
  

  

Abstract— We present the first demonstration of single-
trial neural decoding of vowel acoustic features during 
speech production with high performance. The ability to 
predict trial-by-trial fluctuations in speech production 
was facilitated by using high-density, large-area 
electrocorticography (ECoG) combined with an adaptive 
principal components regression.  In experiments from 
two human neurosurgical patients with a high-density 
256-channel ECoG grid implanted over speech cortices, 
we demonstrate that as much as 81% of the acoustic 
variability across vowels could be accurately predicted 
from the spatial patterns of neural activity during speech 
production. These results demonstrate continuous, 
single-trial decoding of vowel acoustics. 

I. INTRODUCTION 

    Dysfunction of the central control of speech articulation 
affects a large number of primary communication disorders 
including stuttering, aphasia, apraxia of speech, and most 
devastatingly of all, ‘locked-in’ syndrome, in which people 
have lost the ability to communicate through spoken 
language. Our understanding of the neural processes that 
generate speech are greatly limited [1]. Studying the neural 
control of speech presents several distinct challenges. First, 
speech production is a unique human ability, and therefore 
can only be studied in humans. Second, the generation of 
speech requires the precise and coordinated control of 
several effectors on rapid time scales. Finally, as 
demonstrated by our previous work, the effectors of the 
speech plant (i.e. the articulators of the vocal tract, e.g. the 
lips, tongue, jaw, larynx) are somatotopically represented 
over ~1300mm2 of human sensory-motor cortex, and the 
representation between articulators can transition over 
spatial scales less then 5mm [2].  Together, the rapid 
coordination of multiple articulator representations which 
are spatially localized over large areas of cortex requires 
high-density, large area recordings with high temporal 
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resolution. Although arrays of penetrating electrodes (e.g. 
Utah arrays) are capable of recording the spiking activity of 
10’s of neurons, their limited spatial coverage makes them 
unsuitable for studying speech. Electrocorticography 
(ECoG) potentially provides the broad spatial coverage and 
high temporal resolution, but the standard low-density grids 
(1cm pitch) lack sufficient spatial resolution to 
simultaneously monitor the activity of all speech articulator 
representations. The current state-of-the art brain-machine 
interfaces for restoring speech show promise [3-4], but are 
not yet clinically viable.  

II. EXPERIMENTAL METHODS 

A. Subjects and Task  
    The experimental protocol was approved by the Human 
Research Protection Program at the University of California, 
San Francisco. Two native English speaking human subjects 
underwent chronic implantation of a high-density, subdural 
electrocortigraphic (ECoG) array over the left hemisphere as 
part of their clinical treatment of epilepsy [2]. Subjects gave 
their written informed consent before the day of surgery. All 
subjects had self-reported normal hearing and underwent 
neuro-psychological language testing (including the Boston 
Naming and verbal fluency tests) and were found to be 
normal.  
    Each subject read aloud consonant-vowel syllables (CVs) 
composed of 19 consonants followed by one of three vowels 
(/a/, /i/ or /u/). Each CV was produced between 15 and 100 
times total. Across two subjects, data were taken on 14 
different recording sessions. Because we observed that the 
recorded ECoG signal from a patient could vary from block-
to-block, these different recording sessions were used as the 
samples across which statistical tests were performed.  

B. 256 channel high-density electrocorticography  

 
Fig. 1.  High-density electrocorticography from speech areas.  
(a) Photograph of high-density (4mm pitch), 256-channel electrocorti-
cography (ECoG) grid. (b) Reconstructed location of ECoG electrode 
locations over the left hemisphere from one patient [red, ventral 
sensorimotor cortex; blue, Broca’s area; grey, superior and middle temporal 
gyri; black and green, non-speech frontal (black) and parietal (green) 
cortices].   
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    We used a customized high-density, large channel count 
electrocorticography (ECoG) array implanted subdurally to 
record electrical field potentials directly from the cortical 
surface. The array had a total of 256 electrode contacts, in a 
16 x 16 configuration. Each contact on the array was a 1.5 
mm diameter platinum disk with an impedance of ~1-10 Ω 
(measured in saline). The contacts and connecting wires 
were embedded in silastic to allow conformability to the 
cortical surface (Fig.1). 
    Electrical field potentials were recorded directly from the 
cortical surface with ECoG arrays and a multi-channel 
amplifier optically connected to a digital signal processor 
(Tucker-Davis Technologies [TDT], Alachua, FL). The 
spoken syllables were recorded with a microphone, digitally 
amplified, and recorded inline with the ECoG data. ECoG 
signals were acquired at 3052 Hz. The acoustic signal was 
acquired at 22kHz. The time series from each channel was 
visually and quantitatively inspected for artifacts or 
excessive noise (typically 60 Hz line noise). These channels 
were excluded from all subsequent analysis and the raw 
recorded ECoG signal of the remaining channels were then 
common average referenced and used for spectro-temporal 
analysis. For each (useable) channel, the time-varying 
analytic amplitude was extracted from eight bandpass filters 
(Gaussian filters, logarithmically increasing center 
frequencies [70-150 Hz] and semi-logarithmically increasing 
band-widths) with the Hilbert transform. The high-gamma 
(Hγ) activity was calculated by averaging the analytic 
amplitude across these eight bands. This signal was down-
sampled to 200 Hz and z-scored relative to baseline activity 
for each channel. 

III. SINGLE-TRIAL DECODING OF VOWEL ACOUSTICS 
DURING SPEECH PRODUCTION 

A.  Extraction of acoustic features 
    Each subject read aloud consonant-vowel syllables (CVs) 
composed of 18-19 consonants followed by one of the three 
cardinal vowels (/a/, /i/, or /u/) [2]. /a/, /i/, and /u/ are 
considered cardinal vowels because they span the acoustic 
and articulatory space of all vowels, and are found in most 
of the world’s languages [5]. The recorded speech signal 
was transcribed off-line by a certified speech pathologist 
using WaveSurfer (http://www.speech.kth.se/wavesurfer/). 
Vowels are defined by the combination of acoustic features, 
termed formants. Vowel formants reflect the resonant 
properties of the vocal tract, which is shaped by the 
configuration of speech articulators. We measured the vowel 
formant, F1-F4, as a function of time for each utterance of a 
vowel using an inverse filter method [6]. Briefly, the signal 
is inverse filtered with an initial estimate of F2 and then the 
dominant frequency in the filtered signal is used as an 
estimate of F1.  The signal is then inverse filtered again, this 
time with an inverse of the estimate of F1, and the output is 
used to refine the estimate of F2. This procedure is repeated 
until convergence and is also used to find F3 and F4. The 
inverse filter method converges on very accurate estimates 
of the vowel formants, without making assumptions inherent 
in the more widely used linear predictive coding (LPC) 

method. In Figure 2, we present single-trial time-courses of 
the F2/F1 formant ratio for the cardinal vowels /a/, /i/, and /u/, 
as well as a scatter plot of the values extracted from the 
center of each vowel, from one patient.  

  B.  Predicting vowel formants from high-gamma activity   
We examined the ability of spatial patterns of neural activity 

 
 
Fig. 2.  Single-trial acoustics of vowels. (a) Time courses of the F2/F1 ratio 
from more than 100 utterances of the vowels /a/ (red), /i/ (grey), and /u/ 
(black), from one patient. (b) Scatter plot of formant ratios of the vowels /a/ 
(red), /i/ (grey), and /u/ (black), extracted from the middle of each utterance. 
T = 0 is the acoustic onset of the consonant-to-vowel transition. 
 
from ventral sensorimotor cortex (vSMC) to predict vowel 
acoustics on a single-trial basis. We focused on the 
amplitude of high-gamma band activity from vSMC; ~85 
electrodes where located in vSMC for each subject [2]. 
High-gamma amplitude has been shown to have high spatio-
temporal resolution, and correlates well with mid-laminar 
multi-unit activity [7-8]. We used principle components 
linear regression combined with a two-stage model 
optimization procedure decode the acoustics of vowels from 
vSMC high-gamma activity [9]. Principal components 
analysis (PCA) was performed on the set of all vSMC 
electrodes for dimensionality reduction and 
orthogonalization. This also ensures that the matrices in the 
calculation of least mean squared error estimators (from 
multivariate regression below) were well scaled.  PCA was 
performed independently for each non-overlapping 10 ms 
window preceding the acoustic measurement. First, for each 
electrode (ej of which there are n) and syllable utterance (s, 
of which there are m), we calculated the mean high-gamma 
activity (Hγ) in 10 ms windows  with a non-overlapping two-
sample moving average of Hγ with time lag τ . The Hγj(τ,s) 
were used as entries in the n x m data matrix D, with rows 
corresponding to channels (of which there are n) and 
columns corresponding to the number of utterances within a 
recording session (of which there are m). Each electrode’s 
activity was z-scored across utterances to normalize 
response variability across electrodes.  PCA was performed 
on the n x n covariance matrix Z derived from D. The 
singular-value decomposition of Z was used to find the 
eigenvector matrix M and associated eigenvalues. The PCs 
derived in this way serve as a spatial filter of the electrodes, 
with each electrode ej receiving a weighting in PCi equal to 
mij, the i-jth element of M, the matrix of eigenvectors. We 
included the leading 40 eigenvectors in our analysis.  For 
each utterance (s), we projected the vector Hγ(τ,s) of high-
gamma activity across electrodes into the leading 40 
eigenvectors (M40): 
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  Ψ(τ,s) = M40•Hγ(τ,s)                                     (1) 
 
    It is important to emphasize that the approach described 
above identifies principal components (spatial filters) 
derived only from the spatial structure of the data (structure 
of Hγ across electrodes); the temporal structure of the Hγ 
population does not enter into M in any way. Thus, the PC’s 
are completely local in time, up to the autocorrelation of the 
Hγ signal itself.   
 
Formant Decoding Model 
    For each non-overlapping 10ms time window (τ) 
preceding the behavioral measurement, Ψ(τ,s) (equation 1) 
served as the basis for training and testing optimal linear 
predictors of single-trial vowel formant features. We used a 
simple linear model to predict the formant features (Fi(s)) for 
a syllable (s) from Ψ(τ,s): 
 
  fi(s)  = β•Ψ(τ,s) + β0                              (2) 
 
Here, fi(s) is the best linear estimate of Fi(s) based on the 
cortical features.  The vector of weights (β) that minimized 
the mean squared error between fi(s) and Fi(s) was found 
through a two-stage optimization of multi-linear regression. 
 
Adaptive Threshold Selection-OLS refit decoding 
    To train linear predictors of produced acoustics from 
neural data, we innovated a two-stage estimation procedure 
utilizing adaptive threshold selection of model parameters 
followed by ordinary least squares refitting of the selected 
parameters. We thus term this procedure ATS-OLS refit. 
This approach used cross-validation to train and test separate 
linear models to predict across vowel acoustic features [9]. 
Separate models were trained/tested for each time-point (dt 
= 10ms) and recording block. Predictive performance was 
calculated as coefficient of determination, R2. We first 
verbally describe our decoding approach, and then provide a 
more formal treatment. 
    The methodology used here is as follows. First, we derive 
null distributions of weights (βnull) and model performance 
(R2

null). This was accomplished by randomly permuting (200 
times) each vowel formant relative to Ψ on a trial-by-trial 
basis, yielding randomized data pairings Zrnd. We estimated 
weights (Equation 2) with OLS minimization on Zrnd, and 
determined predictive. 
    We then used 5-fold cross validation to train and test a 
two-stage estimation of the linear mapping from cortical 
features to acoustics. The 5-fold cross-validation procedure 
was included in a 200-iteration bootstrap to arrive at 
estimates of mean expected models and predictive 
performance across different data subsets. Specifically, on 
each iteration, a random 80% subset of the data (Ztrn) was 
used to derive initial estimates of linear weights for the 
models (Equation 2), and the performance of these models 
was calculated on the remaining 20% of the data not used in 
training (Ztst). From this, we arrived at weights (βinit) 
describing the mapping from all cortical activity patterns to 
each formant features.  

    We then reduced the dimensionality of the cortical 
features (‘parameter selection’) by comparing the observed 
weights (βinit) to the weights derived from randomly 
permuted data sets (βnull) to identify cortical features with 
weights that were different between the two conditions. 
Here, cortical features (Ψj) were retained if the initial 
estimate of the weight magnitude (|βj

init|) was greater than the 
mean plus one standard deviation of the distribution of 
weight magnitudes derived from the randomization 
procedure (|βj

rnd|). Finally, we re-fit the model based only on 
this reduced set of cortical features (using the same training 
data, Ztrn), to arrive at optimal weights (βopt), and determined 
decoding performance (R2

opt) on test data (Ztst).  
 

 
 
Fig. 3. Adaptive Threshold Selection-OLS Refit of Principal 
Components.  At each point in time preceding the acoustic measurements 
(τ), spatial PCA was performed on the data matrix D of high-gamma 
activity.  The data were projected into the leading principal components, 
yielding Ψ , the projection of the neural activity into the corresponding 
orthogonal sub-space that maximized the variability amongst the spatial 
patterns of activity.  This projection served as input to a linear decoder, 
trained and tested with 5-fold cross-validation. The linear weights (β) were 
selected and by a hard-thresholding procedure based on the distribution of 
null weights, and the reduced model was refit by ordinary least squares. 
 
    The decoding performance for each block and decoding 
condition was taken as the mean of R2

opt values across 
random test samples. This quantifies the expected value of 
predictive decoding performance across randomly selected 
training and test samples. We confirmed that the expected 
value of R2 under the null hypothesis for our data and 
procedure was 0 by examining the distributions of R2

rnd.  
Across all blocks, times and conditions, R2

rnd had a median 
very close to 0 (median < 0.001 for all). Note that, as there 
are more cortical features in the model used to derive R2

rnd 
than R2

reg, comparing R2
reg to R2

rnd is a conservative approach 
for statistical testing.  Therefore, we gauged the significance 
of the across block distributions of R2

reg for each feature and 
time-window by performing t-tests against the null-
hypothesis of 0. The conclusions of significance were 
insensitive to different statistical tests. 
    This selection-refitting procedure resulted in improved 
decoding performance (up to ~10%) on test data. The choice 
of threshold (mean plus one standard deviation of null 
distribution) was chosen by visual examination of the weight 
distributions. As we describe below, an optimization of this 
threshold may have resulted in better model performance; 
however, because the chosen threshold resulted in good 
decoding performance, this optimization was not done to 
reduce computational run-time. This approach to parameter 
selection/estimation has the advantage of not imposing a 
prior over the distribution of weights, as is the case when 
using either the L1-norm (i.e. lasso imposes a Laplacian 
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prior) or L2-norm (i.e. ridge regression imposes a Gaussian 
prior) to penalize the weight distribution [9]. 
    We now describe the ATS-OLS refit procedure formally, 
and in full generality. Let 𝑍! =    𝑥! , 𝑦! , 𝑖 = 1, …m, be the 
m measurement pairs of output 𝑦  ∈  ℝ  and  d-dimensional 
input features 𝑥  ∈  ℝ!. The first step of the ATS-OLS refit 
procedure, the is to estimate the null distribution of model 
weights (𝛽!"##) by, e.g. randomly permuting the relationship 
between inputs and outputs (𝑍!"#) multiple times: 

𝛽!"## = 𝐸(argmin
!∈ℝ!

ℒ 𝛽,𝑍!"# )                               3  

Here, we use the typical least-squares loss function: 

                                                                    ℒ 𝛽,𝑍   = 𝑦! − 𝛽𝑥! !
!

!!!

                                         4  

 
Then, divide the m measurements of input-output pairings 
𝑍! =    𝑥! , 𝑦! , 𝑖 = 1, …m, into non-overlapping train (Ztrn), 
select (Zslct), and test (Ztst) sets for model training, selection, 
and testing (i.e. cross-validation). Next, derive an initial 
estimate of model parameters from 𝑍!"#: 
 
                                                                          𝛽!"!# = argmin

!∈ℝ!
  ℒ 𝛽,𝑍!"#                                   (5) 

 
Next, for a range of thresholds, set model parameters to zero 
if the magnitude of 𝛽!"!#

!  is less than a multiple (𝜆) of the 
expected value of the null magnitudes (𝛽!"##

! ):  
      𝑖𝑓   𝛽!"!#

!    < 𝛽!"##
! ×𝜆, then    β!"#

! 𝜆 = 0        (6)           
and re-fit the d-n β!"#

! ≠ 0 on 𝑍!"# using ordinary least-
squares: 
                                                                      𝛽!"# 𝜆 = argmin

!∈ℝ!!!
ℒ 𝛽,𝑍!"#                             (7) 

 
Finally, select the optimal model parameters (𝛽!"#) as the 
𝛽!"# that minimize the expected loss on out-of-sample data 
(𝑍!"#) across thresholds (𝜆): 
 
                                                      𝛽!"# = argmin

!
  ℒ(𝛽!"#(𝜆),𝑍!"#)                                     (8) 

We calculated expected predictive performance (R2) on 
data (𝑍!"!) not used in parameter training or selection. 
The specific decoding approach applied in this study is a 
special case of the ATS-OLS refit method. 

IV. RESULTS 
    We found that spatial patterns of high-gamma activity 
could be linearly decoded to predict formant features across 
the cardinal vowels with high fidelity. Decoding 
performance was greatest ~150ms before the onset of the 
acoustic measurement. The scatter plot in Figure 4 presents 
results from a single recording session from one subject in 
which 361 CV syllables were spoken.  For this subject, on 
average across sessions, 81% of the variability in F2/F1 
across the vowels could be accurately predicted from the 
vSMC population neural activity.  

    We observed that the ability to predict across vowel 
variability from linear decoders of vSMC spatial patterns of 
activity varied across different acoustic features. In Figure 5, 
we plot mean performance of linear decoders for predicting 
different acoustic features from single-trial activity, 
averaged across several recording sessions in two patients. 
On average, predictive performance was highest for the F2/F1 
ratio. 
 

 
 

  

V. CONCLUSION 
We have shown that linear decoders of high-gamma 

activity recorded from high-density ECOG over the ventral 
sensorimotor cortex of speaking humans can predict the 
produced acoustic features of the cardinals vowels with 
high-performance.  These results suggest that continuous 
decoding of speech maybe a viable approach to speech 
prosthetics. 
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Fig. 5.Performance of 
decoder across different 
acoustic features and 
recording sessions. Data 
are presented as mean ± 
s.e. from 14 recording 
sessions in two subjects. 

Fig. 4. Example single-
trial acoustic decoding 
from ECoG. Scatter plot 
of the predicted log(F2/F1) 
ratio vs. the actual 
log(F2/F1)  ratio from one 
recording session. Red: 
/a/;  Black: /u/; Grey: /i/. 
Dashed grey line is unity 
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