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Abstract— Cerebral aging has been linked to structural and
functional changes in the brain throughout life. Here, we study
the marmoset, a small non-human primate, in order to get
insights into the mechanisms of brain aging in normal and
pathological conditions. Imaging the brain of small animals
with techniques such as MRI, quickly becomes a challenging
task when compared with human brain imaging. Very often,
a simple pre-processing step such as brain extraction cannot
be achieved with classical tools. In this paper, we propose
a diffeomorphic registration algorithm, which makes use of
learned constraints to propagate the manual segmentation of
a marmoset brain template to other MR images of marmoset
brains. The main methological contribution of our paper is
to explore a new strategy to automatically tune the spatial
regularization of the deformations. Results show that we obtain
a robust segmentation of the brain, even for images with a low
contrast.

I. INTRODUCTION

The biomedical setting of this work is the study of
brain aging in normal and pathological conditions, typically
Alzheimer’s disease. In this context, there is a growing
interest in the marmoset monkey, a small non-human primate
from the new world, as a model of brain aging. Indeed,
besides its short life expectancy (∼10 years) and low inter-
subject variability (due to the small number of sulci in
the cortical grey matter), the marmoset can be studied in
laboratory conditions, which enables researchers to study
large groups of subjects at different ages. In the last decade,
neuroimaging has proven useful in relating cerebral aging to
structural and functional changes in the brain throughout life
[1]. More specifically, morphological modifications can gen-
erally be assessed with structural MRI. However, a number
of neuroimaging applications, such as morphometric analyses
or multimodal registration, necessitate prior segmentation of
the brain itself from the rest of the head, or more generally
of any brain structure.

Although many tools are well established to segment MR
brain images acquired on humans (e.g.: SPM, FreeSurfer,
BrainVISA, ...), no available tools are designed to segment
MR brain images acquired on marmosets, to the authors
knowledge. Tools available for human brains are also not
adapted in this context for three main reasons: (1) Human
and marmoset brain shapes are obviously different, (2) the
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unique available template is corrupted by a strong bias and
depicts imperfections, (3) there is very little contrast between
the brain and surrounding tissues in the marmoset brain MR
images, as shown in Fig. 1. The driving motivation of our
work is then to develop a registration algorithm sufficiently
robust to propagate the manual segmentation of a marmoset
brain template to other MR images of marmoset brains.

Fig. 1. 3T MRI scan of a 2-year-old marmoset (3D T1W-GRE sequence:
TE = 5.2 ms, TR = 12 ms, Flip angle = 8◦). The red rectangle emphasizes
a region with little intensity gradients at the brain boundary.

We denote T a template image and S its segmentation
(obtained manually or semi-manually). We also suppose that
T is registered on image I to propagate the segmentation S
on I . As the boundaries of the regions of interest in I and
T are not obvious everywhere in our images, we propose
in this paper a new registration algorithm which strongly
constrains the deformations of T with deformations learned
by registering the segmentation of T on the segmented
training images In, n ∈ [1, · · · , N ].

More specifically, we first perform a Principal Component
Analysis (PCA) of the deformations between T and the In.
We then constrain the deformations between T and I to
be driven by the deformations resulting from the principal
components of the PCA. The idea of using PCA, or Singular
Value Decomposition (SVD), on deformations is not new
[2]–[7]. Training sets have indeed a much lower dimension
N than the number of degrees of freedom d used to encode
the deformations, which requires the use of regularization
techniques. These techniques also reduce d as much as possi-
ble by using spline or wavelet projection of the deformations
or by subsampling the domain on which they are learned. To
our knowledge, a major limitation of all existing registration
approaches using an information derived from PCAs is also
that the information learned strongly depends on how the
deformations were spatially regularized. As seen in Fig. 2,
spatial regularization has a strong influence on the deforma-
tions. The key contribution of our paper is then to explore
a new strategy to make possible the automatic tuning of
the spatial regularization level in diffeomorphic registration
algorithm. In [8], an interesting strategy was also proposed
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to automatically control the level of spatial regularization by
expanding the Free-Form-Deformations registration frame-
work. Our approach first differs from [8] as we highly con-
strain our deformations to be driven by deformations learned
on segmented images. Our strategy also reduces as much as
possible the degrees of freedom d of the model by using
Least Absolute Shrinkage and Selection Operator (LASSO)
regularization on the model parameters. Our approach is
also diffeomorphic, which ensures the estimation of one-
to-one mappings without hard constraints. Note finally that
spatial regularization and LASSO regularization are totally
different in practice although mathematical relations could be
established between them: spatial regularization consists in
smoothing a vector field encoding the deformations between
two registered images while LASSO regularization consists
in penalizing a norm between the model parameters encoded
in a single vector.

In section II, we give a general overview of the
LogDemons algorithm [9] that we use to learn reference
velocity fields and then describe our registration algorithm.
General segmentation pipeline, data treatment, and results
are then given in section III.

σ = 0.5mm σ = 3mm σ = 7mm
Fig. 2. Displacement fields obtained after registering a brain template
image T on another brain image I using LogDemons registration [9] with
three levels of fluid regularization: Gaussian kernels of standard deviation
σ equals to 0.5, 3 or 7 mm.

II. METHODOLOGY
A. Overview of the Log-Demons Formalism

In this subsection, we give an overview of the Log-
Demons registration algorithm [9], as we use it to learn
typical deformations between the template image T and other
images I . Suppose that T and I are affinely aligned. Image
T is transformed through the diffeomorphic transformation
φt, t ∈ [0, 1] which is defined by a stationary velocity field
v ∈ Ω using:

∂

∂t
φt = v(φt) , (1)

where φ0 = Id. This integration can be quickly performed
using the method of [10]. Deformed template image is then
T ◦ φ1. Optimal velocity field v is obtained by minimizing
an energy which maximizes the sum of squared differences
(SSD) between the registered images for sufficiently smooth
deformations. Update velocity field is defined as:

δ(x) = − I − T ◦ φ1
||J(x)||2 + λ2

i /λ
2
x

J(x) , (2)

where J(x) = ∇(T ◦ φ1)(x), x ∈ Ω denotes the intensity
gradients. Registration is performed using Alg. 1 where the

Baker-Campbell-Hausdorff (BCH) formula is: vc ' v +
δ + [v, δ]/2, and the Lie bracket is defined by [v1,v2] =
(∇v1)v2 − (∇v2)v1. We denote Γ the parameters which
control the spatial regularization of v. In particular, Γ
contains the standard deviations of the Gaussian kernels used
to perform fluid and diffusion regularization. Insights about
these parameters are given in [11].

Alg. 1 Overview of the registration algorithm [9]
Require: Template T , target I , parameters Γ

1: Initialize v as null
2: while Not convergence of v do
3: Compute φ1 using Eq. (1)
4: Compute the update velocity field δ using Eq. (2).
5: Fluid regularization: Gaussian smoothing of δ.
6: Estimate vc = BCH(v, δ), where BCH(., .) is the

Baker-Campbell-Hausdorff formula.
7: Diffusion regularization: Update v by smoothing vc

with a Gaussian kernel.
8: end while

B. Highly-constrained diffeomorphic registration

Our algorithm is inspired from [9] but we use a totally
different technique to regularize the velocity field v. Defor-
mations are now strongly constrained by constructing v as
the weighted sum of K reference velocity fields vk:

v =

K∑
k=1

αkvk , (3)

where the weights αk are the parameters to estimate. We
denote Θ these parameters. A first version of our algorithm
is given in Alg. 2, where · denotes the dot product between
two vectors and ε controls the updates scale.

Alg. 2 Registration algorithm without regularization of Θ

Require: Template T , target I , reference velocity fields vk

1: Initiate αk = 0, ∀k ∈ {1, · · · ,K}
2: for Iteration ∈ [1, · · · , N ] do
3: Compute φ1 using Eq. (1)
4: Compute the update velocity field δ using Eq. (2)
5: for k ∈ {1, · · · ,K} do
6: α̃k =

∑
x∈Ω vk(x) · δ(x)

7: αk = αk + εα̃k
8: end for
9: Reconstruct v using Eq. (3)

10: end for

C. Registration with self-adaptive regularization level

Note that the algorithm of section II-B is not well posed,
as no constraint was given to regularize the weights Θ =
{α1, · · · , αK}. This algorithm is then likely to diverge.
We use Least Absolute Shrinkage and Selection Operator
(LASSO) regularization on the weights of Θ, which allows
to address a self-adaptive spatial regularization of v using
the technique explained hereafter.
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1) Learning step: The first key of our strategy is to learn
the reference velocities vk using different spatial regulariza-
tion parameters Γ in Alg. 1. We consider r sets of parameters
Γ. For instance, we can define Gaussian kernels with r
different standard deviations to perform fluid regularization
in Alg. 1. We also denote In, n ∈ [1, · · · , N ] the set of
training images. For a given set of parameters Γ, we register
the template T on all training images In using Alg. 1. We
then obtain N velocity fields vn, n ∈ [1, · · · , N ]. A PCA is
performed on these fields and we keep the c first components
of the PCA, where c is typically equal to {1, 2, 3} (see
Fig. 3). By repeating this process for each set of parameters
Γ, we obtain the K = rc reference velocities vk. Note that
if T is not the average of the In, it is important to use the
average deformation in addition to the principal components.

2) Registration: Our registration algorithm is the same as
the one of section II-B, except that we perform LASSO reg-
ularisation on Θ, i.e. we penalize β||Θ||1 = β(

∑K
k=1 |αk|).

This is the second key of our strategy. LASSO regularization
is well known in statistics to set to zero the parameters
which have little influence on what a model explains. In our
context, it will set to zero the values αk associated to vectors
vk which are the least pertinent to represent the optimal
deformation. Only the most pertinent velocity fields vk will
then contribute to v in Eq. (3). Note that the higher β, the
stronger this property. As the different vk represent velocity
fields obtained using different levels of spatial regularization,
this property is automatically tuned here. In practice, this
regularization is performed using the derivative of β||Θ||1
relative of each term αk, which is equal to (βαk)/|αk|. In
line 7 of Alg. 2, we then replace αk = αk + εα̃k with:

αk = αk + ε

(
α̃k −

βαk
|αk|

)
. (4)

The derivative is not defined for αk = 0. If the sign of αk
is changed during Eq. (4), we then simply set αk to 0.

III. RESULTS

A. Material and experimental protocol

Eleven T1-weighted images were acquired in adult mar-
mosets using a 3D gradient echo sequence (parameters: TE =
5.2 ms, TR = 12 ms, Flip angle = 8◦) on a 3T MRI Philips
scanner1. The resulting images have a resolution of about
0.4 mm (see Fig. 1). Manual segmentation of the brain was
performed on a set of eight images using Matlab R© to serve
as a basis for the learning step, whereas the three remaining
images were used to test the algorithm.

B. Learning step

We picked-up one of the segmented images as the template
T and considered the 7 remaining ones as the learning
set of images In. Affine alignment of all images on T
was first performed using ANTS2. Template T was then
registered on the In, n ∈ [1, · · · , 7] using [9] with r = 6

1This study was approved by the French Regional Committee for the use
of laboratory animals (authorization # MP/03/76/11/12).

2http://stnava.github.io/ANTs/

sets of parameters Γ. More specifically, we used r = 6
different standard deviations σ = {0.5, 1, 2, 3, 5, 7}mm for
the Gaussian kernel used to perform fluid regularization. Very
little diffusion regularization was performed as we used a
Gaussian kernel with a standard deviation equals to 0.1mm.
Image registration algorithm was coded in C++ with openMP
parallelization. PCA of the velocity fields obtained using
each parameters set Γ was performed in Python using the
scikit-learn library. We kept the 3 principal components of
each PCA (see Fig. 3). As T is not the average of the training
images, we also used the average deformation. In the end,
we have K = 4 ∗ 7 reference velocity fields vk.

1st component 2nd component 3rd component
Fig. 3. Displacement fields obtained using the PCA of the velocity fields
vn learned with the fluid regularization kernel σ = 2mm. Three first
components of the PCA are shown.

C. Registration of the template and segmentation

After learning K reference velocity fields vk obtained
using different levels of spatial regularization, we registered
T on 3 test images with the registration technique of sec-
tion II-C. We denote L-LDβ this technique, where β is the
value given to the LASSO regularization parameter. We also
compared the proposed strategy with [9] using Gaussian
kernels with σ = 0.5mm and σ = 2mm to perform fluid
regularization. We denote LDσ this technique. LDσ obvi-
ously leads to far less constrained deformations than L-LDβ .
Deformations are therefore more flexible to match image
details but are subject to implausible deformations if intensity
gradients do not properly represent brain boundaries.
As shown in Fig. 4, brain boundaries were always properly
found, even for Image 1 (shown Fig. 1) which has locally
low intensity gradients at the brain boundaries.

Im
ag

e
1

Im
ag

e
2

L-LDβ=0.3 LDσ=0.5 LDσ=2

Fig. 4. Propagation of the brain mask after registering the template T
on two test images I using our method (L-LD) and [9] (LD) with a fluid
regularisation σ equals to 0.5mm or 2mm. Results are shown in an ROI of
images 1 and 2 with little intensity gradients at the brain boundary. The red
isoline represents the estimated brain boundary.
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We also measured the sum of square differences (SSD)
between the registered images in the brain (normalized by the
SSD before registration) as well as the maximum determinant
of the deformation Jacobians (max DetJ) to quantify the
matching quality and the deformation smoothness. Average
SSD obtained using LDσ=0.5 and LDσ=2 were 0.25 and
0.60, respectively. Corresponding Max DetJ were also 49
and 7.79, respectively. Results obtained for different values
of β are shown in Table I. We can first observe that LDσ
gave better matchings than L-LDβ as it is more flexible,
as also shown by the higher Max DetJ. The Max DetJ ob-
tained using LDσ=0.5 is particularly high which emphasizes
physiologically implausible deformations. Deformations of
LDσ=2 seem more realistic. It is worth noticing that L-
LDβ=1 however led to an almost similar matching quality
than LDσ=2 for much smoother deformations, which is an
encouraging result. We finally assessed the influence of β on
the results. Interestingly, the best results between matching
quality and deformation smoothness were not obtained with
the larger amount of weights αk > 0, but using only 29% of
the αk > 0 (for β =1). Note also that for the three different
images on which T was registered, the vk related to the
highest αk were obtained using different levels of spatial
regularization. This seems to show that our self-adaptive
regularization technique makes sense here.

TABLE I
AVERAGE RESULTS OBTAINED USING L-LDβ .

β = 0.1 β = 0.3 β = 1 β = 2

Max DetJ 4.16 2.31 1.72 1.30
SSD 0.81 0.79 0.70 0.81

% (αk > 0) 89 59 29 12

IV. DISCUSSION

From these results, we conclude that by strongly constrain-
ing the deformations, we are able to perform a robust seg-
mentation of the brain, even for images with a low contrast.
Interestingly, we obtain the best compromises between image
matching and deformation smoothness using sparse mixtures
of deformations with smoothness levels depending on the
registered image.

Considering that extracting the brain from its surrounding
tissues is a crucial step towards more advanced image
processing and analysis, this method widens the possibil-
ities for further analysis. Indeed, we now expect to be
able to reliably quantify changes in small animals, such as
marmosets, and with clinical devices instead of dedicated
but also costly high-resolution devices. More generally, our
algorithm should prove useful for the segmentation of any
structure in poorly contrasted brain regions. In addition,
gaining knowledge on the mechanisms involved in normal
and pathological aging of the brain, requires longitudinal
analyses on large sets of data. In this context, it is important
to provide a processing pipeline that is the most automatic
possible.

On a methological side, there are different perspectives to
make our registration strategy more efficient. First, defining
the template as the average of the training images would
reduce the number of reference fields as the average defor-
mation would be almost zero. In addition, learning reference
deformations using image- and landmark-based registration
could also help capture more realistic deformations if we
want to segment all brain structures and not only the brain
boundary. Furthermore, allowing multimodal registration, by
maximizing the mutual information for instance, would also
be an interesting feature to add to our strategy. Indeed,
combining modalities such as CT, SPECT, or PET, with
structural MRI, would definitely help not only localizing,
but also linking both morphological and functional (e.g.
perfusion, metabolism) modifications occurring in the brain
throughout life.

From a research perspective in image registration, we
finally believe that defining learning strategies with finer
models, in particular which take into account the deforma-
tions location, would be of high interest. Assessing whether
regularization strategies other than LASSO would lead to
better results is also foreseen.
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