
  

  

Abstract— Cerebral blood flow (CBF) is a physiological 
correlate of brain function and metabolism and as such an 
essential parameter for investigating how aging and disease 
affect the brain. Arterial spin labeling (ASL) is an fMRI 
method that provides absolute measurement of CBF 
non-invasively and with higher spatial resolution than 
non-MRI methods. However, application of ASL in older 
populations is hampered by partial volume effects (PVE) and 
tissue dependent changes in CBF. We have developed a 
tissue-specific ASL method (ts-ASL) that provides ‘flow 
density’ measures by quantifying CBF for each tissue 
separately and independently of tissue content. Using simulated 
functional and structural images, we investigated the effects of 
brain atrophy and random noise on the SNR of GM CBF 
measured with conventional and ts-ASL. Results showed that: 
(1) For all noise levels, the SNR of ts-ASL was higher. For 
example, for a random Gaussian noise with standard deviation 
σ  = 4, the SNR of GM CBF obtained with ts-ASL was ~3 times 
higher than the SNR of the conventional method. (2) In 
contrast to conventional ASL, which was substantially affected 
by brain atrophy, ts-ASL was virtually independent of it. (3) 
The sensitivity of ts-ASL for detecting focal changes in CBF 
(ΔCBF) in the presence of atrophy and noise was also higher 
compared to the conventional method. In hippocampus, for 
15% atrophy and Gaussian noise with σ  = 4, conventional and 
ts-ASL retrieved 73% and 90% of the modeled ΔCBF, 
respectively. Taken together, these results indicate that ts-ASL 
may be better suited for measuring CBF in the presence of 
atrophy and random noise, both of which are expected to 
increase with aging and disease. 

I. INTRODUCTION 

Functional MRI methods rely on fast image acquisition 
techniques such as echo-planar imaging (EPI) to achieve the 
temporal resolution needed for detecting brain activation. In 
arterial spin labeling (ASL) perfusion fMRI, fast acquisition 
is even more crucial because of the combined effects of the 
time needed to label the arterial water and the signal 
deterioration due to T1 relaxation [1]. Fast acquisition comes 
at the expense of spatial resolution. While anatomical MRI 
images can be acquired at sub-millimeter level, the voxel 
sizes commonly used in fMRI are at least an order of 
magnitude higher [2]. This comparatively low spatial 
resolution of fMRI exacerbates the partial volume effects 
(PVE), defined as the mixing of the signals originating from 
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different tissues present in a given voxel [3]. Mnimizing the 
confound of tissue-mixing in ASL imaging is essential for 
measuring changes in gray matter (GM) CBF due to aging 
and disease independently from concurrent anatomical 
changes such as those due to atrophy and lesions [4]. 

We have developed a tissue specific, ts-ASL, method that 
corrects for PVE by producing ‘flow density’ images that are 
independent of tissue mass. In other words, the ‘flow density’ 
value at a given voxel for a given tissue represents the 
amount of blood flow the voxel would have if it were 
comprised entirely of that tissue [3]. For example, when 
using ts-ASL, a voxel with 50% gray matter (GM) and 50% 
cerebrospinal fluid (CSF) would, theoretically, yield the same 
flow density value as a voxel that is 100% GM [3]. 

In a recent longitudinal study on healthy young subjects, 
we showed that the inter-subject variability of CBF using 
ts-ASL was about 40% lower than that of conventional ASL 
[5]. We speculated that the superior performance of ts-ASL 
was due to the fact that its signal is less affected by the 
anatomical variability across subjects. However, repeat 
acquisition on the same subject (data unpublished) indicated 
that the noise in ts-ASL images was lower even in the 
absence of anatomical variability. Because it is difficult to 
separate the sources of noise in experimental data, we 
decided to use simulated data so that we could control for the 
noise in functional images and anatomical variability in 
structural images independently. To this end, the SNR of the 
ts-ASL method was compared to that of the conventional 
ASL for increasing levels of noise and atrophy. 

II. THEORY 

A. Conventional ASL 
In all ASL methods, the proton spins of the arterial water 

are labeled prior to reaching the imaged volume by either 
saturation or inversion [6]. Once water is labeled, and after a 
time delay that allows for it to exchange with the tissue, a 
‘labeled’ image, ML, is acquired; the blood water protons in 
ML are in a different magnetization state from those of the 
static brain tissue [1]. In addition to ML, a ‘control’ image, 
MC, is also acquired where the magnetization of the arterial 
water has not been altered, and, therefore, both the static 
tissue and the blood water protons are in the same magnetic 
state at the time of acquisition [1]. The difference between 
MC and ML cancels out the signal from the static tissue 
leaving only the signal from the labeled arterial spins.  

The ASL signal is expressed as a ratio between the 
difference (MC – ML) image and the equilibrium 
magnetization, MO, which for this study was taken as the 
average of MC over the whole brain. [6]: 
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ASLsignal =
(MC −ML)

MO
=

∆M

MO
(1)

 
A CBF image is computed in absolute physiological units of 
flow as:  

ftissue = (∆M/MO) · Ftissue (2)  
where Ftissue  is a scaling factor that takes into account both 
physiological and MR parameters, such as partition 
coefficient and relaxation rates, for a given tissue [7]. 

B. Tissue-specific, ts-ASL 
As mentioned above, given the relatively low spatial 

resolution of ASL, the (ΔM/MO) term contains contributions 
from all three brain tissues: gray matter (GM), white matter 
(WM), and CSF. Ideally, we want to be able to separate these 
contributions and compute CBF independently for GM and 
WM as: 

fp
GM = PGM · (δmGM

mGM
) · FGM (3)

fp
WM = PWM · (δmWM

mWM
) · FWM (4)

 

and compute the net CBF as a sum of these partial 
contributions: 

fNET = fp
GM + fp

WM (5)  

To achieve this, we would need to estimate all five 
parameters – mGM, mWM, mCSF, δmGM, δmWM – separately and 
for each voxel. As it stands, this is not possible because we 
have only 2 equations to estimate 5 parameters. However, by 
assuming that in a relatively small region surrounding each 
voxel these parameters remain constant, we can now bring 
more equations to bear by using linear regression to model 
MC and ΔM as weighted sums of pure tissue contributions: 

MC(ri) = Pj(ri) ·mj(ri) (6)

∆M(ri) = Pj(ri) · δm(ri) (7)  

where ri is the position of each voxel, Pj(ri) is a row vector of 
the tissue type fraction at ri, and mj(ri) and δm(ri), which we 
seek to estimate, are column vectors of the equilibrium (MC) 
and difference (MC – ML) intensities of the jth tissue type at ri, 
respectively. (See [3] for details.) 

III. METHODS 

A.  Image Acquisition 
A high-resolution, magnetization prepared rapid gradient 

echo (MPRAGE) image was acquired on a healthy young 
subject on a 3T scanner (Philips Achieva), with the following 
parameters: TR/TE = 6.7 ms/3.1 ms, TI = 0.8 s, flip angle = 
8o, spatial resolution = 0.9 x 0.9 x 0.9 mm3, 180 slices. This 
image was used to simulate brain atrophy by varying the GM 
content of each voxel as described below. 

To get a sense of the overall noise in the functional 
images, we looked at the spatial and temporal variation of the 
EPI signal from a longitudinal study [5]. 

B. Simulations of EPI, baseline CBF, and ΔCBF 
   Control and labeled EPI images were simulated as 
follows: 

1) Voxelwise GM, WM, and CSF contents (in %) were 
obtained as posterior probability maps, PGM, PWM, PCSF, from 
the tissue-segmentation of the MPRAGE using SPM8 
unified segmentation algorithm [8]. 

2) The tissue content images were down-sampled to a typical 
EPI spatial resolution of 3.5 x 3.5 x 8 mm3. 

3) The control SE EPI ASL image (MC) was modeled as: 

MC = (PGM ·mGM ) + (PWM ·mWM )

+ (PCSF ·mCSF )
(8)

 

with tissue magnetization ratios assumed as: mGM = mWM = 
mCSF  = 1.2/1/1.7 [3]. 

4) The labeled ASL image (ML) was modeled as: 

ML = (PGM · (mGM − δGM ))

+ (PWM · (mWM − δWM )) + (PCSF ·mCSF )
(9)

 

where δGM and δWM represent the (MC – ML) difference 
images for GM and WM respectively. The values for δGM 
and δWM were back calculated using the 2-compartment 
formula [9] with the assumption that GM CBF = 80 
mL/100g⋅min and WM CBF = 30 mL/100g⋅min, as per [4]. 

For all analysis, GM was defined by the voxels with GM 
content > 50%.  

5) Matlab code was written to simulate ΔCBF ROI centered 
at a specified ROI by modifying the simulated SE EPI 
labeled image to reflect a 20% change in GM CBF (from a 
baseline of 80 mL/100g⋅min). Because of its role in aging 
and dementia and also because of its size, shape, and 
location in the brain, we selected the hippocampus as the 
ROI of choice. The hippocampal ROI, from pickatlas [10], 
was co-registered to the ASL imaging space and 
down-sampled to match the resolution of the EPIs. Although 
we show only results from the hippocampus, other ROIs 
with varying shape, size, and location were also investigated. 

C. Image Processing and CBF Computation 
CBF images were obtained using ts-ASL and the 

conventional method as described below: 

Conventional ASL Method: ASL difference images were 
computed as (MC – ML) obtained above and were converted 
to CBF images using equations (1) - (2). 

Ts-ASL Method: The algorithm that corrects for PVE 
was run on control and δ images as per equations (3) - (7) and 
as described in detail in our previous work [3]. 

D. Simulation of Noise 
Uncorrelated zero mean Gaussian noise was simulated 

and introduced to the control and labeled images, 
independently, to account for a voxelwise standard deviation 
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Fig.1B: 1st and 2nd rows: GM CBFd (‘flow density’) images and 
fractional GM CBF images obtained with ts-ASL. 3rd row: GM CBF 
images obtained with conventional ASL. Each column represents a 
different level of noise, starting with zero noise (σ=0). 

 
Fig.1A: Simulated control EPI images (MC) and difference 
control-label (MC – ML) images for two different levels of noise, 
σ=4 and  σ=10 and for the idealized situation of no noise, (σ=0). 

 
Fig.2: SNR obtained with ts-ASL GM CBFd (gray), and conventional 
ASL (white) at noise levels σ=4, σ=10 as  well  as   in  the  absence  
of noise, σ=0, respectively. Note that ts-ASL had higher SNR than the 
conventional method for all the noise levels. 

(σ) of 4 and 10. We based these numbers on the intra-subject 
variance measurement of the ASL EPI images from our 
previous work [11]. 

E. Simulation of Atrophy 
Atrophy was defined as a decrease (by a given percent) 

in GM tissue content. At each voxel, the GM content 
(obtained from the segmentation of the MPRAGE image) 
was decreased in the 0% - 25% range, step of 5%. Through 
this process, we simulated 6 GM (PGM) posterior probability 
images; PWM was not altered, PCSF was increased 
correspondingly to keep the sum of probabilities to 1. 

IV. RESULTS 

A. Effect of Gaussian Noise on Estimating Baseline CBF: 
Comparison of ts-ASL with Conventional ASL fMRI. 
To give a sense of the images that were used to compute 

CBF for both ASL methods, control (MC) EPIs and 
control-label (MC–ML)  difference images are shown in 
Fig.1A; the corresponding GM CBF images are shown in 
Fig.1B. For all noise levels, the ts-ASL images more closely 
matched the simulated GM CBF (Fig.1B). Even in the 
idealized situation of zero noise, the conventional method 
was able to extract only about 80 % of the GM CBF signal, 
whereas ts-ASL, which is independent of voxels’ tissue 
content, extracted 100% of it. 

Quantitative results are shown in Fig.2. Note that even for 
σ=4 (expected to be comparable with actual noise in EPI 
imaging of healthy young volunteers at 3T [11]), the 
conventional method missed 80% of the CBF signal. In 
contrast, the effect of noise was lower for ts-ASL, which 
missed ~46% of the ‘true’ signal. 

B. Effect of Brain Atrophy on Estimating the CBF: 
Comparison of Conventional with ts-ASL fMRI. 
 In the section above, the noise was introduced and varied 

only in the EPI (functional) images whereas the structural 
information was kept constant. In this section, we simulated 
brain atrophy by changing the GM content from 0% to 25% 
(step of 5%). The results for both ts- and conventional ASL 
are summarized in Fig.3A. As expected from theoretical 

considerations, because the ts-ASL method extracts CBF per 
tissue volume, it is largely independent of atrophy (Fig.3A, 
orange). In contrast, the  error in estimating CBF using the 
conventional method increased with increasing atrophy 
(Fig.3A, blue). To get a visual sense of the effect of PVE on 
the GM CBF measurement, images are shown in Fig.3B. 

C. Combined Effects of Noise and Atrophy on the SNR of the 
Conventional and ts-ASL for Detecting Changes in CBF. 
The ability to detect changes in CBF is crucial for any 

fMRI method as these changes are expected to reflect 
changes in neural activity, which can be fast and short-term 
(brain activation) or gradual and long-term (aging and 
disease). In aging and disease, functional changes can occur 
concurrently with structural changes such as those associated 
with atrophy and/or lesions. Here, we tested the sensitivity 
of both methods for detecting changes in CBF (ΔCBF) in the 
presence of increasing levels of atrophy. We selected the 
hippocampus because of its relevance in studies of aging and 
dementia and also because of its shape and location in the 
brain (see Methods). As shown in Fig.4, even in the 
idealized situation of no noise, ts-ASL had higher sensitivity 
for detecting ΔCBF than conventional ASL. For combined 
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Fig.3A: Effect of brain atrophy on the accuracy of GM CBF 
measurement using ts-ASL GM CBFd (orange dots) and conventional 
ASL (blue squares). 

 
Fig.3B: GM CBF images obtained with ts-ASL CBFd (left) and 
conventional ASL (middle) for 20% gray matter atrophy in the absence 
of noise. Note that while the ts-ASL GM CBFd image is virtually 
homogenous, the conventional ASL GM CBF is dependent on tissue 
content, which can be quite heterogenous in the cortical boundaries.    

 
Fig.4: Concurrent structural (15% atrophy) and functional (20% GM 
CBF decrease) were simualted in the hippocampal-ROI resulting in a 
net ΔCBF = 16 mL/100g⋅min shown by the yellow ROI overlayed on 
the structural image (left). The CBF images extracted with ts-ASL 
(middle) and conventional ASL (right) show that ts-ASL more closely 
matched the functional change in CBF. 

15% atrophy and Gaussian noise with σ=4, ts-ASL retrieved 
90% of ΔCBF, whereas conventional retrieved 73% of it.  

V. DISCUSSION AND CONCLUSIONS 

We compared two ASL fMRI approaches for obtaining 
CBF images: the conventional method and the 
tissue-specific method, which corrects for PVE by 
estimating the CBF for each tissue independently [3]. The 
comparison was done using simulated data containing 
various degrees of noise, mimicking a range of CBF 
variability observed in ASL studies conducted by our group 
and others ([4], [9], [11], [14]). For all scenarios, ts-ASL 
was superior to the conventional method by more closely 
matching the simulated CBF. Furthermore, the results 
showed that ts-ASL was minimally affected by anatomical 
variability and therefore can be used to detect changes in 
CBF (i.e., functional changed) independently from structural 
changes. One of the drawbacks of the ts-ASL method, 
however, is the inherent smoothing of the data (as can be 
seen in Fig.4), which can restrict its sensitivity in detecting 
small, localized changes in CBF.  

Because aging and disease can concurrently affect both 
brain structure and function, developing a method that can 
measure these effects separately is essential for 
understanding the mechanisms underlying these effects and 
for development of biomarkers. 
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