
  

  

Abstract— Vocal production is an example of controlled 
motor behavior with high temporal precision. Previous studies 
have decoded auditory evoked cortical activity while monkeys 
listened to vocalization sounds. On the other hand, there have 
been few attempts at decoding motor cortical activity during 
vocal production. Here we recorded cortical activity during 
vocal production in the macaque with a chronically implanted 
electrocorticographic (ECoG) electrode array. The array 
detected robust activity in motor cortex during vocal 
production. We used a nonlinear dynamical model of the vocal 
organ to reduce the dimensionality of ‘Coo’ calls produced by 
the monkey.  We then used linear regression to evaluate the 
information in motor cortical activity for this reduced 
representation of calls. This simple linear model accounted for 
circa 65% of the variance in the reduced sound 
representations, supporting the feasibility of using the 
dynamical model of the vocal organ for decoding motor cortical 
activity during vocal production.  

I. INTRODUCTION 

The auditory cortex processes sounds it receives with high 
temporal precision to achieve auditory perception of 
complex natural sounds such as vocalizations[1]-[4]. 
Previous studies have shown robust decoding of auditory 
cortical activity recorded from ECoG electrode arrays when 
subjects listen to vocalizations of humans and monkeys 
[5]-[7]. On the other hand, there have been relatively few 
attempts to decode cortical activity during vocal production. 
In monkeys, neural activity associated with motor 
commands has been observed in multiple cortical areas 
during vocal production [8]-[10]. Recently a nonlinear 
dynamical model of the vocal organs was used to synthesize 
the song of zebra finch with its complex spectral temporal 
structures [11]-[13]. This model is based on a flapping 
mechanism originally suggested for human vocal folds [14], 
[15], that can reduce complex spectrotemporal sound 
features to two time-varying parameters: “air pressure” and 
“muscle tension”. It is biologically plausible that the brain 
controls such parameters to produce complex sounds. 
Moreover, reducing the high dimensionality of emitted 
sounds could be advantageous in predicting or 
reconstructing vocalizations from neural signals recorded 
from a limited number of recording sites, as in the 
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application of a brain-machine interface for speech 
production [16].  

Here we trained a rhesus monkey to vocalize for water 
rewards, and then chronically implanted an ECoG electrode 
array to record field potentials from numerous cortical areas 
during vocal production. This array robustly detected 
electrophysiological cortical activity during vocal production 
in the macaque monkey. We then derived a reduced 
representation of the vocalizations by fitting the nonlinear 
dynamical model of the vocal organ to each call produced by 
the monkey. Finally, we evaluated how much of the variance 
in the model parameters was explained by a linear regression 
model from neuronal activity recording in the motor cortex.  

II. METHOD 

A. Subjects 
An adult male rhesus monkey (Macaca mulatta) was used in 
the current study. All procedures and animal care were 
conducted in accordance with the Institute of Laboratory 
Animal Resources Guide for the Care and Use of Laboratory 
Animals. All experimental procedures were approved by the 
National Institute of Mental Health Animal Care and Use 
Committee. 

B. Electrophysiological and sound recording during vocal 
production 
During the experiment, the monkey was placed in a 
sound-attenuating booth (Bioacoustics Instruments). The 
monkey vocalized to obtain water reward with its head 
fixed. We monitored the monkey’s behavioral state through 
a video camera and microphone connected to a PC, and we 
also recorded eye movements during the experiment. The 
monkey’s vocalization was recorded with a directional 
microphone (Audio Technica) with a sampling rate of 
25kHz. The auditory evoked potentials from the 256 
channels of the ECoG array were band-passed between 2 
and 500 Hz, digitally sampled at 1500 Hz, and stored on 
hard-disk drives by a PZ2 preamplifier and the RZ2 base 
station (Tucker Davis Technologies). 

C. ECoG electrode 
The ECoG electrode array consists of 256 recording sites for 
bipolar recording at 128 locations (Fig. 1): the electrodes on 
the medial wall of the left hemisphere (26 sites) were 
designed to cover the medial frontal cortex, cingulate cortex, 
and supplementary motor area. The electrodes on the lateral 
surface (212 sites) were designed to cover the frontal, 
temporal, parietal, and occipital lobes. The electrodes in the 
lateral sulcus (18 sites) were designed to cover 2 cm of the 
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Figure 1. The 256 channel ECoG array.  Spatial layout of all 256 
electrodes. The three sections outlined by the dashed lines were 
designed for the medial wall (26 electrodes), the lateral surface (212 
electrodes), and the supratemporal plane of the lateral sulcus (18 
electrodes) 

 

Figure 2. Two example monkey calls reconstructed by the 
dynamical model. a. an example monkey call (left), and the 
reconstructed call (right). b. two parameters α and β that produced 
the reconstructed call in a. c. another expample call (left), and the 
reconstructed call (right). b. two parameters produced the 
reconstructed call in c.   

caudorostral cortical surface on the ventral bank of the 
lateral sulcus. Each recording site was a circular disk with 
0.8 mm diameter and the distance between two sites in a 
bipolar pair was 1.8mm. The mean impedance values ranged  
from 140kΩ (at 10Hz) to 0.9 kΩ (at 10kHz). 

D. Nonlinear dynamical model of the vocal organ 
We used the following nonlinear dynamical model of the 
vocal organ [11], [12] to derive a reduced representation of 
monkey vocalizations.  
 
 dx(t)/dt = y(t) (1) 

 
 dy(t)/dt = −αγ2 −βγ2 x−γ2x3 − γx2 y+γ2x2 −γ xy (2) 
 
For each monkey ‘Coo’ call (Fig. 2a), we estimated two 
time-varying parameters (α:”pressure” and β:”tension”), 
following a similar procedure used for zebra finch songs 
[17]. The variable γ is a time invariant constant. x(t) is the 
labial position of the model, which was used to calculate the 
sound pressure at the vocal tract, Pi(t), using:  
 
 Pi (t) = x(t)− rPi (t −τ )  (3) 

 
We then calculated the output sound pressure from the vocal 
tract, Pt(t), by:  

 
 Pt (t) = (1− r)Pi (t −τ )  (4) 

 
 This Pt(t) was used to fit vocalization sounds recorded from 
the monkey. Here r =-0.9, and τ = 0.11 ms [12]. Each 
monkey call was decomposed into consecutive 20 ms 
segments. The consecutive segments were shifted by 2 ms 
(i.e. 18ms overlap). For each 20 ms segment of monkey call, 

we chose the optimal pair of α and β that provided the most 
similar power spectrum distribution of the segment. We did 
a grid search to find this optimal pair (100x100; 
0<α< 0.2,  0<β<0.4).   Previous studies of zebra finch songs 
[12], [18] used γ=~24000, but we found that γ=5000 
provided a good fit for the monkey ‘Coo’ calls. After 
α and β were estimated from segmented vocalizations, the 
time courses of α and β were smoothed by low-pass filtering 
at 20Hz (Fig. 2b). Then we numerically solved (1) and (2), 
with these time-varying α and β. This numerical solution 
provided reconstructed monkey calls (Fig. 2a, right). The 
differential equation was solved with an ODE solver 
(‘ode45’) in MATLAB (MathWorks).  

E. Linear regression analysis 
We used the following liner regression model to quantify 
how much of the variance in the parameters of the vocal 
organ model could be explained by cortical activity in the 
motor cortex.  

 p(t) = h(0)+ h(k)r(t − k)
k=1

M

∑  (5) 

 
where p(t) stands for either α or β obtained  by fitting the 
dynamical model to a monkey call (Fig. 2b). M specifies the 
number of data points included in the regression model. h(k) 
is the regression coefficient. r(t) is the amplitude of 
high-gamma power. This is obtained by band-pass filtering 
the field potential with a Butterworth filter (70-200Hz, 4th 
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Figure 3. Spectrogram of motor cortical response during vocal 
production.  This is the average of 30 calls. The call onset is 
aligned to 0 in the time axis.  The spectrogram is normalized by 
the basiline period acivtiy which is 4 seconds before the onset of 
the call.  

order for low-pass, 7th order for high-pass), and then the 
amplitude was obtained by taking the absolute value of the 
band-pass waveform. We then smoothed it by low-pass 
filtering at 10Hz (4th order Butterworth filter). Followed by 
down-sampling the data at a 250Hz sampling rate. For all 
filtering processes, we achieved a zero-phase shift by 
processing the data in both forward and reverse directions in 
time.  

III. RESULTS 

A. Reduced representation of recorded ‘Coo’ calls 
As noted, we focused our analysis on harmonically structured 
‘Coo’ calls produced by the monkey and fit the dynamical 
model to these calls. This resulted in a reconstructed call 
(Fig. 2a and 2c right) that was very similar to the original call 
(Fig. 2a and 2c, left). Although these two exmaple calls are 
different in the amount of frequency modulatation over time, 
the model reprodurced the original calls well. This 
demostrates the utility of the model in prodcuing reduced 
representations for ‘Coo’ calls with different spectrotemporal 
profiles. We reconstructed 30 ‘Coo’ calls produced by the 
monkey, and used associated parameters α and β (Fig. 2b) in 
the following analysis. 

B. Cortical activation during vocal production 
The ECoG array recorded robust cortical field potentials 
during vocal production. The normalized spectrogram from 
a bipolar recording site in the motor cortex showed increases 
in power from the baseline period in the gamma frequency 
range (50–200 Hz; Fig. 3), starting from around 600 ms 
before the onset of vocalization. On the other hand, the low 
frequency power (4-30Hz) was decreased below the 
baseline, approximately 1 second before the onset of 
vocalization (Fig. 3).  

C. Motor cortical activity explains variability in the vocal 
parameters 

Motor cortical activity during vocal production sould be 
correlated with vocal parameters if the cortical activity plays 
a role in controlling  the vocal organs. Thus, we used the 
linear regression model to quantify how much of the variance 
in the estimated vocal parameters can be explained by the 
motor cortical acitivity. We used the high-gamma power 
amplitude from one bipolar site around the motor cortex to 
predict the vocal parameters (see Methods).  We calucated 
the linear regression for different M values that specify the 
number of time points from the high gamma amplitude. We 
found M=887 (=3.55 sec at 250 Hz sampling rate) to be the 
largest value that was significant at p<0.01. In this case, the 
high-gamma power explained 65.2% of the variance in the  
α paramter (p=0.0096, F(887, 567)=1.1969) and 66.5% of the 
variance in the β paramter (p=0.0009, F(887, 567)=1.2700). 
Accordindgly the regression models for each of those two 
parameters exhibited reasonable fits to the data (Fig. 4).  

IV. DISCUSSION 
In the current study, we recorded cortical activity with an 
ECoG electrode array during vocal production in a macaque 
monkey. We then derived a reduced representation of 

monkey calls using a nonlinear dynamical model of the 
vocal organ. This allowed us to correlate motor cortical 
activity with estimated vocal parameters using a linear 
regression model. The results showed a significant 
correlation between motor cortical activity and the vocal 
parameters.  

This framework may be useful for decoding motor 
cortical activity with a nonlinear dynamical model during 
vocal production. There are several issues that need to be 
addressed to further this aim. We used the model of the 
vocal organ for songbirds to reduce the dimensionality of 
monkey vocalizations, and thus the model could further be 
improved by incorporating biophysical characteristics of the 
vocal organs in primates.  Under the constraints of the 
current model, some of the parameters could be chosen 
better. The current study optimized the variable γ, for 
example, only for ‘Coo’ calls, but a better parameter value 
may be chosen to fit the model to other types of monkey 
calls (e.g. grunt, scream, bark, etc.).  

Decoding the cortical activity requires a statistical model 
to predict vocal parameters in independent data sets. In this 
case, the prediction may be difficult using the linear model. 
Thus, the next step for this analysis would be to predict the 
vocal parameters with cross-validated data sets, possibly 
with non-linear models of the type previously used in 
predicting motor commands [19]. Another possibility is to 
take advantage of simultaneous recording from multiple 
cortical areas. By combining multiple channels, the predictor 
performance might be substantially improved. This may 
require regularized methods for regression because of the 
high dimensionality of the data [7], [20].  
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Figure 4. Linear regression model of the high-gamma amplitude from the motor cortex predicts the vocal parameters. The estimated vocal 
parameter was concatenated for all 30 calls. Upper panel: α paramter (“air pressure”). Lower panel : β parameter (“muscle tention”). The 
regression line is shown in blue, and the estimated parameter from calls plotted with dots.  
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