
  

  

Abstract— Biological tissue can show promising features in 
the terahertz region of the electro-magnetic spectrum but face 
the problem that the signal to noise ratio can be poor due to the 
low energy output from the measurement instrument coupled 
with the high absorbance of water in biological tissue. Wavelet 
denoising and reconstruction are known to be suitable digital 
signal processing filters for reflected terahertz energy when 
appropriate thresholds, scales and mother-wavelets are chosen. 
In this article, we therefore describe a Wavelet transform-based 
method for denoising reflections of THz energy from ex-vivo 
human skin with an embedded microneedle. The wavelet 
reconstruction was then successfully used to identify the 
microneedle from the reflected waveform. This technique is 
potentially useful to enhance in-depth analysis and visualisation 
of underlying skin layers, lesions and penetration depth for 
targeted drug delivery. 

I. INTRODUCTION 

The terahertz (THz) regime is loosely defined as the 
region within the electro-magnetic spectrum between 300 
GHz and 3 THz [1]. The low photon energy of 4.14 meV (at 
1 THz) makes it a non-ionising, safe method [2] to be used 
for studies in-vivo and ex-vivo. Terahertz technology has 
been of increased interest in the field of bio-medicine, such 
as the detection of skin burns [3] or basal cell carcinoma, ex-
vivo and in-vivo [4] and of detectable alterations of the 
hydrogen bond network in the protein structure of the 
infiltrated tissue [5].  

The low systems energy, which is typically in the femto- 
up to nanojoule range [6] provides a relatively low signal 
output. Additionally, signals reflecting from the surface of 
(or inside) biological tissue can be weak as they contain a 
high amount of water which is one of the strongest absorbers 
in the THz regime. 

In the case of the detection of metal in a biological tissue, 
measurements have to be taken in reflectance mode, as the 
metal, being an almost perfect reflector [7], does not allow 
the terahertz beam to pass through. It should also be stressed 
that, in order to detect signals in reflectance mode, the 
incidence beam has to travel twice as far through the sample 
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material before it reaches the detector which further 
attenuates the signal strength. A simple method for noise 
reduction is to average the signal. However, it would 
increase the data acquisition time and may not be a suitable 
technique for ex-vivo biological measurements as the tissue 
is prone to dry out. Alternatively, noise can be reduced by 
using digital signal processing filters based on high-pass or 
low pass filters.  

One of the best known de-noising algorithms is the 
wavelet transform that help denoise a signal using an 
iterative algorithm. However, suitable mother-wavelets and 
scales have to be chosen in order to ensure that the process 
will not over-fit (over-denoise) and therefore lose the 
original signal. 

Wavelet transform-based analyses have been shown to be  
effective in terahertz imaging: Ferguson (et. al.) describe the 
usefulness of wavelets and wiener deconvolution filtering for 
de-noising terahertz imaging in transmission mode [8]. Yin 
(et. al.) used wavelets to restore topographic images out of 
transmission mode measurements [9] while Hadjiloucas (et. 
al.) studied denoising and system identification in the 
wavelet domain to enhance the frequency range in THz 
images [10]. Chen (et. al.) used wavelets to analyze 
reflection imaging in the frequency domain to deconvolve a 
signal obtained from a human palm in-vivo [11]. 

In this paper, our aim is to find suitable denoising and 
reconstruction method using the wavelet transform to 
enhance the visualisation of the penetration depth of a metal 
microneedle within a biological tissue (ex-vivo) using 
terahertz imaging in reflectance mode. Furthermore, the 
region of interest can be 'amplified' using an appropriate 
scale obtained from the wavelet reconstruction which may 
act as digital filter to enhance that specific region or signal, 
respectively. This can be useful to target a precise area inside 
the tissue for further analysis. 

II. MATERIALS AND METHODS 

A. Terahertz imaging 
Terahertz waves were generated using a Teraview TPS 

spectra 3000™ in combination with the Imaga™ module 
provided by Teraview, Cambridge, UK. Terahertz waves are 
generated by firing a femto-second-laser beam on a 
superconductive dipole switch (ltGaAs). For focusing 
reasons, directly behind that switch is a highly resistive 
hyperhemispherical silicon lens [12]. By using a beamsplitter 
the beam divides into a reference and a sample beam. The 
reference beam is used for the detection of the THz wave by 
using an optical gated switch, in this case a ZnTe diode.  
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For the purpose of measuring biological tissue, it is 
almost always necessary to use terahertz in reflectance mode 
rather than transmission mode [2]. The reflectance module 
redirects the beam to the sample with an incidence angle of 
30°. Since the THz-signal is very sensitive to the exact 
position of the sample, a SiO² quartz sample holder with a 
refractive index of 2.15 is used where the sample has been 
pressed onto to ensure that it is in full contact and to avoid 
air gaps in between them. The SiO²-sample holder has a 
negligible absorbance [13] but changes the incidence beam 
angle towards the sample to 13.4°. 

To avoid artefacts from the beam travelling through air 
under the sample holder, the underlying chamber has been 
purged with nitrogen. 

B. Tissue preparation 
Freshly excised human tissue has been obtained from the 

Leicester Royal Infirmary, UK, and kept in saline during 
transport. For each measurement, the sample was slightly 
wiped to reduce water artefacts at the skin / quartz interface. 
Depending on the size of the sample, a 3D image scan took 
between 10 and 15 min. at a x,y-resolution of 0.2mm.  
Where appropriate, samples were returned to the Leicester 
Royal Infirmary, UK, in formalin for further processing.  

For practical purposes, ex-vivo skin samples were chosen 
over in-vivo, as the fixed flatbed scanner used would restrict 
the scan area to the lower arms only.   

A microneedle with a length of 1mm and a width of 200 
µm has been inserted into the skin. A 3D image has been 
acquired with and without the microneedle. In the time 
domain, the microneedle is visualised by a second reflection 
of the incidence waveform reflecting from the metal/skin 
interface. 

For this study, the sample 4, 10 and 12 out of the twelve 
samples were chosen as they show the strongest reflections 
of the microneedle whereas other samples showed high 
absorption effects that restrict identification of the 
microneedle with confidence. 

C. Wavelet transforms for denoising and reconstruction 
The wavelet transform attempts to remove noise from signal 
but retains the original signal by utilising a multi-level 
decomposition approach. In each step the sample (S) is 
divided by a low-pass and a high-pass filter into two new 
waveforms, called Approximation (A) and Detail (D). Using 
the Approximation from the last scale as the input for the 
next filter process, an iterative multi-level process is used 
until the maximum number of scales are reached. 

Filterlow pass high pass

Approximation 
(A) Detail (D)

Sample (S) Sample (S)

A1 D1

A2 D2

A3 D3

D2

 
Fig.1. Schematic process of the wavelet decomposition process. 

It is noteworthy that the Approximation and Detail data are 
downsampled and contain half the size of the initial wave. 

In order to quantify and compare results from the wavelet 
transform, the Signal-to-Noise Ratio (SNR) is used, where 
we define it as the maximum energy peak (Emax) divided by 
the standard deviation of (the assumed) noise (σnoise): 

 SNR=Emax / σnoise  (1) 

The maximum energy peak is used as it is of importance 
to maintain the maximum peak for further analysis when 
creating the ratios of the reference wave and the sample 
wave. 

Wavelet reconstructions can be described as the reversed 
process of decomposition. The reconstructed wave is 
composed of the A and D signals and results in a de-noised 
wave. 

The decomposition process can also be used to find 
significant scales that reflect a certain area of interest in the 
waveform. In our case, it is the microneedle (the second 
peak) that is of interest to be filtered out, for which the 
wavelet transform is used with a soft, fixed threshold 
function [8] determined from unscaled white noise. 

III. RESULTS AND DISCUSSION: 

A.  Signal-to-noise ratio improvements using stationary  
wavelet de-noising 
We define the standard deviation of noise as the optical 

delay between approx. 10ps to 15ps (points 1000 to 1500) in 
the waveform, as this is the region where no significant data 
is reflected anymore. We choose the region only up to 15ps, 
as at around 20ps, a small negative peak is shown on all data 
collected which is most likely due to an internal reflection 
from the silicon lens.  

 

 

 
 

Fig.2. (A) Original waveform and (B) wavelet de-noised waveform of the 
sample 4 
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 Figure 2 (A) shows the original waveform reflected from 
sample 4. The initial peak (Emax) is the reflection from the 
quartz/skin interface and the second (negative) peak is the 
reflection from the microneedle.  

The first analysis has been carried out using the 
Daubechies 4 mother wavelet on different scales in order to 
determine at which scale the denoising process would begin 
to overfit. As shown in Table 1, using three different 
samples, the SNR improves until the maximum value of  
SNRsample4=108.82, SNRsample10=130.21 and 
SNRsample12=224.83 is reached, before a decrease in the SNR 
is observed at scale 6 and beyond. This has also been 
observed on all the mother-wavelets under investigation 
(data not shown, but will be further demonstrated and 
discussed during the presentation of the paper at the 
conference). 

TABLE I.  SIGNAL-TO-NOISE RATIO (SNR) OF SAMPLE 4,10 
AND 12 USING DAUBECHIES 4 WITH SCALES 1 TO  8. 

Scale Sample 4 
SNR 

Sample 10 
SNR 

Sample 12 
SNR 

Raw 40.07 61.46 126.67 
DB4_1 41.83 63.42 130.85 
DB4_2 51.20 71.36 147.60 
DB4_3 67.14 87.31 172.90 
DB4_4 87.62 118.60 213.24 
DB4_5 108.82 130.21 224.83 
DB4_6 98.38 95.19 187.70 
DB4_7 90.89 31.48 50.12 
DB4_8 78.52 17.44 8.25 

  
 The energy maximum peak value from the time domain 

waveform has been taken as quantification as a measure of 
the signals stability (durability).  The maximum peak 
remains stable until the fifth scale of the wavelet transform 
before it begins to degrade on all samples, as shown in 
Figure 3. The maximum peak differences between the three 
samples are most likely due to fluctuations in laser emission 
energy but may be normalised to the reference and/or the 
baseline measurement, respectively, for further research. 

Further analysis has been carried out using the 
DeBauchies wavelets with the scales of 1 to 10, Symlets with 
the scales of 2 to 8, Coiflet with the scales of 1 to 5, Haar 
and the discrete approximation of the Meyer (dmey) wavelet 
on all samples on scale 5 to find the most suitable mother-
wavelet which further improves the SNR (see Table II). All 
mother wavelets increase the SNR significantly. However, 
the Meyer wavelet showed the best performance with an 
improvement of the SNR by a factor of 2.8 (Sample 4), 2.2 
(Sample 10) and 1.8 (Sample 12). 

Furthermore, the wavelet analysis has been performed on 
the quartz/air interface and the quartz/mirror reference 
interface without a biological sample with the equivalent  
maximum SNR results on dmey scale 5, with SNRAir=168.68 
(from original 76.31) and SNRMirror=129.86 (from original 
79.52). Figure 4 visualises the result of a 2D slice taken from 
sample 4 at 4.1ps as this is the depth region where the 
microneedle is to be found (compare with Figure 2). The 
microneedle can be identified by the dark (negative) area and 
the end of the microneedle holder. 

 
Fig.3: Maximum energy peak values of the raw and the denoised 

waveforms of the samples 4, 10 and 12. 
 

TABLE II.  SIGNAL-TO-NOISE RATIO OF SAMPLE 4,10 AND 12 
USING DIFFERENT MOTHER WAVELETS ON SCALE 5. 

Wavelet Type Sample 4 Sample10 Sample 12 
Original 40.07 61.46 126.67 
Coif1 110.31 126.49 222.92 
Coif2 108.69 130.41 224.97 
Coif3 107.79 131.54 225.82 
Coif4 107.15 132.03 226.38 
Coif5 106.68 132.29 226.78 
Sym2 110.40 126.22 222.78 
Sym3 109.45 128.92 224.13 
Sym4 108.82 130.21 224.83 
Sym5 108.34 130.95 225.30 
Sym6 107.95 131.40 225.66 
Sym7 107.61 131.71 225.97 
Sym8 107.32 131.92 226.22 
DB1 112.04 118.71 219.28 
DB2 110.40 126.22 222.78 
DB3 109.45 128.92 224.13 
DB4 108.82 130.21 224.83 
DB5 108.34 130.95 225.30 
DB6 107.95 131.40 225.66 
DB7 107.61 131.71 225.97 
DB8 107.32 131.92 226.22 
DB9 107.07 132.08 226.45 
DB10 106.85 132.20 226.64 
Dmeyer 112.00 133.23 227.48 
Haar 112.04 118.71 219.28 
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Fig.4. Top-down view of sample 4 at 4.1ps. The bar represents the 
energy (a.u.) at this position. The dark area (1) represents the quartz/air 
interface, the gray area (2) is the skin and the bright area (3) is the metal 
microneedle holder. A) original data and B) de-noised data using dmey 
scale 5. The tip of the microneedle is clearly visible. 
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B. Wavelet decomposition 
The decomposition is used to find a scale that 

corresponds to the microneedle in the tissue. Since the 
decomposed scales are in the order of power of 2 smaller 
than the original sample, the decomposed scales had to be 
interpolated to be able to compare them with the original 
signal. We choose a simple linear interpolation for that 
purpose.  

On all the samples under investigation, the seventh 
wavelet scale using the Daubechies 4 mother wavelet 
introduces a high negative peak around where the 
microneedle is to be found and is therefore to be considered 
as the scale that is able to filter only the negative reflection 
from the microneedle. The result therefore suggests that this 
scale can be used as a filter function for further analysis of 
deep-layered structures, such as the microneedle. Amplifying 
the original signal in the area of interest using the scale can 
lead to a more precise identification of the peak, which can 
be used to calculate the microneedle’s physical depth in the 
skin. 

Figure 5 shows the seventh scale component overlaid 
with the original waveforms of sample 4 and sample 10 
respectively.

 
Fig.5. Scale 7 from DB4 and original waveform (dotted line) of (A) sample 

4 and (B) sample 10. 

IV. CONCLUSION 

In this paper, we have demonstrated the use of wavelet 
denoising and reconstruction to identify a microneedle in 
freshly excised human skin. It has been demonstrated that the 
fifth scale of the wavelet transform increases the SNR. 
Furthermore, the wavelet families Haar, Meyer, Daubechies, 
Symlet and Coiflet were shown to increase the signal-to-
noise ratio. Among all the results obtained, the Meyer 
mother-wavelet was found to outperform other wavelets with 
a SNR improvement of a factor between 1.8 and 2.8 using 
the five scales. 

The seventh scale of the Daubechies 4 mother wavelet is 
able to determine the microneedle which we hope to show 
features in our further research. The technique might be used 

to enhance the usefulness of terahertz in combination with 
targeted drug delivery via micro-needle channelling 
technology allowing more precise targeting of cancerous 
tissue and / or to observe the healing process.   

This method might be used to improve the reflection 
signal from different layers of biological tissue. It may be 
used in conjunction with penetration-enhancing agents (i.e. 
glycerol) [14] to further improve the signal-to-noise ratio in-
vivo and ex-vivo. This method is potentially useful to 
observe inner-skin processes of targeted drug delivery, when 
the microneedle is inserted with an agent in order to study 
the curative process.   

This research is an initial step towards the analysis of 
skin-layers. In the near future, we will have a closer look at 
methods of deconvolving the signal behind the initial peak in 
the hope to be able to gather insides from skin in-vivo.   
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