and 

gK are numerically integrated and used to fit the Functions ΓNa 

and ΓK as stated in (4) using Minimum Mean Square Error 

(MMSE) method. The resulting parameters for ΓNa and ΓK are 

listed in Table I.  

TABLE I.  FITTING PARAMETERS FOR THE KERNEL FUNCTIONS 

Function 
Ai 

(mS∙ms/cm2) 

li 

(ms) 

µi 

(ms) 

ki 

(ms) 

ΓNa 35.88 0.3180 2.128 0.0115 

ΓK 39.53 0.7889 3.837 0.3118 

 

These fittings are reliable with Sum Squared Error being 

34.91 and 63.65; adjusted R-square being 0.9977 and 0.9983; 

Root Mean Square Error being 0.7386 and 0.9972 for 

functions ΓNa and ΓK, respectively.  

The variable conductance and bias current function needed 

in (1) could then be defined in the following way:  
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where ENa = 115 mV, EK = −12 mV and EL = 10.6 mV are 

reversal potentials, the same as those found in the HH model. 

The constant leaky conductance is set to g0 = 0.1961 mS/cm
2
 

so that bias current ikern diminish when the neuron is quiet (at 

large τ value) 

IV. MODEL ACCURACY 

Accuracy is a measurement that estimates the reliability for 

a neuron model to reproduce the behavior of a biological 

neuron. In this study, we used the Missed Fire Rate (MFR) and 

the Accidental Fire Rate (AFR) as indicators of a neuron 

model’s accuracy. 

Using the same spike train to stimulate both the HH model 

and the GLIF model, most of the output spikes found in HH 

model could be matched to the output spikes from GLIF 

model, with the spiking time difference limited to a small 

tolerance ε. Spikes in HH model with no matched spikes 

found in GLIF model are marked as Missed Fires (MF), while 

spikes in GLIF model without any matched spikes found in 

HH model are marked as Accidental Fires (AF). The error rate 

of MF and AF could be calculated as follows: 


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where NMF is the number of MFs, NAF is the number of AFs 

and Nmatch is the number of matched output spike pairs in each 

simulation. 

We have built 100 neurons using HH model and GLIF 

model respectively in Matlab environment on an Intel i7-2600 

workstation with 4GB memory. The NLIF model with leaky 

resistance R = 5.2 kΩ∙cm
2
 and time constant τm = 5 ms was 

also implemented in the same environment for comparison.  

In this experiment, 100 Poisson spike trains with mean 

frequency λP = 150 Hz and uniform lengths of 1000 ms were 

used as neuron inputs. The HH model was simulated at 

0.02 ms step size using fourth-order Runge-Kutta (RK4) 

method to provide reliable outputs. The NLIF model and 

GLIF model were simulated by RK4 at various step sizes, with 

MFR and AFR calculated for each choice of step size. The 

spikes matching tolerance ε was set to 5 ms for the MFR and 

AFR calculation. 

V. RESULTS AND DISCUSSION 

The HH model, GLIF model and NLIF model were 

simulated by same input spike trains. A portion of the 

recorded membrane voltage of these three models is shown in 

Fig. 1. Compared to the NLIF model, the GLIF model could 

reproduce a much similar spike shape action potentials as the 

HH model. We can also observe that the membrane potentials 

are almost the same for these three models when the survival 

time is longer than 10 ms (in the so-called “silent period”), 

proving that the NLIF model is a good approximation when 

the neuron stays quiescent for long enough. Yet the membrane 
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Figure 2.  Missed Fire Rates and Accidental Fire Rates of NLIF and 

GLIF model under various simulation step size. 

voltage trajectory of NLIF model is completely different from 

GLIF and HH models in the post-fire region, marked as the 

refractory period in Fig. 1.  

 The accuracy measures of MFR and AFR have also been 

evaluated at various step sizes for both NLIF and GLIF 

neurons, with results plotted in Fig. 2.  

It can be observed that both AFR and MFR of GLIF are 

much lower than those of the NLIF model, and are empirically 

found to be independent of the simulation step size. 

Comparatively, the MFR of the NLIF model increases 

dramatically when the simulation step size is larger than 

0.4 ms, which is an indication that the numeric solving errors 

for NLIF model increase along with the step size. Since the 

computation time of RK4 method decrease exponentially 

while the step size increase, the possibility of selecting a larger 

step size for the GLIF model is seen as more competitive for 

large scale ASNN applications. 

VI. CONCLUSION AND FUTURE WORK 

Clearly the GLIF model introduced in this study could 

accurately simulate the dynamics of a neuron cell membrane 

potential if the parameters and kernel function were extracted 

and fitted meticulously using the statistical method we 

provided. Although the reference model we used to 

demonstrate the extracting procedure and to test the GLIF 

model was the HH model with two ionic channels, our GLIF 

model could be easily fitted to any complicated HH model 

with more ion channels. This last assertion can be supported 

simply by gathering the conductance data after each output 

spike, and fit those data to kernel functions for each ion 

channel. 

The comparison of the GLIF model performance with that 

of the NLIF shows that our model provides much better 

calculation accuracy in simulating the biological neuron 

activity while keeping the calculation complexity to an 

acceptable level. Such outcomes increase the prospects of the 

GLIF model for its implementation in larger scale and 

real-time ASNNs. As we seek to reach this implementation 

goal, future research work will focus on building more 

biological plausible ASNN using the GLIF neuron model on 

parallel computation platforms such as the General Purpose 

Graphic Process Unit (GPGPU) and FPGA devices, and 

applying such ASNN to resolve a multitude of real-world 

problems associated with pattern recognition and pattern 

classification, and signal processing, among other 

applications. 
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