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Abstract— With the prevalence of brain-related diseases like
Alzheimer in an increasing ageing population, Connectomics,
the study of connections between neurons of the human brain,
has emerged as a novel and challenging research topic. Accurate
and fully automatic algorithms are needed to deal with the
increasing amount of data from the brain images. This paper
presents an automatic 3D neuron reconstruction technique
where neurons within each slice image are first segmented and
then linked across multiple slices within the publicly available
Electron Microscopy dataset (SNEMI3D). First, random Forest
classifier is adapted on top of superpixels for the neuron
segmentation within each slice image. The maximum overlap
between two consecutive images is then calculated for neuron
linking, where the adjacency matrix of two different labeling
of the segments is used to distinguish neuron merging and
splitting. Experiments over the SNEMI3D dataset show that
the proposed technique is efficient and accurate.

I. INTRODUCTION
Discovering the wiring of the brain is a challenging

process that targets a comprehensive 3D map of neuron
connections within an organism’s nervous system. Different
methods have been proposed in recent years but accurate and
efficient reconstruction of 3D neuron structures is still an
open problem. In particular, the segmentation of the narrow
neuron within each 2D slice as well as linkage of neurons
across multiple slices are still prone to different types of
error. In practice, a proof reading procedure is usually needed
to spot and correct the errors in neuron segmentation and
linkage that are introduced by CAD systems.

Various approaches have been proposed for neuron seg-
mentation and linkage across layers. For example, level
set appoch is used in various methods [1]. Macke et al.
[2] used the level-set propagation of the probabilistic field
between slices. They assume that the objects are continuous
across adjacent images but neurons may not be always
perpendicular to the imaging surface. Jurrus et al. [3] pro-
posed an interactive method for axon tracing in the Electron
Microscope (EM) data. They used iterative Kalman-snakes
to estimate the contour of the axon in the next slice given
the contour of the previous slice.

Vazquez-Reina et al. [4] used the sequence of watershed
transforms to provide multiple segmentation hypotheses for
each slice. They built a graph with nodes of all segmentation
hypotheses and links of the overlap segments in consecutive
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slices. By considering global constraints on the node and link
energies on the graph, the MAP-MRF is solved to segment
the whole slices simultaneously. This method just handles the
continuation of neurons and instead of merging and splitting.
Funke et al. [5] followed the previous method and provided
multiple hypotheses by changing the prior probability of
pixels being membrane. In the next stage, using continuity
constraints on the selecting the segments and their links, the
optimization problem is solved which was relaxed by Integer
Linear Programming method.

We propose a novel 3D neuron reconstruction technique.
The proposed technique has three novelties. First, superpixel
technique is adopted to first group similar pixels into mem-
brane and non-membrane, hence providing prior knowledge
on a typical two class classification problem. Second, a
novel neuron linkage technique is proposed where neuron
splitting information is exploited in two ways of Top-Down
and Bottom-Up to find the merging neurons in different slices
of the dataset. Third, the segmentation and linkage stages are
automatic and the user interaction is limited.

II. METHOD

Figure 1 shows the pipeline of the proposed technique.
A superpixel method is first applied from which a set of
features are extracted. Random Forest Classifier is then
adapted to provide the probability map of the images for
segmentation. A novel linkage method is proposed to handle
neuron splitting and merging across slices, which further lead
to a 3D neuron reconstruction map as to be described in the
following sections.

A. Segmentation

Segmentation of the EM data plays an important role in the
3D neuron reconstruction. A small neuron segmentation error
may lead to a large neuron linkage error. This segmentation
problem is actually a two-class classification problem: a pixel
either belongs to the membrane or not. Neurons can be
segmented through connected component analysis once each
image pixel is classified.

Since the classification of each image pixel is a computa-
tionally intensive process, a superpixel algorithm is used to
reduce the classification complexity. To create superpixels,
the simple linear iterative clustering (SLIC) [6] method is
used.In this regard, the complexity of the images decreases
from pixels to superpixels.

Random forest classifier [7] is exploited to compute the
probability map of each slice image as illustrated in Fig. 2b.
The features of each superpixel are computed by the average
of features of pixels in the superpixel. For each image
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Fig. 1. The flowchart of the proposed method.

Fig. 2. (a) The input image. (b) The probability map of the image using RF.
(c) The thresholded probability map and the discontinuity in the membrane.
(d) Skeleton of probability map and the position of end points. (e) The out
put after post processing. (f) The segmentation results.

pixel, the exploited features consist of rotation of membrane
projections, Gaussian blurred, gradients, Gabor and tensor
structures [8]. Additionally, radon-like features [9], which are
proved to be representative in segmenting neuronal processes
and 2D probability map provided by Ciresan et al. [10] are
used. In total, 98 features per superpixel are used.

For training of the Random Forest, the features of the
membrane superpixels in training set are used as positive
and the rest as negative samples. The superpixels whose
majority of their pixels belong to the membrane, assumed
as positive class and the rest are negative ones. To generate
each of 200 trees, 20 random features are selected. The
neuron segmentation is obtained by thresholding the output
of the Random Forest Classifier (i.e., the probability map
of the slice image) as illustrated in Fig. 2c. Note that the
segmentation could introduce error when the edge of some
segments are not close curves as shown in Fig. 2c. To
overcome this problem, the end points of all the predicted
edges are discovered by finding their skeleton as shown in
Fig. 2d. A patch centered on each end point is thresholded
again within the probability map to connect the disjoint
membrane. The process is continued till no end point is
remained in the patch as shown in Fig. 2e.
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Fig. 3. Top-Down and Bottom-Up approach in linking neuron processes
in two synthetic neurons and The sparse overlapping segments matrix.

B. Linking Stage

By segmenting each image in the stack, the linking propa-
gates the label of each neuron across slices. The major chal-
lenge is to overcome the appearance, disappearance, splitting
and merging of neurons. The straightforward approach is to
make use of the overlap regions between two segments in
consecutive image slices. However, it is arduous to label two
merging neurons from the beginning of their appearance due
to the similar textures of most of neurons and large number
of neurons in one image. We propose a novel neuron linking
technique that converts the neuron merging process into a
neuron splitting process and so the whole linking process
into a splitting process only. The rational is that the detection
of the split is much easier than detection of merge because
the split of neurons does not happen by a sudden change of
position from the previous image. The conversion is achieved
through a bottom-up and top-down labeling process where
the merges/splits in the top-down manner is the same as
splits/merges in the bottom-up manner. Figure 3 illustrate
the labeling process with two synthetic neurons.

Top-Down split ≈ Bottom-Up merge
Top-Down merge ≈ Bottom-up split

Assume TDs and BUs are the set of labels of the segments
that are calculated in Top-Down and Bottom-Up approach
respectively. Each set has different number of segments
because of the assumed overlap in two directions. We there-
fore build a sparse adjacency matrix (Overlapped Segments

6733



OS) that contains the number of segments with different
labels in TDs and BUs orders, respectively. The size of
the OS is n×m, where n and m are the number of the
labels in TDs and BUs respectively. Algorithm 1 shows
how to label the segments using overlaps in the Top-Down
order. In algorithm 1, all the segments in the first image

Input: properties of segments: position, area
Output: Segments’ labels
Assign a unique label to each of the segments in slice 1;
foreach segment szj , (z > 1) do

if sz−1
i ∩ szj > threshold then
Assign the label of sz−1

i to szj
end
if szj has no label then

Assign the unique label to szj
end

end
Algorithm 1: Labeling in Top-Down approach

are assigned a unique label. If a segment si in the previous
slice has an overlap with segment sj in the current slice
more than a threshold, the label si is assigned to segment
sj . Finally, new labels are assigned to the segments with no
labels in the current image. These segments represent the
appearance of neurons in the micro-tube. On the other hand,
if one segment does not have any overlap with any segments
in previous slice, it represents the disappearance from the
micro-tube. To compute the Bottom-Up labels, we use the
same algorithm but in reverse fashion. In the next stage, the
sparse overlapping segments matrix (OS) is build as:

OSij =
∑
i

∑
j

ψ(i, j) (1)

ψ(i, j) =

{
1 |sTD

li
∩ sBU

lj
|

0 otherwise
(2)

Algorithm 2 defines the method in which the information
of two way linking are concatenated to produce one unique
labeling of neurons in the slices. In each row of the OS

Input: segments‘ label, position and area.
Output: Labels of neurons
Create the Overlapping Segments matrix (OS) of the labels in
Top-Down and Bottom-Up order.
foreach row i in OS do

Find the non-zero columns j.
foreach j do

Find the non-zero elements row, (k).
end
Assign a unique label for all i,j and k. Change all the
values in rows and columns i,j and k to zero.

end
Algorithm 2: Total Labeling Algorithm

matrix, one non-zero element OSij represents two different
labels of a set of segments which belong to one neuron.
These neurons have labels li and lj in Top-Down and
Bottom-Up approach, respectively. Therefore, a unique label
should be assigned to these segments. Additionally, the jth

column’s non-zero elements represent the segments of this

Fig. 4. Successful split and merge in the dataset.

specific neuron. Thus, the same unique label of ith row
should be assigned to them. By considering all non-zero
elements of the OS matrix in computing each row, they
get the same label, which belong to same neuron process.
Finally, these elements change to zero and algorithm runs
for other rows in OS matrix as well.

III. EXPERIMENTS AND RESULTS

A. SNEMI3D Dataset

The SNEMI3D dataset consists of two 100-slice sets for
training and testing. Each of them covers approximately
6×6×3 micrometers of mouse cortex. The serial section
Scanning Electron Microscopy (ssSEM) by resolution of
6×6×30 nanometer per pixel is captured from the micro-
cube. This is an anisotropic dataset, which has high resolu-
tion in x and y-axis but low resolution in z direction. For the
training dataset, the ground truth consists of a unique label
for each neuron process in the micro-cube. The organizer
of the challenge evaluates the results in test dataset for the
participants and announce them in the challenge website.1

B. 3D Reconstruction

The proposed algorithm is applied on the SNEMI3D
dataset. Figure 4 illustrates the successful merge and split
in the dataset where two segments in slice 31 labeled with
“a”, which are far from each other are merged successfully
in slice 34 with the same label and split again in slice 42
without changing the label.

After segmenting the slices and linking them by the
proposed novel method, the 3D visualization is produced
using Vaa3D[11] software, which is shown in Fig. 5. The
proposed method successfully solves the problem of the
splitting and merging neurons. For example, as can be seen
in Fig. 5, neuron B in the Top-Down order of linking has
two labels of green and red and in Bottom-Up order, this
neuron gets two labels of green and gray. By computing the
total linking, the whole neuron gets a unique label.

Additionally, the proposed linkage method can help im-
prove the neuron segmentation. As can be seen in Fig. 5,

1http://www.biomedicalimaging.org/2013/program/isbi-challenges/
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Fig. 5. The Top-Down, Bottom-Up and total linking method. Resolve the
linking and segmentation error in the whole stack.

Fig. 6. 3D reconstructions of some neurons in the volume.

neuron A in Bottom-Up order gets an error in linking the
consecutive segments and is incorrectly linked two adjacent
neurons. With the top-down information in the proposed
method, the errors of segmenting two different neurons and
the linking of the same neuron are solved.

C. Evaluation

The performance evaluation is done by the 3D topology-
based segmentation metric Adaptive Rand error:

Adapted Rand error , 1−maximal FScore (3)

FScore = 2× Precision×Recal
Precision+Recal

(4)

Precision is the proportion of true-positives and all the
positives of test outcome and the Recall value is the proba-
bility that the ground-truth labels for the pixels are correctly
estimated. Figure 6 shows the 3D reconstruction of some
neurons in the volume and Table I shows the participant
groups and their evaluation values. The human rand error is
the error between the segmentation error of two experts who
manually segmented and linked neurons. Our performance

TABLE I
EVALUATION VALUES FOR HUMAN AND OTHER PARTICIPANTS.

Name Rand Error

Human 0.0599
SCI (Utah) 0.1248

FlyEM (Janelia Farm)(2 Groups) 0.1250
Ours (NUS) 0.1664

Rhoana (Harvard) 0.1725
SPLab (Czeck) 0.4664

is ranked third but so close to top ones. In order to reach to
the accuracy of the human, the segmentation stage plays an
important role. Since, a small error in segmentation leads to a
large error in linking stage as well. One of the segmentation
problems is occurred due to the thin neurons in each image
where the membrane pixels are so close together in a tube
like shape of neurons in each slice.

Extracting more representative features, which could help
the classifier provide better probability map can be con-
sidered as future work. Moreover, graphical modelling ap-
proaches would be supportive to provide the segmentation
with minimum error.
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