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Abstract— Recent advances in the area of computer vision
has led to the development of various assisted diagnostics sys-
tems for the detection of melanoma in the patients. Texture and
color are considered as two fundamental visual characteristics
which are vital for the detection of melanoma. This paper
proposes the use of a combination of texture and color features
for the classification of dermoscopy images. The texture features
consist of a variation of local binary pattern (LBP) in which the
strength of the LBPs is used to extract scale adaptive patterns
at each pixel, followed by the construction of a histogram. For
color feature extraction, we used standard HSV histograms. The
extracted features are concatenated to form a feature vector
for an image, followed by classification using support vector
machines. Experiments show that the proposed feature set
exhibits good classification performance comparing favorably
to other state-of-the-art alternatives.

I. INTRODUCTION

Melanoma is considered one of the deadliest forms of skin
cancer having a very high mortality rate [1]. The incidence
rate for melanoma has been increasing over the past decade,
making it one of the domains that has been attracting the
attention of the cancer research community. It has been found
that the early detection of melanoma in the patients can
significantly increase the survival rates for the patients [2].
Dermoscopy is a clinical procedure, that is used by the
dermatologists to diagnose the skin pathologies. It is a non-
invasive procedure that is used for the in vivo observation of
the skin lesions. In a dermoscopy procedure, the physicians
apply gel to the skin of the patients and inspect the skin with
a magnification instrument, known as dermoscope allowing
the inspection of surface and sub-surface structures which are
not visible to the naked eye [3]. The diagnosis of dermoscopy
images is carried out using an assessment of these structures
for which several medical rules have been defined, the most
common of which are the ABCD rule, Menzies’ method and
the seven point check list [3]. Studies have shown that the
application of these rules has resulted in an effective early
detection of melanoma.

Assisted decision systems for the detection of melanoma
can be constructed using these underlying rules which can be
interpreted as visual features in computer vision. The ABCD
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rule investigates the asymmetry (A), border (B), color (C)
and differential structures (D) of the lesion. The Menizes’
method investigates two types of features in dermoscopy
images: negative (symmetrical pattern, single color) and
positive (blue-white veil, atypical dots and network etc.).
The presence of positive features indicates the presence of
melanoma. Finally, the seven point check-list indicates a
score for the presence of a lesion. This check-list inspects the
presence of differential structures in a lesion. It is important
to note that the analysis of differential structures and color
of the lesion are most common among these three sets of
clinical rules motivating the computer vision researchers
to propose adequate visual features for dermoscopic image
analysis.

a). Normal Lesion b). Melanoma

Fig. 1: Dermoscopy images: The left figure shows a normal
skin lesion whereas the right one indicates a melanoma.

In this paper, we intend to mimic the human classification
of dermoscopy images using texture and color features from
the images. The rest of the paper is organized as follows: we
describe the visual features that have been used for feature
extraction from dermoscopy images (Section II) followed by
a description of the dataset used in this paper (Section III).
Later, we present our experimental results (Section IV)
followed by a discussion (Section V).

II. METHODS

A. Local Binary Patterns (LBP)

The differential structures in dermoscopy images can
be analyzed using the local binary pattern (LBP) texture
descriptor. It unifies the structural and statistical information
of the texture using a histogram of the LBP codes. It is a
powerful local descriptor that has been widely used in various
vision related applications [4]–[6]. Originally proposed by
Ojala et al. [7], the LBP is a gray scale invariant texture
descriptor that creates a pattern at every pixel in the image
by thresholding its neighborhood with the value of the central
pixel and concatenating the results binomially in the form of
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a number. The thresholding function for the most basic LBP
can be obtained as follows:

LBPP,R =

P−1∑
p=0

s(gp− gc)2p, s(x) =
{

1 x ≤ 0
0 x > 0

(1)

where gc and gp denote the gray level values of the central
pixel and its neighbor respectively, and p is the index of the
neighbor. P is the number of the neighbors in a circular set
surrounding a pixel at a radius of R from gc. Suppose that the
coordinate gc is (0, 0), the coordinate of each neighboring
pixel gp is determined according to its index p and parameter
(P,R) as (R cos(2πp/P ), R sin(2πp/P )). The gray values
of the neighbors that are not located at the image grids can
be estimated by an interpolation operator. A parameter to
quantify the uniformity of the LBP is defined as

U(LBPP,R) = |s(gP−1 − gc)− s(g0 − gc)|+
P−1∑
p=1

|s(gp − gc)− s(gp−1 − gc)|
(2)

which corresponds to the number of spatial transitions
(bitwise 0/1 changes) in the pattern. The motivation for using
uniform LBPs is their ability to detect the important intrinsic
characteristics of textures like spots, line edges, edges and
corners (Fig. 2).

Fig. 2: Examples of different microstructures which are
detected using LBP. The pixel in gray color indicates the

center pixel gc, the white pixels indicate the neighbors
which are greater than gc whereas the black pixels indicate

the neighbors which are less than gc (adapted from [8]).

B. Scale adaptive LBP based on local contrast
Standard LBPs typically quantize the difference between

the center pixel and its neighbors. Although the LBPs
capture the texture patterns in the images very effectively,
an enhancement in the description of texture content can be
obtained if the strengths of the LBPs are also taken into
account. This is mainly because, image texture is not just
characterized by the patterns which are available but also by
the strength (local contrast) of the patterns. More specifically,
the observers typically analyse the images with different
levels of visual attention (detail) depending on the richness
of texture content (contrast). Thus, an enhancement in the
description of texture content can be obtained if the strength
of LBPs is also incorporated in the texture descriptor.

To take the strength of LBPs into account, we have
considered a novel methodology to use scale adaptive LBPs

for feature extraction. The multiresolution LBPs can be
obtained by varying the values of R to obtain the patterns
at various radii from the center pixel. Let r1, r2, ..., rk be
the radii at which the LBPs are calculated. At each pixel
position, the absolute difference between the center pixel and
its neighbors can be given as:

Ck(gc) =

P−1∑
i=0

|gkp − gc| (3)

where Ck(gc) represents the strength of an underlying
LBP at the resolution rk. The LBP having the highest
strength consists of the most relevant pattern and can be
obtained as follows:

ULBPgc = argmax
Ck(gc)

{ULBP (P, rk)} (4)

Therefore, the LBP at gc is represented by the pattern,
which exhibits the maximum strength i.e., Ck(gc) when
analysed at various resolutions at the pixel gc.

C. Color descriptors

The standard RGB color space has several drawbacks:
i). it is not perceptually uniform and ii). it exhibits a
high correlation among the three constituent color channels.
It is well known that there are some other color spaces
which are designed to approximate the human visual system.
For the extraction of color features from the images, we
have employed one such space, known as the HSV (Hue,
Saturation, Value) color space. In specific, we have used the
HSV histograms for the calculation of color features.

To construct the HSV histograms we quantize H with 16
bins, S with 4 bins and V with 4 bins. This leads to a total of
16 × 4 × 4 = 256 bins. Note that instead of concatenating
the histograms of each color channel independently, we
calculated the joint distribution of H, S and V channels
giving us a a multivariate distribution (3-dimensional) of
color features. These histograms have been widely used for
color feature extraction and are an integral part of the MPEG-
7 visual descriptors [9].

D. Dimensionality reduction

Feature extraction is followed by dimensionality reduction
(DR). The need for DR is motivated by the fact that the
dermoscopy images suffer from the problem of reduced
color spaces and thus several bins (features) in the HSV
histograms are expected to be empty. These features, if
incorporated in for classification are expected to increase
the computational load on the classifier. Therefore, we have
used principal component analysis (PCA) for dimensionality
reduction [10]. The PCA detects the variance structure in
the data and identifies the directions along which the data
subspace exhibits high variance. In our experiments, we
have retained 95% variance in the data and used it for our
classification experiments.
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Fig. 3: Ground truth for dermoscopy: original image
representing melanoma (left) and manually segmented

mask of image region indicating melanoma (right).

E. Classification

For the purpose of classification, we have used support
vector machines (SVM) [11]. An SVM classifier finds the hy-
perplane which maximizes the margin of separation between
two distinct classes. Given a training set X1...N containing
N training labeled samples and coefficients α1...N learned in
the training step, the decision function of SVM is as follows:

y(x) =
∑
i

αiK(Xi, x) + b (5)

where K(.) is the kernel function and x is the input vector.
In our implementation, we have used the linear kernel for
SVM classification. The 1weka data mining tool was used in
our experiments [12]. All results were obtained using 10-fold
cross validation.

III. MATERIALS

The dataset that we have used is composed of 200 der-
moscopy images with the following composition: 80% (160)
nevus and 20% (40) melanoma. The images were acquired at
the Hospital Pedro Hispano, Matosinhos [3]. All images have
been acquired during clinical exams using a dermoscope at
a magnification of 20x with a resolution of 765x573 pixels.
Each image was manually segmented (to identify the lesions)
and classified by an experienced dermatologist as being
normal, atypical nevus (benign) or melanoma (malignant).

IV. EXPERIMENTAL RESULTS

For our classification experiments, we have used only the
manually annotated image regions (Fig. 3). The objective
of the classification task is to identify the presence of
melanoma in the patients labelling each observation as either
a nevus or melanoma. The feature extraction is followed by
classification using SVMs with linear kernel and 10-fold
cross validation. For the extraction of LBPs are multiple

1http://www.cs.waikato.ac.nz/ml/weka/

resolutions in the underlying methodology, we have used the
radii of 1.0, 1.5 and 2.0 and at each resolution, 8 neighbors
were considered. To assess the performance of the underlying
features used in this paper, three different experiments were
performed:

A. Experiment 1

In the first experiment, our objective was to assess the
performance of texture features for the classification of
dermoscopy images. For performing this comparison, we
selected the most popular texture features (T1 - Proposed
scale adaptive LBP; T2 - LBP [13]; T3 - autocorrelation
homogeneous texture [14]; T4 - homogeneous texture; T5
- wavalet subband statistics). Our results show that the
proposed texture feature (T1) set outperforms the other
texture descriptors that have been considered in this paper.
The AHT features (T3), although being rotation and scale
invariant, do not show good performance as compared to
T1 giving low sensitivity to the detection of melanoma.
We attribute the superior performance of T1 to its ability
to capture the micro-structures in the images which are
effectively representative of the differential structures in
the images which are considered as clinically relevant for
the classification of melanoma. The scale adaptation in T1
approximates the human observers (clinicians) who try to
visualize the image texture at various levels of attention,
giving superior classification results in the identification of
melanoma. Additionally, T1 is also invariant to the illumina-
tion variations (homogeneous and non-homogeneous) in the
images (unlike Gabor filter based features) giving us better
results in the identification of melanoma.

TABLE I: Overall classification accuracy for the detection
of melanoma when texture features are used for feature

extraction.

Methods Sensitivity Specificity

T1 0.82 0.88
T2 0.75 0.87
T3 0.79 0.88
T4 0.64 0.86
T5 0.61 0.85

B. Experiment 2

This experiment was conducted to assess the empirical
performances of histograms obtained from different color
spaces (C1 - HSV histograms; C2 - RGB histograms). Our
experiments show that the HSV histograms show the better
performance as compared to the histograms obtained from
the RGB color spaces.

C. Experiment 3

Last but not the least, this experiment deals with a concate-
nation of color and texture features followed by dimension-
ality reduction for input to the statistical classifiers. We have
obtained several combinations of texture and color features
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TABLE II: Overall classification accuracy for the detection
of melanoma when color features are used for feature

extraction.

Methods Sensitivity Specificity

C1 0.77 0.85
C2 0.70 0.63

which were relevant for this study. The best performance
was obtained when a combination of the proposed scale
adaptive texture features was used with the HSV histograms
(Table III). For all combinations of features presented in
this paper, the use of color and texture features results in a
performance enhancement in the classification of melanoma.
The worst performance is given by the non-invariant texture
descriptors (wavelets and HT).

TABLE III: Overall classification accuracy for the detection
of melanoma when color and texture features are

concatenated to form a descriptor for an underlying lesion.

Methods Sensitivity Specificity

T1+C1 0.84 0.94
T1+C2 0.83 0.88
T2+C1 0.80 0.90
T3+C1 0.83 0.91
T4+C1 0.67 0.90
T5+C1 0.69 0.86

V. DISCUSSION

This paper deals with a study on the visual descriptors for
dermoscopy images. Clinical findings have concluded that
color and texture are two most vital visual characteristics
which are necessary for the quantification of melanoma in
the patients. For the purpose of feature extraction in this
paper, we have used the HSV histograms for color feature
extraction. For the description of differential structures in the
images, we have proposed a variant of local binary patterns
that selects scale adaptive LBP based on the strengths of
the underlying LBPs calculated at various resolutions. A
comparison of the these features with other state-of-the-art
texture descriptors is presented individually, and as their
combination with the HSV histograms. The results have
shown good performance for the proposed texture descriptor
as compared to other methods.

Although good results are obtained, it is evident that
the color histograms are limited as they quantise the color
spaces in equal intervals. Since the dermoscopy images suffer
from reduced color spaces, therefore more adequate color
descriptors can be constructed by adapting the color spaces to
the specific scenario of dermoscopy potentially giving better
results for the identification of melanoma.
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