
  

 

Abstract— There is a growing interest in automatic 

classification of mental disorders such as schizophrenia based 

on neuroimaging data. Most previous studies considered 

structural MRI, diffusion tensor imaging and task-based fMRI 

for this purpose. However, resting-state fMRI data has not 

been used much to evaluate discrimination of schizophrenia 

patients from healthy controls. Resting data are of great 

interest, since they are relatively easy to collect, and not 

confounded by behavioral performance on a task. In this study, 

we extract two types of features from resting-state fMRI data: 

functional network connectivity features that capture inter-

network connectivity patterns and autoconnectivity features 

capturing temporal connectivity of each brain network. 

Autoconnectivity is a novel concept we have recently proposed. 

We used minimum redundancy maximum relevancy to select 

features. Classification results using support vector machine 

shows that combining these two types of features can improve 

the classification on a large resting fMRI dataset consisting of 

195 patients with schizophrenia and 175 healthy controls. We 

achieved the accuracy of 85% which is very promising.  

 

I. INTRODUCTION 

Population studies show that lifetime prevalence of all 
psychotic disorders is as high as 4% 
(http://www.nimh.nih.gov/statistics/SMI_AASR.shtml). 
These disorders can impair normal life significantly and 
impose huge societal cost [1]. Clinically, the patient's self-
reported experiences and observed behavior over the 
longitudinal course of the illness constitute the basis for 
diagnosis. The overlapping symptoms of mental disorders 
and the absence of standard biologically-based clinical tests 
make differential diagnosis a challenging task. Early 
diagnosis of these diseases can significantly improve 
treatment response and reduce associated costs [2]. 

Advances in neuroimaging technologies in the past two 
decades have opened a new window into the structure and 
function of the healthy human brain as well as illuminating 
many brain disorders such as schizophrenia. Schizophrenia is 
among the most prevalent mental disorders affecting about 
1% of the population worldwide [3]. This devastating, 
chronic heterogeneous disease is usually characterized by 
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disintegration in perception of reality, cognitive problems and 
chronic course with lasting impairment [4]. Multiple 
structural and functional brain abnormalities are widely 
reported in patients with schizophrenia [5, 6].  

Recently, there is a growing interest in designing 
prognostic/diagnostic tools based on neuroimaging and other 
data that display high accuracy and robustness [7]. The 
relatively small amount of research on MRI-based 
classification of schizophrenia patients can be divided into 
three categories based on the type of discriminating features 
used: structural-based[8-11], functional-based [12-14] or 
combination of structural and functional features [15].  

In recent years, spontaneous modulation of blood 
oxygenation level-dependent (BOLD) signal during the 
resting condition has found fruitful clinical applications [16]. 
Resting-state fMRI (rfMRI) experiments are less prone to 
multi-site variability, allow a wider range of patients to be 
scanned and make it possible to study multiple cortical 
systems from one dataset [16].  

Functional connectivity (FC) is defined as correlation (or 
other kinds of statistical dependency) among spatially remote 
brain regions. Using functional connectivity methods, 
researchers have shown disrupted functional integration in 
schizophrenia patients [17, 18]. There is growing interest in 
studying FC among brain functional networks. This type of 
connectivity, which can be considered as a higher level of 
FC, is termed functional network connectivity (FNC) [19] 
and measures the statistical dependencies among brain 
functional networks during rest and task [20, 21]. Each 
functional network may consist of multiple remote brain 
regions. FNC abnormalities in schizophrenia patients has 
been shown by several studies [22]. 

We used another novel feature which will be called 
“autoconnectivity” hereafter. Autoconnectivity captures the 
correlation of a time-series with its lagged version. If that 
time-series represents the temporal pattern of a brain 
network, then autoconnectivity is connectivity of that 
network with itself. 

Extracting brain functional networks and their 
corresponding time-course is the first step to extract both 
types of proposed features. We used spatial independent 
component analysis (ICA) for this purpose. ICA, a 
multivariate data-driven method which as a blind source 
separation method, can recover a set of signals from their 
linear mixtures and has yielded fruitful results with fMRI 
data [23, 24]. ICA estimates maximally independent 
components using independence measures based on higher-
order statistics. Compared to general linear model 
approaches, ICA requires no specific temporal model (task-
based design matrix), making it ideal for analyzing resting 
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state data [25]. Spatial components resulting from spatial 
ICA are maximally spatially independent but their 
corresponding time-courses can show a considerable amount 
of temporal dependency. 

The purpose of this study is to design accurate classifier 
for schizophrenia patients using features from resting-state 
fMRI data. In our previous work [26], we showed that 
resting-state FNC features can be used to classify 
schizophrenia patients from healthy controls. In this study we 
use both FNC and autoconnectivity features and test in on 
much larger dataset compared to our previous works. 

II. MATERIAL AND METHODS 

A. Dataset 

For this study we used data from a large imaging study 
including 195 patients with schizophrenia and 175 healthy 
volunteers were recruited that were matched for age, gender, 
handedness, and race distributions. All patients included in 
the study had been diagnosed with schizophrenia based on 
the Structured Clinical Interview for DSM-IV-TR Axis I 
Disorders (SCID-I/P) (First, Spitzer, Gibbon, & Williams, 
2002a). Imaging data for six of the seven sites was collected 
on a 3T Siemens TIM Trio System and on a 3T General 
Electric Discovery MR750 scanner at one site. Resting state 
fMRI scans were acquired using a standard gradient-echo 
echo planar imaging paradigm: FOV of 220×220 mm (64×64 
matrix), TR = 2 sec, TE = 30 ms, FA = 77

0
, 162 volumes, 32 

sequential ascending axial slices of 4 mm thickness and 1 
mm skip. Subjects had their eyes closed during the resting 
state scan.  

B. Quality Control 

We performed rigid body motion correction using the 
INRIAlign  toolbox in SPM to correct for subject head 
motion. All subjects that had SFNR < 150 and a maximum 
root mean squared translation > 4 mm were excluded from 
further analysis. This excluded a total of 56 subjects, 
resulting in 314 subjects (163 HC and 151 SZ) for subsequent 
analysis. For the retained subjects, we performed slice-timing 
correction to account for timing differences in slice 
acquisition. Then the fMRI data were despiked using AFNI’s 
3dDespike algorithm to mitigate the impact of outliers. The 
fMRI data were subsequently warped to a Montreal 
Neurological Institute (MNI) template and resampled to 3 
mm

3
 isotropic voxels. Instead of Gaussian smoothing, we 

smoothed the data to 6 mm full width at half maximum 
(FWHM) using AFNI’s BlurToFWHM algorithm which 
performs smoothing by a conservative finite difference 
approximation to the diffusion equation.  

C. Group Independent Component Analysis: 

All of the preprocessed functional data from both control 
and patient groups were analyzed using spatial group 
independent component analysis (GICA) framework as 
implemented in the GIFT software [27]. Spatial ICA 
decomposes the subject data into linear mixtures of spatially 
independent components that exhibit a unique time course 
profile. A subject-specific data reduction step was first used 
to reduce 162 time point data into 100 orthogonal directions 
of maximal variability using principal component analysis. 
Then subject reduced data were concatenated across time and 

a group data PCA step reduced this matrix further into 100 
components along directions of maximal group variability. 
One hundred independent components were obtained from 
group ICA using the infomax algorithm. 47 intrinsic 
connectivity networks (ICNs) were selected for final 
processing using the procedures described in our earlier work 
[28]. The subject specific Time-courses (TCs) corresponding 
to the ICNs selected were detrended, orthogonalized with 
respect to estimated subject motion parameters, and then 
despiked.  

D. Extracting Functional Network Connectivity Features 

For each subject, we computed the functional network 
connectivity, referred to as FNC, by computing pairwise 
Pearson correlation using the processed ICA time-courses. 
We selected 47 ICNs, resulting in 1081 FNC features for 
each subjects. 

E. Extracting Autoconnectivity Features 

Autoregressive of model order one (AR1) were fit to each 

ICA time-series for each subject. Assuming  represents an 

ICA time-course. The purpose of AR1 modelling is finding 

 in the below equation: 

 (1) 

 

Maximum likelihood was used to estimate the AR1 

coefficient ( . This produced 47 autoconnectivity features 

for each subject. 

 

F. Feature selection 

In total we extracted 1128 features for each subject 

(47+1081). The high number of features compared to the 

subjects in our dataset can cause curse of dimensionality 

problem. To avoid this problem we used minimum 

redundancy maximum relevancy (MRMR) feature selection 

method. This methods tries to maximize the mutual 

information between the selected features and class labels 

while minimize the mutual information among the selected 

features. 

 

G. Classification 

Over the last 15 years following the work by Cortes et al. 

(Cortes and Vapnik, 1995), SVM has proven useful in many 

machine learning and pattern recognition analysis problems. 

Moreover, when data classes are heterogeneous with few 

training samples, SVMs appear to be especially beneficial 

(Melgani and Bruzzone, 2004). This binary classifier aims at 

finding a hyperplane that maximizes the margin between the 

two classes. SVM is able to fit non-linear classifiers by a 

incorporating a method called kernel trick. Non-linear SVM 

maps the data to a higher dimensional space where the data 

is linearly separable. The projection of that hyperplane in the 

original feature space is then non-linear. There are several 

kernel functions that can be used in non-linear SVM. In this 

study we used linear SVM along with non-linear SVM with 

radial basis function (RBF) and polynomial kernels. 
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Figure 1. Spatial maps of selected 47 independent components grouped based on functionality into 7 categories: subcortical (5 components), auditory 

(2 components), visual (11 components), sensorimotor (6 components), attention/cognitive control (13 components), default-mode network (8 
components) and cerebellar (2 components). 
 

  

Figure 2. Mean of FNC grouped by functionality of brain networks for healthy controls (left) and schizophrenia patients (right)  

 

H. Cross-validation 

We used 10 fold cross validation to calculate the generalized 

error of the classifier. In each run 10 subjects were set aside 

for testing and the rest were used for training. A leave-one 

out method was used inside the training set to find the 

optimal value for SVM hyperparameters along with optimal 

number of features to be selected by MRMR feature 

selection approach. 

III. RESULTS 

Of these 100 ICA components, 47 components were 
identified as resting-state networks using the procedures 
described in our earlier work (Allen et al., 2012; Allen et al., 
2011). ICA spatial maps were broadly categorized based on 
anatomical proximity and prior knowledge of their function 
into the following sub-categories: subcortical (SC), auditory 
(AUD), visual (VIS), somatomotor (SM), a heterogeneous set 
of regions involved in various attentional and cognitive 
control processes (CC), default-mode (DMN), and cerebellar 

(CB) networks. These resting-state networks are illustrated in 
Figure 1.  

1081 FNC features and 47 autoconnectivity feature were 
extracted for each subject. The group average FNC features 
are illustrated in Figure 2. Autoconnectivity features are 
averaged for each functional group and are illustrated in 
figure 3. We performed classification first for FNC and 
autoconnectivity separately and then for their combination. 
Features were demeaned and normalized by the variance to 
make them comparable. Table 1 summarizes the results. 

IV. DISCUSSION 

In this study we proposed a classification approach for 

discriminating schizophrenia patients from healthy controls 

based on two types of resting-state features: functional 

network connectivity and autoconnectivity. Adding novel 

autoconnectivity features to FNC features improved the 

classification performance significantly. Our results show 

that using these features can result in a robust and accurate 
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classifier with about 88% overall accuracy which is very 

promising.  

 
TABLE 1: Classification Results 

           Accuracy Overall 

Accuracy 
Sensitivity Specificity 

FNC 83.7% 81.4% 85.9% 

Autoconnectivty 80.2% 78.1% 82.2% 

FNC +Autoc 88.21% 86.7% 89.5% 

 
Figure 3. Average autoconnectivity Features for healthy controls and 

schizophrenic patients averaged for each brain functional group (Figure 1). 

Standard error values are illustrated for each bar. Note that number of 
autoconnectivity features are 47 but we are showing just the average for 

each functional group here. 
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