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Abstract— Pulmonary embolism (PE) affects up to 600,000
patients and contributes to at least 100,000 deaths every year
in the United States alone. Diagnosis of PE can be difficult as
most symptoms are unspecific. Computed Tomography (CT) an-
giography is the reference for diagnosing PE. CT angiography
produces grayscale images with darker areas representing any
mass filling defects, making the analysis of the images difficult.
This article demonstrates a method using the combination
of energy levels in Dual Energy CT images to highlight the
presence of PE in the lung. The results show that pairing
different energy levels from 40 to 140 keV can increase the
contrast between well perfused areas and underperfused areas
of the lung. In addition, the visualization used in the current
study complies with the window/level settings usually employed
by radiologists.

I. INTRODUCTION

Acute pulmonary embolism (PE) is a common condition
that consists of the obstruction of one or more arteries in
the lungs as a complication of deep vein thrombosis. Studies
have shown that acute pulmonary embolism mortality rates
can reach 75% during initial hospital admission [1] and after
the hospital discharge 30% within 3 years [2]. Although it
can be successfully treated with anticoagulants, delays in
diagnosis have shown to increase the risk of death [3]. There
is evidence that 3D texture features correlate with ventilation
and vascularization of the lung parenchyma [4], [5] and
that pulmonary embolism induces wedge–shaped pleura–
based regions of heterogeneous increased attenuation in
unenhanced computed tomography (CT) scans that are also
visible on contrast–enhanced CT [6]. Dual Energy Computed
Tomography (DECT) produces four dimensional (4D) data
in a single scan. In addition to the three spatial coordinates
(x,y,z) images are sampled at the level of x–ray energy for
image acquisition (80 and 140 keV, hence the name dual en-
ergy). DECT images are difficult to visualize as radiologists
can either browse through the 3D volume showing single
slices or modify the energy level for a single slice but not
the two at the same time. DECT imaging exploits the fact
that different materials present different energy–attenuation
curves. Specifically, iodine components present in contrast
agents have a much faster decay in the energy–attenuation
curve than water. Several studies have explored the idea
of visualizing and assessing the pulmonary perfusion in
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acute pulmonary embolism cases using the Dual Energy CT
protocol recommended by Siemens Healthcare (manufacturer
of Somatom Definition scanner) [7], [8], [9]. These studies
use linear combinations of the two source energy levels
(80 and 140) as suggested by [10] for generating iodine
distribution maps in the lung parenchyma. In this paper we
apply a similar approach that validates these findings on
data generated with a different Dual Energy protocol using
a GE Healthcare Gemstone Spectral Imaging (GSI) scanner.
The main feature of the GSI scanner is that it obtains a
larger amount of information from a single acquisition and
provides 3D volumes sampled at 40 to 140 keV in steps of
10 keV. First, we explore the optimal combination of energy
levels, which highlights the difference between EP cases and
control cases. Finally, this combination is used for visualizing
the CT images adding color coded information, which is
in accordance to the window and level settings known by
radiologists.

The rest of the paper is organized as follows: Section II
explains the methods and materials used, defining the exper-
imental setup for choosing the best pair of energy levels and
how they can be integrated into a vector image visualization
tool as a false color layer. Section III contains the main
results of the work, which are discussed in Section IV and
conclusions and future work are described in Section V.

II. MATERIALS AND METHODS

A. Dataset

Pulmonary parenchyma ischemia in 4D dual energy CT
(DECT) images of 25 patients were identified in collab-
oration with the emergency radiology of the University
Hospitals of Geneva. The images in the dataset contain
approximately 300 slices per patient and energy level. Energy
levels are sampled from 40 to 140 keV in steps of 10 keV.
The image resolution is approximately isotropic in the spatial
coordinates, with horizontal resolution of 0.83mm/voxel
and vertical resolution of 1mm/voxel.

For each patient, the five pulmonary lobes were manually
segmented and the Qanadli index (Q) [11] was manually
computed as a measure of the obstruction on a lobe basis.
The Qanadli index is calculated by adding a score per artery
in the lobe: 0 if there is no obstruction, 1 if there is partial
obstruction and 2 if the artery is completely obstructed.

B. Combination of energy levels

According to the dual energy protocol and reconstructed
images, iodine components have a larger attenuation value
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Lobe 1, Energy levels: 40  120kV. RMSE: 1.5525
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(a) Regression model for the lower right lobe.
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(b) Regression model for the lower left lobe.
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(c) Regression model for the middle right lobe.

20 40 60 80 100
0

1

2

3

4

5

Average difference between energy levels (HU)

E
m

b
o
lis

m
 S

e
v
e
ri
ty

 (
Q

a
n
a
d
lii

 i
n
d
e
x
)

Lobe 4, Energy levels: 60  120kV. RMSE: 1.596

 

 

fitted curve

(d) Regression model for the upper left lobe.
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(e) Regression model for the upper right lobe.

Fig. 1: Average value of the difference image between the optimal pair of energy levels against the Qanadli index for each lung lobe showing that the
slope is always negative.

Lower right Lower left Middle right Upper left Upper right
I40 − I120 1.5525 2.1685 1.0486 1.5978 1.2370
I40 − I130 1.5527 2.1685 1.0485 1.5977 1.2370
I40 − I140 1.5527 2.1685 1.0485 1.5977 1.2370
I50 − I120 1.5652 2.1683 1.0497 1.5970 1.2361
I50 − I130 1.5651 2.1683 1.0496 1.5970 1.2361
I50 − I140 1.5648 2.1683 1.0495 1.5969 1.2361
I60 − I120 1.5899 2.1680 1.0533 1.5960 1.2375
I60 − I130 1.6523 2.1824 1.0576 1.6020 1.2497
I60 − I140 1.6509 2.1824 1.0573 1.6019 1.2494

TABLE I: Root mean squared error of model fit for each lobe and each pair of high and low energy levels considered.

for low energy levels than for higher energy levels, whereas
other materials such as water have a similar attenuation for
all energy levels. Therefore, the presence of contrast agent
(which is rich in iodine) can be found by analyzing the
attenuation difference between low energy levels and high
energy levels. We thus assume that the higher the QI, the
lower the difference between high and low energy levels.

Based on this assumption we obtained the difference
images between pairs of energy levels, and computed the
average values for healthy and PE cases. This computation
was performed on a single lobe basis, since each lobe has a
specific vascularization pattern.

C. Visualization

Human vision has strong limitations analyzing grayscale
images (from 50 to 150 gray scales can be separated de-
pending on the articles [12]). Studies have also shown that
the human vision successfully exploits color information,
distinguishing thousands of colors [13]. It is therefore tempt-

ing to use mainly color information to display complex
data. Radiologists are well trained to distinguish differences
in luminance and intensity, since it is easy to associate
variation of a physical magnitude (e.g.: density, attenuation,
etc.) to variations of light intensity. On the other hand, color
information is by definition three–dimensional (2D if only
hue and saturation are considered) which is impossible to
sort with respect to a physical magnitude. Computer screens
are based on the RGB (red, green, blue) color space. In
order to present anatomical information as well as perfusion
information in the same image, we decided not to change
the anatomical information from the grayscale space and use
color variations for perfusion. With this idea in mind, we
used the following scheme for each of the RGB channels:

R = Istandard +KR(Ilow − Ihigh), (1)
G = Istandard +KG(Ilow − Ihigh), (2)
B = Istandard, (3)
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where Ihigh, Ilow are the images acquired at one of the three
highest (120, 130 and 140 keV) or three lowest energy levels
(40, 50 and 60 keV). Istandard is the image acquired at 70
keV. KR and KG are parameters to be determined.

In order to satisfy relative luminance invariance further
restrictions were applied: first, the definition of relative
luminance Y according to the RGB components [14] and
second, that the relative luminance remains equal to the
standard CT image (70keV):

Y = 0.2126R+ 0.7152G+ 0.0722B, (4)
Y = Istandard. (5)

which translates into a fixed ratio for KR and KG:

KR = −0.7152

0.2126
KG. (6)

This produces a grayscale image where large differences
in perfusion are color–coded. Well perfused tissues have
relatively higher values of green and blue channels, which
translates into a cyan tone. Uncolored areas (Ilow − Ihigh ≈
0) or red areas (Ilow − Ihigh < 0) reflect the absence of
iodine components, and therefore low perfusion.

The grayscale images respect the Hounsfield scale of
standard energy level used in single energy CT, and therefore
radiologists can still use window/level settings for visualiza-
tion.

III. RESULTS

For each pair of energy levels studied, linear regression of
the relation between the Qanadli index and the average values
in the difference image was computed. Figure 1 illustrates
this analysis. In all cases there is an inverse relation between
the average difference measured in Hounsfield units and the
severity of the embolism.

Table I shows the root mean squared error (RMSE) value
of a linear fit of the model Q̃ = a+ b(Ilow − Ihigh).

Since the relations observed between the Qanadli index
and the average value of the difference images are not
enough for discriminating healthy lobes from embolism,
visual interpretation and/or further computer analysis are
still required for this task. Figures 2 and 3 show the visual
appearance when low and high energy levels are chosen
for RGB channels as explained in section II-C, where the
distribution of contrast agent is represented with cyan tones.
Inhomogeneities in the distribution of contrast agent (un-
coloured and red areas) are much more visible in the EP
cases than in healthy lobes.

Results supports the findings of Thieme et al. [7], [8], [9]
on Siemens dual energy scanners that use a very different
technique from the GE dual energy scanners used in our
study and extend them to a broader set of energy levels,
which are chosen based on a simple linear regression model.

IV. DISCUSSIONS

Our current study is different from previous studies at-
tempting to use DECT for embolism detection [7], [8], [9] in
the scanner technology used and the methods we applied to

Fig. 2: Control cases present homogeneously blue–colored parenchyma,
since there is a large presence of contrast components. The images are
set in the lung window (-1200, 200 HU) and a mask was applied to show
color information only in the lung region.

visualize the images. In this study we used a GE Healthcare
GSI scanner able to provide 3D volumes sampled at 40 to
140 keV in steps of 10 keV whereas all previous studies
used a Siemens scanner. The GE Healthcare scanner permits
to choose any energy level, which allows showing the largest
contrast between well perfused areas and underperfused areas
of the lung. Table I shows that the pairs that correlate better
with a linear model are not consistent among the various
lobes (lower right, lower left, middle right, upper left and
upper right) which is a consequence of the variations in
the vascularization among lobes. It also demonstrates the
need of multiple energy levels to improve PE diagnosis:
since there is no optimal combination of energy levels for all
lobes, it will be beneficial for the clinicians to have access
to various energy levels at the moment of visualizing the
images. Similarly to the preset window and level values,
interfaces designed for DECT data should integrate presets
for combining various energy levels. Noise can also vary in
the energy levels and unfortunately the denoising techniques
of the various producers or even the raw data are usually
not available on DECT, which could otherwise be used for
selecting the optimal parameters.
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Fig. 3: EP cases highlight differences in perfusion with strong contrast
between light blue areas and red or uncolored areas. The images are set
in the lung window (-1200, 200 HU) and a mask was applied to show color
information only in the lung region.

V. CONCLUSION

In this paper a visualization of 4D DECT stacks is
proposed for the diagnosis of pulmonary embolism to better
analyze perfusion in the various lung lobes. The method pre-
sented studies first the optimal energy levels for highlighting
the inhomogeneities in lung perfusion and then combines
them into a 3D vector image that complies with the usual
window/level settings employed by radiologists. Although
the visualization is improved, subtle differences in perfusion
are hard to observe and further computer–based analysis
might still be required. Particularly a quantitative measure of
perfusion per lobe is currently being studies that could help
radiologists to take decisions quickly. Future work includes
combining the visualization of perfusion maps with texture–
based features that have shown to be useful in acute PE
diagnosis [15], [5], [16].
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