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Abstract— We introduce a model-based approach for the 

non-invasive estimation of patient specific, left ventricular PV 

loops. A lumped parameter circulation model is used, composed 

of the pulmonary venous circulation, left atrium, left ventricle 

and the systemic circulation. A fully automated parameter 

estimation framework is introduced for model personalization, 

composed of two sequential steps: first, a series of parameters 

are computed directly, and, next, a fully automatic 

optimization-based calibration method is employed to 

iteratively estimate the values of the remaining parameters. The 

proposed methodology is first evaluated for three healthy 

volunteers: a perfect agreement is obtained between the 

computed quantities and the clinical measurements. 

Additionally, for an initial validation of the methodology, we 

computed the PV loop for a patient with mild aortic valve 

regurgitation and compared the results against the invasively 

determined quantities: there is a close agreement between the 

time-varying LV and aortic pressures, time-varying LV 

volumes, and PV loops. 

I. INTRODUCTION 

The left ventricular pressure-volume (PV) loop represents an 
efficient tool for understanding and characterizing cardiac function. 
It contains information regarding stroke volume, cardiac output, 
ejection fraction, myocardial contractility, cardiac oxygen 
consumption, and other important measures of the heart and the 
systemic circulation. For example, the extent of ventricular 
remodeling, the degree of ventricular-arterial mismatching [1], and 
the left ventricular end-diastolic pressure-volume relationship [2] 
represent strong predictors of congestive heart failure. Pathologies 
such as left ventricular hypertrophy, dilated cardiomyopathy, aortic 
and mitral valve stenosis, and regurgitation [3] are manifested in 
the PV-loop. Hence, a method for an efficient estimation of the PV 
loop would represent a powerful diagnostic tool for clinicians. 
Medical imaging modalities such as MRI, CT, and 
echocardiography can be used to estimate the time-varying LV 
volume through the heart cycle in a non-invasive manner, which 
can then be combined with an invasive measurement of LV 
pressure to obtain the PV loop [4].  

In this paper, we introduce a model-based approach for the 
non-invasive estimation of left ventricular, patient-specific PV 
loops: a lumped parameter circulation model is personalized using 
a two step parameter estimation framework. The input data required 
for the model personalization are acquired through routine non-
invasive clinical measurements and echocardiography.  
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In a clinical scenario, the values of the cardiovascular model 
parameters are not available on a per-patient basis, and different 
optimization-based approaches were proposed to estimate these 
parameters, focused mainly on the arterial systemic circulation. A 
fully automatic calibration method for Windkessel models was 
suggested [5], where the input was specified by non-invasively 
acquired systolic/diastolic pressures and, in some cases, additional 
flow data. In a different approach, Windkessel parameters were 
estimated using a state-space approach and a least squares method 
from time-varying pressure and flow rate profiles [6]. 

II. METHODS 

A. Lumped Parameter Model 

The lumped parameter circulation model employed for the 
current study is displayed in fig. 1. It comprises three main 
components: venous pulmonary circulation, the left heart and the 
systemic circulation. For the venous part of the pulmonary 
circulation, we use a model composed of a resistance (RpulVen) and 
compliance (CpulVen): 
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where the venous pulmonary flow rate (QpulVen) is considered to be 
constant in time. 

The left heart model has four components: left atrium (LA), 
mitral valve, left ventricle (LV) and aortic valve. We use a time-
varying elastance model for the LA and the LV [7]: 

        tQRVtVtEtP s 0   

where E is the time-varying elastance, V is the cavity volume, V0 is 
the dead volume of the cavity, and Rs is a source resistance which 
accounts for the dependence between the flow and the cavity 

pressure [8] (       tVtVtEKR ss 0 , Ks - constant). The cavity 

volume is equal to: 

outin QQdV dt   

where Qin represents the inlet flow rate into the cavity and Qout 
represents the outlet flow rate from the cavity. The mitral valve and 
the aortic valve are modeled using a resistance, an inertance and a 
diode to simulate the closure and the opening of the valve [9]. 
When the valve is open, the following relationship holds: 

dtdQLQRPP valvevalveoutin   

where Pin and Pout represent the pressures at the inlet and 
respectively the outlet of the valve. When the valve is closed, the 
flow rate through the valve is set to zero. Each valve opens when 
Pin becomes greater than Pout, and closes when the flow rate 
becomes negative. A three-element Windkessel model is used for 
the systemic circulation, represented by the following relationship 
between instantaneous flow and pressure: 
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where Rsys-p and Rsys-d are the proximal and distal resistances 
respectively, Csys is the compliance, and Pven is the venous pressure. 
A total of nine equations are obtained, which are solved implicitly 
using the forward Euler time integration scheme.  

B. Parameter Estimation Framework 

To compute patient-specific left ventricular PV loops using the 
lumped parameter model, the parameters of the model are 
personalized. The model personalization framework consists of two 
sequential steps. First, a series of parameters are computed directly, 
and next, a fully automatic optimization-based calibration method 
is employed to estimate the values of the remaining parameters, 
ensuring that the personalized computations match the 
measurements. Table I lists the patient-specific input parameters 
used in the current study, together with their source. Figure 2 
displays an image acquired through echocardiography, illustrating 
the steps required for extracting the last two quantities from table I. 

During the first step of the parameter estimation framework, the 
mean arterial pressure (MAP) is determined: 

   )(0012.031 DBPSBPHRDBPMAP   

Then, the end-systolic volume is computed: 
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Next, the stroke volume is determined: 

ESVEDVSV    
and the average aortic flow rate is computed: 
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Finally, the total systemic resistance, as well as the proximal 
and distal components, are determined: 
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where ρ is the proximal resistance fraction. Since the lumped model 
is used for a pulsatile steady-state computation, the average inlet 
flow rate (QpulVen) is equal to the average outlet flow rate, given by 
(10). Hence:  

AopulVen QQ    

The normalized elastance curve is used for the left ventricle 
model [7], which is denormalized using the minimum and 
maximum elastance values, and the time at which the maximum 
elastance is reached. The minimum elastance value is set to 0.08 
mmHg/ml, and the time at which the maximum elastance of the left 
ventricle is reached is computed using tmax = 0.16·T + 0.17, where 
T is the period. The maximum elastance value is estimated as 
described further down. A two-hill function is used to determine 
the elastance curve for the left atrium, whereas the minimum 
elastance is set to 0.08 mmHg/ml, the maximum elastance is set to 
0.17 mmHg/ml, and the onset of the contraction is set at 0.85T [9]. 

During the second step of the parameter estimation framework, 
an optimization-based calibration method is employed to estimate 
the maximum elastance of the left ventricle model, Emax-LV, the dead 
volume of the left ventricle, V0-LV, and the compliance of the 
systemic Windkessel model, Csys.  

The parameter estimation problem is formulated as a numerical 
optimization problem, the goal of which is to find a set of 
parameter values for which a set of objectives are met. Since the 
number of parameters to be estimated is set equal to the number of 
objectives, the parameter estimation problem becomes a problem of 
finding the root for a system of nonlinear equations. To solve the 
system of equations, we use the dogleg trust region method [10]. 
The objectives of the parameter estimation method are formulated 
based on the systolic and diastolic pressures, and the ejection 
fraction, leading to the system of nonlinear equations: 
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where, r(x) is a vector function, called in the following objective 
function, and x is the vector of the unknowns, i.e. the parameters to 
be estimated. Each component of the objective function is 
formulated as the difference between the computed value of a 

quantity –  
comp

  (determined using the lumped parameter model) 

and its reference value –  
ref

 (determined through measurement). 

To evaluate the objective function for a given set of parameter 
values, the lumped parameter model is run exactly once. 

An outline of the parameter estimation method is illustrated in 
fig. 3. First, a grid of physiological parameter value sets is 
considered, and the initial solution, x0, is chosen as the parameter 
value set leading to the smallest L2 norm for the objective function 
r(x). Since the lumped parameter model has a small computational 
time, the Jacobian matrix required to compute the step size at each 
iteration of the optimization method is estimated using finite 
differences. The finite differences of the parameters, to be used for 

 
Figure 1. Lumped parameter model representing the venous pulmonary 

circulation, the left heart and the systemic circulation. 

TABLE I.  LIST OF PATIENT-SPECIFIC INPUT PARAMETERS. 

Input Source 

Systolic blood pressure (SBP) Cuff measurement (arms) 

Diastolic blood pressure (DBP) Cuff measurement (arms) 

Heart Rate (HR) Routine measurement 

Ejection fraction (EF) Echocardiography 

End-diastolic volume (EDV) Echocardiography 

 

 
Figure 2. Image acquired through echocardiography illustrating the 

steps required to extract the end-diastolic volume and the ejection 

fraction. 
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the computation of the Jacobian, are called in the following 

characteristic step sizes, char
js . To determine the characteristic step 

sizes, we choose a set of characteristic values for the objective 

function, char
ir , and apply a fixed point iteration method. The fixed 

point iteration method consists of two sequential steps. First, the 
characteristic step size values are computed: 
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where di and dj represent the unit vectors in the ith and jth 
direction. These two steps are iterated until the characteristic step 
size is consistent with the chosen characteristic objective function. 
Next, the lumped parameter model is run using the current 
parameter value set and the objective function is evaluated. Each 
computation, with a given set of parameter values, is run until the 
L2 norms of the normalized differences between the aortic pressure 
and flow rate profiles at the current and the previous cardiac cycle 
are smaller than 10-5. If all objective function values are smaller 

than the tolerance limit ( 10/
char

ir ), the calibration method is 

terminated. Otherwise, the Jacobian matrix is recomputed and the 
parameter values are updated. The characteristic values for the 
pressure and ejection fraction objectives were set to 1 mmHg and 
0.005 respectively. When applying the dogleg trust region method, 
the parameters and the objective function components are scaled 
using the previously determined characteristic values. Although the 
patient-specific values of the end-diastolic and end-systolic 
volumes are neither used directly as parameters of the lumped 
model nor tuned, they are automatically matched. This can be 

motivated as follows: the outlet flow rate of the model is imposed 
through the inlet pulmonary venous flow rate (equation (12)), and 
since HR is imposed for the left atrium and ventricle models, the 
patient-specific stroke volume SV is matched (equation (10)). In the 
system of equations composed of (8) and (9), SV is matched, and 
EF is matched as a result of running the calibration method. Hence, 
only two unknowns are remaining (EDV and ESV), leading to a 
unique solution of the system. 

III. RESULTS 

To evaluate the performance of the proposed methodology for 
the non-invasive estimation of left ventricular PV loops, next we 
present results for three healthy volunteers. Systolic and diastolic 
pressure values were acquired using cuff-based measurements and 
the ejection fraction and end diastolic volumes were estimated from 
the echocardiography performed at rest state in a horizontal 
position using the Siemens ACUSON SC 2000 ultrasound system. 
The values of the parameters which are not estimated through the 
methodology described in the previous section were set as follows, 
based on literature data [9], [11]: RAV = 25.0 g/(cm4·s), LAV = 0.5 
cm2/s, RMV = 20.0 g/(cm4·s), LMV = 0.5 cm2/s, RpulVen = 30.0 
g/(cm4·s), CpulVen = 0.5 (cm4·s2)/g, ρ = 0.09, Pven = 5.0 mmHg, V0-LA 
= 3 ml, Ks-LA = 10·10-9 s/ml, and Ks-LV = 4·10-9 s/ml.  

Table II lists the input parameters for the three healthy 
volunteers, and the output parameters obtained after applying the 
parameter estimation framework. The output parameter values are 
in the physiological range reported in literature [3]. The computed 
time-varying pressure profiles and PV loops are displayed in fig. 4: 
left - aortic systolic and diastolic pressures, as well as the heart rate 
are matched exactly, right – end-diastolic volume and the ejection 
fraction, from table II, are exactly matched. 

Additionally, to perform an initial validation of the 
methodology, we computed the PV loop for a patient with mild 
aortic valve regurgitation and compared the results against the 
invasively determined quantities. Fig. 5 displays a comparison 
between model-based computed results and invasively performed 
measurements. The input data used for the parameter estimation 
framework were extracted from the invasive measurements as 
follows: SBP was the maximum aortic pressure (181.5 mmHg), 
DBP was the minimum aortic pressure (89.7 mmHg), EDV was the 
maximum LV volume (196.68 ml), EF (53.1 %) was computed 
from EDV and ESV, determined as minimum LV volume (92.26 
ml), and HR was determined from the period of the time-varying 
pressure (47 bpm). All these values are matched exactly for the 
output parameter values: Emax-LV = 0.968 mmHg/ml, V0-LV = -88.71 
ml, Csys = 1.065∙10-3 cm4∙s2/g. There is a close agreement between 
the time-varying LV and aortic pressures, time-varying LV 
volumes, and PV loops. Moreover, the four phases of the cardiac 
cycle can be clearly identified in the computed results (fig. 5a and 
fig. 5b): 1: isovolumetric contraction phase, 2: ventricular ejection 
phase, 3: isovolumetric relaxation phase, and 4: ventricular filling 
phase. The mild aortic valve regurgitation can be observed in the 
PV loop in fig. 5c, where the line corresponding to the 
isovolumetric relaxation has a slight curvature, and in fig. 5b, 

 
Figure 3. Parameter calibration method. 

TABLE II.  INPUT AND OUTPUT PARAMETER VALUES FOR THREE 

HEALTHY VOLUNTEERS. 

Parameter Volunt. 1 Volunt. 2 Volunt. 3 

SBP [mmHg] 120 117 117 

DBP [mmHg] 70 65 67 

HR [bpm] 86 61 90 

EF 70 % 69 % 61 % 

EDV [ml] 108 108 78 

Emax-LV [mmHg/ml] 3.30 2.40 1.52 

V0-LV [ml] 2.18 4.33 -43.41 

Csys [cm4∙s2/g] 1.383∙10-3 1.930∙10-3 0.749∙10-3 
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during the second part of phase 3, where the LV volume increases 
slightly. The average execution time for the four volunteers/patients 
was of 28.9 seconds on a standard Intel i7 CPU core with 3.4 GHz. 

IV. DISCUSSION AND CONCLUSIONS 

We have introduced a fully automated, non-invasive model-
based method for the estimation of patient-specific left ventricular 
PV loops. Initial results demonstrate that the proposed parameter 
estimation framework ensures a perfect agreement between the 
computed quantities and the clinical measurements. The lumped 
parameter model used in the current study has been designed 
specifically for the estimation of the left ventricular PV loop: it 
leads to fast computation times, and it enables the accurate 

computation of the main quantities required for the PV loop (time-
varying LV pressure and volume). Although the current study used 
LV volume information acquired through echocardiography, the 
proposed method can be applied, without any restriction, along 
with other medical imaging techniques which can provide similar 
data: magnetic resonance, computer tomography.  

The current study has a series of limitations. First, SBP and 
DBP for the three volunteers were acquired through cuff-based 
measurements, which do not exactly represent the aortic systolic 
and diastolic values. Secondly, the lumped parameter model in fig. 
1 is designed for the estimation of the PV loop of healthy subjects. 
Future work will focus in the implementation of different 
mitral/aortic valve models, capable of modeling valve 
stenosis/regurgitation.  
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Figure 4. Computed time-varying LA pressure, LV pressure and aortic 

pressure (left side) and PV loops for (a) volunteer 1, (b) volunteer 2, and (c) 

volunteer 3. 

 
Figure 5. Comparison of model-based computation against invasive 

measurements, for (a) time-varying left ventricular and aortic pressures, (b) 

time-varying left ventricular volume, and (c) PV loop. 
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