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Abstract— Vascular diseases are the most challenging health
problems in developed countries. The vascular segmentation as
well as registration techniques are the topics of past and on-
going research activities. In this work we target an abdominal
aorta registration technique. The developed methodology is
useful in the assessment of abdominal aortic aneurysm treat-
ment by visualizing the correspondence between pre- and post-
operative Computed Tomography (CT) data. The presented
approach makes it possible to match all voxels belonging to
the aorta from different CT series. It is based on aorta lumen
segmentation and graph matching method. To segment the
lumen area a hybrid level-set active contour approach is used.
The matching step is performed based on a path similarity
skeleton graph matching procedure. The registration results
have been tested on the database of 8 patients, for which
two different contrast-enhanced CT series were acquired. All
registration results achieved with our system and verified by
an expert prove the efficiency of the approach and encourage
to further develop this method.

I. INTRODUCTION

Nowadays, vascular diseases belong to the most challeng-
ing health problems in developed countries. An abdominal
aortic aneurysm (AAA), addressed in our approach, is a
dilated and weakened segment of the abdominal aorta. It
is an abnormal ballooning of the abdominal portion of
the aorta, that occurs as a consequence of aortic medial
degeneration and can break open causing death. To prevent
from rupturing, interventional radiologists offer minimally
invasive treatment for abdominal aortic aneurysm. The open
surgical repair by a vascular surgeon is the most commonly
used for a large, non-ruptured aneurysm. The less invasive
and relatively new technique, eliminating the need for a large
abdominal incision, is placing a graft within the aneurysm.
It redirects blood flow and stops direct pressure from being
exerted on the weak aortic wall [1].

A contrast-enhanced CT angiography (CTA) is an imaging
technique commonly used in vascular diagnosis. Despite the
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fast development of modern contrast-enhanced Computed
Tomography (CT) the tremendous amount of problems still
remain unsolved. The vascular segmentation [2] and regis-
tration techniques are the topics of past as well as on-going
research activities.

The newest approaches in AAA segmentation are [2], [3],
[4]. An pseudo 3D method for the segmentation of thrombus
in abdominal aortic aneurysms from CTA data is presented
in [3]. The full 3D segmentation technique in CTA is given
in [4]. As reported in [2] the current state of the art in
AAA segmentation is modelling, feature analysis or their
combination.

Despite the fact that the segmentation of vascular struc-
tures is valuable for diagnosis assistance, treatment and
surgery planning, the currently developed computer aided
diagnosis (CAD) software targets in efficient image reg-
istration. It allows combining different image information
(pre- and post-operative CTA studies), which is useful for
treatment planning and monitoring.

The authors of [7] propose a registration technique based
on the overlaying the pre-operative 3D model of the aorta
onto the intra-operative 2D X-ray images. The 2D/3D reg-
istration technique is also addressed in [5]. The non-rigid
method enables information from the CT to be overlaid onto
the fluoroscopy images during the implantation procedure.
The automatic movement compensation in 2D/3D registra-
tion of fluoroscopy and pre-operative volumetric data is
presented in [8]. The idea of a 2D/3D graph-based approach
in this context is presented in [6], where the algorithm takes
the 3D graph generated from a segmented CT volume and the
2D distance map calculated from the 2D X-ray image. For
computing the graph similarity, different measures are then
used in a length preservation and a smoothness regularization
term.

In this work we focus on a 3D abdominal aortic aneurysm
registration technique. The developed approach makes it
possible to match the aorta segmented in pre- and post-
operative CTA data. The presented technique is based on
an aorta lumen segmentation and graph matching technique.
In the segmentation step a hybrid level-set active contour
approach is employed. The applied hybrid medical image
segmentation method in the level-set framework [10] uses the
object’s boundary as well as region information. The match-
ing step is performed based on a path similarity skeleton
graph matching procedure presented in [14]. The introduced
modification to this state of the art technique incorporates
the location of three characteristic points in the series, which
makes it possible to properly orient the analysed skeleton end
points.
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In the following section, an applied algorithm for AAA
lumen segmentation is presented. Section III describes the 3D
skeletonisation algorithm for graph extraction and Section IV
introduces the graph matching technique. Section V presents
the experiments and the obtained results. With Section VI)
we conclude our work and outline plans for the future.

II. ABDOMINAL AORTA SEGMENTATION
TECHNIQUE

a) Aorta: To segment the aorta in CTA series a hybrid
active contour method [10] is incorporated. The active con-
tour C is represented by the zero set of embedding function
φ, such that C = {x|φ(x) = 0}. The points inside and
outside the contour have positive and negative φ values,
respectively. The minimized functional in image I domain
Ω is defined as

E (φ) = −ω

∫

Ω

(I − µ)H (φ)dΩ+ η

∫

Ω

g|∇H(φ)|dΩ, (1)

where g = g(|∇I|) is a boundary feature map related to
the image gradient and H stands for a Heaviside function.
The parameters ω and η balance the two terms of (1), and
µ indicates the lower bound of the gray-level of the target
object. Thanks to it, the curve evolves to enclose the regions
greater than µ. The Partial Differential Equation (PDE) of the
functional (1) is derived from the Gateaux derivative gradient
flow [10]

φt = |∇φ|

[

ω(I − µ) + ηdiv

(

g
∇φ

|∇φ|

)]

, (2)

and the explicit curve evolution PDE is represented by [10]

Ct = ω(I − µ)
−→
N − η〈∇g ·

−→
N 〉

−→
N + ηgκ

−→
N, (3)

where the index t denotes a time. The direction of the curve
normal

−→
N is defined to point outward the curve and

−→
N =

− ∇φ
|∇φ| . The curvature κ is given by κ = div

(

∇φ
|∇φ|

)

. The
used iterative curve evolution algorithm, based on additive
operator splitting (AOS) approach is in detail described
in [10].

In the hybrid level-set implementation applied to volu-
metric CT data, the authors of [10] used a sphere as an
initial surface. The results presented by them show that it
successfully converges to the target object. However, the
performed experiments proved, that the time to converge
the hybrid level-set algorithm [10] strongly depends on this
surface. In our work, the size of the analysed AAA CTA
data (512 × 512 × n, where n ∈ [220, 680]) determined
the clustering-based initial surface selection procedure. For
this, we used a weighted fuzzy c-means clustering procedure
introduced in [11].

b) Kidneys and Spine: For the actual graph matching
process, further organs are required which operate as anchor
points in 3D. For this task, the two Kidneys as well as L4
of the lumbar spine are chosen as reference points. In order
to segment these organs a clustering based technique [11] is
applied. The introduction of these three points is drastically
important, since it offers us a plenty of great possibilities

Fig. 1. 3D segmentation results of segmented organs with three character-
istic points in the series used for the further skeleton matching step.

for all subsequent steps, e.g., they can be used to create
a local object coordinate system which can be used to be
rotation invariant. Moreover, the points create a unique plane
K in 3D allowing to establish highly robust sample point
relations (cf. Section IV). The 3D segmentation results and
the correspondence are given in Fig. 1.

III. SKELETONISATION

The CTA volume matching procedure, being the overall
goal of our work, is based on the graph matching step
described in the next section. For this purpose 3D skele-
ton are required which are obtained by using the method
described in [12]. This automatic algorithm generates a sub-
voxel precise skeleton based on a subvoxel precise distance
field. This means, it is able to compute accurate, precise
and centred 3D curve skeletons also for objects that are
less than one voxel thick. The input for the skeletonisation
method described in [12] is a subvoxel precise distance field.
Therefore, the isosurface yielding the object’s true boundary
is created based on the previously obtained segmentation
results and subsequently passed to the method. Having an
implicit representation of the boundary, we estimate the sub-
voxel precise Euclidean distance transform for n-dimensional
data [13]. The resulting distance map is used to find the
point with the largest distance from the boundary as well
as to determine a speed image that is used as input for
the fast matching propagation (FMP) step. The point at
the global maximum distance from the object’s boundary
is calculated in a single pass through the distance field. It
constitutes the start point for the FMP algorithm, in which the
obtained speed image is used. The FMP is also augmented to
calculate the geodesic distance (Manhattan distance) inside
the object. Further branch points are then estimated based
on the obtained results. Therefore, the furthest point of the
model from the global maximum distance point is taken
as start point of the branch. All remaining points of the
branch are determined by performing a gradient descent,
back-tracking procedure on the fast marching time-crossing
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Fig. 2. An example of segmented aorta lumen and its skeleton.

map. This process is repeated for each branch of the created
skeleton [13]. An exemplary result of this method that is
applied to our AAA data is shown in Fig. 2.

IV. GRAPH MATCHING

The previously obtained aorta curve skeletons are now
matched to properly register the two analysed 3D CTA series
for each examination. Therefore, two different matching
algorithm are compared to each other. The first one is
the well-known Hungarian algorithm capable to find cor-
respondences in a bipartite graph. The second matching
procedure is focussing on finding maximal weight cliques
based on an undirected weighted affinity graph G [15].
Both approaches are employed as part of path similarity
skeleton graph matching presented in [14]. In more detail,
the idea is to match the skeleton graphs by comparing
the geodesic paths between their endpoints. In contrast to
existing approaches, the authors do not explicitly consider the
topological structure of the skeleton trees or graphs. Finally,
the Bai et al. employ the Hungarian algorithm to calculate
the overall similarity between two 2D shapes. In this work,
we also utilise the Hungarian algorithm for our 3D aorta
curve skeleton matching. However, caused by the higher
degree of freedom in 3D, resolution variations (appearing
or disappearing vessel branches) and different length ratios,
we have been force to improve the method to these demands.

According to the definition given in [14], a so called
skeleton path is ”a shortest path between a pair of end nodes
on a skeleton graph”. All skeleton paths are required to be
represented somehow in order to estimate their dissimilarity
and thus, the matching costs for two skeleton end nodes
v ∈ G and u ∈ G′ (G denotes the query and G′ the
target object). Therefore, the skeleton path p(v, u) is sampled
by K equidistantly distributed points to compute the radius
to the contour at each of these locations. In context of
our work the radii are replaced by a more sophisticated
description. This means, we establish relations to other
organs, namely to the two kidneys (k1,k2) and to the human
spine (m). Section II shortly describes how to obtain these
points. Subsequently, each sample point s(v,u)i is described in
relation to these reference points. Therefore, angles s

(v,u)
i =

(α
(v,u)
i , β

(v,u)
i , γ

(v,u)
i , δ

(v,u)
i ) are extracted in respect to two

the direction vectors v1 = k1 −m, v2 = k2 −m and the
normal vector n0 = v1 × v2 describing the plane K as well
as the local coordinate system (LCS) of the object:

αi = arccos(〈v̂1, ŝ
(v,u)
i 〉)

βi = arccos(〈v̂2, ŝ
(v,u)
i 〉)

γi = arccos(〈n̂0, ŝ
(v,u)
i 〉)

δi = Ψ(〈v̂1, ŝ
(v,u)
i 〉, 〈v̂2, ŝ

(v,u)
i ),

(4)

where v̂i, ŝi and n̂0 are unit vectors of vi, si,n0 and:

Ψ(a, b) =























arctan(a/b) b > 0
arctan(a/b) + π a ≥ 0, b < 0
arctan(a/b)− π a < 0, b < 0
+π/2 a > 0, b = 0
−π/2 a < 0, b = 0

. (5)

This representation is invariant to rotation and scale varia-
tions. For the actual matching procedure, all si values are
stored in a path signature vector r(v,u) = (s1, . . . , si−1, si).
To define the dissimilarity between two skeleton paths p(v,u)

and p(v
′,u′) the authors of [14] suggest a path distance

measure based on the radii and path lengths. In our work,
we adapt this distance measure as follows:

pd(p
(v,u), p(v

′,u′)) = Φ(rα, rα) + Φ(rβ , rβ)+
Φ(rγ , rγ) + Φ(rδ, rδ),

(6)

where Φ performs a dynamic time warping on the sub
parts (α, β, γ, δ) of the two time series r(v,u) and r(v

′,u′),
respectively.

Let now assume that the two CTA series be described
by the ordered graphs G and G′ with K + 1 and N + 1
nodes (K ≤ N ) respectively. The matching cost c(v, u) is
estimated based on the paths to all other vertices in G and
G′ emanating from v and u. The dissimilarity value between
the end nodes is estimated using the Optimal Subsequence
Bijection (OSB) method introduced in [16]. The advantage
of the OSB algorithm is, that it finds a subsequence a′ in
sequence a that best matches b′ in b skipping possible outlier
elements. Therefore, a matrix filled with all path distance
values (Eq. 6) for two node sequences vi0, vi1, . . . , viK in
G (vi = vi0) and uj0, vj1, . . . , ujN in G′ (uj = uj0) are
generated. This matrix is passed to the OSB that calculates
the matching costs for the end nodes vi and uj . All node
pairs of G and G′ are analysed in this way and their OSB
output values are stored in a further matrix C(G,G′). The total
dissimilarity c(G,G′) between G and G′ is then computed
in analogy to [14] with the Hungarian algorithm on C(G,G′)

first.
In a second run, we replace the Hungarian algorithm by

a method proposed in [15], where the authors express the
matching problem as a integer quadratic program with the
goal to find maximal weight cliques in undirected affinity
graph G⋆ satisfying a certain set of constraints:

max g(x) = x
⊺Ax s.t. x

⊺Mx = 0, x ∈ {0, 1}n, (7)

where A is a symmetric n × n affinity matrix with ∀i, j =
1 . . . , n : Ai,j ≥ 0 and M ∈ {0, 1}n×n represents a
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symmetric mutual exclusion constraints (mutex) matrix. The
diagonal of A is populated with the elements in C(G,G′).
Since A expects similarity data, the OSB cost values have
to be converted by using a Gaussian function. In order to
populate the non-diagonal elements of A, a pairwise distance
consistency value is generated between two assignments
u⋆ = (i, i′) and v⋆ = (j, j′):

A(u⋆,v⋆) = exp(
(d(i, j)− d(i′, j′))2

2σ2
), (8)

where d(i, j) calculates the Euclidean distance and σ adjusts
the influence of geometric deformations on the output value.
Finally, all values are normalized to [0, 1] in order to remain
scale invariant. The mutex matrix M monitors simple geo-
metrical constrains, e.g., left/right in each dimension based
on the object’s LCS.

V. RESULTS

The presented segmentation/registration framework was
tested on the database provided by the SOVAmed GmbH.
It consists of 8 pairs of of CTA series to be segmented
and matched. The examinations contain pre- as well as
post-operative series (in total 16). Based on the normalized
CTA data the number of clusters used in initial surface
construction was set to 5. In the employed hybrid level-set
segmentation technique [10], a boundary feature map related
to the image gradient is a decreasing function g such as
g = 1

1−c|∇I|2 , with the constant c controlling the slope set
to 5. The parameters required for (1) are set to ω = 0.5 and
η = 0.2, respectively. The proposed set-up makes it possible
to efficiently segment the aorta and reference organ points in
all 16 analysed series. For all the analysed pairs of volumetric
data the matching algorithm based on Hungarian method as
well as Maximum Weight Cliques were investigated.

The matching results were verified by an expert. A labelled
skeleton points on both series were marked, so that the
expert was able to verify them (see Fig. 3), by checking
the real correspondences of the anatomical points. For all
the analysed data sets 7 to 13 end points (depending on
the series) of the skeletons to match were detected. The
Hungarian matching results in 5 totally correct matches and
a mean accuracy of 89% correctly matched end points (65 of
74). Much better results were obtained using the Maximum
Weight Cliques technique, where in 6 of 8 series the results
were totally correct and the mean accuracy was equal to 97%
correctly matched points (68 of 71). The difficulties during
the matching were caused by a different resolution of the
series as well as length variations. To solve this problem
in the future, we plan to incorporate a DICOM positioning
information and context analysis.

VI. CONCLUSIONS AND FUTURE WORK

The paper presents a preliminary study in a 3D registra-
tion of abdominal aortic aneurysm in CTA. The developed
method consists of 3D segmentation part and graph based
registration procedure. The promising results obtained for
8 examinations consisting of 2 CTA series each encourage

Fig. 3. An exemplary matching results with the correspondences

to further develop this technique. In our work we plan
to improve the segmentation as well as registration results
incorporating a context analysis of the image data.
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